
Ergodic BSDEs with Multiplicative and Degenerate Noise

Giuseppina GUATTERI∗ Gianmario TESSITORE†

October 14, 2019

Abstract

In this paper we study an Ergodic Markovian BSDE involving a forward process X that

solves an infinite dimensional forward stochastic evolution equation with multiplicative and

possibly degenerate diffusion coefficient. A concavity assumption on the driver allows us to

avoid the typical quantitative conditions relating the dissipativity of the forward equation and

the Lipschitz constant of the driver. Although the degeneracy of the noise has to be of a suitable

type we can give a stochastic representation of a large class of Ergodic HJB equations; morever

our general results can be applied to get the synthesis of the optimal feedback law in relevant

examples of ergodic control problems for SPDEs.
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1 Introduction

In this paper we study the following BSDE of ergodic type

Y x
t = Y x

T +

∫ T

t
[ψ̂(Xx

s , Z
x
s , U

x
s )− λ] ds −

∫ T

t
Zxs dW

1
s −

∫ T

t
Uxs dW

2
s , 0 ≤ t ≤ T <∞,

where the processes (Y x, Zx, Ux) and the constant λ are the unknowns of the above equation while

the diffusion X is the (mild) solution of the infinite dimensional (forward) SDE:
{
dXx

s = AXx
s ds+ F (Xx

s )ds +QG(Xx
s )dW

1
s +DdW 2

s ,

Xt,x
t = x.

In the above equation X takes values in an Hilbert spaceH andW 1,W 2 are independent cylindrical

Wiener processes (see (A.1)-(A.6) in Section 3 and (B.1) in Section 4 for precise description of

the other terms). We just stress that we will assume that G(x) is invertible for all x ∈ H while Q

and D will be general, possibly degenerate, linear operators.

Ergodic BSDEs have been introduced in [8] in relation to optimal stochastic ergodic control

problems and as a tool to study the asymptotic behaviour of parabolic HJB equations and conse-

quently to give a stochastic representation to the limit semilinear elliptic PDEs (see equation (5.1)

below).
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In [8] the same class of BSDEs have been introduced, already in an infinite dimensional frame-

work, but only in the case in which the noise coefficient was constant (Q = 0 in our notation).

Successive works, see [15] and [6] weakened the assumptions and refined the results in the same

additive noise case. Then in [22], in a finite dimensional framework, the case of ‘multiplicative noise

(Q 6= 0 and G depending on x in our notation) is treated under quantitative conditions relating

the dissipativity constant of the forward equation to the Lipscitz norm of ψ̂ with respect to Z.

Afterwards, in [19], still in finite dimensions, such quantitative assumptions are dropped in the

case of a non degenerate and bounded diffusion coefficient (Q = I and G bounded and invertible

in our notation) by a careful use of smoothing properties of the Kolmogorov semigroup associated

to the non-degenerate underlying diffusion X. Finally in [14] the result is extended to the case

of non degenerate but unbounded (linearly growing) diffusion coefficients (Q = I and G invertible

and linearly growing in our notation). To complete the picture we mention, [2], [3], [4] and [13]

where Ergodic BSDEs are studied in various frameworks different from the present one: namely,

respectively when they are driven by a Markov chain, in the context (see [17]) of randomized con-

trol problems and BSDEs with constraints on the martingale term both in finite and in infinite

dimensions and finally in the context of G- expectations theory.

In this paper we propose an alternative approach that works well in the infinite dimensional case

and allows to consider degenerate multiplicative noise (Q in general non invertible and G bounded

invertible but depending on x). On the other side we have to assume that ψ̂ has the form:

ψ̂(x, z, u) := ψ(x, zG−1(x), u)

where ψ is Lipschitz and concave function with respect to (z, u). Although not standard, our

assumptions allow to give a stochastic representation of a relevant class of Ergodic HJB equations

in Hilbert spaces (see Section 5) and of ergodic stochastic control problems for SPDEs (see Example

7.1 and Example 7.2). Notice that ψ defined above is exactly the function that naturally appears

in the related HJB equation and in the applications to ergodic control.

As in all the literature devoted to the problem the main point is to prove a uniform gradient

estimate (independent on α) for vα(x) := Y α,x where (Y α,x, Zα,x, Uα,x) is the solution of the

discounted BSDE with infinite horizon:

Y α,x
t = Y α,x

T +

∫ T

t
[ψ̂(Xx

s , Z
α,x
s , Uα,xs )−αY α,x

s ] ds−

∫ T

t
Zα,xs dW 1

s −

∫ T

t
Uα,xs dW 2

s , 0≤ t≤T <∞,

Such estimate can be obtained by a change of probability argument when the noise is additive

(see [8]), by energy type estimates under quantitative assumptions on the exponential decay of the

forward equation (see [22]) or by regularizing properties of the Kolmogorov semigroup when the

noise in multiplicative but non degenerate (see [14] and [19]).

Here we exploit concavity of ψ to introduce an auxiliary control problem and eventually obtain

the gradient estimate using a decay estimate on the difference between states starting from different

initial conditions, see Assumption (A.6) and, in particular, requirement (3.5). We stress the fact

that the estimate in (3.5) is only in mean and not uniform (with respect to the stochastic parameter)

as in the additive noise case. Moreover, as we show in Proposition 3.2, Assumption (A.6) is verified

if we impose a joint dissipativity condition on the coefficients, see Assumption (A.7). As a matter

of fact, in this case, the stronger formulation in which L2 replaces L1 norm holds. On the other

side (A.6) allows to cover a wider class of interesting examples, see for instance Example 7.1 in

which Assumption (A.7) does not seem to hold.
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The structure of the paper in the following: in Section 2 we introduce the function spaces that

will be used in the following, Section 3 is devoted to the infinite dimensional forward equation;

in particular we state and discuss the key stability assumption (A.6). In Section 4 we present

the main contribution of this work introducing the auxiliary control problem, proving the gradient

estimate and the consequent existence of the solution to the ergodic BSDEs. In Section 5 we relate

our ergodic BSDE to a semilinear PDE in infinite dimensional spaces (the ergodic HJB equation).

In Section 6 we discute the regularity of the solution of the ergodic BSDE, in particular we state

that under quantitative conditions on the dissipativity of the forward equation similar to the ones

assumed in [22], when all coefficients are differentiable then the solution of the ergodic BSDE is

differentiable with respect to the initial data as well. The proof of such result adapts a similar

argument in [16] and is rather technical, we have postponed it in the Appendix In Section 7 we

use our ergodic BSDE to obtain an optimal ergodic control problem (that is with cost depending

only on the asymptotic behaviour of the state) for an infinite dimensional equation. We close,

see Section 7.1, by two examples of controlled SPDEs to which our results can be applied. In

both we consider a stochastic heat equation in one dimension with additive white noise. In the

first, Example 7.1 the system is controlled through one Dirichlet boundary condition (on which

multiplicative noise also acts) while, in the second one, Example 7.2, the control enters the system

through a finite dimensional process that affects the coefficients of the SPDE. In this last case we

also give conditions guaranteeing differentiability of the related solution to the Ergodic BSDE.

2 General notation

Let Ξ, H and U be real separable Hilbert spaces. In the sequel, we use the notations | · |Ξ, | · |H and

| · |U to denote the norms on Ξ, H and U respectively; if no confusion arises, we simply write | · |.

We use similar notation for the scalar products. We denote the dual spaces of Ξ, H and U by Ξ∗,

H∗, and U∗ respectively. We also denote by L(H,H) the space of bounded linear operators from

H to H, endowed with the operator norm. Moreover, we denote by L2(Ξ,H) the space of Hilbert-

Schmidt operators from Ξ to H. Finally, a map f : H → Ξ is said to belong to the class G1(H,Ξ) if

it is continuous and Gateaux differentiable with directional derivative ∇xf(x)h in (x, h) ∈ H ×H

and we denote by B(Λ) the Borel σ-algebra of any topological space Λ.

Given a complete probability space (Ω,F ,P) together with a filtration (Ft)t≥0 (satisfying the

usual conditions of P-completeness and right-continuity) and an arbitrary real separable Hilbert

space V we define the following classes of processes for fixed 0 ≤ t ≤ T and p ≥ 1:

• LpP(Ω × [t, T ];V ) denotes the set of (equivalence classes) of (Fs)-predictable processes Y ∈

Lp(Ω× [t, T ];V ) such that the following norm is finite:

|Y |p =

(
E

∫ T

t
|Ys|

p ds

)1/p

• Lp,locP (Ω × [0,+∞[;V ) denotes the set of processes defined on R
+, whose restriction to an

arbitrary time interval [0, T ] belongs to LpP(Ω× [0, T ];V ).

• LpP(Ω;C([t, T ];V )) denotes the set of (Fs)-predictable processes Y on [t, T ] with continuous

paths in V , such that the norm

‖Y ‖p =
(
E sup
s∈[t,T ]

|Ys|
p
)1/p
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is finite. The elements of LpP(Ω;C([t, T ];V )) are identified up to indistinguishability.

• Lp,locP (Ω;C([0,+∞[;V )) denotes the set of processes defined on R
+, whose restriction to an

arbitrary time interval [0, T ] belongs to LpP(Ω;C([0, T ];V )).

We consider on the probability space (Ω,F ,P) two independent cylindrical Wiener processesW 1 =

(W 1
t )t≥0 with values in Ξ and W 2 = (W 2

t )t≥0 with values in H. By (Ft)t≥0, we denote the natural

filtration of (W 1,W 2), augmented with the family N of P-null sets of F . The filtration (Ft) satisfies

the usual conditions of right-continuity and P-completeness.

3 Forward equation

Given x ∈ H and a uniformly bounded process g with values in H, we consider the stochastic

differential equation for t ≥ 0

dXx,g
t = AXx,g

t dt+ F (Xx,g
t )dt+QG(Xx,g

t )dW 1
t +DdW 2

t + g(t) dt, Xx,g
0 = x. (3.1)

On the coefficients A, F , G, Q, D we impose the following assumptions.

(A.1) A : D(A) ⊂ H → H is a linear, possibly unbounded operator generating a C0 semigroup

{etA}t≥0.

(A.2) F : H → H is continuous and there exists LF > 0 such that

|F (x) − F (x′)|H ≤ LF |x− x′|H ,

for all x, x′ ∈ H.

(A.3) G : H → L(Ξ) is a bounded Lipschitz map. Moreover, for every x ∈ H, G(x) is invertible.

Thus there exists three positive constants LG, MG and MG−1 such that for all x, x′ ∈ H:

|G(x)|L(Ξ) ≤MG |G(x) −G(x′)|L(Ξ) ≤ LG|x− x′|H ,
∣∣G−1(x)

∣∣
L(Ξ)

≤MG−1

We notice that the above yields Lipschitzianity of G−1, namely :

|G−1(x)−G−1(x′)]|L(Ξ) ≤M2
G−1LG |x− x′|H ,

(A.4) Q is an Hilbert-Schmidt operator from Ξ to H.

(A.5) D is a linear and bounded operator from H to H and there exist constants L > 0 and

γ ∈ [0, 12 [:

|esAD|L2(H) ≤ L
(
s−γ ∧ 1

)
, ∀s ≥ 0. (3.2)

Proposition 3.1 Under (A.1 − −A.5), for any x ∈ H and any g bounded and progressive mea-

surable process with values in H, there exists a unique (up to indistinguishability) process Xx,g =

(Xx,g
t )t≥0 that belongs to Lp,locP (Ω;C([0,+∞[;H)) for all p ≥ 1 and is a mild solution of (3.1), that

is it satisfies for every t≥0, P-a.s.:

Xx,g
t = etAx+

∫ t

0
e(t−s)AF (Xx,g

s ) ds+

∫ t

0
e(t−s)Ag(s) ds +

∫ t

0
e(t−s)AQG(Xx,g

s ) dW 1
s
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+

∫ t

0
e(t−s)ADdW 2

s .

Moreover there exists a positive constant κg,T such that

E|Xx,g
t |2 ≤ κg,T (1 + |x|2), ∀t ∈ [0, T ] and x ∈ H. (3.3)

Our main result will be obtained under the following exponential stability in L1 norm requirement.

We stress the fact that such assumption is much weaker in comparison with the uniform decay

holding when noise is addittive (see [8]).

(A.6) There exist positive constants κg, κ and µ such that

sup
t≥0

E|Xx,g
t | ≤ κg(1 + |x|); (3.4)

E|Xx,g
t −Xx′,g

t | ≤ κe−µt|x− x′|; (3.5)

for any x, x′ ∈ H and for all t ≥ 0.

Below we show that hypothesis (A.6) (as a matter of fact the stronger condition obtained replacing

L1 norm by L2 norm) is verified under the usual joint dissipative condition (A.7) (see [5]). We

have preferred to keep the weaker, but less intrinsic, form (A.6) since it allows to cover a wider

class of examples, see for instance Example 7.1

(A.7) - Joint dissipative conditions

A is dissipative i.e. < Ax, x >≤ ρ|x|2, for all x ∈ D(A), and for some ρ ∈ R, moreover there

exists µ > 0 such that for all x, x′ ∈ D(A):

2〈A(x− x′) + F (x)− F (x′), x− x′〉H + ||Q[G(x) −G(x′)]||2L2(Ξ,H) ≤ −µ|x− x′|2H , (3.6)

Notice that, by adding a suitable constant to F and subtracting it from A we can always

assume that ρ above is strictly negative.

Indeed we have that following holds

Proposition 3.2 Assume (A.1 − −A.5) and (A.7) then the following estimates hold for the so-

lution Xx,g of equation (3.1):

sup
t≥0

E|Xx,g
t |2 ≤ κg(1 + |x|2); (3.7)

E|Xx,g
t −Xx′,g

t |2 ≤ e−µt|x− x′|2; (3.8)

for any x, x′ ∈ H and for all t ≥ 0. In particular, hypothesis (A.6) is verified.

Proof.

The proof of these estimates follows rather standard arguments, for the reader’s convenience we

give some details in particular on the way infinite dimensionality of the state space can be handled.

Let Vs =

∫ s

0
e(s−r)ADdW 2

r +

∫ s

0
e(s−r)Ag(r)dr and χxt := Xx

t − Vs, then

dχxt = Aχxt dt+ F (Xx
t )dt+QG(Xx

t )dW
1
t χx0 = x. (3.9)
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For any n ∈ N consider J(n,A) := (nI −A)−1 and define

Xn,x
s := J(n,A)Xx

s , χn,xt := J(n,A)χxt = J(n,A)Xx
t − J(n,A)Vt

It is well known that supn≥0 |J(n,A)|L(H) <∞ and limn→∞ J(n,A)x = x, ∀x ∈ H with the obvious

consequences on the P-a.s and Lp(Ω) convergence of Xn,x
s towards Xs and χ

n
s towards χs.

By easy computations χnt solves:

dχn,xt = Aχn,xt dt+ F (Xn,x
t ) dt+QG (Xn,x

t ) dW 1
t +Rn,xt dt+ Sn,xt dW 1

t , χn0 = J(n,A)x,

where

Rn,xt = J(n,A)F (Xx
t )− F (Xn,x

t ), Sn,xt = J(n,A)QG(Xx
t )−QG(Xn,x

t ).

From hypotheses (A.2) and (A.3) we deduce that:

|Rn,xt |H ≤ C(1 + |Xx
t |H), |Sn,xt |L2(Ξ,H) ≤ C(1 + |Xx

t |H).

Moreover, we have that for all t ≥ 0 and all x ∈ H:

lim
n→+∞

|Rn,xt |2 → 0, P− a.s., (3.10)

and, by a dominated convergence argument on the computation of the Hilbert Schmidt norm, see

also [12, Lemma 5.1], we have that for all t ≥ 0 and all x ∈ H

lim
n→+∞

|Sn,xt |2L2(Ξ,H) → 0, P− a.s. (3.11)

We apply Itô’s formula to eµt|χn,xt |2, and we add and subtract terms in order to apply the joint

dissipativity condition in (A.7)

eµt|χn,xt |2 = |x|2 + 2

∫ t

0
eµs〈χn,xs ,

µ

2
χn,xs +Anχ

n,x
s 〉H ds

+ 2

∫ t

0
eµs〈χn,xs , F (Xn,x

s )− F (J(n,A)Vs)〉H ds

+ 2

∫ t

0
eµs〈χn,xs , F (J(n,A)Vs)〉H ds+ 2

∫ t

0
eµs〈χn,xs , QG(Xn,x

s )dW 1
s 〉H

+

∫ t

0
eµs tr

[
[G(Xn,x

s )−G (F (J(n,A)Vs)]
T QTQ [G(Xn,x

s )−G (F (J(n,A)Vs)]
]
ds

+ 2

∫ t

0
eµstr

[
G(Xn,x

s )TQTQG (F (J(n,A)Vs)
]
ds

−

∫ t

0
eµstr

[
G (J(n,A)Vs)

T QTQG (J(n,A)Vs)
]
ds

+ 2

∫ t

0
eµs〈χn,xs , Rns 〉H ds+ 2

∫ t

0
eµs〈χn,xs , Sns dW

1
s 〉H +

∫ t

0
eµstr

[
Sns (S

n
s )
T
]
ds

+

∫ t

0
eµstr

[
G(Xn,x

s )TQTSns + SnsQG(X
n,x
s )

]
ds

and by (3.6):

eµt|χn,xt |2 ≤ |x|2 + 2

∫ t

0
eµs〈χn,xs , F (J(n,A)Vs)〉H ds+ 2

∫ t

0
eµs〈χn,xs , QG(Xn

s )dW
1
s 〉H
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+ 2

∫ t

0
eµs〈χn,xs , Sns dW

1
s 〉H +

∫ t

0
eµs|Sns |

2
L2(Ξ,H) ds+ 2

∫ t

0
eµs〈χn,xs , Rns 〉H ds

+

∫ t

0
eµstr

[
G(Xn,x

s )TQTQG (J(n,A)Vs) +G (J(n,A)Vs)
T QTQG(Xn,x

s )
]
ds

+

∫ t

0
eµstr[G(Xn,x

s )TQTSns + SnsQG(X
n,x
s )] ds.

By (A.3) and (A.5) the definition of Sn and the estimate (3.7) we have that the stochastic integrals

are martingales, and

eµtE|χn,xt |2 ≤ |x|2 +
µ

2
E

∫ t

0
eµs|χn,xs |2H ds+ CE

∫ t

0
eµs
(
|Rn,xs |2H ds+ |Sn,xs |2L2(Ξ,H) + s−2γ + 1

)
ds,

where C is a constant independent of t and n.

Limits (3.10), (3.11) and the Dominated Convergence Theorem imply that for every t ≥ 0,

lim
n→∞

E

∫ t

0
eµs|Rn,xs |2H ds = 0

and

lim
n→∞

E

∫ t

0
eµs|Sn,xs |2L2(Ξ,H) ds = 0,

Therefore, letting n tend to ∞:

E|χxt |
2 ≤ |x|2 +

µ

2

∫ t

0
e−µ(t−s)E|χxs |

2
H ds +C

∫ t

0
e−µ(t−s)

(
s−2γ + 1

)
ds,

and

sup
s≤t

E|χxs |
2 ≤ |x|2 +

µ

2
sup
s≤t

E|χxs |
2

∫ t

0
e−µ(t−s) ds+ C1

where C1 depends on µ and γ but not on t. Thus we can conclude that E|χxs |
2 ≤ C2(1 + |x|2), for

all s ≥ 0 and that, for all t ≥ 0:

E|Xx
t |

2 ≤ 4

(
E|χxt |

2 +

∣∣∣∣
∫ t

0
e(t−r)ADdW 2

r

∣∣∣∣
2

+

∣∣∣∣
∫ t

0
e(t−r)Ag(r)dr

∣∣∣∣
2
)

≤ C(1 + |x|2). (3.12)

where the constant C is independent from t thanks to the dissipativity assumptions on A.

Estimate (3.8) follows by the similar (and indeed easier arguments) applying Itô formula to the

difference |Xn,x
t −Xn,x′

t |2 = |χn,xt − χn,xt |2 noticing that:

d(χxt − χx
′

t ) = A(χxt − χx
′

t )dt+ [F (Xx
t )− F (Xx′

t )]dt+Q[G(Xx
t )−G(Xx′

t )]dW 1
t χx0 − χx

′

0 = 0.

✷

We end this section noticing that will be mainly interested in the special case where g ≡ 0:

dXt = AXtdt+ F (Xt)dt+QG(Xt)dW
1
t +DdW 2

t , Xx
0 = x, (3.13)

and we will denote by Xx its solution through the whole paper.
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4 Ergodic BSDEs

In this section we study the following equation:

Y x
t = Y x

T +

∫ T

t
[ψ(Xx

s , Z
x
sG

−1(Xx
s ), U

x
s )− λ] ds−

∫ T

t
Zxs dW

1
s −

∫ T

t
Uxs dW

2
s , 0 ≤ t ≤ T <∞,

(4.1)

where, we recall, λ is a real number and it is part of the unknowns, and the equation has to hold

for every t and every T , see for instance [8, section 4]. On the function ψ : H × Ξ∗ ×H∗ → R we

assume:

(B.1) (z, u) → ψ(x, z, u) is a concave function at every fixed x ∈ H.

Moreover there exist Lx, Lz, Lu > 0 such that

|ψ(x, z, u)−ψ(x′, z′.u′)| ≤ Lx|x−x
′|+Lz|z−z

′|+Lu|u−u
′|, x, x′ ∈ H, z, z′ ∈ Ξ∗, u, u′ ∈ H∗.

(4.2)

Moreover ψ(·, 0.0) is bounded. We denote supx |ψ(x, 0.0)| by Mψ.

We associate to ψ its Legendre transformation (modified according to the fact that we are

dealing with concave functions):

ψ∗(x, p, q) = inf
z∈Ξ∗,u∈H∗

{−zp− uq − ψ(x, z, u)}, x ∈ H, p ∈ Ξ, q ∈ H. (4.3)

Clearly ψ∗ is concave w.r.t to (p, q).

We collect some other properties of ψ and ψ∗ we will use in the future:

Proposition 4.1 Under hypothesis (B.1) we have that

ψ(x, z, u) = inf
(p,q)∈D∗(x)

{−zp− uq − ψ∗(x, p, q)}.

where D∗(x) = {(p, q) : ψ∗(x, p, q) 6= −∞} ⊂ {(p, q) ∈ Ξ×H : |p| ≤ Lz, |q| ≤ Lu} .

Moreover D∗(x) = D∗ does not depend on x ∈ H, and there exists a Lx > 0 such that

|ψ∗(x, p, q)− ψ∗(x′, p, q)| ≤ Lx|x− x′|, x, x ∈ H, (p, q) ∈ D∗. (4.4)

Finally we remark that the above implies that for every x ∈ H, z ∈ Ξ∗, u ∈ H∗ :

sup
(p,q)∈D

{ψ(x, z, u) + zp+ uq + ψ∗(x, p, q)} = 0.

Proof. Since ψ(x, · , · ) is concave its double Legendre transform coincides with the function itself

and the first relation follows immediately (see [1]).

Then, by the definition of ψ∗:

|ψ∗(x, p, q)− ψ∗(x′, p, q)| ≤ sup
z∈Ξ∗, u∈H∗

∣∣−zp− uq − ψ(x, z, u) + zp+ uq + ψ(x′, z, u)
∣∣ ≤ Lx|x− x′|,

thus we deduce that D∗ doesn’t depend on x ∈ H and (4.4) holds. ✷
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As in [8] we introduce, for each α > 0, the infinite horizon equation:

Y x,α
t = Y x,α

T +

∫ T

t
[ψ(Xx

s , Z
x,α
s G−1(Xx

s ), U
x,α
s )− αY x,α

s ] ds−

∫ T

t
Zx,αs dW 1

s −

∫ T

t
Ux,αs dW 2

s , (4.5)

where 0 ≤ t ≤ T <∞.

The next result was proved in [23, Theorem 2.1] when theW is finite dimensional, the extension

to the infinite dimensional case is straightforward, see also [8, Lemma 4.2]. Notice that the random

function, ψ̂(t, z, u) := ψ(Xt, G
−1(Xt)z, u), inherits the following properties:

|ψ̂(t, 0, 0)| = |ψ(Xt, 0, 0)| ≤Mψ, t ≥ 0, P- a.s.. (4.6)

|ψ̂(t, z, u)− ψ̂(t, z′, u′)| ≤ LzMG−1 |z − z′|+ Lu|u− u′| t ≥ 0, z, z′ ∈ Ξ∗, u, u′ ∈ H∗ . (4.7)

therefore it satisfies the assumptions in [8, Lemma 4.2].

Theorem 4.1 Let us assume (A.1−−A.5) and (B.1). Then for every α > 0 there exists a unique

solution (Y x,α, Zx,α, Ux,α) to the BSDE (4.5) such that Y x,α is a bounded continuous process,

Zα,x ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗) and Uα,x ∈ L2,loc

P (Ω× [0,+∞[;H∗).

Moreover

|Y x,α
t | ≤

Mψ

α
, P-a.s., for all t ≥ 0. (4.8)

and

E

∫ ∞

0
|e−αsZx,αs |2 ds+ E

∫ ∞

0
|e−αsUx,αs |2 ds <∞ (4.9)

We define

vα(x) = Y α,x
0 (4.10)

The following is the main estimate of the paper.

Proposition 4.2 Under (A.1 −−A.6) and (B.1) one has that for any α > 0:

|vα(x)− vα(x′)| ≤
C

µ
|x− x′|, x, x′ ∈ H. (4.11)

where C depends on the constants in (A.1 −−A.5) and (B.1) but not on α (nor on µ).

Proof. Since, instead of the pathwise decay estimate holding for |Xx
t −Xx′

t | in the additive noise

case (see [8, Theorem 3.2]), only the mean bound (3.5) is true here we cannot proceed as in [8,

Theorem 4.4]. Moreover, being the diffusion X, in general, degenerate, it is not possible to rely

on the smoothing properties of its Kolmogorov semigroup (see [19]). On the contrary, concavity

assumption (B.1) allows us to use control theoretic arguments.

First we notice that

Y x,α
0 = e−αtY x,α

t +

∫ t

0
e−αsψ(Xx

s , Z
x,α
s G−1(Xx

s ), U
x,α
s ) ds −

∫ t

0
e−αsZx,αs dW 1

s −

∫ t

0
e−αsUx,αs dW 2

s

Thus we have, taking also into account (4.8) and (4.9), that

Y x,α
0 =

∫ +∞

0
e−αsψ(Xx

s , Z
x,α
s G−1(Xx

s ), U
x,α
s ) ds −

∫ +∞

0
e−αsZx,αs dW 1

s −

∫ +∞

0
e−αsUx,αs dW 2

s .

(4.12)
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Moreover being Y x,α
0 deterministic, the uniqueness in law for the system formed by equations (3.13)

-(4.5) yields that it doesn’t depend on the specific independent Wiener processes.

We fix any stochastic setting (Ω̂, Ê , (F̂t), P̂, (Ŵt
1
), (Ŵt

2
)) where ((Ŵt

1
), (Ŵt

2
)) are independent

(F̂t) Wiener processes with values in Ξ and H respectively.

Given any (F̂t) progressively measurable process p := (pt, qt) with values in D∗ by (X̂x,p
t ) we

denote the unique mild solution of the forward equation:

dX̂x,p
t = AX̂x,p

t dt+ F (X̂x,p
t )dt+Dqtdt+QG(X̂x,p

t )ptdt+QG(X̂x,p
t )dŴ 1

t +DdŴ 2
t X̂x,p

0 = x.

(4.13)

Clearly (X̂x,p
t ) is also the unique mild solution of the forward equation:

dX̂x,p
t = AX̂x,p

t dt+ F (X̂x,p
t )dt+QG(X̂x,p

t )dŴ 1,p
t +DdŴ 2,p

t X̂x,p
0 = x. (4.14)

where

Ŵ 1,p
t := Ŵ 1

t +

∫ t

0
G−1(X̂x,p

s )ps ds, Ŵ 2,p
t := Ŵ 2

t +

∫ t

0
qs ds, (4.15)

and we know that under a suitable probability P̂
p the processes ((Ŵt

1,p
), (Ŵt

2,p
)) are independent

Wiener processes with values in Ξ and H respectively.

Let now (Ŷ x,α,p, Ẑx,α,p, Ûx,α,p) be the solution to:

Ŷ x,α,p
t =Ŷ x,α,p

T +

∫ T

t
[ψ(X̂x,p

s , Ẑx,α,ps G−1(X̂x,p
s ), Ûx,α,ps )− αY x,α,p

s ] ds

−

∫ T

t
Ẑx,α,ps dŴ 1,p

s −

∫ T

t
Ûx,α,ps dŴ 2,p

s

where 0 ≤ t ≤ T <∞.

By previous considerations one has, recalling that {ψ(x, z) + zp + uq + ψ∗(x, p)} ≤ 0,∀x ∈ H, z ∈

Ξ∗, u ∈ H∗, (p, q) ∈ D∗, that for every x ∈ H

Y x,α
0 =Ŷ x,α,p

0 =

=

∫ ∞

0
e−αs

[
ψ(X̂x,p

s , Ẑx,α,ps G−1(X̂x,p
s ), Ûx,α,ps ) + Ẑx,α,ps G−1(X̂x,p

s )ps + Ûx,α,ps qs + ψ∗(X̂x,p
s , ps)

]
ds

−

∫ +∞

0
e−αsẐx,α,ps dŴ 1,p

s −

∫ +∞

0
e−αsÛx,α,ps dŴ 2,p

s −

∫ ∞

0
ψ∗(X̂x,p

s , ps, qs) ds

≤−

∫ +∞

0
e−αsẐx,α,ps dŴ 1p

s −

∫ +∞

0
e−αsÛx,α,ps dŴ 2,p

s −

∫ ∞

0
ψ∗(X̂x,p

s , ps, qs) ds.

So:

Y x,α
0 ≤ −Ê

p

∫ ∞

0
e−αsψ∗(X̂x,p

s , ps, qs) ds (4.16)

for arbitrary stochastic setting and arbitrary progressively measurable D∗ valued control p = (p, q).

Then we fix x ∈ H and assume, for the moment, that ∀ε>0 there exists a stochastic setting

(Ω̂ε,x, Êε,x, (F̂ε,x
t ), P̂ε,x, (Ŵ 1,ε,x

t ), (Ŵt
2,ε,x

))

and a couple of predictable processes pε,x = (pε,x, qε,x) with values in D∗ such that (with the

notations introduced above) the following holds P - a.s. for a.e. s ≥ 0:
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ψ(X̂x,pε
s , Ẑx,α,p

ε,x

s G−1(X̂x,pε,x
s ), Ûx,α,p

ε,x

s ) + Ẑx,α,p
ε,x

s G−1(X̂x,pε,x
s )pεs + Ûx,α,p

ε,x

s qε,xs

+ ψ∗(X̂x,pε,x
s , pε,xs , qε,xs ) ≥ −ε (4.17)

Proceeding as before we get:

Y x,α
0 =Ŷ x,α,pε,x

0 = (4.18)

=

∫ ∞

0
e−αs

[
ψ(X̂x,pε,x

s , Ẑx,α,p
ε,x

s G−1(X̂x,pε,x
s ), Ûx,α,p

ε,x

s )

+Ẑx,α,p
ε,x

s G−1(X̂x,pε,x
s )pε,xs + Ûx,α,p

ε,x

s qε,xs + ψ∗(X̂x,pε,x
s , pε,xs , qε,xs )

]
ds

−

∫ +∞

0
e−αsẐx,α,p

ε,x

s dŴ 1,ε,x
s −

∫ +∞

0
e−αsÛx,α,p

ε,x

s dŴ 2,ε
s −

∫ ∞

0
ψ∗(X̂x,pε,x

s , pε,xs , qεs) ds

≥−
ε

α
−

∫ +∞

0
e−αsẐx,α,p

ε,x

s dŴ 1,ε
s −

∫ +∞

0
e−αsÛx,α,p

ε,x

s dŴ 2,ε,x
s −

∫ ∞

0
ψ∗(X̂x,pε,x

s , pεs, q
ε,x
s ) ds

Thus by (4.16) taking into account (4.18) and (4.4) we have:

Y x′,α
0 − Y x,α

0 ≤

∫ ∞

0
e−αsÊpε,x |ψ∗(X̂x,pε,x

s , pε,xs , qε,xs )− ψ∗(X̂x′,pε,x

s , pε,xs , qε,xs )| ds + ε

≤

∫ ∞

0
e−αs Êpε,x |X̂x,pε,x

s − X̂x′,pε,x

s | ds+
ε

α
,

we stress the fact that we keep the stochastic setting (Ω̂ε,x, Êε,x, (F̂ε,x
t ), P̂ε,x, (Ŵ 1,ε,x

t ), (Ŵt
2,ε,x

)) and

control pε,x corresponding to the initial datum x and just replace the initial state x with a different

one x′.

Noticing now that both (X̂x,pε,x) and (X̂x′,pε,x) satisfy (only the initial conditions differ):

dX̂t = AX̂tdt+ F (X̂t)dt+Dqε,xt dt+QG(X̂t)p
ε,x
t dt+QG(X̂x,p

t )dŴ 1,ε,x
t +DdŴ 2,ε,x

t

and taking into account (3.5) we can conclude that:

Y x′,α
0 − Y x,α

0 ≤ Lx

∫ ∞

0
e−(α+µ

2
)s|x− x′| ds +

ε

α
≤
C

µ
|x− x′|+

ε

α
.

Interchanging the role of x with x′ one gets:

∣∣∣Y x,α
0 − Y x′,α

0

∣∣∣ ≤ C

µ
|x− x′|+

ε

α
. (4.19)

where the constant C is independent of α, µ and ε and is able to conclude (4.11) being ε > 0

arbitrary.

We are left with the construction, for any fixed x ∈ H and ε > 0 of a stochastic setting

(Ω̂ε,x, Êε,x, (F̂ε,x
t ), P̂ε,x, (Ŵ 1,ε,x

t ), (Ŵt
2,ε,x

)) and control pε,x for which (4.17) holds.

We start from an arbitrary stochastic setting: (Ω, E , (Ft),P, (W
1
t ), (Wt

2)). Let (Xx) be the

corresponding mild solution of equation (3.1) and (Y x,α, Zx,α, Ux,α) the solution of (4.5). By a

measurable selection argument see [20, Theorem 4] we can find a couple of progressive measurable

process pε,x = (pε,x, qε,x), (possibly depending on α as well), such that:

ψ(Xx
s , Z

x,α
s G−1(Xx

s ), U
x,α
s ) + Zx,αs G−1(Xx

s )p
ε,x
s + Ux,αs qε,xs + ψ∗(X

x
s , p

ε,x
s , qε,xs ) ≥ −ε.
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Then it is enough to set:

Ŵ 1,ε,x
t :=W 1

t −

∫ t

0
G−1(Xx

s )p
ε,x
s ds, Ŵ 2,ε,x

t := W 2
t −

∫ t

0
qε,xs ds, (4.20)

and choose Ω̂ε,x = Ω, Êε,x = E , (F̂ε,x
t )) = (Ft) and as P̂ε,x the (unique) probability measure under

which ((Ŵ 1,ε,x
t ), (Ŵ 2,ε,x

t )) are independent Wiener processes. The claim then follows selecting the

above control pε,x and noticing that, by construction, (X̂x,pε,x) = (Xx).

Following [8] we can find a function v̄ and a number λ such that:

[vαm(x)− vαm(0)] → v̄(x), ∀x ∈ H, (4.21)

αnv
αm(0) → λ. (4.22)

where {αm}m∈N is a suitable subsequence constructed using a diagonal method.

We can then proceed as in [8] to deduce from above the existence of a solution to (4.1) and the

uniqueness of λ.

Theorem 4.2 Assume (A.1)− (A.6) and (B.1), let λ the number defined in (4.22) and set Ȳ x
t :=

v̄(Xx
t ), where v̄ is defined in (4.21). Then there exists Z̄x in L2,loc

P (Ω × [0,+∞[; Ξ∗) and Ūx in

L2,loc
P (Ω× [0,+∞[;H∗) such that (Ȳ x, Z̄x, Ūx, λ) solves equation (4.1), P -a.s. for all 0 ≤ t ≤ T .

Moreover suppose that another quadruple (Y ′, Z ′, U ′, λ) where Y ′ is a progressively measurable

continuous process verifying |Y ′
t | ≤ c(1 + |Xx

t |), Z
′ ∈ L2,loc

P (Ω × [0,+∞[; Ξ∗) , U ′ ∈ L2,loc
P (Ω ×

[0,+∞[;H∗) and λ′ ∈ R, satisfies (4.1). Then λ′ = λ.

Finally there exists a measurable function ζ̄ : H → Ξ∗ ×H∗ such that (Z̄xt , Ū
x
t ) = ζ̄(Xx

t ).

Proof.

Once (4.11), (4.21) and (4.22) are obtained, the proof as far the first two statements is concerned

follows exactly as in [8, Theorem 4.4].

To get the existence of a function ζ̄, we proceed in the following way. For arbitrary fixed

0 ≤ t ≤ T let (Ȳ x,t,T , Z̄x,t,T , Ūx,t,T ) be the solution to:





dXt,x
s = AXt,x

s ds+ F (Xt,x
s )ds +QG(Xt,x

s )dW 1
s +DdW 2

s ,

Xt,x
t = x,

−dY x,t,T
s = ψ̂(Xx,t

s , Zx,t,Ts , Ux,t,Ts ) ds − Zx,t,Ts dW 1
s − Ux,t,Ts dW 2

s − λds

Y x,t,T
T = v̄(Xx,t

T )

(4.23)

Then we clearly have that (Ȳ x, Z̄x, Ūx), restricted on [0, T ], coincide with (Ȳ x,0,T , Z̄x,0,T , Ūx,0,T ), for

all T > 0. By [7, Prop. 3.2] we know that there exists a measurable function ζT : [0, T ]×H → Ξ∗×

H∗, such that (Z̄x,t,Ts , Ūx,t,Ts ) = ζT (s,Xx,t
s ), s ∈ [t, T ]. Moreover, see also [7, Remark 3.3], the map

[0, T ] ∋ (τ, x) → ζT (τ, x) is characterized in terms of the laws of (
∫ τ+ 1

n
τ Z̄τ,x,Ts ds,

∫ τ+ 1

n
τ Ū τ,x,Ts ds),

n ∈ N.

The uniqueness in law of the solutions to the system (4.23) together with the fact that its

coefficients are time autonomous, we get:

∫ τ+ 1

n

τ
Z̄τ,x,Ts ds ∼

∫ 1

n

0
Z̄0,x,T−τ
s ds ∼

∫ 1

n

0
Z̄xs ds
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and ∫ τ+ 1

n

τ
Ū τ,x,Ts ds ∼

∫ 1

n

0
Ū0,x,T−τ
s ds ∼

∫ 1

n

0
Ūxs ds

So far we’ve proved that ζT (τ, ·) does not depend neither from T nor from τ , thus we can define

ζT (τ, ·) =: ζ̄(·) and observe that (Z̄xt , Ū
x
t ) = (Z̄x,0,Tt , Ūx,0,Tt ) = ζT (t,Xx,0

t ) = ζ̄(Xx
t ).

5 Ergodic Hamilton-Jacobi-Bellman

Here we show that whenever v̄ is differentiable then (v̄, λ) solves, in a mild form, the following

Ergodic HJB equation (see [9]):

1

2
(tr[QG(x)G∗(x)Q∇2v̄(x)] + tr[DD∗(x)Q∇2v̄(x)) + 〈Ax+ F (x),∇v̄(x)〉 =

− ψ(x,∇v̄(x)Q,∇v̄(x)D) + λ (5.1)

mmoreover λ characterize the ergodic limit of the parabolic solutions.

We start by introducing the transition semigroup (Pt)t≥0 corresponding to the diffusion Xx, see

equation (3.13):

Pt[φ](x) := Eφ(Xx
t ), φ : H → R measurable and bounded. (5.2)

We give the following definition, see [9, Section 6]:

Definition 5.1 A pair (v, λ) is a mild solution to the HJB equation (5.1) if v ∈ G1(H,R) with

bounded derivative and, for all 0 ≤ t ≤ T , x ∈ H it holds:

v(x) = PT−t[v](x) +

∫ T

t
(Ps−t[ψ(·,∇v(·)Q,∇v(·)D)](x) − λ) ds. (5.3)

We have the following result.

Theorem 5.1 Assume (A.1−−A.6), (B.1) and that v̄ is of class G1. Then (v̄, λ), defined in

(4.21) is a mild solution of the HJB equation (5.1). On the other hand if (v′, λ′) is a mild solution

of (5.1) then setting Y x
t := v′(Xx

t ), Z
x
t = ∇v′(Xx

t )QG(X
x
t ) and Uxt = ∇v′(Xx

t )D, we obtain that

(Y x, Zx, Ux, λ) is a solution to equation (4.1).

Moreover if (v′, λ′) is another solution with v′ Gateaux differentiable with linear growth then

λ = λ′.

Eventually, let for every T > 0, vT (·, ·) be the unique mild solution of the parabolic HJB equation:

∂tv
T (t, x) +

1

2
[tr[QG(x)G∗(x)Q∇2vT (t, x)] + tr[DD∗(x)Q∇2vT (t, x)) + 〈Ax+F (x),∇vT (t, x)〉 =

− ψ(x,∇vT (t, x)Q,∇vT (t, x)D), vT (T, x) = 0. (5.4)

Then

lim
T→∞

vT (t, x)

T
= λ. (5.5)

13



Proof. The existence part follows from [11, Theorem 6.2], while the uniqueness of λ in the class of

solutions that are Gateaux differentiable with linear growth follows as [9, Theorem 4.6]. The only

thing to prove is (5.5).

We prove (5.5) in the case t = 0. The general case follows in the same way just by replacing

the initial time 0 with t in the forward equation (3.1).

We have that setting Ȳ T,x
s = vT (s,Xx

s )− λ(T − s), s ∈ [0, T ], then Ȳ T,x solves:

{
−dY T,x

s = ψ(Xx
s , G

−1(Xx
s )Z

T,x
s , UT,xs ) ds − ZT,xs dW 1

s − UT,xs dW 2
s − λds

Y T,x
T = 0

(5.6)

Set Ỹ T,x
t = Ȳ x

t − Ȳ T,x
t , for all t ∈ [0, T ], then Ỹ T,x verifies:





−dỸ T,x
s = [ψ(Xx

s , G
−1(Xx

s )Z̄
x
s , Ū

x
s )− ψ(Xx,t

s , G−1(Xx
s )Z

T,x
s , UT,xs )] ds − (Z̄xs − ZT,xs ) dW 1

s

−(Ūxs − UT,xs ) dW 2
s − λds

Ỹ T,x
T = v̄(Xx

T )

(5.7)

We rewrite (5.7) as:





−dỸ T,x
s = γ1t (Z̄

x
s − ZT,xs ) ds+ γ2t (Ū

x
s − UT,xs ) ds− (Z̄xs − ZT,xs ) dW 1

s

−(Ūxs − UT,xs ) dW 2
s − λds

Ỹ T,x
T = v̄(Xx

T )

(5.8)

where

γ1s =





ψ(Xx
s ,G

−1(Xx
s )Z̄

x
s ,Ū

x
s )−ψ(X

x
s ,G

−1(Xx
s )Z

T,x
s ,Ūx

s )

|Z̄x
s−Z

T,x
s |2

Ξ∗

(Z̄xs − ZT,xs )∗ if Z̄xs 6= ZT,xs ,

0 elsewhere.
(5.9)

and

γ2s =





ψ(Xx
s ,G

−1(Xx
s )Z

T,x
s ,Ūx

s )−ψ(X
x
s ,G

−1(Xx
s )Z

T,x
s ,UT,x

s ))

|Ūx
s −U

T,x
s |2

H

(Ūxs − UT,xs )∗ if Ūxs 6= UT,xs ,

0 elsewhere.
(5.10)

Hence, by a Girsanov argument, we get that

Ỹ T,x
0 = E

γ1,γ2(v̄(Xx
T )) (5.11)

where the probability measure Pγ
1,γ2 is the one under whichW γ1,γ2

t = (W 1
t −
∫ t
0 γ

1
s ds,W

2
t −
∫ t
0 γ

2
s ds)

is a cylindrical Wiener process in Ξ ×H in [0, T ]. Therefore by (3.4) and having v̄ Lipschitz, we

get that

Ỹ T,x
0 = E

γ1,γ2(v̄(Xx
T )) ≤ κγ1,γ2(1 + |x|) (5.12)

for some constant κγ1,γ2 independent of T . Thus, noticing that Ỹ T,x
0 = v̄(x)− vT (0, x) +λT we get

that:

lim
T→∞

vT (0, x)

T
= lim

T→∞

v̄(x)

T
+ λ = λ. (5.13)
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6 Differentiability with respect to initial data

In this section we wish to present sufficient conditions under which the function v̄ defined in the

section above is differentiable.

Throughout the section we assume the following:

(C.1) F is of class G1(H,H) and G is of class G1(H,L(Ξ,H))

We start from a straightforward result in the non-degenerate case.

Proposition 6.1 Beside (A.1−−A.6), (B.1) and (C.1) assume that the operator Q := (Q,D) :

Ξ×H → H admits a right inverse Q−1 then v̄ belongs to class G1(H).

Proof. We fix T > 0 and notice that (Ȳ , Z̄, Ū , λ) satisfies (see (4.1) and the definition of Ȳt in

Theorem 4.2):

Y x
t = v̄(Xx

T ) +

∫ T

t
[ψ̂(Xx

s , Z̄
x
s , Ū

x
s )− λ] ds −

∫ T

t
Z̄xs dW

1
s −

∫ T

t
Ūxs dW

2
s , 0 ≤ t ≤ T <∞,

where, we recall ψ̂(x, z, u) = ψ(x, zG−1(x), u) is lipschitz with respect to z and u. Moreover the

forward equation (3.13) solved by Xx can be rewritten as

dXx
t = AXx

t dt+ F (Xx
t )dt+ Q̃(Xx

t )dWt Xx
0 = x.

where Wt :=

(
W 1
t

W 2
t

)
is a Ξ×H valued Wiener process and Q̃(x) = (QG(x),D).

Under the present assumptions Q̃(x) turns out to be invertible with bounded right inverse:

[Q̃(x)]−1 =

(
G−1(x) 0

0 I

)
Q−1

It is then straight forward to verify that all the assumptions in [10, Theorem 3.10] are satisfied and

consequently v̄ (that coincides with the map x→ Ȳx) is in class G1
✷

When the noise in the diffusion can be degenerate the situation is less simple and we will need

quantitative conditions on the coefficients (see, for instance, [22]).

We will now work under the joint dissipative condition (A.7) that, taking into account differentia-

bility of F and G becomes:

2〈Ay +∇xF (x)y, y〉H + ||Q∇xG(x)y||
2
L2(Ξ,H) ≤ −µ|y|2H , ∀y ∈ D(A), ∀x ∈ H. (6.1)

Under the above assumptions the following well known differentiability result for the forward

equation (3.1) holds:

Lemma 6.1 Under (A.1−−A.5), (A.7) and (C.1) the map x → Xx is Gâteaux differentiable.

Moreover, for every h ∈ H, the directional derivative process ∇xX
xh, solves, P− a.s., the equation

∇xX
x
t h = etAh+

∫ t

0
e(t−s)A∇xF (X

x
s )∇xX

x
s hds +

∫ t

0
e(t−s)AQ∇xG(X

x
s )∇xX

x
s hdWs, t ≥ 0,

(6.2)

Moreover

E|∇xX
x
t h|

2 ≤ e−µt|h|2 (6.3)
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Proof. Our hypotheses imply the Hypotheses 3.1 of [11], therefore we can apply [11, Prop 3.3].

The estimate (6.3) follows applying the Itô formula to |∇xX
x
t h|

2 and arguing as in Proposition 3.1.

We will need the following additional assumption to state the last result

(C.2) G and G−1 are of class G1(H,L(Ξ)) and ψ is of class G1(H × Ξ∗,R)

We eventually have:

Theorem 6.1 Assume that (A.1−−A.5), (A.7) and (B.1) hold with µ > 2(L2
zM

2
G−1 + L2

u),

moreover we assume (C.1) and (C.2). Then the function v̄ defined in (4.21) is of class G1(H,R).

Proof.The proof is detailed in the Appendix.

7 Application to optimal control

Let Γ be a separable metric space, an admissible control γ is any Ft - progressively measurable

Γ-valued process. The cost corresponding to a given control is defined as follows. Let R1 : Γ → Ξ,

R2 : Γ → H and L : H × Γ → R measurable functions such that, for some constant c > 0, for all

x, x′ ∈ H and γ ∈ Γ:

(E.1) |R1(γ)| ≤ c, |R2(γ)| ≤ c |L(x, γ)| ≤ c, |L(x, γ)− L(x′, γ)| ≤ c|x− x′|.

Let for every x ∈ H be Xx the solution to (3.13), then for every T > 0 and every control γ we

consider the Girsanov density:

ργT = exp

(∫ T

0
G−1(Xx

s )R1(γs)dW
1
s +

∫ T

0
R2(γs) dW

2
s −

1

2

∫ T

0
[|G−1(Xx

s )R1(γs)|
2
Ξ + |R2(γs)|

2
H ] ds

)

and we introduce the following ergodic cost corresponding to x and γ:

J(x, γ) = lim sup
t→∞

1

T
E
γ,T

∫ T

0
L(Xx

s , γs) ds,

where E
γ,T is the expectation with respect to P

γ := ργTP. Notice that with respect to P
γ the

processes

W 1,γ
t := −

∫ t

0
G−1(Xx

s )R1(γs)ds + dW 1
s , W 2,γ

t := −

∫ t

0
R2(γs)ds + dW 2

s

are independent cylindrical Wiener processes and with respect to them Xx verifies:

{
dXx

t = AXx
t dt+ F (Xx

t )dt+QR1(γs)ds +DR2(γs)ds +QG(Xx
t )dW

1,γ
t +DdW 2,γ

t , t ≥ 0,

Xx
0 = x,

and this justifies the above (weak) formulation of the control problem.

We introduce the usual Hamiltonian:

ψ(x, z, u) = inf
γ∈Γ

{L(x, γ) + zR1(γ) + uR2(γ)}, x ∈ H, z ∈ Ξ∗, u ∈ H∗ (7.1)
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that by construction is a concave function and, under (E.1), fullfils assumption (B.1). The forward

backward system associated to this problem, is the following:





dXx
t = AXx

t dt+ F (Xx
t )dt+QG(Xx

t )dW
1
t +DdW 2

t , t ≥ 0,

Xx
0 = x,

−dY x
t = [ψ(Xx

t , Z
x
t G

−1(Xx
t ), U

x
t )− λ] dt− Zxt dW

1
t − Uxt dW

2
t .

(7.2)

By Theorem 4.2 under (A.1 −−A.6) and (E.1) for every x ∈ H there exists a solution:

(Ȳ x, Z̄x, Ūx, λ) = (v̄(Xx), ζ̄1(X
x), ζ̄2(X

x), λ), (7.3)

where Ȳ is a progressive measurable continuous process, Z̄ ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗), Ū ∈ L2,loc

P (Ω×

[0,+∞[;H∗), λ ∈ R, v̄ is Lipschitz and ζ̄1, ζ̄2 are measurable.

Once we have solved the above ergodic BSDE the proof of the following result containing the

synthesis of the optimal control for the ergodic cost is identical to the one of [8, Theorem 7.1].

Theorem 7.1 Assume (A.1−−A.6) and (E.1) Then the following holds:

(i) For arbitrary control γ we have J(x, γ) ≥ λ, and equality holds if and only if the following

holds P- a.s. for a.e. t ≥ 0:

L(Xx
t , γt) + ζ̄1(X

x
t )G

−1(Xx
t )R1(γt) + ζ̄2(X

x
t )R2(γt) = ψ(Xx

t , ζ̄1(X
x
t )G

−1(Xx
t ), ζ̄2(X

x
t )).

(ii) If the infimum is attained in (7.1) and ρ : Ξ∗ × H∗ → is any measurable function realizing

the minimum (that always exists by Filippov selection theorem, see [20]) then the control

γ̄t = ρ(Xx
t , ζ̄1(X

x
t ), ζ̄2(X

x
t )) is optimal, that is J(x, γ̄) = λ.

(iii) Finally if v̄ is in class G1 then it is a mild solution of equation (5.1) and ζ̄1 = ∇v̄QG and

ζ̄2 = ∇v̄D .

7.1 Examples

Example 7.1 We consider an ergodic control problem for a stochastic heat equation controlled

through the boundary





dtx(t, ξ) =
∂
∂ξ2

x(t, ξ) dt+ d(ξ)Ẇ(t, ξ) dt, t ≥ 0, ξ ∈ (0, π),

x(t, 0) = y(t), x(t, π) = 0,

x(0, ξ) = x0(ξ), ξ ∈ (0, π)

dy(t) = b(y(t)) dt + σ(y(t))ρ(γ(t))dt + σ(y(t)) dBt, t ≥ 0,

y(0) = x ∈ R.

(7.4)

whereW is the space-time white noise on [0,+∞)×[0, π] andB is a brownian motion. An admissible

control γ is a predictable process γ : Ω× [0,+∞) → R. The cost functional is

J(x0, γ) = lim inf
T→+∞

1

T
E

∫ T

0

∫ π

0
ℓ(x(t, ξ), γ(t)) dξ dt. (7.5)

We assume that
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1. b : R → R is a measurable function such that

|b(y)− b(y′)| ≤ Lb|y − y′|,

for a suitable positive constant Lb, for every y, y ∈ R.

2. σ : R → R is a measurable and bounded function, such that

|σ(y)− σ(y′)| ≤ Lσ|y − y|,

for suitable positive constants Lσ and there exists a suitable positive δ such that:

|σ(y))| ≥ δ > 0,

for every y ∈ R.

3. there exists µ > 0 such that for all y, y′ ∈ R:

2〈b(y) − b(y′), y − y′〉+ |σ(y) − σ(y′)|2 ≤ −µ|y − y′|2, (7.6)

4. d : [0, π] → R, ρ : R → R are bounded and measurable functions.

5. ℓ : R× R → R is a measurable and bounded function such that

|ℓ(x, γ)− ℓ(x′, γ)| ≤ L|x− x′|,

for a suitable positive constant L, for every x, x′, γ ∈ R.

Under these hypotheses, see [18], the above equation can be reformulated in an infinite dimen-

sional space as:




dtXt = ∆Xt dt−∆ry(t)dt+ D̃dW̃t , t ≥ 0, ξ ∈ [0, π],

X0 = x0(·), ξ ∈ (0, π)

dy(t) = b(y(t)) dt + σ(y(t))ρ(u(t))dt + σ(y(t)) dB(t), t ≥ 0,

y(0) = y0 ∈ R.

(7.7)

where Xt := x(·) is in L2(0, π), W̃ is a cylindrical Wiener process in L2(0, π), D̃ is the bounded

operator in L2(0, π) corresponding to multiplication by a bounded function d, ∆ is the realisation

of the Laplace operator with Dirichlet boundary conditions in L2(0, π), that is (denoting by D(∆)

the domain of the operator)

D(∆) = H2(0, π) ∩H1
0 (0, π), ∆f =

∂2f

∂ξ2
, ∀f ∈D(∆)

Finally r(ξ) = 1− ξ
π , ξ ∈ [0, π] is the solution to

{
∂2r
∂ξ2

(ξ) = 0, ξ ∈ (0, π),

r(0) = 1, r(π) = 0.
(7.8)

It is well known that ∆ generates an analytic semigroup of contractions (of negative type −1)

moreover, for any δ > 0, r ∈ D((−∆)1/2−δ) (where (−∆)α denotes the fractional power). Standard

results on analitic semigroups then yield:
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|(−∆)et∆r|L2(0,π) ≤ cre
−tt−( 1

2
+δ), t > 0. (7.9)

We are now in a position to rephrase the problem according to our general framework. Indeed

setting H = L2(0, π) × R, Ξ = R and Xt =
(
Xt, y(t)

)
equation (7.7) becomes

{
dXx

t = AXx
t dt+ F (Xx

t )dt+QG(Xx
t )ρ(γt)dt+QG(Xx

t )dW
1
t +DdW 2

t , t ≥ 0,

Xx
0 = x.

(7.10)

where:

1. A =

(
−∆ −∆R

0 0

)
where R : R → D((−∆)

1

2
−δ), is defined as Ry = r(·)y, y ∈ R

It is easy to verify that A generates a C0-semigroup in H.

2. F : H → H, is defined as: F

(
X

y

)
=

(
0

b(y)

)
,

Q : Ξ → H is defined as: Qy =

(
0

y

)
,

G : Ξ → Ξ, is defined as: G(y) = σ(y)

D : H → H is defined as: D

(
X

y

)
=

(
D̃X

0

)
.

3. W 1(t) = B(t) and (W 2) is a cylindrycal Wiener process in H.

Hypotheses (A.1−−A.5) are immediately verified, we have to check (A.6). We come back to

the formulation (7.7) and start with the second component y (that only depends on y0). By (7.6),

Proposition 3.2 gives:

E|yy0(t)− yy
′
0(t)|2 ≤ e−2µt|y0 − y′0|

2. (7.11)

Coming now to the first component we have that it fullfills in L2(0, π) the following mild formulation:

X x0,y0
t = et∆x0 −

∫ t

0

[
∆e(t−s)∆r

]
yy0(s) ds +

∫ t

0
e(t−s)∆DdWs

Thus considering two different initial data

X x0,y0
t −X

x′
0
,y′

0

t = et∆(x0 − x′0)−

∫ t

0
∆e(t−s)∆(ryy0(s)− ryy

′
0(s)) ds.

By (7.9) and (7.11) choosing µ0 ∈ (0, 1 ∧ µ)

E|X x0,y0
t − X

x′
0
,y′

0

t | ≤ e−t|x0 − x′0|+

∫ t

0
e−(t−s)(t− s)−( 1

2
+δ)e−µs|y0 − y′0| ds

≤ e−t|x0 − x′0|+ e−µ0t
[∫ t

0
e−(1−µ0)(t−s)(t− s)−( 1

2
+δ) ds

]
|y0 − y′0|.
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That implies that (3.5) holds. In the same way one gets the proof of (3.4).

We notice that it is not at all obvious that the stronger versions (3.7), (3.8) holds in this case.

As far as the control functional is concerned it is enough to set L(X, γ) =
∫ π
0 ℓ(ξ,X (ξ), γ)d ξ

and to verify in a straightforward way that (E.1) holds (in this case R1 = ρ, R2 = 0, Γ = R).

Thus all the hypotheses of Theorem 7.1 hold and points (i) and (ii) in its thesis give the optimal

ergodic cost and strategy in terms of the solution to the ergodic BSDE in (7.2).

Example 7.2 We consider an ergodic control problem for a stochastic heat equation with Dirichlet

boundary conditions with nonlinearity controlled through a one dimensional process y.




dtx(t, ξ) =
∂
∂ξ2

x(t, ξ) dt + f(x(t, ξ), y(t)) + d(ξ)Ẇ(t, ξ) dt, t ≥ 0, ξ ∈ (0, 1),

x(t, 0) = x(t, 1) = 0,

x(0, ξ) = x0(ξ), ξ ∈ (0, 1)

dy(t) = b(y(t)) dt+ σ(y(t))γ(t)dt + σ(y(t)) dBt, t ≥ 0,

y(0) = y0 ∈ [−1, 1].

(7.12)

whereW is the space-time white noise on [0,+∞)×[0, 1] and B is a brownian motion. An admissible

control γ is a predictable process γ : Ω× [0,+∞) → [−1, 1]. The cost functional is

J(x0, γ) = lim inf
T→+∞

1

T
E

∫ T

0

[∫ 1

0
(ℓ(x(t, ξ), y(t))dξ + γ2(t)

]
dt. (7.13)

We assume:

1. f : R2 → R is a Lipschitz map. We fix two constants Lf > 0 and µf ∈ R such that

|f(x, y)− f(x′, y)| ≤ Lf (|x− x′|+ |y − y′|), 〈f(x, y)− f(x, y′), x− x′〉 ≤ −µf |x− x′|2,

for every x, x′, y, y ∈ R.

2. b : R → R is Lipschitz. We fix a constant µb ∈ R such that:

〈b(y)− b(y′), y − y′〉 ≤ −µb|y − y′|2, ∀y, y′ ∈ R

3. σ : R2 → R is a Lipschitz and bounded. We fix Lσ such that

|σ(y) − σ(y′)| ≤ Lσ|y − y′|, ∀y, y′ ∈ R,

We also assume that there exists a suitable positive δ such that:

|σ(y))| ≥ δ > 0, ∀y ∈ R.

4. d : [0, 1] → R is a bounded and measurable function.

5. ℓ : R2 → R is bounded and Lipschitz

As in the previous example the above equation can be reformulated in an infinite dimensional

space as:




dtXt = ∆Xt dt+ f(Xt, y(t))dt+ D̃dW̃t , t ≥ 0, ξ ∈ [0, 1],

X0 = x0(·), ξ ∈ [0, 1]

dy(t) = b(y(t)) dt + σ(y(t))γ(t)dt + σ(y(t)) dB(t), t ≥ 0,

y(0) = y0 ∈ R.
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where Xt := x(·) is in L2(0, 1), W̃ is a cylindrical Wiener process in L2(0, 1), ∆ is the realisation of

the Laplace operator with Dirichlet boundary conditions in L2(0, 1), D̃ is the bounded operator in

L2(0, 1) corresponding to multiplication by a bounded function d.

Finally setting H = L2(0, 1) × R, Ξ = R, Γ = [−1, 1] and Xt =
(
Xt, y(t)

)
equation (7.4)

becomes

{
dXx

t = AXx
t dt+ F (Xx

t )dt+QG(Xx
t )γtdt+QG(Xx

t )dW
1
t +DdW 2

t , t ≥ 0,

Xx
0 = x.

(7.14)

and the cost takes our general form:

J(x0, γ) = lim inf
T→+∞

1

T
E

∫ T

0
L(X(t), γ(t)) dt.

where

1. A =

(
−∆ 0

0 0

)
generates a C0-semigroup in H. We also have that

〈AX,X〉H = 〈∆X ,X〉L2(0,1) ≤ −µ∆|X |2L2(0,1),

for some µ∆ > 0.

2. F : H → H, is defined as: F

(
X

y

)
=

(
f(X , y)

b(y)

)
,

Q : Ξ → H is defined as: Qy =

(
0

y

)
,

G : Ξ → Ξ, is defined as: G(y) = σ(y)

D : H → H is defined as: D

(
X

y

)
=

(
D̃X

0

)
.

3. W 1(t) = B(t) and (W 2) is a cylindrycal Wiener process in H.

4. L : H × Γ → R, L(X, γ) =

∫ 1

0
ℓ(X (ξ), y)d ξ + |γ|2

We also notice that in this case the Hamiltonian defined as in (7.1) becomes:

ψ

((
X

y

)
, z

)
= −

z2

4
I[−2,2](z) + (1− |z|)I[−2,2]c(z) +

∫ 1

0
ℓ(X (ξ), y)d ξ (7.15)

We also assume that there exists µ̄ > 0 such that

(
−µ∆ − µf

1
2Lf

1
2Lf −µb +

1
2Lσ

)
≤ −µ̄ IR2 (7.16)

Hypotheses (A.1−−A.5) are immediately verified. Moreover relation (7.16) ensures that (A.7)

holds as well. Finally (E.1) is straight forward (in this case R1 = id, R2 = 0). Thus the hypotheses
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of Theorem 7.1 hold and points (i) and (ii) in its thesis give the optimal ergodic cost and strategy

in terms of the solution to the ergodic BSDE in (7.2).

We finally wish to apply the differentiability result in Theorem 6.1 to this specific example.

We notice that by (7.15) the Hamiltonian ψ is concave and differentiable with respect to z with

∇zψ ≤ 1. Thus (B.1) holds and we can choose Lz = 1 in (4.2). If we assume that f b σ and ℓ are

of class C1 in all their variables then (C.1) and (C.2) hold, moreover if we impose that µ̄ > 2δ−2

(here, comparing with Theorem 6.1, Lu = 0, MG−1 = δ−1) then all the assumptions of Theorem

6.1 are verified and we can conclude that function v̄ in Theorem 7.1 is differentiable. Consequently

point (iii) in Theorem 7.1 as well applies here and we obtain that v̄ is a mild solution of equation

(5.1) and that the optimal feedback law can be characterized in terms of the gradient of v̄.

A Proof of Theorem 6.1

We will need to use some results from [21, Theorem 5.21 and Section 5.6]. The first concerns finite

horizon BSDEs and the estimate of their solution, while the second concerns the infinite horizon

case. We restate them in our setting as follows:

Lemma A.1 Let us consider the following equation:

−dYt = (φ(t, Zt, Ut) dt− αYt) dt− Zt dW
1
t − Ut dW

2
t , YT = η, t ∈ [0, T ], α ≥ 0. (A.1)

assume that:

1. |φ(t, z, u)−φ(t, z′, u′)| ≤ ℓ(t)(|z− z′|2+ |u−u′|2)1/2, ∀z, z′ ∈ Ξ∗, u, u′ ∈ H∗, P−a.s. for some

ℓ ∈ L2([0, T ]);

2. for νt :=

∫ t

0
ℓ2(s) ds, one has

E
(
e2νT−2αT |η|2

)
<∞, E

(∫ T

0
eνs−αs|φ(s, 0, 0)| ds

)2

<∞. (A.2)

Then there exists a unique solution (Y,Z,U) ∈ L2
P(Ω;C([0, T ];R)) × L2

P(Ω × [0, T ]; Ξ∗)× L2
P(Ω ×

[0, T ];H∗) and it verifies for all 0 ≤ t ≤ T :

E
Ft( sup

s∈[t,T ]
e2(νs−αs)|Ys|

2) + E
Ft

(∫ T

t
e2(νs−αs)|Zs|

2 ds

)
+ E

Ft

(∫ T

t
e2(νs−αs)|Us|

2 ds

)
≤

E
Ft
(
e2νT−2αT |η|2

)
+ E

Ft

(∫ T

t
eVs−αs|φ(s, 0, 0)| ds

)2

, P− a.s., t ∈ [0, T ] (A.3)

Lemma A.2 Let us consider the following equation for α ≥ 0:

−dYt = (φ(t, Zt, Ut) dt− αYt) dt− Zt dW
1
t − Ut dW

2
t , t ≥ 0, . (A.4)

Assume that:

1. |φ(t, z, u)−φ(t, z′, u′)| ≤ ℓ(t)(|z− z′|2+ |u−u′|2)1/2, ∀z, z′ ∈ Ξ∗, u, u′ ∈ H∗, P−a.s. for some

ℓ ∈ L2
loc([0,+∞[);
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2. for νt :=

∫ t

0
ℓ2(s) ds, one has

E

(∫ ∞

0
eνs |φ(s, 0, 0)| ds

)2

<∞. (A.5)

Then there exists a unique triple of processes (Y,Z,U) with Y ∈ L2,loc
P (Ω;C([0,+∞[;R)), Z ∈

L2,loc
P (Ω× [0,+∞[; Ξ∗), U ∈ L2,loc

P (Ω× [0,+∞[;H∗), such that

E( sup
t∈[0,T ]

e2νt |Yt|
2) < +∞, ∀T ≥ 0, lim

T→∞
E(e2νT |YT |

2) = 0. (A.6)

Moreover

E
Ft(sup

s≥t
e2νs |Ys|

2)+E
Ft

(∫ ∞

t
e2νs(|Zs|

2 + |Us|
2) ds

)
≤ C E

Ft

(∫ ∞

t
eνs |φ(s, 0, 0)| ds

)2

, P−a.s.

(A.7)

for some positive constant C.

Proof of Theorem 6.1. The proof is split into two parts. The first deals with approximating

functions vα defined in (4.10)

Part I - Differentiability of vα

We first have to come back to the elliptic approximations:

Y x,α
t = Y x,α

T +

∫ T

t
[ψ(Xx

s , Z
x,α
s G−1(Xx

s ), U
x,α
s )−αY x,α

s ] ds−

∫ T

t
Zx,αs dW 1

s −

∫ T

t
Ux,αs dW 2

s , (A.8)

and for those equations we prove that:

Proposition A.1 Under the same assumptions of Theorem 6.1 we have that, for each α > 0, the

map x→ Y x,α
0 belongs to G1(H,R).

Proof. We fix n ∈ N and introduce the following finite horizon approximations where 0 ≤ t ≤ n:

Y x,α,n
t =

∫ n

t
[ψ(Xx

s , Z
x,α,n
s G−1(Xx

s ), U
x,α,n
s )− αY x,α,n

s ] ds−

∫ n

t
Zx,α,ns dW 1

s −

∫ n

t
Ux,α,ns dW 2

s .

For such equations [16, Prop. 3.2] holds true, moreover we have from [11, Propositions 5.6 and

5.7] that x→ Y x,α,n
0 := vα,n(x) belongs to G1(H,R) and Zx,α,nt = ∇xv

α,n(Xx
t )G(X

x
t ) and U

x,α,n
t =

∇xv
α,n(Xx

t )D.

Hence, arguing as in Proposition 4.2, we deduce that |Zα,x,nt | ≤ |∇xv
α,n(Xx

t )G(X
x
t )| ≤ C/µ and

|Uα,x,nt | ≤ |∇xv
α,n(Xx

t )D| ≤
C

µ
, with C independent of n and α.

Moreover, see [11, Prop 5.2], the map x→ (Y x,α,n
t , Zx,α,nt , Ux,α,nt ) is Gateaux differentiable and the

equation for the derivative in the direction h ∈ H, |h| = 1, is the following:

∇xY
x,α,n
t h =

∫ n

t
[φh,α(s,∇xZ

x,α,n
s h,∇xU

x,α,n
s h)− α∇xY

x,α,n
s h] ds −

∫ n

t
∇xZ

x,α,n
s hdW 1

s

−

∫ n

t
∇xU

x,α,n
s hdW 2

s , 0 ≤ t ≤ n.
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where

φh,α,n(s, z, u) = ∇xψ(X
x
s , Z

x,α,n
s G−1(Xx

s ), U
x,α,n
s )∇xX

x
s h+∇uψ(X

x
s , Z

x,α,n
s G−1(Xx

s ), U
x,α,n
s )uh

+∇zψ(X
x
s , Z

x,α,n
s G−1(Xx

s ), U
x,α,n
s )[Zx,α,ns ∇xG

−1(Xx
s )∇xX

x
s h+ z hG−1(Xx

s )]

Notice that φh,α(t, z, u) is affine in z and u and :

|φh,α,n(s, z, u)−φh,α,n(s, 0, 0)| ≤ Lu|u|+LzMG−1 |z| ≤ (L2
zM

2
G−1+L

2
u)

1/2(|z|2+ |u|2)1/2, P−a.s.

where here and in the following the constant C may change from line to line but always indepen-

dently from n, ε and from α.

We can apply Lemma A.1 with νs = (L2
zM

2
G−1 + L2

u)s =: Ks, indeed for ε = 1
2(µ − 2K), we

have, recalling also that Ux,α,ns and Zx,α,ns are bounded uniformly in s, α and n

E

[∫ n

0
|φh,α,n(s, 0, 0)|e(−α+K)s dt

]2
≤
C

ε

∫ n

0
e(ε−2α+2K)s

E|∇xX
x
s h|

2 dt ≤
C

µ− 2K
. (A.9)

Therefore the following estimate holds, arguing as before in (A.9), for all 0 ≤ t ≤ n:

E sup
s∈[t,n]

e2(−α+K)s|∇xY
x,α,n
s h|2 + E

∫ n

t
e2(−α+K)s

[
|∇xZ

x,α,n
s h|2 + |∇xU

x,α,n
s h|2

]
dt

≤ C E

[∫ n

t
e(−α+K)s|φh,α,n(s, 0, 0)| ds

]2
≤
Ce(−2α− 1

2
µ+K)t

µ− 2K
, t ≤ s ≤ n. (A.10)

In particular, we have for all t ≥ 0:

E

(
e2Kt|∇xY

x,α,n
t h|2

)
≤ C e(−

1

2
µ+K) t. (A.11)

From estimate (A.10) we deduce that (∇xY
x,α,nh,∇xZ

x,α,nh,∇xU
x,α,nh) weakly converges in the

Hilbert space L2(Ω × (0, T );R × Ξ∗ ×H∗) to some (Rx,α,h, V x,α,h,Mx,α,h), for every T > 0. From

(A.11) we also have that ∇xY
x,α,n
0 h converge in R to ξx,α,h.

We define for every t ≥ 0

R̃x,α,ht = ξx,α,h +

∫ t

0

[
φh,α(s, V x,α,h

s ,Mx,α,h
s )− αRx,α,hs

]
ds −

∫ t

0
V x,α,h
s dW 1

s −

∫ t

0
Mx,α,h
s dW 2

s .

Now we compare the above with the forward equation fulfilled by (∇xY
x,α,nh,∇xZ

x,α,nh,∇xU
x,α,nh),

namely:

∇xY
x,α,n
t h =∇xY

x,α,n
0 h+

∫ t

0

[
φh,α,n(s,∇xZ

x,α,n
s ,∇xU

x,α,n
s )− α∇xY

x,α,n
s h

]
ds

−

∫ t

0
∇xZ

x,α,n
s hdW 1

s −

∫ t

0
∇xU

x,α,n
s hdW 2

s , P− a.s..

Since every term in the R.H.S., passing to a subsequence if necessary, weakly converges in

L2(Ω × (0, T );R), see also [16, Theo. 3.1], we have that R̃x,α,ht = Rx,α,ht , P−a.s. for a.e. t ≥ 0.

Thus the triplet processes (R̃x,α,h, V x,α,h,Mx,α,h) verifies for all t > 0, P-a.s.:

R̃x,α,ht = R̃x,α,h0 +

∫ t

0

[
φh,α(s, V x,α,h

s ,Mx,α,h
s )− αR̃x,α,hs

]
ds −

∫ t

0
V x,α,h
s dW 1

s −

∫ t

0
Mx,α,h
s dW 2

s .
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where

φh,α(s, z, u) = ∇xψ(X
x
s , Z

x,α
s G−1(Xx

s ), U
x,α
s )∇xX

x
s h+∇uψ(X

x
s , Z

x,α
s G−1(Xx

s ), U
x,α
s )uh

+∇zψ(X
x
s , Z

x,α
s G−1(Xx

s ), U
x,α
s )[Zx,αs ∇xG

−1(Xx
s )∇xX

x
s h+ z hG−1(Xx

s )]

Moreover, thanks to (A.10) and (A.11) we have that

E sup
s∈[0,T ]

e2Ks|R̃x,α,hs |2 < +∞ and E e2Ks|R̃x,α,hs |2 ≤ C̃ e(−µ+2K) s, (A.12)

therefore, (R̃x,α,h, V x,α,h,Mx,α,h) is the unique solution of equation:

dsRs = [φh,α(s, Vs,Ms)− αRs]ds − VsdW
1
s −MsdW

2
s (A.13)

in the class of processes with the regularity imposed in Lemma A.2 veryfying:

E sup
t∈[0,T ]

|R̃x,α,ht |2 < +∞ and lim
T→+∞

E e2K2T |R̃x,α,hT |2 = 0, ∀T > 0. (A.14)

We then closely follow the proof of [16, Prop 3.2], indeed we get that limn→+∞∇xY
α,n,x
0 h =

R̃α,x,h(0), defines a linear and bounded operator R̃α,x(0) from H to H, by (A.11), such that

R̃α,x(0)h = R̃x,α,h(0), moreover for every fixed h ∈ H, x → R̃α,x(0)h is continuous in x, we will

sketch the argument by the the end of the proof in a similar point. Therefore, by dominated

convergence, we get that:

lim
ℓ↓0

Y x+ℓh,α
0 − Y x,α

0

ℓ
= lim

ℓ↓0
lim
n→∞

Y x+ℓh,α,n
0 − Y x,α,n

0

ℓ
= lim

ℓ↓0
lim
n→∞

∫ 1

0
∇xY

,x+θℓh,α,n
0 hdθ

= lim
ℓ↓0

∫ 1

0
R̃x+θℓh,α(0)hdθ = R̃x,α(0)h. (A.15)

Thus vα is differentiable and since Y x,α
t = vα(Xx

t ) we have ∇xY
x,α
t h = vα(Xx

t )∇xX
x
t h.

Fixing T > 0 we can see the equation satisfied by (Y x,α, Zx,α, Ux,α) as a BSDE on [0, T ] with

final condition vα(Xx
T ) and we can apply standard results on the differentiability of markovian,

finite horizon BSDEs (see, for instance, [11]) to deduce that the map x→ Y x,α is of class G1 from

H to L2
P(Ω, ;C([0, T ];R)) and x→ Zx,α is of class G1 from L2

P([0, T ]× Ω;Ξ∗). Moreover for every

h ∈ H, for every 0 ≤ t ≤ T it holds that:

∇xY
x,α
t h = ∇xY

x,α
T h+

∫ T

t
[φh(s,∇xZ

x,α
s h,∇xU

x,α
s h)− α∇xY

x,α
s h] ds

−

∫ T

t
∇xZ

x,α
s hdW 1

s −

∫ T

t
∇xU

x,α
s hdW 2

s , 0 ≤ t ≤ n. (A.16)

Comparing the above with (A.13) and noticing that for all T > 0:

Ee2KT |∇xY
x,α
T h|2 = Ee2KT |∇xv

α(Xx
T )∇xX

x
Th|

2 ≤ Ce(2K−µ)T

the uniqueness part of Lemma A.2 tells us that (∇xY
x,α
· h,∇xZ

x,α
· h,∇xU

x,α
· h) coincides with

(R̃x,h,α, V x,h,α,Mx,h,α) and is the unique solution of equation (A.13) in the sense of Lemma A.2.

Part II - Differentiability of v̄
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We also introduce the following infinite horizon BSDE:

− dRx,hs = φh(s, V x,h
s ,Mx,h

s )ds − V x,h
t dW 1

t −Mx,h
t dW 2

t t ≥ 0. (A.17)

with

φh(s, z, u) =[∇xψ(X
x
s , Z̄

x
sG

−1(Xx
s ), Ū

x
s ) +∇zψ(X

x
s , Z̄

x
sG

−1(Xx
s ), Ū

x
s )Z̄

x
s∇xG

−1(Xx
s )]∇xX

x
s h

+∇uψ(X
x
s , Z̄

x
sG

−1(Xx
s ), Ū

x
s )u+∇zψ(X

x
s , Z̄

x
sG

−1(Xx
s ), Ū

x
s )z

By Lemma A.2 has a unique solution in the class of processes Rx,h ∈ L2,loc
P (Ω;C([0,+∞[;R)),

V x,h ∈ L2,loc
P (Ω× [0,+∞[; Ξ∗), M ∈ L2,loc

P (Ω × [0,+∞[;H∗) verifying:

lim
T→+∞

e2KTE |Rx,hT |2 = 0, ∀T > 0. (A.18)

As in [8, Theorem 5.1] we claim that, along the sequence (αm) introduced in (4.21), it holds:

∇xv
αm(x)h = ∇xY

αm,x
0 h = Rx,αm,h

0 → Rx,h0 , (A.19)

as m→ ∞.

Let us introduce again some parabolic approximations: for:

{
−dRx,α,n,hs = φh,α(s, V x,α,n,h

s ,Mx,α,n,h)ds− αRx,α,n,hs ds− V x,α,n,h
s dW 1

s −Mx,α,n,h
s dW 2

s s ∈ [0, n],

Rx,α,n,hn = 0

and {
−dRx,n,hs = φh(s, V x,h,n

s ,Mx,n,h)ds − V x,h,n
s dW 1

s −Mx,h
s dW 2

s s ∈ [0, n],

Rx,h,nn = 0

Since along the sequence (αm) selected in Section 4 we have

E sup
s∈[0,n]

|Ȳ x
s − Y x,αm

s |2 + E

∫ n

0

[
|Z̄s − Zx,αm

s |2 + |Ūxs − Ux,αm
s |2

]
ds→ 0

and consequently

E

∫ n

0
|φh,αm(s, 0, 0) − φh(s, 0, 0)|2ds→ 0 as m→ ∞

standard estimates on finite horizon BSDEs give:

E sup
s∈[0,n]

|Rx,n,hs −Rx,αm,n,h
s |2 → 0, as m→ ∞. (A.20)

Moreover if we compare with the solution (R̃x,α,h, V x,α,h,Mx,α,h) of equation (A.13)





−d (Rx,α,n,hs − R̃x,α,hs ) = φh,α(s, V x,α,n,h
s − V x,α,h

s ,Mx,α,n,h
s −Mx,α,h

s )ds − α[Rx,α,n,hs − R̃x,α,hs ] ds

−[V x,α,n,h
s − V x,α,h

s ] dW 1
s − [Mx,α,n,h

s −Mx,α,h
s ] dW 2

s ,

Rx,α,n,hn − R̃x,α,hn = −∇xv
α(Xx

n)∇xX
x
nh

(A.21)

Thus Lemma A.1 estimate (A.3) yields:

|Rx,α,n,h0 − R̃x,α,h0 |2 ≤ E

(
e2kn|∇xv

α(Xx
n)∇xX

x
nh|

2
)
≤ Ce(2K−µ)n → 0, as n→ +∞. (A.22)
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Notice that the right hand side does not depend on α . Finally





−d (Rx,n,hs −Rx,hs ) = φh(s, V x,n,h
s − V x,h

s ,Mx,n,h
s −Mx,h

s )ds

−[V x,n,h
s − V x,h

s ] dW 1
s − [Mx,n,h

s −Mx,h
s ] dW 2

s ,

Rx,n,hn −Rx,hn = −R̃x,hn

(A.23)

and taking into account (A.18), one has, again by Lemma A.1 relation (A.3):

|Rx,n,h0 −Rx,h0 |2 ≤ E

(
e2Kn|Rx,hn |2

)
≤ Ce(2K−µ)n → 0, as N → +∞. (A.24)

Therefore summing up (A.22), (A.24) and (A.20) we have that:

Rx,αm,h
0 → Rx,h0 , as m→ +∞.

Finally the continuity with respect to x of Rx,h0 descends immediately from (A.24) and from the

continuity of the map x→ Rx,n,h0 proved in [11, Prop. 4.3].

We can now conclude as above (and ass in [16, Prop 3.2]); Rx,h(0), defines a linear and bounded

operator Rx(0) from H to H, such that Rx(0)h = Rx,h(0), and we have:

lim
t↓0

v̄(x+ th)− v̄(x)

t
= lim

t↓0

Ȳ x+th
0 − Ȳ x

0

t
= lim

t↓0
lim
m→0

Y x+th,αm

0 − Y x,α
0

t
=

= lim
t↓0

lim
m→0

∫ 1

0
∇xY

x+θth,αm

0 hdθ = lim
t↓0

lim
m→0

∫ 1

0
Rx+θth,αm,h(0)hdθ =

= lim
t↓0

∫ 1

0
Rx+θth(0)hdθ = Rx(0)h.
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