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Abstract

Motivation: Genome regulatory networks have different layers and ways to modulate cellular processes, 
such as cell differentiation, proliferation, and adaptation to external stimuli. Transcription factors and other 
chromatin-associated proteins act as combinatorial protein complexes that control gene transcription. 
Thus, identifying functional interaction networks among these proteins is a fundamental task to understand 
the genome regulation framework.

Results: We developed a novel approach to infer interactions among transcription factors in user-selected 
genomic regions, by combining the computation of association rules and of a novel Importance Index on 
ChIP-seq data sets. The hallmark of our method is the definition of the Importance Index, which provides 
a relevance measure of the interaction among transcription factors found associated in the computed 
rules. Examples on synthetic data explain the index use and potential. A straightforward pre-processing 
pipeline enables the easy extraction of input data for our approach from any set of ChIP-seq experiments. 
Applications on ENCODE ChIP-seq data prove that our approach can reliably detect interactions between 
transcription factors, including known interactions that validate our approach.

Availability: A R/Bioconductor package implementing our association rules and Importance Index based 
method is available at http://bioconductor.org/packages/release/bioc/html/TFARM.html

Contact: gaia.ceddia@polimi.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors are regulatory proteins whose co-occurrence on

genomic regions and interaction with each other can lead to the regulation

of gene expression (Diamond et al., 1990; Lundberg et al., 2016). Gene

regulation induced by transcription factors depends on their ability to bind

DNA elements and to form protein complexes. Computational prediction

of transcription factor interactions can hence provide insights on the

genome regulatory framework.

Several algorithms have been proposed to infer protein-protein

associations (Wixon, 2001), including transcription factor associations;

some of them are based on co-expression data (Szklarczyk et al., 2015),

others on Bayesian methods that integrate different types of genomic

data (McDowall et al., 2009; Schmitt et al., 2014), others rely on

structure similarity and evolutionary conservation (Keskin et al., 2008).

Additionally, methods directly targeting interactions in chromatin have

been proposed to better understand regulatory networks (Lundberg et al.,

2016). Bayesian networks (van Steensel et al., 2010) and Markov random

fields (Zhou and Troyanskaya, 2014) were first adopted to solve this task

on a limited number of chromatin immunoprecipitation sequencing (ChIP-

seq) data. Then, the ChromNet approach (Lundberg et al., 2016) made

it feasible on more than one thousand ChIP-seq experiments genome-

wide. ChromNet is based on the computation of the inverse correlation

matrix from ChIP-seq datasets of transcription factors and other chromatin-

associated proteins. It then improves the inverse correlation network by

expressing correlation relationships among groups of regulatory factors,

as well as individual factors. Its relevance, in addition to the proposed

method, is mainly in the provided results, made publicly available via

Web interface (http://chromnet.cs.washington.edu/).

Association rule mining is a well-known technique in data mining

and knowledge discovery. It is used to discover association rules in large

transaction databases (Sun and Bai, 2008), which can unveil hidden

 



relationships among frequent patterns of items present in a database

(Datta et al., 2016). Association rules have been used in many different

applications, including marketing, text mining, and classification (Sun

and Bai, 2008). Several examples of association rule mining exist in

bioinformatics (Naulaerts et al., 2013), such as to identify hotspots in

cancer data (Agrawal and Choudhary, 2011), or to identify relevant genes

in gene expression and methylation data (Mallik et al., 2015). Many

attempts have been undertaken to rank association rules or to weight them

(Sun and Bai, 2008; Datta et al., 2016; Mallik et al., 2015); however, no

importance measure of an item in a rule or rule set has been proposed yet.

Here, we innovatively use association rule mining to identify

transcription factors’ regulatory networks on chromatin. Our approach

is based on the definition of a novel Importance Index to measure the

relevance of each item in an association rule; this provides a ranking

of each chromatin-associated factor’s significance in the interaction with

another specific factor, i.e., of most likely interactors of a particular factor.

Compared to other methods, the advantages of our approach are the

lower computational cost and the ability to evaluate transcription factor

associations in user-selected genomic regions.

2 Methods

In this Section, we discuss the Apriori algorithm to find association rules,

and we propose the novel Importance Index to identify interactors of a

target item in the rules, where the target item is a transcription factor (TF)

selected by the user to be studied and the rule items are other transcription

factors. Moreover, we defined itemsets as the promoter regulatory regions

with at least one TF binding site. In this setting, the Importance Index

gives a measure of confidence that two or more transcription factors form

a transcription factor complex with the selected TF within the promoter

regulatory regions.

2.1 Apriori algorithm

Apriori is the algorithm most frequently used for the search of association

rules (Agrawal and Srikant, 1994). Consider a set K = {k1, k2, …, kn}

of n binary attributes, called items, and a set T = {t1, t2, …, tm} of m

transactions, or itemsets, with every transaction ti in T having a unique

ID and consisting of a subset of items in K. An association rule over the

dataset T is defined as an implication of the form:

X → Y

where X and Y are two sets of items, respectively called antecedent (or

left-hand-side, LHS) and consequent (or right-hand-side, RHS) of the rule,

with X,Y ⊆ K and X ∩ Y = ∅.

An association rule is typically described by three measures: support,

confidence and lift, representing the significance and interest of the rule.

• The support measures the rule frequency in the dataset, defined as:

supp(X → Y) =
supp(X ∪ Y)

|T |
(1)

where |T | is the number of transactions in T, X ∪ Y is a set of items

in K and supp(X ∪Y ) is the support of the itemset X ∪Y in T, with

the support of X in T defined as:

supp(X) =
|{ti ∈ T : X ⊆ ti}|

|T |
(2)

that is the proportion of transactions ti in the dataset T that contain the

itemset X . The support of an association rule measures the frequency

of the items satisfying the rule in the dataset and varies in the interval

[0,1].

• The confidence is defined as:

conf(X → Y) =
supp(X ∪ Y)

supp (X)
(3)

It gives an estimate of the conditioned probability P (Y |X), that is the

probability of finding the RHS of the rule (i.e., the itemset Y ) in the set

T of transactions, given that such transactions also contain the LHS of

the rule (i.e., the itemset X). Therefore, it measures the reliability of

the inference made by the rule X → Y . The higher is the confidence

of the rule, the higher is the probability of finding the itemset Y in a

transaction containing the itemset X . It varies in the interval [0,1].

• The lift is defined as:

lift(X → Y) =
supp(X ∪ Y)

supp (X) ∗ supp (Y)
(4)

It can be interpreted as the variation of the support of the rule with

respect to the support obtained assuming that the rule LHS and RHS

are independent. Therefore, it measures the strength of the rule, and

varies in the interval [0,∞].

The general process of the Apriori algorithm consists of two steps: the

frequent itemset generation and the rule generation (Agrawal and Srikant,

1994). The first step is to generate a frequency table of all items that occur in

the transaction set, and to find the set of frequent items (i.e., of the items that

have support greater than a threshold), which has k significant items (with

k ≤ n, where n is the total number of items in the K set). Then, starting

from the most frequent item, the algorithm expands the search of frequent

sets to all the possible pairs of significant items (i.e., both belonging to

the set of frequent items) and applies the support threshold. This step is

repeated for triplets of items, quartets, and so on. In other words, the

frequent itemset generation starts from k-itemset (set of frequent items

in the transaction set), adds one item at a time for each k-itemset (until

k = n − 1), and computes the support. The new itemset has to pass

the support threshold. The second step creates rules from each frequent

itemset that satisfy the minimum confidence requirement. If a frequent

itemset contains k elements, then the number of candidate association

rules is equal to 2k − 2 (Agrawal and Srikant, 1994).

2.2 Importance Index

We aim to identify the most important items in the LHS itemsets generated

by the Apriori algorithm taking into account the RHS as the target item(s)

selected by the user. Since the number of association rules and LHS items

in each rule can be very high, the entire list of LHS items in the whole set

of rules alone does not provide an intelligible result without a measure of

how much each item contributes to the existence of a rule. For example,

let us consider the rule:

{k1 = 1, k2 = 1, k3 = 1} → {kt = 1}

Just by looking at it, an analyst could not tell how much the presence of

each item k1, k2 and k3 contributes to the prediction of the kt’s presence.

To find it out, we propose to substitute alternatively the presence of k1,

k2 and k3 in the rule with their absence, and in each case evaluate: if the

modified itemset keeps existing in the dataset, and how the three quality

measures of support, confidence and lift of the correspondent rule change.

If the quality measures of a rule are equal to 0 when an item is set as absent

in the pattern identified by the LHS of the rule (e.g., {k1 = 0, k2 = 1,

k3 = 1} for the absence of the item k1), then the presence of that item in

the pattern {k1 = 1, k2 = 1, k3 = 1} is fundamental for the existence of



the association rule {k1 = 1, k2 = 1, k3 = 1} → {kt = 1}. Otherwise,

if the modified rule keeps existing as relevant (i.e., support, confidence and

lift are different from 0), and its quality measures are equal to the ones of

the rule initially considered, then the presence of that item in the pattern

{k1 = 1, k2 = 1, k3 = 1} is not fundamental for the existence of the

association rule {k1 = 1, k2 = 1, k3 = 1} → {kt = 1}.

The first step to evaluate the importance of items in the LHS is to choose

the target item(s) kt as the RHS and use the Apriori algorithm to compute

significant association rules. Then, for each item k̂ in the computed LHSs,

we extract the subset of all relevant associations containing k̂ in the LHS,

named Rk̂ (with J = |{Rk̂}| the number of rules in Rk̂). Each element

of {Rk̂
j }j=1:J is described by a set of quality measures of support,

confidence, and lift: {sk̂j , c
k̂
j , l

k̂
j }j=1:J .

Let {Rk̂−
j }j=1:J be the set of rules obtained substituting the presence

of the item k̂ with its absence in each element of {Rk̂
j }j=1:J . For example,

if k̂ is k1 and Rk̂
j is the rule {k1 = 1, k2 = 1, k3 = 1} → {kt = 1}

with measures {sk̂j , c
k̂
j , l

k̂
j }, thenRk̂−

j is the rule {k1 = 0, k2 = 1, k3 =

1} → {kt = 1} with measures {sk̂−j , ck̂−j , lk̂−j }.

To analyze the importance of an item k̂, we compare the two

distributions {sk̂j , c
k̂
j }j=1:J and {sk̂−j , ck̂−j }j=1:J for each j in

{1, ..., J}. We do not consider the lift since it is directly proportional

to the confidence measure. We define the Importance Index of the item k̂

in the rule Rk̂
j as:

imp(k̂)j = ∆sj +∆cj (5)

with:

∆sj = sk̂j − sk̂−j ,∆cj = ck̂j − ck̂−j (6)

The importance of k̂ in its set of rules Rk̂ is obtained evaluating the mean

of all its importances imp(k̂)j in the set of rules:

imp(k̂) =

∑J
j=1

imp(k̂)j

J
=

∑J
j=1

∆sj +∆cj

J
= ∆s+∆c (7)

where ∆s and ∆c are the means of the support and confidence variations

over the total number of rules in which k̂ is in the LHS and the target item(s)

is set as the RHS. In Equation 6, variations are defined as the differences

between two conditions: item k̂’s presence and item k̂’s absence for each

rule. ∆s varies in (-1,1] range, where ∆s = −1 means that the item k̂

and the target item(s) do not appear together (not possible by definition of

k̂’s association rules) and ∆s = 1 means that the item k̂ and the target

item(s) appear together in every itemset. Also ∆c varies in (-1,1] range;

it is equal to -1 when item k̂ does not occur with the target item(s) and

it is equal to 1 when the frequency of k̂’s association rules is the same

as the frequency of kt. Consequently, the Importance Index varies in (-

2,2] range, reaching the lowest value when the frequency of the item k̂’s

absence is greater than the frequency of the item k̂’s presence and the

co-occurrence of item k̂ and the target item(s) is equal to 0. It reaches

the highest value when the item k̂ and the target item(s) appear together

in every itemset, or when the number of presences of the item k̂ in the

dataset are close to the total number of itemsets. Evaluating the index

imp(k̂) for each item k̂ in the relevant association rules extracted allows

ranking the items by their importance when the target item(s) is set as

RHS. Items with high mean Importance Index are assumed fundamental

for the existence of association rules; conversely, items with low mean

importance do not significantly influence the pattern of items associated

with the target item(s).

The Importance Index can be easily evaluated also on item couples,

triplets, etc., by substituting the item k̂ with a set of items (e.g., k̂ =

{k1, k2}) and using the same procedure. Thus, we identify as Rk̂ the set

of rules containing both k1 and k2, and as Rk̂− the set of correspondent

rules without the two items. This approach allows the identification of

interactions between items that would be unrevealed just by looking at

the list of association rules. When items represent transcription factors,

this allows identifying and quantifying the contribution of one or more

transcription factors to the co-factor complex of a given target factor.

2.3 Implementation

Our method is implemented as an open source software package, named

TFARM, within the R/Bioconductor framework (Gentleman et al., 2004).

After the peer review process, TFARM is available in the Bioconductor

release (http://bioconductor.org/packages/release/bioc/html/TFARM.html).

From January 2018 to July 2019 it had 2,032 downloads by 964 distinct

IPs. TFARM computes association rules and searches for high ranked

transcription factors given a matrix of factor itemsets from ChIP-seq data, a

target transcription factor, and minimum support and confidence thresholds

as inputs. Visualization tools for the evaluation of the Importance Index,

examples, and guidelines are provided in the package.

3 Results

In this section, we first provide two examples on synthetic simulated

data to illustrate how our proposed Importance Index can discriminate

the relevance of items in a dataset of itemsets. Then, we apply the

Importance Index approach to real datasets of transcription factors to show

the usefulness of our results and compare them with ChromNet’s ones.

3.1 Example 1: Small synthetic dataset

Table 1 reports a small synthetic dataset of binary items organized in the

form of a matrix, named matrix of presences, where each row describes

an itemset, each column is a different item, and elements equal to 1

define the presences of an item in an itemset, whereas elements equal to

0 identify the absences of an item. Such a matrix can hence represent the

presence/absence of bindings of transcription factors (items) in selected

genomic regions (itemsets). To compute the importance of each item

associated with an item of interest (or target item) we use our proposed

Importance Index, which expresses how much the presences of an item

are related to the presences of the target item. After setting the presence

of the target item (e.g., item A) as the RHS of the association rules

to search for, the Apriori method is applied to the matrix of presences

in Table 1. Association rules with support threshold greater than zero

are reported in Table 2. The influence of each item on the target item’s

presence is first computed as an Importance Index in each rule including

the item, and then calculated as mean of these Importance Indexes over

all item-associated rules. For example, the Importance Index of item B

in the {B = 1} → {A = 1} rule is the sum of the support and

Table 1. Example 1 dataset.

Itemset ID A B C D E

1 1 1 1 0 1

2 1 1 0 1 0

3 1 1 0 0 0

4 1 1 0 0 0

5 1 1 1 0 0

6 0 0 1 1 0

7 0 0 1 1 0

A, B, C, D and E are binary items in the dataset.



Table 2. Item association rules with A as target item and computed

for the dataset in Table 1.

Rule ID LHS RHS Support Confidence

1 E = 1 A = 1 0.14 1.00

2 D = 1 A = 1 0.14 0.33

3 C = 1 A = 1 0.29 0.50

4 B = 1 A = 1 0.71 1.00

5 C = 1, E = 1 A = 1 0.14 1.00

6 B = 1, E = 1 A = 1 0.14 1.00

7 B = 1, D = 1 A = 1 0.14 1.00

8 B = 1, C = 1 A = 1 0.29 1.00

9 B = 1, C = 1, E = 1 A = 1 0.14 1.00

LHS is the left-hand-side and RHS is the right-hand-side of the rules.

confidence variations with respect to the same rule with B’s absence (i.e.,

{B = 0} → {A = 1}), as in Equation 5. Overall, the Importance Index

of B is the average of all Importance Indexes of B in the set of rules where B

is present (B appears in five rules, as shown in Table 2). Table 3 shows the

ranking of the items in the dataset of Table 1, according to their Importance

Index and considering A as the target item. The ranking explains the

behaviour of the items in the dataset with respect to the target item. Item

B scores the highest Importance Index (Imp) and average variations of

support (∆s) and confidence (∆c) over the five rules in which it is present

(N° rules). Low values of the ∆s for all items depend on the fact that

no item in Example 1 dataset reaches a number of presences equal to the

number of itemsets, i.e., the frequency of the item’s presences over the total

number of itemsets is always smaller than 1. Conversely, ∆c depends on

the co-occurrences between the item and the target item. In the Example

1 dataset, B and A (the target item) always co-occur, C and A co-occur

twice over the total four presences of C, E is present only once and together

with A, and D has three presences, but only one co-occurs with the target

item. Negative scores of ∆s are reached when the absences of the item

in the matrix are more numerous than its presences, as for D and E in

the Example 1 dataset. Concerning the ∆c, the item B has the highest

score in Table 3, since B and the target item are always and only present

together. As defined in Equation 3, the confidence of a rule is proportional

to the ratio between the frequency of the rule itemset and the frequency of

the rule LHS. C and E have positive ∆c because they are present in four

rules, which appear more often than the rules with their absence. Instead,

D is present in two rules; both of them continue to exist when computed

for D = 0 and indeed their support and confidence measures are greater

than the ones computed for D = 1. Thus, D has a negative ∆c. More on

Example 1’s support and confidence distributions is in the Supplementary

Material (Section S1 Figures S3-S6).

We defined the Importance Index of an item in an association rule as

the unweighted linear combination of support and confidence variations,

obtained substituting the presence of the item in the LHS of the rule with

its absence (as in Equation 5). In this way, we assume that each of the two

Table 3. Item ranking for the dataset in Table 1,

considering A as target item.

Ranking Item Imp ∆s ∆c N° rules

1 B 1.28 0.28 1.00 5

2 C 0.38 0.00 0.38 4

3 E 0.04 -0.21 0.25 4

4 D -0.76 -0.43 -0.33 2

variations equally contributes to the evaluation of the item importance,

and their sum gives enough information to rank the items in the LHS.

Nevertheless, one of the two quality measures might be more (or less)

sensitive than the other to the removal of the item from the rule, leading to

a greater (or smaller) variation of one or both of the support and confidence

values. We demonstrated that this is not the case, and our Importance

Index definition is adequate, through the Principal Components Analysis

(PCA) (Johnson and Wichern, 2007; Bro and Smilde, 2014) of the joint

distributions of the couples (∆s and∆c). The PCA identifies a sequence of

linear subspaces capturing increasing proportions of the total variability

of the data. Each subspace is defined in terms of an orthogonal basis

whose elements are called Principal Components and are defined as

linear combinations of the original variables, with coefficients called

loadings. Figure 1 shows the proportion of total variance captured by each

principal component found and its loadings. The first principal component

explains 80% of the total variability of the delta measures, and it is

identified by a linear combination of the two delta measures with equal

weights, as the Importance Index defined in Equation 5. Other Principal

Components Analyses performed on real ChIP-seq datasets are reported

in the Supplementary Material Figures S12-S14.
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Fig. 1. Variances (upper left plot), cumulate variances (upper right plot) and loadings of

the two principal components (lower plots).

3.2 Example 2: Larger synthetic dataset

Figure 2 shows the distribution of the presences of each item, and their

relationship with the presence of the item A (set as target item), in a larger

random synthetic, but realistic dataset with 7 items (e.g., transcription

factors) and 1,000 itemsets (e.g., genomic regions of interest). Item A

has 500 presences (A = 1). Items B, C and D have about 300 presences

randomly distributed together with item A; they also appear in about 200

A B C D E F G

A=0
A=1

TFs

C
o
u
n
t

0

100

200

300

400

500

Fig. 2. Histogram of the presences of each item in the Example 2 dataset. A = 0: no

co-occurrence with item A; A = 1: co-occurrence with item A.



itemsets where A is absent (A = 0). Items E, F and G have about 150

presences co-occurring and about 100 presences not co-occurring with

item A. Once the target item is chosen, we can compute the Importance

Indexes of all items in the dataset (items’ association rules extracted are in

Supplementary Material Table S1). Results for target item A are reported

in Table 4. As expected, B, C, and D overcome E, F, and G in the item

ranking thanks to their higher number of co-occurrences with A. Moreover,

C has the maximum ∆s and ∆c since the frequency of rules where C and

A co-occur exceeds the frequencies of such rules for B and D. For the

same reason, F has greater ∆s and ∆c than G and E. Negative ∆s scores

are due to the excess of E, F, and G absences compared to their presences

in the dataset. On the contrary, B, C and D have ∆s values close to zero

because the frequency of their presence is comparable to the frequency of

their absence. More on Example 2’s support and confidence distributions

is in the Supplementary Material (Figures S9-S11). From these examples’

evaluation we can define a high-ranked item as the one with high number

of co-occurrences with the target item, such that the frequency of the rules

with the item’s presence in the LHS and the item’s target presence in the

RHS is close to the frequency of the item’s presence in the dataset. Also,

an optimal target item should be one of the most recurrent items in the

dataset, such that its total number of presences is close to the number of

itemsets (e.g., a transcription factor very frequent in the genomic regions

of interest).

Table 4. Item ranking for the Example 2 dataset,

considering A as target item.

Ranking Item Imp ∆s ∆c N° rules

1 C 0.59 0.11 0.48 4

2 B 0.25 0.05 0.20 4

3 D 0.21 0.03 0.18 4

4 F 0.16 -0.14 0.30 1

5 G -0.03 -0.20 0.17 1

6 E -0.05 -0.20 0.15 1

Imp is the item Importance Index; ∆s and ∆c are the support and

confidence mean contributions to the Importance Index.

3.3 Identification of transcription factor interactions

In this section, we show how the application of the proposed Importance

Index to real transcription factor datasets allows the identification of

relevant transcription factor interactions. First, we illustrate the datasets

and explain the pipeline used to retrieve the matrix of presences for

transcription factors in specific genomic regions; then, we analyze the

importance of each evaluated transcription factor in the regulatory network

of some selected transcription factors.

3.3.1 Datasets used

The analyses reported below have been performed on data retrieved from

the Encyclopedia of DNA Elements (ENCODE) (The ENCODE Project

Consortium, 2012). ChIP-seq narrow peak data regarding multiple cell

lines were selected and extracted through GMQL (Masseroli et al., 2018)

to get binding locations of transcription factors in promoter regions. For

the GMQL data pre-processing, two types of data have been considered:

1. hg19 human ENCODE data from ChIP-seq experiments including

only conservative and optimal Irreproducible Discovery Rate (IDR)

thresholded peaks

2. data concerning the localization of hg19 human promoter regions

obtained extending the DNA coordinates of each Transcription Start

Site (TSS) of known protein coding genes with an Entrez Gene ID, as

available from the GENCODE repository version 10 (Frankish et al.,

2018), by 2,000 bases upstream and 1,000 bases downstream.

By mapping the enriched regions of each transcription factor on annotated

promoters, we organized the data in binary matrices, one for each cell

line considered. Each of these matrices represents a matrix of presences,

built as follows: each row i represents a promoter region (or, in general,

a genomic region of interest) and each column j, with j > 4, refers to

the transcription factor j. The first four columns of the matrix specify the

coordinates of the promoter regions: the chromosome ID, the first and last

DNA base of the region, and the chromosome strand, respectively. So, the

element (i, j) of the matrix of presences, with j > 4 is equal to 1 if the

transcription factor j is present in the region i, or it is equal to 0 otherwise.

We considered the GM12878, HeLa-S3, and K562 cell lines, derived

from human normal lymphoblastoid cells, cervical cancer immortalized

cells, and chronic myelogenous leukemia immortalized cells, respectively.

These lines were selected since, at the time of the analysis, they were the

only ENCODE cell lines that, after the performed pre-processing, included

ChIP-seq data for both MAX and MYC, as well as other transcription

factors, which are discussed in the analysis described in Section 3.3.2.

Their datasets respectively consist of 122, 55 and 210 transcription

factors (i.e., columns of the matrices) and 16,758, 75,674 and 25,513

promoter regions (i.e., rows of the matrices) where at least one of the

considered transcription factors is present (i.e., matrices do not include

null rows) together with at least one of the H3K9ac or H3K4me3 histone

modifications, which mark active promoters.

3.3.2 Identification of MAX interactors across cell lines

We focused our analysis on the evaluation of candidate interactors of MAX

(MYC associated factor X), a protein-coding gene whose protein belongs to

the basic helix-loop-helix leucine zipper (bHLHZ) family of transcription

factors (Blackwood and Eisenman, 1991). MAX heterodimerizes with

MYC as well as other MYC antagonists, such as MXI1, MAD, and

MGA, to bind the DNA and regulate cell proliferation, differentiation,

oncogenesis and other biological processes (Hurlin and Huang, 2006;

Ewing et al., 2007). These interactions are crucial for its activity. Thus,

MAX behaves as a necessary cofactor for DNA binding and for most

known biological activities of MYC and its antagonists (Hurlin and Huang,

2006). The analysis of MAX’s interactors can, therefore, demonstrate the

relevance and efficacy of our approach and give a real example of the

Importance Index usage.

We applied our method to the matrices of presences built for the

transcription factors of GM12878, HeLa-S3, and K562 cell lines, as

described in Section 3.3.1. First, we chose MAX as the target transcription

factor, and then we set the minimum confidence and support thresholds

to find the association rules. For all cell lines, the minimum confidence

threshold was set to 0.9, since it represents the probability of finding the

LHS of the rule given the pattern in the RHS. Setting a lower confidence

threshold would mean finding also less reliable rules, whereas setting a

higher threshold would result in a limited number of rules for the analysis.

The minimum support threshold was set in order to obtain a defined

number of rules, 200 rules in this specific instance. In Section S2.1 of the

Supplementary Material, we present guidelines for choosing the minimum

support threshold and their statistical validation, which strongly supports

the validity of our choice for the data sets used in this paper, and which we

believe can be used as guidelines for similar data sets. For each cell line,

we first computed the association rules with MAX’s presence as the RHS,

and then the Importance Indexes associated with each candidate interactor

of MAX, building a ranking of such candidate interactors for each cell

line (Supplementary Material Tables S5-S7). Figure 3 shows the results

organized as a network, where each node is a transcription factor, each



Fig. 3. MAX (pink node) interaction network for the GM12878 (green edges), HeLa-S3

(blue edges), and K562 (red edges) cell lines. Nodes represent transcription factors, and

edges represent candidate interactions between MAX and other transcription factors

, based on their weight that is the Importance Index.

edge represents the Importance Index, and each cell line is encoded with

a different color. MYC resulted one of the strongest MAX’s interactors,

confirming the importance of this well-known interaction in the literature

(Ewing et al., 2007). Conversely, MAX is the highest-score interactor of

MYC in cell lines HeLa-S3 and K562 (Supplementary Material Tables S8-

S9), confirming that MYC heterodimerizes with the transcription factor

MAX to regulate the transcription of a large fraction of the genome (Ewing

et al., 2007). Even if the GM12878 dataset contains MYC data, MYC is not

in the obtained GM12878 ranking due to its low presence in the considered

GM12878 matrix (only 0.8% of presences on the evaluated promoter

regions). Although we selected high-quality ChIP-seq experiments, the

small number of MYC’s occurrences in GM12878 (i.e., in only 87 out

of 11,367 promoter regions) is probably due to the low sensibility of the

ChIP during this specific GM12878 experiment, which makes it unreliable.

Other high-ranked interactors of MAX resulted MXI1 and MGA; both are

well-known MAX’s interactors (Hurlin and Huang, 2006).

To comprehensively evaluate the obtained results, we compared them

with both the known MAX’s interactors in the BioGRID protein-protein

interaction database (Stark et al., 2006), and with the computational results

of ChromNet (Lundberg et al., 2016). The latter one is a popular statistical

method and tool proposed to infer interaction networks of regulatory

factors genome-wide, based on the conditional dependency between

transcription factors and groups of transcription factors. Supplementary

Material Section S2.2.1, Figures S18-S20, and Tables S10-S12 report

the comparison results for each considered cell line. Overall, out of the

28 transcription factors that we found interacting with MAX, 20 were

also in the input dataset evaluated by ChromNet. Of these latter ones, 18

(90%) were also found by ChromNet, and 6 (30%) of them are also known

as MAX’s interactors in BioGRID. The remaining 2 (10%) transcription

factors found as candidate interactors of MAX were BACH1 and ZNF143

(the latter one with a lower Importance Index). BACH1 in BioGRID is

known to interact with NRF2, which is in the interactors’ network of MYC;

this could support the possible interaction between BACH1 and MAX.

Among the 8 transcription factors we found as candidate interactors of

MAX that were not in the input dataset of ChromNet, we identified MGA,

a well-known MAX’s interactor in BioGRID. Comparison results confirm

the relevance of our novel approach and accuracy of its results, whose

assessment outperforms the corresponding ChromNet results. In fact, out

of the 30 transcription factors that ChromNet found interacting with MAX,

18 (60%) were also found by our method and 6 (20%) of them are also

known MAX’s interactors in BioGRID. None of the remaining 12 (40%)

transcription factors that only ChromNet found as candidate interactors of

MAX are confirmed in BioGRID.

We also evaluated candidate interactors of MAX in random genomic

regions (i.e., control regions). To this aim, we performed the Importance

Index approach on randomized regions of interest, and we compared

the results with candidate interactors of MAX in the promoter regions

(Supplementary Material Section S2.2.2). As expected, comparisons show

lower presences of factors in the control regions and different candidate

interactors (Figures S21-S25).

3.3.3 Identification of multiple factor interactions: an example case

MXI1, RAD21, and SMC3 co-localize in HeLa-S3 cervical carcinoma

cells (Lundberg et al., 2016); this would suggest that they interact with each

other. However, only the RAD21-SMC3 and SMC3-MXI1 interactions

are described in the BioGRID database (Gupta et al., 1998; Huttlin

et al., 2017); conversely, the RAD21-MXI1 interaction is not present in

BioGRID. Moreover, an extensive study on RAD21 interactions (Panigrahi

et al., 2012) revealed more than 200 interactors, but among them, it did not

identify MXI1. In our HeLa-S3 matrix of presences, RAD21, MXI1, and

SMC3 are present in 1584, 4846 and 3756 promoter regions, respectively.

MXI1 and RAD21 co-localize with each other in 279 regions, where also

SMC3 is present, leading to the hypothesis that the RAD21-MXI1 pair

can interact with SMC3. Importance Index based rankings of RAD21,

MXI1, and SMC3 candidate interactors reveal that RAD21 and MXI1 are

not associated with each other due to their low number co-occurrences

(Supplementary Material Section S2.3 and Tables S13-S16).

To prove that our method can detect interactions among more than

two regulatory factors, in particular among RAD21, MXI1 and SMC3, we

evaluated the Importance Indexes of transcription factor pairs given SMC3

as target transcription factor. The obtained Importance Indexes’ matrix is

shown as a heatmap in Figure 4, where the lowest Importance Indexes are

in white and the highest ones are in black. Figure 4 shows that the RAD21-

MXI1 pair has one of the highest scores (see also Supplementary Material

Table S16), indicating that the co-presence of RAD21 and MXI1 implies

the presence of SMC3, i.e., RAD21, MXI1, and SMC3 are all associated

together. The heatmap shows also that RAD21 and CTCF, paired with any

of the other factors, are most likely to interact with SMC3. Conversely,

MXI1 has generally low Importance Indexes because it co-localizes poorly

with other regulatory factors in the heatmap with respect to its total number

of presences in the promoter regions. Yet, it reaches one of the highest

values of the Importance Index matrix in association with RAD21, i.e.,

C
T

C
F

R
A

D
2

1

M
A

Z

D
E

K

Z
N

F
1

4
3

P
O

L
R

2
A

T
A

F
1

T
B

P

M
Y

C

C
E

B
P

B

M
X

I1

M
A

X

R
F

X
5

C
H

D
2

G
T

F
2

F
1

CTCF

RAD21

MAZ

DEK

ZNF143

POLR2A

TAF1

TBP

MYC

CEBPB

MXI1

MAX

RFX5

CHD2

GTF2F1

0 0.2 0.4 0.6

Fig. 4. Mean Importance Indexes of SMC3 candidate interactor pairs in HeLa-S3 cell line.



RAD21-MXI1 pair co-localizes more often with SMC3 than other pairs

in HeLa-S3 cell line.

4 Discussion and Conclusions

Interactions among transcription factors strongly influence gene

regulation, and several attempts have been made to model and understand

regulatory factors’ networks. To compute how much a transcription factor

contributes to the existence of a certain complex of transcription factors we

propose a novel Importance Index, based on the combination of quality

measures of association rules used to find possible transcription factor

associations, where rules’ general items are transcription factors and the

target item is one or more transcription factor(s) selected by the user.

The use of association rules and definition of the novel Importance

Index allowed the development of our efficient interaction-detecting

algorithm for the construction of regulatory networks. It is designed for

the analysis on user-selected genomic regions and easy to reproduce; the

matrices of presences needed as input can be easily built from ChIP-

seq experiment data, and its implementation is publicly available as an

R/Bioconductor package. Furthermore, it is computationally inexpensive;

experiments run on an MS-Windows machine equipped with an Intel i7-

8750H processor and 16 GB of RAM required only 5, 14, and 8 minutes

to compute the Importance Indexes for the GM12878, HeLa-S3, and

K562 cell lines, respectively, with the use of 3.0 GB of RAM for each

computation.

Comparison of our results with known interactions in the BioGRID

database and with ChromNet’s inferred networks demonstrate the ability

of our approach to detect reliable interactions. We note that our and

ChromNet’s methods have different objectives: ChromNet considers

the whole genome globally and processes ChIP-seq reads aligned to

the reference genome, involving numerous data and a computationally

expensive processing. Conversely, our approach considers ChIP-seq

binding enriched regions and allows quick and ad hoc analyses with results

comparable to and even better than ChromNet’s ones, and confirmed by

the literature. Thus, the Importance Index method gives local information

about interactors of a target transcription factor, i.e., it can be reliably

used when the user searches for interactions in specific genomic regions

of interest; whereas, ChromNet provides genome-wide-based evaluations

of a transcription factor network.

Future work will be focused on developing an ensemble approach

including the Importance Index and other algorithms to infer a full

transcriptional regulatory network. Thus, the aim will be assembling

transcription factor and gene associations to evaluate if a predicted TF

complex is regulating a target gene.
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