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Abstract
The steady motion of a viscous incompressible fluid in an obstructed finite pipe is modeled
through theNavier–Stokes equationswithmixed boundary conditions involving theBernoulli
pressure and the tangential velocity on the inlet and outlet of the tube, while a transversal flux
rate F is prescribed along the pipe. Existence of aweak solution to suchNavier–Stokes system
is proved without any restriction on the data by means of the Leray–Schauder Principle,
in which the required a priori estimate is obtained by a contradiction argument based on
Bernoulli’s law. Through variational techniques and with the use of an exact flux carrier, an
explicit upper bound on F (in terms of the viscosity, diameter and length of the tube) ensuring
the uniqueness of such weak solution is given. This upper bound is shown to converge to zero
at a given rate as the length of the pipe goes to infinity. In an axially symmetric framework,
we also prove the existence of a weak solution displaying rotational symmetry.
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1 Introduction

In 1838, the French physicist Jean Léonard Marie Poiseuille gave a preliminary oral report
to the Philomatic Society of Paris [65] concerning the effects of pressure, tube length and
diameter on the flow of water through glass tubes. In 1839, the Prussian hydraulic engineer
Gotthilf Heinrich Ludwig Hagen conducted experiments on the flow of water in cylindrical
brass pipes, the outcome of which were then published in the paper [33]. Independently from
each other [73], both Poiseuille and Hagen empirically derived a physical law that gives the
pressure drop in an incompressible and Newtonian fluid flowing in laminar regime through
a sufficiently long, straight, circular pipe of constant cross section. Precisely, the celebrated
Hagen–Poiseuille law [53, Chapter II] states

�p = 16μhF

πR4 ,

where:

• �p is the pressure difference between the outflow and inflow;
• μ is the dynamic viscosity of the fluid;
• 2h is the length of the pipe;
• F is the (volumetric) transversal flow rate;
• R is the radius of the pipe.

Theoretically justified in 1845 by George Gabriel Stokes [71], the Hagen–Poiseuille law
has ever since played a fundamental role in the development of Fluid Mechanics. Not only
it has provided conclusive evidence for the use of the no-slip boundary condition on solid
boundaries (see [52, Chapter XI]), it also yields an (axisymmetric) exact solution for the
steady-state Navier–Stokes equations governing the motion of a viscous incompressible fluid
along a finite straight circular pipe (see identity (3.3) below). In fact, such exact solution is
uniquely determined by the flow rate F , see again [53, Chapter II]. This raises a first natural
question:

If the pipe contains an obstruction (fixed obstacle) and we prescribe a flow rate F along the
pipe, can we compare the resulting Navier–Stokes flow with the Hagen–Poiseuille flow

determined by F?

Of course, the previous inquiry makes sense only if the corresponding Navier–Stokes system
with a prescribed transversal flux rate is solvable. One is therefore led to impose boundary
conditions on the different parts of the boundary of the pipe and of the obstacle as well. This
is alsomotivated by the fact that a large variety of problems inMathematical FluidMechanics
are studied in unbounded pipes or in a system of unbounded pipes (that is, domains having
non-compact boundaries); see in particular the celebrated Leray problem [64], the works of
Ladyzhenskaya & Solonnikov [48, 51], Amick [4, 5], Pileckas et al. [37, 69] and the recent
articles [76, 77]. Nevertheless, not only the numerical approximation of these problems must
be set in bounded domains (finite pipes or conjunction of finite pipes) [35], also theoretical
approaches have been devised in regions with compact boundaries (for example, Leray’s
argument on the invading domains [45, 55]) in order to tackle the original problem, thereby
introducing artificial boundary conditions on truncating surfaces, see the articles by Blazy,
Nazarov & Specovius-Neugebauer [9, 59] and references therein. A second natural question
then arises:

Which boundary conditions should be imposed on the different parts of the boundary of the
pipe and of the obstacle?
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Fig. 1 Representation of the domain �

We follow themodel studied by Korobkov, Pileckas &Russo in [46], previously discussed
briefly in [35], that considers non-standardboundary conditions in the sense of [14, 18, 38, 66].
In the space R

3 we use a system of cylindrical coordinates (ρ, θ, z) ∈ [0,∞)×[0, 2π]×R,
in which any spatial point will be denoted by ξ = ρρ̂ + ẑk, with ρ ≥ 0, z ∈ R and
{

ρ̂,̂θ,̂k
} ⊂ R

3 the orthonormal basis in this geometry. Given h > R > 1, we consider an
open straight cylinderM of radius R and length 2h whose axis of symmetry is directed along
the z-axis:

M = {ξ ∈ R
3 | 0 < ρ < R, −h < z < h

}

.

Let K ⊂ M be an open, bounded and simply connected set with a Lipschitz boundary such
that ∂K ∩ ∂M = ∅, and define the domain

� = M\K . (1.1)

We decompose the boundary of � as ∂� = 	I ∪ 	W ∪ 	O , where

	I = {ξ ∈ R
3 | 0 < ρ < R , z = −h

}

, 	O = {ξ ∈ R
3 | 0 < ρ < R , z = h

}

,

	W = {ξ ∈ R
3 | ρ = R , −h < z < h

} ∪ ∂K .
(1.2)

The outward unit normal to ∂� is denoted by ν. Henceforth we will refer to 	I and 	O in
(1.2) as the inlet and outlet of �, respectively, while 	W includes all the physical walls of �

(Fig. 1).
In the present article we study the steady-state Navier–Stokes equations withmixed boundary
conditions on the different parts of ∂�, that is, the following system of partial differential
equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− η�u + (u · ∇)u + ∇ p = f , ∇ · u = 0 in �,

u = 0 on 	W ,

u × ν = 0, p + 1

2
|u|2 = p− on 	I ,

u × ν = 0, p + 1

2
|u|2 = p+ on 	O ,

∫

�(s)
u ·̂k = F ∀s ∈ [−h, h].

(1.3)

In (1.3), η > 0 is the (constant) kinematic viscosity of the fluid, u : � −→ R
3 is the velocity

vector field, p : � −→ R is the scalar pressure and f : � −→ R
3 represents an external

force acting on the fluid. While (1.3)2 describes the usual no-slip boundary condition on the
physical walls	W , the first equality in (1.3)3–(1.3)4 dictates that the fluid flowmust enter and
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leave the domain � orthogonal to the inlet and outlet walls. The second identity in (1.3)3–
(1.3)4 imposes that, respectively on the inlet	I and outlet	O , the Bernoulli pressure defined
as 

.= p + |u|2/2 must equal some constants p∓ ∈ R that represent the unknown pressure
drop p− − p+ along the pipe (therefore, p∓ are unknown, not prescribed, constants that
depend on the solution). Finally, (1.3)5 dictates that the transversal flow rate of the velocity
field must be constant along the pipe, given by a quantity F ∈ R, where we have defined

�(s)
.= {ξ ∈ � | 0 < ρ < R , z = s} ∀s ∈ [−h, h].

In the literature concerning the steady-state Navier–Stokes equations (or related models)
with mixed boundary conditions in bounded domains, existence of weak solutions is usually
ensured under a smallness assumption on the data, see [2, 3, 13, 14, 25, 40, 70]. In the case
of an unobstructed pipe (K = ∅), the authors of [46] show the existence of a generalized
solution to (1.3) (for any external force and flow rate F) by means of the Leray–Schauder
Theorem, making use of the additional regularity provided by the smoothness of the lateral
boundary ofM. Since K has merely a Lipschitz boundary, such approach cannot be directly
applied to our model. We nevertheless prove the existence of a generalized solution to (1.3)
(without any restriction on the data, see Theorem 3.4) through the following procedure:

• Firstly, by assuming that K has a C2-boundary, in Theorem 3.1 we provide a smooth flux
carrier of F , which enables us to show in Theorem 3.2 that any weak solution of (1.3) is,
in fact, a strong solution. Then, in Theorem 3.3 we apply the Leray–Schauder Principle
in order to prove the existence of (at least) one weak solution to (1.3): in this context, the
required a priori estimates are obtained through a contradiction argument that employs
Bernoulli’s law [41] for solutions of the Euler equation (3.54).

• Secondly, whenever K has a Lipschitz boundary, in Theorem 3.4 (the most important
of the present article) we take a family of smooth domains (Kn)n∈N that outer approx-
imates K in such a way that the Lipschitz character of Kn remains uniformly bounded
with respect to n ∈ N, giving us a uniform control on domain dependence of the con-
stants involved. Such approximation scheme was first designed by Nečas in [60] and
subsequently applied by Verchota [74, 75], Daners [16, 17] and many other authors. The-
orem 3.3, combined with a contradiction argument that again employs Bernoulli’s law,
enables us to obtain a sequence of weak solutions {(un, pn)}n∈N ⊂ H1(�n) × L2(�n)

to (1.3) in �n
.= M\Kn whose norms are uniformly bounded. Since the elements of this

sequence are defined on different domains, a suitable extension allows us to extract a
sub-sequence that converges (in a sense made precise in Theorem 3.4) to a weak solution
(u, p) ∈ H1(�) × L2(�) of (1.3) in �.

In [46, Section 5] the authors prove the unique solvability of (1.3) under a smallness
assumption on the data. Since such smallness assumptions are ubiquitous in Mathematical
Fluid Mechanics (also for the existence of some Navier–Stokes flows, see again [2, 3,
13, 14, 25, 40, 70] or [27, Chapter XIII]), interest in the possibility of quantifying them
was already shown in the work of Amick [4] (for the existence of generalized solutions
to Leray’s problem) and then continued in [29, 30] for the unique solvability of Navier–
Stokes equations with non-homogeneous Dirichlet boundary conditions in some particular
domains. In Theorem 3.4 we show how the smallness assumption for unique solvability of
(1.3) depends strongly on the size of a given flux carrier, on the Poincaré constant of �

and on the Sobolev constant for the embedding of some closed subspace of H1(�) into
L4(�). Through the use of variational techniques (namely, symmetrization arguments and
the concentration-compactness principle), in Sect. 2.1 we give lower and upper bounds for
these Sobolev constants in terms of R and h, while in Theorem 3.1 and Corollary 3.1 we
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construct a flux carrier of the flow rate F whose Dirichlet norm can be explicitly estimated
in terms of the relative capacity of K (inside M) and of the Bogovskii constant of �. This
justifies the purpose of Sect. 2.2, where we provide a lower bound for the relative capacity
of K which is independent of the shape and position of K inside M, and Sect. 2.3, where a
universal lower bound for the Bogovskii constant of any bounded Lipschitz domain in R

3 is
given. These results allow us to write in Corollary 3.3 an explicit upper bound (in terms of η,
|K |, R and h) on the flow rate F that guarantees the unique solvability of (1.3). Moreover, in
the case of zero external force and when K is the unit ball of R

3, we prove that such upper
bound decays like h−1/2 as h → ∞ (here R > 1 is fixed). It is left as an open question the
possibility of improving this asymptotic behavior.

Symmetry results concerning the Navier–Stokes equations have been the subject of many
mathematical studies, due to their connection with regularity issues [1, 62, 63] and the solv-
ability of the renowned Leray-flux problem [42–44], among others. Whenever the (smooth)
obstacle K and the external force f are axisymmetric, in Sect. 3.3 we address the question of
existence of axisymmetric solutions to (1.3), that is, solutions displaying rotational symmetry
with respect to the z-axis. This result is indeed achieved by firstly assembling an axisym-
metric flux carrier of the flow rate, see Theorem 3.5, which can be considered as the axially
symmetric version of Theorem 3.1. Then Theorem 3.6 guarantees the existence of a weak
axisymmetric solution to (1.3) (without further restrictions on the data) as a consequence
of the Leray–Schauder Theorem, properly adapted to spaces containing axisymmetric vec-
tor fields. In particular, in this symmetric framework, Corollary 3.3 yields an explicit upper
bound on F ensuring that the unique weak solution of (1.3) is axisymmetric.

2 Functional inequalities

We emphasize that, for the sake of simplicity, no distinction will be made for the notation of
functional spaces of scalars, vectors or matrices.

2.1 Explicit bounds for some Sobolev embedding constants

We consider the following Sobolev space of functions vanishing on 	W :

S(�) = {v ∈ H1(�) | v = 0 on 	W }.
Since |	W | > 0, the Poincaré inequality holds in S(�), which means that v → ‖∇v‖L2(�)

is indeed a norm on S(�). Moreover, in view of the embedding H1(�) ⊂ L p(�) for every
p ∈ [2, 6], the Sobolev constant for the embeddings S(�) ⊂ L p(�) admits a variational
definition:

Sp
.= min

w∈S(�)\{0}
‖∇w‖2

L2(�)

‖w‖2L p(�)

∀p ∈ [2, 6]. (2.1)

For every p ∈ [2, 6] we have Sp > 0 and, by (2.1),

Sp ‖v‖2L p(�) ≤ ‖∇v‖2L2(�)
∀v ∈ S(�). (2.2)

We emphasize that the inequality in (2.2) is equally valid for scalar or vector functions (with
the same constant). Indeed, if v = (v1, v2, v3) ∈ S(�) is a vector field, by the Minkowski
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inequality we get

‖v‖p
L p(�) = ∥∥ |v1|2 + |v2|2 + |v3|2

∥

∥

p/2
L p/2(�)

≤
(

‖v1‖2L p(�) + ‖v2‖2L p(�) + ‖v3‖2L p(�)

)p/2

≤
(

1

Sp

)p/2 (

‖∇v1‖2L2(�)
+ ‖∇v2‖2L2(�)

+ ‖∇v3‖2L2(�)

)p/2

=
(

1

Sp

)p/2

‖∇v‖p
L2(�)

.

(2.3)

The purpose of this section is to provide explicit lower and upper bounds for the constants
S2 and S4. We firstly treat the case p = 2 (Poincaré inequality). Let J0 : [0,∞) −→ R be
the Bessel function of the first kind of order zero, whose first zero is given by

μ0 ≈ 2.40483. (2.4)

Theorem 2.1 Let � be as in (1.1) and μ0 > 0 as in (2.4). For any vector field u ∈ S(�) one
has

‖u‖L2(�) ≤
√
3

⎛

⎜

⎝max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,
√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

2

− 2

h2

⎞

⎟

⎠

1/2 ‖∇u‖L2(�).

(2.5)

In particular,

S2 ≥ 1

3

⎛

⎜

⎝max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,
√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

2

− 2

h2

⎞

⎟

⎠ . (2.6)

Proof In view of (2.3), it suffices to prove (2.5) for any scalar function u ∈ S(�). We start
by defining the following subspace of S(�):

S∗(�) = {v ∈ H1(�) | v = 0 on 	I ∪ 	W }. (2.7)

Let us denote by �+ ⊂ R
3 the reflection of � with respect to the plane z = h, that is,

�+ = {(x, y, 2h − z) | (x, y, z) ∈ �}. (2.8)

In the sameway K+ ⊂ M+ ⊂ R
3 are defined as the reflections of K andM, correspondingly,

with respect to the plane z = h:

K+ = {(x, y, 2h − z) | (x, y, z) ∈ K }, M+ = {ξ ∈ R
3 | 0 < ρ < R, h < z < 3h

}

.

(2.9)

We then write �� = � ∪ �+ and, given a function u ∈ S∗(�) (scalar or vector), we define
its even extension to �� according to the formula

u�(x, y, z) =
{

u(x, y, z) if (x, y, z) ∈ �

u(x, y, 2h − z) if (x, y, z) ∈ �+,
(2.10)
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so that u� ∈ H1
0 (��). Now, let �∗ ⊂ R

3 be a ball having the same measure as ��, and thus
its radius is

R0 = 3

√

3|��|
4π

= 3

√

3

2π
(|M| − |K |).

Since the Poincaré constant in the unit ball is given by π (the first zero of the spherical Bessel
function of order zero), by rescaling, the Poincaré constant of �∗ is π2/R2

0 . In view of the
Faber-Krahn inequality [22, 47], this implies that

min
w∈H1

0 (��)\{0}
‖∇w‖L2(��)

‖w‖L2(��)

≥ min
w∈H1

0 (�∗)\{0}
‖∇w‖L2(�∗)
‖w‖L2(�∗)

= π

R0
,

and therefore

‖u�‖L2(��)
≤ R0

π
‖∇u�‖L2(��)

= 1

π

3

√

3

2π
(|M| − |K |) ‖∇u�‖L2(��)

. (2.11)

On the other hand, defining M�
.= {ξ ∈ R

3 | 0 < ρ < R, −h < z < 3 h
}

, a direct compu-
tation shows

−�
[

J0
(μ0

R
ρ
)

cos
( π

4h
(z − h)

)]

=
(

μ2
0

R2 + π2

16h2

)

J0
(μ0

R
ρ
)

cos
( π

4h
(z − h)

)

∀ξ ∈ M� ;

such eigenfunction is positive inM� and vanishes on ∂M�. Thus, the Poincaré inequality in
M� reads

‖w‖L2(M�)
≤ 4Rh
√

16h2μ2
0 + π2R2

‖∇w‖L2(M�)
∀w ∈ H1

0 (M�).

Since u� can be extended by 0 in K and in K+, it becomes an element of H1
0 (M�) that

satisfies

‖u�‖L2(��)
≤ 4Rh
√

16h2μ2
0 + π2R2

‖∇u�‖L2(��)
. (2.12)

Now, it can be easily seen that

‖u�‖2L2(��)
= 2 ‖u‖2L2(�)

, ‖u�‖4L4(��)
= 2 ‖u‖4L4(�)

, ‖∇u�‖2L2(��)
= 2 ‖∇u‖2L2(�)

,

(2.13)

which, inserted respectively into (2.11) and (2.12), yields the inequality

‖u‖L2(�) ≤ min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

‖∇u‖L2(�) ∀u ∈ S∗(�).

(2.14)

Consider now a scalar function u ∈ S(�), and define U1,U2 ∈ H1(�) according to

U1(x, y, z) = h + z

2h
u(x, y, z), U2(x, y, z) = h − z

2h
u(x, y, z) for a.e. (x, y, z) ∈ �.

(2.15)
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Since U1 vanishes on 	I ∪ 	W and U2 vanishes on 	O ∪ 	W , the previous argument (of
reflecting � with respect to the planes z = ±h) can be applied to deduce that both U1 and
U2 satisfy (2.14). Moreover, since u = U1 +U2 in �, we then obtain

‖u‖2L2(�)
= ‖U1‖2L2(�)

+ ‖U2‖2L2(�)
+ 1

2h2

∫

�

(h2 − z2)|u|2

≤ ‖U1‖2L2(�)
+ ‖U2‖2L2(�)

+ 1

2
‖u‖2L2(�)

,

so that

1

2
‖u‖2L2(�)

≤ ‖U1‖2L2(�)
+ ‖U2‖2L2(�)

≤ min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

2

×
(

‖∇U1‖2L2(�)
+ ‖∇U2‖2L2(�)

)

.

(2.16)

On the other hand, after applying Young’s inequality we get

‖∇U1‖2L2(�)
+ ‖∇U2‖2L2(�)

= 1

2h2
‖u‖2L2(�)

+ 1

h2

∫

�

zu
∂u

∂z
+ 1

2h2

∫

�

(h2 + z2)|∇u|2

≤ 1

2h2
‖u‖2L2(�)

+ 1

h

(

1

2h
‖u‖2L2(�)

+ h

2
‖∇u‖2L2(�)

)

+ ‖∇u‖2L2(�)

= 1

h2
‖u‖2L2(�)

+ 3

2
‖∇u‖2L2(�)

,

(2.17)

which, once inserted into (2.16), yields (2.5) after noticing that

min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

2

<
h2

2
,

since h > R. This concludes the proof. ��
Remark 2.1 Since � ⊂ {(x, y, z) ∈ R

3 | − R ≤ y ≤ R }, the standard proof of the Poincaré
inequality for functions in H1

0 (�) (see, for example, [27, Theorem II.5.1]) yields

‖w‖L2(�) ≤ R ‖∇w‖L2(�) ∀w ∈ H1
0 (�),

and thus, a larger upper bound than the one given in (2.5). In fact, from (2.5) we infer

‖w‖L2(�) ≤
√
3R

μ2
0 − 2

‖∇w‖L2(�) ≤ 0.46R‖∇w‖L2(�) ∀w ∈ S(�).

Remark 2.2 In the sequel, we will always apply the Sobolev inequalities (2.2) to divergence-
free vector fields. Going back to the proof of Theorem2.1, let us define the following subspace
of H1

0 (��):

H1
0,σ (��) = {v ∈ H1

0 (��) | ∇ · v = 0 in ��},
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so that

min
w∈H1

0,σ (��)\{0}
‖∇w‖L2(��)

‖w‖L2(��)

≥ min
w∈H1

0 (��)\{0}
‖∇w‖L2(��)

‖w‖L2(��)

. (2.18)

The Rayleigh quotient

min
w∈H1

0,σ (��)\{0}

‖∇w‖2
L2(��)

‖w‖2
L2(��)

(2.19)

corresponds to the first eigenvalue of the Stokes operator in �� under Dirichlet boundary
conditions, see [15, Chapter 4]. If a strict inequality holds in (2.18), and one could be able to
explicitly compute the Rayleigh quotient (2.19), this naturally would improve the estimate
given in (2.12). In fact, it is shown in [78, Theorem 1.2] that a strict inequality holds in (2.18)
whenever the three-dimensional bounded domain under consideration has a boundary of class
C1 (whereas the strict inequality holds for any bounded domain inR

2 with a locally Lipschitz
boundary, see [39, Theorem 1.1]). Extensive research on the computation of the eigenvalues
of the Stokes operator, for special different domains, was performed by Rummler et al. in
[54, 67, 68]. Symmetrization techniques do not seem to provide any help in this context,
since the component-wise Schwarz rearrangement [34, Chapter 2] of a vector field does not
necessarily preserve the divergence-free condition.

We now prove the following:

Theorem 2.2 Let � be as in (1.1) and μ0 > 0 as in (2.4). For any vector field u ∈ S(�) one
has

‖u‖L4(�) ≤
√

3

π

hmax

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,

√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

3/4

⎛

⎜

⎝h2 max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,

√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

2

− 2

⎞

⎟

⎠

1/2 ‖∇u‖L2(�).

(2.20)

In particular,

S4 ≥ π

3

h2 max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,
√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

2

− 2

h2 max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,
√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

3/2 . (2.21)

Proof In view of (2.3), it suffices to prove (2.20) for scalar functions u ∈ S(�). As in the
proof of Theorem 2.1, we introduce the reflected domains (with respect to the plane z = h)
�+ ⊂ R

3 and K+ ⊂ M+ ⊂ R
3 given by (2.8) and (2.9). We then write �� = � ∪ �+

and, given a scalar function u ∈ S∗(�) (see (2.7)), we define its extension u� ∈ H1
0 (��)
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  236 Page 10 of 57 G. Sperone

according to (2.10). Next, we recall that del Pino-Dolbeault [19, Theorem 1] obtained the
following (optimal) Gagliardo-Nirenberg inequality in R

3:

‖w‖L4(��)
≤
(

1

2π2

)1/6

‖∇w‖1/2
L2(��)

‖w‖1/2
L3(��)

∀w ∈ H1
0 (��). (2.22)

Since functions in H1
0 (��)may be extended by zero outside��, they can be seen as functions

defined over the whole space. Therefore, u� also verifies (2.22). An application of Hölder’s
inequality gives

‖u�‖3L3(�+)
=
∫

��

|u�|2|u�| ≤ ‖u�‖2L4(��)
‖u�‖L2(��)

which, inserted into (2.22) (replacing w by u�), yields

‖u�‖L4(��)
≤
(

1

2π2

)1/6

‖∇u�‖1/2L2(��)
‖u�‖1/3L4(��)

‖u�‖1/6L2(��)
,

or equivalently

‖u�‖2/3L4(��)
≤
(

1

2π2

)1/6

‖∇u�‖1/2L2(��)
‖u�‖1/6L2(��)

. (2.23)

As in (2.13), it can be easily seen that ‖u�‖4L4(��)
= 2 ‖u‖4

L4(�)
, so that (2.23) becomes

‖u‖2/3
L4(�)

≤
(

1

π

)1/3

‖∇u‖1/2
L2(�)

‖u‖1/6
L2(�)

. (2.24)

After inserting (2.14) into (2.24) and taking the 2
3 -roots of the resulting inequalitywe conclude

that

‖u‖L4(�) ≤ 1√
π

min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

1/4

‖∇u‖L2(�) ∀u ∈ S∗(�).

(2.25)

Consider now a scalar function u ∈ S(�), and define U1,U2 ∈ H1(�) according to
(2.15), so that U1 vanishes on 	I ∪ 	W , U2 vanishes on 	O ∪ 	W and u = U1 + U2 in �.
Therefore, bothU1 andU2 satisfy (2.25). In order to prove (2.20) we apply Minkowski’s and
Hölder’s inequality in the following way:

‖u‖4L4(�)
= ∥∥ |U1|2 + 2U1U2 + |U2|2

∥

∥

2
L2(�)

≤
(

‖U1‖2L4(�)
+ 2‖U1U2‖L2(�) + ‖U2‖2L4(�)

)2

≤
(

‖U1‖2L4(�)
+ 2‖U1‖L4(�)‖U2‖L4(�) + ‖U2‖2L4(�)

)2

≤ 4
(

‖U1‖2L4(�)
+ ‖U2‖2L4(�)

)2
.
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Therefore, in view of (2.17)–(2.25) we have

‖u‖L4(�) ≤
√

2

π
min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

1/4

×
(

‖∇U1‖2L2(�)
+ ‖∇U2‖2L2(�)

)1/2

≤
√

2

π
min

⎧

⎨

⎩

1

π

3

√

3

2π
(|M| − |K |), 4Rh

√

16h2μ2
0 + π2R2

⎫

⎬

⎭

1/4

×
(

1

h2
‖u‖2L2(�)

+ 3

2
‖∇u‖2L2(�)

)1/2

,

from where we derive (2.20) after applying (2.5) in the right-hand side of this last inequality.
��

We are also interested in obtaining explicit upper bounds for the Sobolev embedding
constants S2 and S4. For this, let us assume that

K ⊆ P ⊂ M where P = {ξ ∈ R
3 | 0 < ρ < 1, −1 < z < 1

}

, (2.26)

that is, the obstacle K can be enclosed by a open straight cylinder P of radius 1 and length
2 whose axis of symmetry is directed along the z-axis. The precision of the lower bounds
given in Theorems 2.1 and 2.2 is evaluated in the following result:

Proposition 2.1 Let � be as in (1.1) and assume (2.26), with

h ≥ R

3

(

π

μ0

)3

+ 1

R2 . (2.27)

Then

1

3

(

μ2
0

R2 − 2

h2
+ π2

16h2

)

≤ S2 ≤ 10(R2(h − 1)3(5R2 + 3h2 − 6h + 3) + 4(R + 1)(R − 1)3(R2 − 2R + 5))

5R4(h − 1)5 + 16(R + 1)(R − 1)5

(2.28)

and

π

3

(μ0

R

)2 − 1

h2

(

2 − π2

16

)

(

(μ0

R

)2 +
( π

4h

)2
)3/4 ≤ S4 ≤ 7

√
π(8R4 − 2R3 − R2 + 12R + 20)
√

(R − 1)3(21R6 + 128R + 128)
. (2.29)

Proof Since (2.26) and (2.27) hold, it can be easily noticed that

max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,
√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

=
√

16h2μ2
0 + π2R2

4Rh
,

and the lower bounds in (2.28)–(2.29) follow, respectively, from (2.6)–(2.21).
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Limit lower bound for S2

Limit upper bound for S2

Fig. 2 Comparison between the lower and upper bounds for L
.= lim
h→∞S2, for R > 1

Consider now the function X0 : �\P −→ R defined by

X0(ξ)
.=

⎧

⎪

⎨

⎪

⎩

(R − ρ)(h + z)(z + 1) if 0 ≤ ρ < R, −h ≤ z ≤ −1

(R − ρ)(ρ − 1)(1 − z2) if 1 ≤ ρ < R, −1 < z < 1

(R − ρ)(h − z)(z − 1) if 0 ≤ ρ < R, 1 ≤ z ≤ h,

which, if extended by zero inside P , is an element of H1
0 (�) ⊂ S(�). We also define

X1 : �\P −→ R as

X1(ξ)
.=

⎧

⎪

⎨

⎪

⎩

(R − ρ)(R + z)(z + 1) if 0 ≤ ρ < R, −R ≤ z ≤ −1

(R − ρ)(ρ − 1)(1 − z2) if 1 ≤ ρ < R, −1 < z < 1

(R − ρ)(R − z)(z − 1) if 0 ≤ ρ < R, 1 ≤ z ≤ R,

which, if extended by zero insideP and for |z| ≥ R, becomes an element of S(�) (recall that
h > R). Therefore, both X0 and X1 can be tested in the quotient (2.1), yielding respectively
the upper bounds in (2.28) and (2.29). ��
Remark 2.3 It can be inferred from Proposition 2.1 that

μ2
0

3R2 ≤ lim
h→∞S2 ≤ 6

R2 ∀R > 1. (2.30)

The ratio between the upper and lower bounds in (2.30) equals 18/μ2
0 ≈ 3.1124, for every

R > 1. A comparison between the lower and upper bounds in (2.30), as functions of R > 1,
is shown in Fig. 2.

On the other hand we have

π

3

√

μ0

R
≤ lim

h→∞S4 ≤ 7
√

π(8R4 − 2R3 − R2 + 12R + 20)
√

(R − 1)3(21R6 + 128R + 128)
∀R > 1. (2.31)

The ratio between the upper and lower bounds in (2.31) tends to 8
√
21/

√
πμ0 ≈ 13.3377

as R → ∞. A finer upper bound for lim
h→∞S4 will be given in the next result.

In the spirit of [31, Proposition 3.1] we now prove:
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Theorem 2.3 Let � be as in (1.1) and assume (2.26)–(2.27). We then have

π

3

√

μ0

R
≤ lim

h→∞S4 ≤ 10.4528√
R

∀R > 1. (2.32)

Proof For the sake of clarity, in this proof we will denote by �h the domain defined in (1.1),
and by S4(h) > 0 the Sobolev embedding constant (2.1) for p = 4.

Consider the infinite nozzle of radius R given by

M∞
.= {ξ ∈ R

3 | 0 < ρ < R
}

and put

S∞
4 = inf

w∈H1
0 (M∞)\{0}

‖∇w‖2
L2(M∞)

‖w‖2
L4(M∞)

, (2.33)

so that

S∞
4 ‖v‖2L4(M∞)

≤ ‖∇v‖2L2(M∞)
∀v ∈ H1

0 (M∞). (2.34)

Since for h2 > h1 > 1 we have the inclusions H1
0 (�h1) ⊂ H1

0 (�h2) ⊂ H1
0 (M∞) induced

by trivial extension, it follows that

Z4(h1) ≥ Z4(h2) ≥ S∞
4 for h2 > h1 > 1, (2.35)

where we have defined

Z4(h)
.= min

w∈H1
0 (�h)\{0}

‖∇w‖2
L2(�h)

‖w‖2
L4(�h)

∀h > 1. (2.36)

We claim that

the infimum in (2.33) is attained at a function v ∈ H1
0 (M∞)with ‖v‖L4(M∞) = 1.

(2.37)

To prove (2.37) we consider a sequence (un)n∈N ⊂ H1
0 (M∞) such that ‖un‖L4(M∞) = 1,

for every n ∈ N, and ‖∇un‖2L2(M∞)
→ S∞

4 as n → ∞. It then follows from the Poincaré

inequality that (un)n∈N is bounded in H1
0 (M∞). By Lions’ Lemma [56], after passing to a

subsequence, there exist points ξn = ρn ρ̂ + zn̂k ∈ R
3, with ρn ≥ 0 and zn ∈ R for every

n ∈ N, with

vn
.= ξn ∗ un⇀v weakly in H1(R3) for some function v ∈ H1(R3)\{0}, as n → ∞,

in which we use the notation ξ ∗ u
.= u( · − ξ) to denote the translation of a function

u : R
3 −→ R with respect to ξ ∈ R

3. Since M∞ is bounded in the radial direction and
v �= 0, also the sequence (ρn)n∈N is bounded and we may therefore assume that ρn = 0
for every n ∈ N. Consequently, v ∈ H1

0 (M∞) and vn⇀v in H1
0 (M∞) as n → ∞. By the

Brezis-Lieb Lemma [11], we then have

1 = lim
n→∞ ‖un‖4L4(M∞)

= lim
n→∞ ‖vn‖4L4(M∞)

= ‖v‖4L4(M∞)
+ c4 with

c
.= lim

n→∞ ‖vn − v‖L4(M∞).
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Consequently, ‖v‖2
L4(M∞)

+ c2 ≥ 1 and from (2.34) we get

S∞
4 ≤ S∞

4

(

‖v‖2L4(M∞)
+ c2

)

≤ ‖∇v‖2L2(M∞)
+ lim

n→∞ ‖∇(vn − v)‖2L2(M∞)

= lim
n→∞ ‖∇vn‖2L2(M∞)

= lim
n→∞ ‖∇un‖2L2(M∞)

= S∞
4 .

(2.38)

From this we deduce that

‖v‖2L4(M∞)
+ c2 = 1 = ‖v‖4L4(M∞)

+ c4.

Since v �= 0, we infer that c = 0 and then ‖v‖L4(M∞) = 1. Therefore, ‖∇v‖2
L2(M∞)

≥ S∞
4

by definition of S∞
4 in (2.33). Then it follows from (2.38) that ‖∇v‖2

L2(M∞)
= S∞

4 and
lim
n→∞ ‖∇(vn−v)‖L2(M∞) = 0, and consequently lim

n→∞ ‖vn−v‖L2(M∞) = 0 by the Poincaré

inequality. Hence vn → v in H1
0 (M∞) as n → ∞, and v is a minimizer of the of the Sobolev

quotient (2.33). This proves the claim (2.37).
We next claim that

lim
h→∞Z4(h) = S∞

4 . (2.39)

To show this, let φ ∈ C∞
0 (R3) be a non-negative function with φ ≡ 1 on B 1

2
and φ ≡ 0 on

R
3\B1 (here Br ⊂ R

3 denotes the ball of radius r > 0 centered at the origin). Moreover, let

φn(x)
.= φ
( x

n

)

∀x ∈ R
3 , n ≥ 1,

so that φn ∈ C∞
0 (Bn). By (2.37), there exists a function v ∈ H1

0 (M∞) with ‖v‖L4(M∞) = 1
and ‖∇v‖2

L2(M∞)
= S∞

4 . It is then standard to see that the sequence vn
.= φnv ∈ H1

0 (M∞),

n ∈ N, satisfies vn → v in H1
0 (M∞) as n → ∞ and, hence,

‖vn‖L4(M∞) → 1 and ‖∇vn‖2L2(M∞)
→ S∞

4 as n → ∞. (2.40)

Since vn = 0 on M∞\Bn we have

un
.= ξn ∗ vn ∈ H1

0 (�hn ) for n ∈ N with ξn
.= (n + 1)̂k and hn

.= 2n + 1.

It thus follows from (2.35)–(2.40) that

S∞
4 ≤ lim

h→∞Z4(h) = lim
n→∞Z4(hn) ≤ lim

n→∞
‖∇un‖2L2(�hn )

‖un‖2L4(�hn )

= lim
n→∞

‖∇vn‖2L2(M∞)

‖vn‖2L4(M∞)

= S∞
4 .

whichyields the equality in (2.39).Then, in viewof (2.39) and the inclusionH1
0 (�h) ⊂ S(�h)

for every h > 1, we also deduce the inequality

lim
h→∞S4(h) ≤ S∞

4 . (2.41)
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An upper bound for S∞
4 = S∞

4 (R) will be given by seeking the minimum in (2.33) among
separated-variable functions, that is, having the form V (ρ)W (z) for ρ ∈ [0, R] and z ∈ R.
Given VR ∈ H1(0, R)\{0} such that VR(R) = 0, (2.37) implies that

S∞
4 (R) ≤ √

2π min
W∈H1(R)\{0}

‖W‖2
L2(R)

(∫ R

0
ρ|V ′

R(ρ)|2dρ

)

+ ‖W ′‖2
L2(R)

(∫ R

0
ρ|VR(ρ)|2dρ

)

‖W‖2
L4(R)

√

∫ R

0
ρ|VR(ρ)|4dρ

.

(2.42)

A simple rescaling argument shows that

S∞
4 (R) =

√

R0

R
S∞
4 (R0) ∀R, R0 > 1,

which, once inserted in (2.42), yields

S∞
4 (R) ≤

√

2πR0

R
min

W∈H1(R)\{0}

‖W‖2
L2(R)

(∫ R0

0
ρ|V ′

R0
(ρ)|2dρ

)

+ ‖W ′‖2
L2(R)

(∫ R0

0
ρ|VR0 (ρ)|2dρ

)

‖W‖2
L4(R)

√

∫ R0

0
ρ|VR0 (ρ)|4dρ

.

(2.43)

Let cn : R −→ [−1, 1] be the Jacobian elliptic cosine function with modulus k = 1/
√
2,

which satisfies

cn′′(t) + cn(t)3 = 0 ∀t ∈ R, (2.44)

and whose first zero is given by

α
.= √

2
∫ π/2

0

1
√

2 − sin(t)2
dt ≈ 1.85407,

see [7] for more details. Then the function

VR(ρ)
.= 1

βR
cn
( α

R
ρ
)

∀ρ ∈ [0, R]

vanishes at ρ = R, where βR > 0 is a normalization constant such that

∫ R

0
ρ|VR(ρ)|4dρ = 1.

Let R0 > 1 be such that
∫ R0

0
ρ|V ′

R0
(ρ)|2dρ = 1 ;

numerically we find R0 ≈ 2.80143. Then, the Euler-Lagrange equation associated to the
minimization problem in (2.43) reads

−
(∫ R0

0
ρ|VR0(ρ)|2dρ

)

W ′′(z) + W (z) = λW (z)3 ∀z ∈ R, (2.45)
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Fig. 3 Graph of the function
VR0 (ρ)WR0 (z) for
(ρ, z) ∈ [0, R0] × [−2.5, 2.5]

20 40 60 80 100
R

1

2

3

4

L
S4Limit lower bound for

Limit upper bound for S4

Fig. 4 Comparison between the lower and upper bounds for L
.= lim
h→∞S4, for R > 1

with λ ∈ R being a Lagrange multiplier. By direct substitution we deduce that the function

WR0(z)
.=

⎡

⎢

⎢

⎢

⎢

⎣

cosh

⎛

⎜

⎜

⎜

⎜

⎝

z
√

∫ R0

0
ρ|VR0(ρ)|2dρ

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎦

−1

∀z ∈ R

is a solution of (2.45) with λ = 2. The function VR0WR0 minimizes the ratio in (2.43) (Fig. 3).
Once inserting their expressions in (2.43) we obtain

S∞
4 (R) ≤ 10.4528√

R
∀R > 1.

The proof is then concluded as a consequence of (2.31)–(2.41). ��
Two remarks concerning Theorem 2.3 are in order.

Remark 2.4 The ratio between the upper and lower bounds in (2.32) is approximately 6.4366
for every R > 1, which therefore improves by around 52% the ratio given in (2.31). A
comparison between the lower and upper bounds in (2.32), as functions of R > 1, is shown
in Fig. 4.
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Remark 2.5 The limit in (2.39) can be understood by stating that the mass of the Sobolev
minimizer in (2.36) tends to concentrate on one side of the obstacle (which somehow “dis-
appears”) as h → ∞. The function v ∈ H1

0 (M∞) with ‖v‖L4(M∞) = 1 that attains the
minimum in (2.33) is a nontrivial weak solution of the following semilinear elliptic equation
(see [72, Chapter I]):

{

− �v = S∞
4 v3 in M∞,

v = 0 on ∂M∞.
(2.46)

Notice that the Jacobian elliptic cosine function solves (2.44), which can be viewed as the
one-dimensional version of (2.46). This motivates the choice of the (radial) function VR in
the proof of Theorem 2.3.

2.2 Relative capacity of K insideM

Let � be as in (1.1). The relative capacity of K with respect to M is defined by

CapM(K )
.= min

v∈H1
0 (M)

{∫

M
|∇v|2

∣

∣

∣ v = 1 in K

}

(2.47)

and the relative capacity potential of K with respect toM, that is, the function φ ∈ H1
0 (M)

achieving the minimum in (2.47), satisfies

�φ = 0 in �, φ = 0 on ∂M, φ = 1 in K , CapM(K ) = ‖∇φ‖2L2(�)
,

(2.48)

see [58, Chapter 2] for further references. In this section we firstly give a lower bound for
CapM(K ) which is independent of the shape and position of K inside M. More precisely,
we have:

Theorem 2.4 Let � be as in (1.1). Then

CapM(K ) ≥ 3

√

3

2

4π

3

√

2π

|K | − 3

√

1

R2h

. (2.49)

Proof We apply again a symmetrization argument. For this, letM∗ ⊂ R
3 be the ball centered

at the origin of radius

R2 = 3

√

3

2
R2h,

and let K ∗ ⊂ R
3 be the ball centered at the origin of radius

R1 = 3

√

3

4π
|K |,

so that R1 < R2, |M∗| = |M| and |K ∗| = |K |. The relative capacity potential of K ∗ with
respect to M∗, denoted by φ0 ∈ H1

0 (M∗), is the function

φ0(ξ) =
1

√

ρ2 + z2
− 1

R2

1

R1
− 1

R2

∀ξ ∈ M∗\K ∗,
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Fig. 5 Graph of the function φε (left) and of its derivative (right), for ε = 1/2

so that

CapM∗(K ∗) = ‖∇φ0‖2L2(M∗) = 4π
1

R1
− 1

R2

. (2.50)

Now, the symmetric decreasing rearrangement φ∗ ∈ H1
0 (M∗) of φ is such that

φ∗ = 1 in K ∗ and ‖∇φ∗‖L2(M∗) ≤ ‖∇φ‖L2(M),

see [34, Chapter 2] for more details, so that

CapM∗(K ∗) ≤ ‖∇φ∗‖2L2(M∗) ≤ CapM(K ). (2.51)

Inequality (2.49) follows directly from (2.50)–(2.51). ��
In order to assess the precision of (2.49), we prove the following:

Proposition 2.2 Let � be as in (1.1) and assume (2.26). Then

3

√

3

2

4π

3

√

2π

|K | − 3

√

1

R2h

≤ CapM(K ) ≤ 12π

175

[

(22 + 13h)(R + 1)

R − 1
+ 2(3R2 + 7R − 10)

h − 1

]

.

(2.52)

Proof We just have to prove the upper bound in (2.52). To do this, given any ε > 0 we define
the function φε : R −→ R as

φε(t) =

⎧

⎪

⎨

⎪

⎩

0 if t ∈ (−∞,−1 − ε] ∪ [1 + ε,∞)
1

ε3

[

2|t |3 − 3(ε + 2)t2 + 6(1 + ε)|t | + ε3 − 3ε − 2
]

if t ∈ (−1 − ε,−1) ∪ (1, 1 + ε)

1 if t ∈ [−1, 1],
see also [70, Section 4], whose plot for ε = 1/2 is displayed above (Fig. 5).
Then, φε ∈ C1(R), supp(φε) = [−1 − ε, 1 + ε], φ′

ε(1) = φ′
ε(−1) = 0, so that φε ∈ H2(R).

In particular, by selecting ε0 = R − 1 or ε0 = h − 1 we notice that

φR−1(R) = 0 ; φR−1(ρ) = 1 ∀ρ ∈ [0, 1] ; φ′
R−1(1) = φ′

R−1(R) = 0. (2.53)

and

φh−1(±h) = 0 ; φh−1(z) = 1 ∀z ∈ [−1, 1] ; φ′
h−1(±1) = φ′

h−1(±h) = 0.

(2.54)
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We then define the function X(ξ) = φR−1(ρ)φh−1(z), for every ξ ∈ M. In view of (2.53)–
(2.54) we have that X ∈ H1

0 (M) and X ≡ 1 on ∂P . Therefore, (2.47) implies that

CapM(K ) ≤
∫

M
|∇X |2,

which, after an explicit calculation, gives the upper bound in (2.52). ��

2.3 The Bogovskii constant ofÄ

Let Q ⊂ R
3 be any bounded Lipschitz domain, and consider the space of p-integrable

functions in Q (with p ≥ 1) having zero mean value:

L p
0 (Q) =

{

g ∈ L p(Q)

∣

∣

∣

∫

Q
g = 0

}

. (2.55)

We define the Bogovskii constant of Q as

CB(Q)
.= sup

g∈L2
0(Q)\{0}

inf

{‖∇v‖L2(Q)

‖g‖L2(Q)

∣

∣

∣

∣

v ∈ H1
0 (Q), ∇ · v = g in Q

}

, (2.56)

see [24, Section 2]. Bogovskii [10] showed that, given any q ∈ L2
0(Q), there exists a vector

field X ∈ H1
0 (Q) such that ∇ · X = q in Q and

‖∇X‖L2(Q) ≤ CB(Q)‖q‖L2(Q).

Then we obtain the bound

‖∇q‖H−1(Q) = sup
X∈H1

0 (Q)

‖∇X‖L2(Q)
=1

∣

∣

∣

∣

∫

Q
q (∇ · X)

∣

∣

∣

∣

≥ 1

CB(Q)
sup

g∈L2
0(Q)

‖g‖L2(Q)
=1

∣

∣

∣

∣

∫

Q
qg

∣

∣

∣

∣

= 1

CB(Q)
‖q‖L2(Q)

that is,

‖q‖L2(Q) ≤ CB(Q)‖∇q‖H−1(Q) ∀q ∈ L2
0(Q). (2.57)

In this section we provide a universal lower bound for the Bogovskii constant of any bounded
Lipschitz domain in R

3 (in fact, the same result holds in any dimension).

Theorem 2.5 For every bounded Lipschitz domain Q ⊂ R
3 it holds that

CB(Q) ≥ 1.

Proof Given any q ∈ L2
0(Q), it suffices to show that

‖∇X‖L2(Q) ≥ ‖q‖L2(Q), (2.58)

for every X = (X1, X2, X3) ∈ H1
0 (Q) such that ∇ · X = q in Q. If we denote by ˜X and

q̃ the extensions by zero of X and q outside Q, respectively, it holds that ˜X ∈ H1
0 (R3) and

q̃ ∈ L2
0(R

3). We then apply the Fourier Transform to the divergence equation ∇ · X = q in
Q, thereby obtaining

3
∑

j=1

i ξ ĵX j (ξ) = q̂(ξ) ∀ξ ∈ R
3 ,
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or equivalently

ξ · ̂X(ξ) = −i q̂(ξ) ∀ξ ∈ R
3 , (2.59)

where, with some abuse of notation, we have defined ̂X
.= F {˜X} (component-wise) and

q̂
.= F {̃q}. Now, in view of Plancherel’s identity and (2.59) we have

∫

Q
|∇X |2 =

∫

R3
|∇˜X |2 =

3
∑

k, j=1

∫

R3

∣

∣

∣

∣

∂˜Xk

∂x j

∣

∣

∣

∣

2

= 1

(2π)3

3
∑

k, j=1

∫

R3

∣

∣

∣

∣

F
{

∂˜Xk

∂x j

}∣

∣

∣

∣

2

= 1

(2π)3

3
∑

k, j=1

∫

R3
|i ξ ĵXk(ξ)|2dξ = 1

(2π)3

∫

R3
|ξ |2|̂X(ξ)|2dξ

≥ 1

(2π)3

∫

R3
|ξ · ̂X(ξ)|2dξ = 1

(2π)3

∫

R3
|̂q|2 =

∫

Q
|q|2 ,

so that (2.58) follows. ��
We are also interested in giving upper bounds for the Bogovskii constant of the domain

� defined in (1.1). The assumption on the obstacle K becomes much more involved than
(2.26) because the method introduced in [24, Section 2] requires that the domain � satisfies
the so-called cone property, see [58, Chapter 1] for further details. In fact, any such domain
can be decomposed as the union of a finite number of domains, each one being star-shaped
with respect to an open ball strictly contained in it. In order to simplify the presentation, here
we prove:

Theorem 2.6 Let � be as in (1.1) and assume that K = B (the unit ball of R
3). Then, there

exists a constant CB > 0, independent of K , R and h, such that

1 ≤ CB(�) ≤ CB

√

1 + 3R2h − 2

σ1(h − 1)

√
R2 + h2

R − 1

(

σ2

(R − 1)3

)1/4 (

log

(

σ2

(R − 1)3

))3/4

,

(2.60)

where σ1
.= R2 arctan

(√
R2 − 1

)

− √
R2 − 1 and σ2

.= πR2(h − 1) + σ1(h + 1).

Proof We just have to prove the upper bound in (2.60). To do this, we write � = �1 ∪ �2,
where

�1
.= {ξ ∈ R

3 | 0 < ρ < R , 1 < z < h
} ∪

{

ξ ∈ R
3 | 1 < ρ < R , ρ sin(θ) > 1 , −h < z < 1

}

,

and this domain is star-shaped with respect to the open ball (described in Cartesian coordi-
nates)

x2 +
(

y − R + 1

2

)2

+ (z − (h − R + 1))2 <

(

R − 1

2

)2

.

Similarly,

�2
.= {ξ ∈ R

3 | 0 < ρ < R , −h < z < −1
} ∪

{

ξ ∈ R
3 | 1 < ρ < R , ρ sin(θ) < −1 , −1 < z < h

}

,
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and this domain is star-shaped with respect to the open ball (described in Cartesian coordi-
nates)

x2 +
(

y + R + 1

2

)2

+ (z + (h − R + 1))2 <

(

R − 1

2

)2

.

We clearly have

diam(�1) = diam(�2) = 2
√

R2 + h2 , |�1| = |�2| = σ2 , |�1 ∩ �2| = 2σ1(h − 1) ,

so that from [21, Theorem 3.2] we obtain the bound

CB(�i ) ≤ CB

√
R2 + h2

R − 1

(

σ2

(R − 1)3

)1/4 (

log

(

σ2

(R − 1)3

))3/4

for i ∈ {1, 2}.

Then, by following exactly the proof of [24, Theorem 5.1] we obtain the upper bound in
(2.60). ��
Remark 2.6 By combining [24, Proposition 5.1] with [24, Theorem 5.1] we can, alternatively,
provide the following explicit bound for the Bogovskii constant of � when K = B:

1 ≤ CB (�) ≤
√

12

(

1 + 2π

3

3R2h − 2

σ1(h − 1)

)

√

328 + 447
√

σ2

(R − 1)3/2
+ 154σ2

(R − 1)3
+ 48(R2 + h2)

(R − 1)2

(

23 + 16
√

σ2

(R − 1)3/2

)2

,

which, if compared to (2.60), grows faster as h → ∞.

3 The Navier–Stokes equations withmixed boundary conditions

3.1 Construction of a flux carrier and weak formulation of the problem

It is well-known that a crucial step in the search for generalized solutions to the Navier–
Stokes equations (1.3)1 under non-homogeneous Dirichlet boundary conditions lies in the
construction of a flux carrier that satisfies the Leray-Hopf inequality, see [26], which is
usually obtained in the way of Ladyzhenskaya-Solonnikov [50] by means of the Hopf cut-off
function [36]. The mixed boundary conditions used in our model (1.3) prevent us to follow
such approach, and therefore, a flux carrier verifying the Leray–Hopf inequality seems out
of reach in our setting. Instead, we prove the following result:

Theorem 3.1 Let � be as in (1.1), K having a C2-boundary. Given F ∈ R, there exists a
vector field �∗ ∈ H2(�) such that

⎧

⎪

⎨

⎪

⎩

∇ · �∗ = 0 in � ; �∗ × ν = 0 on 	I ∪ 	O ;
�∗ = 0 on 	W ;

∫

�(s)
�∗ ·̂k = F ∀s ∈ [−h, h]. (3.1)

Moreover, there holds the estimate

‖∇�∗‖L2(�) ≤ 2|F |
πR2 (1 + 3CB(�))

(

2
√

πh +√CapM(K )
)

. (3.2)

Proof Consider a Hagen–Poiseuille flow having flow rate F in M, that is,

U0(ξ)
.= 2F

πR4 (R2 − ρ2)̂k ∀ξ ∈ M. (3.3)
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It is straightforward to observe thatU0 ∈ C∞(M) is divergence-free, it vanishes on the lateral
boundary of M and U0 × ν = 0 on 	I ∪ 	O . Moreover,

∫

	I

U0 ·̂k =
∫

	O

U0 ·̂k = F . (3.4)

Let φ ∈ H1
0 (M) be the relative capacity potential of K with respect to M, as in Sect. 2.2.

Since K has a boundary of class C2,M is convex and its lateral boundary is smooth, standard
elliptic regularity arguments show that φ ∈ H2(�). We then define

�1(ξ)
.= (1 − φ(ξ))U0(ξ) = 2F

πR4 (R2 − ρ2)(1 − φ(ξ))̂k ∀ξ ∈ �, (3.5)

which is an element of H2(�) that vanishes of 	W and such that �1 × ν = 0 on 	I ∪ 	O .
Its restriction to ∂�, denoted by γ (�1), is an element of H3/2(∂�) such that

∫

∂�

γ (�1) · ν =
∫

∂M
γ (�1) · ν +

∫

∂K
γ (�1) · ν = −F + F + 0 = 0. (3.6)

Therefore ∇ · �1 ∈ H1(�) ∩ L2
0(�) (see (2.55)), and so from [27, Theorem III.3.3] we

deduce the existence of another vector field X1 ∈ H1
0 (�) satisfying

∇ · X1 = −∇ · �1 in � and ‖∇X1‖L2(�) ≤ CB(�)‖∇ · �1‖L2(�), (3.7)

see (2.56) as well. Additionally, in view of (3.6), [27, Theorem IV.1.1] ensures the existence
of a unique weak solution (�∗,�∗) ∈ H1(�) × L2

0(�) to the Stokes problem
{

− ��∗ + ∇�∗ = 0 , ∇ · �∗ = 0 in �,

�∗ = γ (�1) on ∂�.
(3.8)

A simple integration by parts shows that
∫

�

∇�∗ · ∇ϕ = 0 ∀ϕ ∈ H1
0,σ (�)

.= {v ∈ H1
0 (�) | ∇ · v = 0 in �}.

As �∗ − �1 − X1 ∈ H1
0,σ (�), we can set ϕ = �∗ − �1 − X1 in the last identity and use

(3.7) to get

‖∇�∗‖2L2(�)
=
∫

�

∇�∗ · ∇�1 +
∫

�

∇�∗ · ∇X1 ≤ (3CB(�) + 1)‖∇�∗‖L2(�)‖∇�1‖L2(�) ,

that is,

‖∇�∗‖L2(�) ≤ (3CB(�) + 1)‖∇�1‖L2(�). (3.9)

Moreover, since γ (�1) ∈ H3/2(∂�), K is of class C2, the cylinder M is convex and its
lateral boundary is smooth, by merging the well-known regularity results for the solutions
of the steady-state Stokes equations under non-homogeneous Dirichlet boundary conditions
(see [12, Teorema, page 311]) with a localization argument through a partition of unity (as
in [14, Theorem A.1]) we may establish that (�∗,�∗) ∈ H2(�) × H1(�). As �∗ = �1 on
∂�, we have

∇ · �∗ = 0 in � ; �∗ = 0 on 	W ; �∗ × ν = 0 on 	I ∪ 	O . (3.10)

Now, given s ∈ (−h, h], we define the region �(s) ⊂ R
3 by

�(s)
.= {ξ ∈ � | − h < z < s} �⇒ ∂�(s) = 	I ∪ {ξ ∈ 	W | − h < z < s} ∪ �(s).

(3.11)
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Since �∗ = U0 on 	I , from (3.4)–(3.10) and the Divergence Theorem we infer that

0 =
∫

�(s)
∇ · �∗ =

∫

∂�(s)
�∗ · ν = −F +

∫

�(s)
�∗ ·̂k ,

that is,
∫

�(s)
�∗ ·̂k = F ∀s ∈ [−h, h].

Therefore, �∗ satisfies all the properties in (3.1). Applying the Maximum Principle we may
write

‖∇�1‖L2(�) ≤ ‖(∇φ)�U0‖L2(�) + ‖(1 − φ)∇U0‖L2(�)

≤ ‖U0‖L∞(M)‖∇φ‖L2(�) + ‖∇U0‖L2(M)

= 2|F |
πR2

(
√

CapM(K ) + 2
√

πh
)

,

so that, from (3.9), the estimate in (3.2) follows. ��

Remark 3.1 Notice that, by definition of (3.3), (U0 · ∇)U0 ≡ 0 in M but (�∗ · ∇)�∗ is not
(necessarily) identically zero in �.

Remark 3.2 In the proof of Theorem3.1, the condition∇·�1 ∈ H1(�)∩L2
0(�) is not enough

to ensure that X1 ∈ H2(�) ∩ H1
0 (�). In fact, the continuity of the divergence operator from

H1(�) ∩ L2
0(�) to H2(�) ∩ H1

0 (�) has been proved for C1,1-domains in [23]. By setting
�2

.= �∗ − �1, we see from (3.8) that �2 ∈ H2(�) ∩ H1
0 (�) is a (strong) solution to the

generalized Stokes problem
{

− ��2 + ∇�∗ = ��1 , ∇ · �2 = −∇ · �1 in �,

�2 = 0 on ∂�.
(3.12)

In the case of a merely Lipschitz obstacle K , Theorem 3.1 can be rephrased as follows:

Corollary 3.1 Let� be as in (1.1), K having a Lipschitz boundary. Given F ∈ R, there exists
a vector field �∗ ∈ H1(�) satisfying (3.1) and the estimate (3.2).

Proof Consider the Hagen–Poiseuille flow having flow rate F inM, defined as in (3.3). Let
φ ∈ H1

0 (M) be the relative capacity potential of K with respect to M, as in Sect. 2.2. We
then define �1 ∈ H1(�) as in (3.5), which vanishes of 	W and is such that �1 × ν = 0 on
	I ∪ 	O . Its restriction to ∂�, denoted by γ (�1), is an element of H1/2(∂�) such that (3.6)
holds. Therefore∇ ·�1 ∈ L2

0(�), and so from [27, Theorem III.3.3] we deduce the existence
of another vector field X1 ∈ H1

0 (�) satisfying (3.7). The vector field �∗
.= �1 + X1 is an

element of H1(�) satisfying (3.1) and the estimate (3.2). ��
In view of the identity

∇
(

1

2
|u|2
)

= (∇u)�u in �,
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it is customary (see, for example, [35, 46]) to add the term (∇u)�u to both sides of the
equation of conservation of momentum (1.3)1, thereby resulting in the problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− η�u + (u · ∇)u − (∇u)�u + ∇ = f , ∇ · u = 0 in �,

u = 0 on 	W ,

u × ν = 0 ,  = p− on 	I ,

u × ν = 0 ,  = p+ on 	O ,
∫

�(s)
u ·̂k = F ∀s ∈ [−h, h].

(3.13)

Now, given f ∈ C1(�), assume that u = (u1, u2, u3) ∈ C2(�) and  ∈ C1(�) solve (3.13)
in the classical sense. We take a vector function ϕ = (ϕ1, ϕ2, ϕ3) ∈ H1(�) and integrate by
parts the equation of conservation of momentum (3.13)1 in the following way:
∫

�

f · ϕ =
∫

�

[

−η�u + (u · ∇)u − (∇u)�u + ∇
]

· ϕ

= η

∫

�

∇u · ∇ϕ − η

∫

∂�

∂u

∂ν
· ϕ +

∫

�

[

∇u − (∇u)�
]

u · ϕ −
∫

�

(∇ · ϕ) +
∫

∂�

ν · ϕ

= η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ −
∫

�

(∇ · ϕ) +
∫

∂�

(

ν − η
∂u

∂ν

)

· ϕ.

(3.14)

If, in addition, we assume that ϕ is divergence-free and vanishes on 	W , from (3.14) we
obtain

∫

�

f · ϕ = η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ +
∫

	I

(

ν − η
∂u

∂ν

)

· ϕ

+
∫

	O

(

ν − η
∂u

∂ν

)

· ϕ. (3.15)

Notice that ν = ∓̂k on 	I and 	O , respectively, thus u1 = u2 = 0 on 	I ∪ 	O , in view of
(3.13)3–(3.13)4. The regularity and incompressibility condition of u then imply that

∂u3
∂z

= −
(

∂u1
∂x

+ ∂u2
∂ y

)

= 0 on 	I ∪ 	O .

If we further impose that ϕ × ν = 0 on 	I ∪ 	O (so that ϕ1 = ϕ2 = 0 on 	I ∪ 	O ), we get

∂u

∂ν
· ϕ = ∓∂u3

∂z
ϕ3 = 0 on 	I ∪ 	O . (3.16)

In order to get rid of all boundary terms in (3.15), one must also suppose that
∫

	I

ϕ ·̂k = 0 or
∫

	O

ϕ ·̂k = 0

which, combined with the fact that ϕ is divergence-free and vanishes on 	W , yields
∫

�(s)
ϕ ·̂k = 0 ∀s ∈ [−h, h]. (3.17)

By inserting (3.16)–(3.17) into (3.15) we finally obtain

η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ =
∫

�

f · ϕ ,
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where it suffices to have u ∈ H1(�) and the Bernoulli pressure  is no longer present. This
motivates the introduction of the following functional spaces (of vector fields) that will be
employed hereafter:

V∗(�) =

⎧

⎪

⎨

⎪

⎩

v ∈ H1(�)

∣

∣

∣

∣

∇ · v = 0 in � ; v × ν = 0 on 	I ∪ 	O ;
v = 0 on 	W ;

∫

�(s)
v ·̂k = 0 ∀s ∈ [−h, h]

⎫

⎪

⎬

⎪

⎭

and

V(�) = {v ∈ H1(�) | ∇ · v = 0 in � ; v × ν = 0 on 	I ∪ 	O ; v = 0 on 	W
}

,

which areHilbert spaces if endowedwith theDirichlet scalar product of the gradients, denoted
by

[v,w]V(�)
.=
∫

�

∇v · ∇w ∀v,w ∈ V(�). (3.18)

With respect to the boundary-value problem (3.13), throughout this section we assume that
F ∈ R and f ∈ L2(�) are a given transversal flux rate and external forcing term, respectively.
We can now give the following definition for the weak solutions of problem (3.13) (or,
equivalently, of problem (1.3)):

Definition 3.1 Given � ∈ V(�) satisfying (3.1), we say that a vector field u ∈ V(�) is a
weak solution of (3.13) if u − � ∈ V∗(�) and

η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ =
∫

�

f · ϕ ∀ϕ ∈ V∗(�). (3.19)

It is important to establish a precise connection between the boundary-value problem
(3.13) and the weak formulation given in Definition 3.1. This is done firstly in the case of a
smooth obstacle, where one is able to prove that any weak solution of (3.13) has additional
regularity. Indeed:

Theorem 3.2 Let � be as in (1.1), K having a C2-boundary. If u ∈ C2(�) and  ∈ C1(�)

solve (3.13) in the classical sense, then u is a solution of the variational problem (3.19).
Conversely, given � ∈ H2(�) ∩ V(�) satisfying (3.1), if u ∈ V(�) is a weak solution of
(3.13), then u ∈ H2(�)∩V(�) and there exists a unique  ∈ H1(�)∩ L2

0(�) such that the
pair (u,) solves (3.13)1 point-wise almost everywhere in �. The boundary conditions for
u in (3.13)2–(3.13)3–(3.13)4 are verified in the sense of H3/2(∂�) (and also the condition
on the transversal flow rate (3.13)5), while the boundary conditions for  in (3.13)3–(3.13)4
are satisfied in the sense of H1/2(∂�).

Proof In order to simplify the presentation of this proof, given a bounded domain Q ⊂ R
3

we denote

C∞
0,σ (Q)

.= {v ∈ C∞
0 (Q) | ∇ · v = 0 in Q}.

If u ∈ C2(�) and ∈ C1(�) solve (3.13) in the classical sense, the computations in (3.14)
show that u is a solution of the variational problem (3.19). Now, given � ∈ H2(�) ∩ V(�)

satisfying (3.1), suppose that u ∈ V(�) is a weak solution of (3.13). Since u − � ∈ V∗(�),
the boundary conditions for u in (3.13)2–(3.13)3–(3.13)4 are satisfied in the H1/2(∂�)-trace
sense (and also the condition on the transversal flow rate (3.13)5). Let ϕ ∈ C∞

0,σ (�), so
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that ϕ ∈ V∗(�); in fact, it suffices to check that ϕ has a zero transversal flow rate. Given
s ∈ (−h, h], we define the region �(s) ⊂ R

3 as in (3.11). Since ϕ vanishes on ∂�, after
applying the Divergence Theorem we infer

∫

�(s)
ϕ ·̂k =

∫

∂�(s)
ϕ · ν =

∫

�(s)
∇ · ϕ = 0.

By definition of distributional derivative and integration by parts we obtain

〈�u, ϕ〉D(�) =
∫

�

u · �ϕ = −
∫

�

∇u · ∇ϕ , (3.20)

which, once inserted into (3.19), yields

−η〈�u, ϕ〉D(�) +
∫

�

[

∇u − (∇u)�
]

u · ϕ −
∫

�

f · ϕ = 0 ∀ϕ ∈ C∞
0,σ (�).

Since � is connected, in virtue of [32, Theorem 2.3] there exists a unique  ∈ L2(�)/R (
is uniquely determined up to an additive constant) such that

−η�u + (u · ∇)u − (∇u)�u + ∇ = f in distributional sense in �.

Wechoose the constant component of theBernoulli pressure in such away that ∈ L2
0(�),

and thus it is uniquely defined. Moreover, since f ∈ L2(�), the usual interior regularity
results for the steady-state Navier–Stokes equations (see [27, Theorem IX.5.1]) imply that
u ∈ H2

loc(�),  ∈ H1
loc(�) and that

− η�u + (u · ∇)u − (∇u)�u + ∇ = f almost everywhere in �. (3.21)

In view of the embedding H1(�) ⊂ L6(�) we have (u · ∇)u − (∇u)�u ∈ L3/2(�) and
therefore, (3.21) implies that div(−η∇u + I3) ∈ L3/2(�), where I3 is the 3 × 3-identity
matrix. Then, [27, Theorem III.2.2] guarantees that

(−η∇u + I3) · ν ∈ W− 2
3 , 32 (∂�) ,

and the validity of the Green identity
∫

�

div(−η∇u + I3) · ϕ − η

∫

�

∇u · ∇ϕ +
∫

�

(∇ · ϕ)

=
〈

ν − η
∂u

∂ν
, ϕ

〉

∂�

∀ϕ ∈ W 1,3(�) , (3.22)

where the “boundary term” 〈·, ·〉∂� represents the duality product between W− 2
3 , 32 (∂�) and

W
2
3 ,3(∂�). Notice that, as a straightforward consequence of (3.19)–(3.21)–(3.22), we have

〈

ν − η
∂u

∂ν
, ϕ

〉

∂�

= 0 ∀ϕ ∈ W 1,3(�) ∩ V∗(�). (3.23)

Now, as in the proof of Theorem 2.1 we introduce the reflected domains (with respect to the
planes z = ±h) �± ⊂ R

3 defined by

�− = {(x, y,−2h − z) | (x, y, z) ∈ �} and �+ = {(x, y, 2h − z) | (x, y, z) ∈ �} ,

and set ��
.= �− ∪ � ∪ �+, see Fig. 6.
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Fig. 6 Representation of the extended domain ��

We extend the functions u = (u1, u2, u3) and f = ( f1, f2, f3) to �� by the formulas

u�(x, y, z)

=
⎧

⎨

⎩

u−(x, y, z)
.= (−u1(x, y,−2h − z), −u2(x, y,−2h − z), u3(x, y, −2h − z)) if (x, y, z) ∈ �−

u(x, y, z) if (x, y, z) ∈ �

u+(x, y, z)
.= (−u1(x, y, 2h − z),−u2(x, y, 2h − z), u3(x, y, 2h − z)) if (x, y, z) ∈ �+

and

f�(x, y, z)

=
⎧

⎨

⎩

f−(x, y, z)
.= (− f1(x, y,−2h − z),− f2(x, y, −2h − z), f3(x, y, −2h − z)) if (x, y, z) ∈ �−

f (x, y, z) if (x, y, z) ∈ �

f+(x, y, z)
.= (− f1(x, y, 2h − z), − f2(x, y, 2h − z), f3(x, y, 2h − z)) if (x, y, z) ∈ �+.

It is clear that u± ∈ H1(�±) is divergence-free in �±, f± ∈ L2(�±) and f� ∈ L2(��).
Moreover, since u × ν = 0 on 	I ∪ 	O , we also have u� ∈ H1(��). Now, take any scalar
function ϕ ∈ C∞

0 (� ∪ �+) such that supp(ϕ) ∩ 	O �= ∅ and integrate in the following way
(recall that ν is the outward unit normal to �, and therefore it is directed to the interior of
�+):

∫

��

u� · ∇ϕ =
∫

supp(ϕ)∩�

u · ∇ϕ +
∫

supp(ϕ)∩�+

u+ · ∇ϕ

= −
∫

supp(ϕ)∩�

ϕ(∇ · u) +
∫

∂(supp(ϕ)∩�)

ϕ(u · ν) −
∫

supp(ϕ)∩�+

ϕ(∇ · u+)

+
∫

∂(supp(ϕ)∩�+)

ϕ(u+ · ν+)

=
∫

supp(ϕ)∩	O

ϕ(u · ν) −
∫

supp(ϕ)∩	O

ϕ(u+ · ν) = 0 ,

where ν± denotes the outward unit normal to �±, so that ν = −ν+ on 	O . By choosing
any scalar function ϕ ∈ C∞

0 (� ∪ �−) such that supp(ϕ) ∩ 	I �= ∅ and performing the same
integration, we conclude

∫

��

ϕ(∇ · u�) = −
∫

��

u� · ∇ϕ = 0 ∀ϕ ∈ C∞
0,σ (��) ,

that is, u� is divergence-free in the whole ��. We then claim that

η

∫

��

∇u� · ∇ϕ +
∫

��

[

∇u� − (∇u�)
�] u� · ϕ =

∫

��

f� · ϕ ∀ϕ ∈ C∞
0,σ (��).

(3.24)
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Toprove (3.24), letϕ = (ϕ1, ϕ2, ϕ3) ∈ C∞
0,σ (��). Sinceϕ vanishes on	W , from (3.21)–(3.22)

we get

η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ

=
∫

�

[

div(−η∇u + I3) + (u · ∇)u − (∇u)�u
]

· ϕ −
〈

ν − η
∂u

∂ν
, ϕ

〉

∂�

=
∫

�

f · ϕ −
〈

ν − η
∂u

∂ν
, ϕ

〉

	I

−
〈

ν − η
∂u

∂ν
, ϕ

〉

	O

(3.25)

Now, define ϕ± ∈ C∞(�) according to

ϕ+(x, y, z)
.= (−ϕ1(x, y, 2h − z),−ϕ2(x, y, 2h − z), ϕ3(x, y, 2h − z)) ∀(x, y, z) ∈ �,

ϕ−(x, y, z)
.= (−ϕ1(x, y, −2h − z),−ϕ2(x, y, −2h − z), ϕ3(x, y, −2h − z)) ∀(x, y, z) ∈ �.

We clearly have

ϕ+ ∈ W 1,3(�) ; ∇ · ϕ+ = 0 in � ; ϕ+ = 0 on 	W ∪ 	I .

ϕ− ∈ W 1,3(�) ; ∇ · ϕ− = 0 in � ; ϕ− = 0 on 	W ∪ 	O .

Successive applications of the changes of variables

(x, y, z) ∈ � −→ (x, y, 2h − z) ∈ �+ and (x, y, z) ∈ � −→ (x, y,−2h − z) ∈ �−

allow us to show that

∫

�

∇u · ∇ϕ± =
∫

�±
∇u± · ∇ϕ ,

∫

�

[

∇u − (∇u)�
]

u · ϕ± =
∫

�±

[

∇u± − (∇u±)�
]

u± · ϕ ,

∫

�

f · ϕ± =
∫

�±
f± · ϕ.

(3.26)

From (3.21)–(3.22)–(3.26) we then obtain the identity

η

∫

�+
∇u+ · ∇ϕ +

∫

�+

[

∇u+ − (∇u+)�
]

u+ · ϕ = η

∫

�

∇u · ∇ϕ+ +
∫

�

[

∇u − (∇u)�
]

u · ϕ+

=
∫

�

[

div(−η∇u + I3) + (u · ∇)u − (∇u)�u
]

· ϕ+ −
〈

ν − η
∂u

∂ν
, ϕ+

〉

∂�

=
∫

�

f · ϕ+ −
〈

ν − η
∂u

∂ν
, ϕ+

〉

	O

=
∫

�+
f+ · ϕ −

〈

ν − η
∂u

∂ν
, ϕ+

〉

	O

,

(3.27)

and similarly,

η

∫

�−
∇u− · ∇ϕ +

∫

�−

[

∇u− − (∇u−)�
]

u− · ϕ =
∫

�−
f− · ϕ −

〈

ν − η
∂u

∂ν
, ϕ−

〉

	I

.

(3.28)
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A combination of (3.25)–(3.27)–(3.28) allows us to write

η

∫

��

∇u� · ∇ϕ +
∫

��

[

∇u� − (∇u�)
�] u� · ϕ

= η

∫

�−
∇u− · ∇ϕ +

∫

�−

[

∇u− − (∇u−)�
]

u− · ϕ + η

∫

�

∇u · ∇ϕ +
∫

�

[

∇u − (∇u)�
]

u · ϕ

+ η

∫

�+
∇u+ · ∇ϕ +

∫

�+

[

∇u+ − (∇u+)�
]

u+ · ϕ

=
∫

��

f� · ϕ − 2

(

〈

ν − η
∂u

∂ν
, ϕ3̂k

〉

	I

+
〈

ν − η
∂u

∂ν
, ϕ3̂k

〉

	O

)

=
∫

��

f� · ϕ − 2

〈

ν − η
∂u

∂ν
, (ϕ · ν)ν

〉

∂�

.

(3.29)

In view of the Divergence Theorem we clearly have
∫

∂�

(ϕ · ν)ν · ν =
∫

�

∇ · ϕ = 0 ,

so that [27, Theorem IV.1.1] guarantees the existence of a unique weak solution (w, q) ∈
H1(�) × L2

0(�) to the Stokes problem
{

− �w + ∇q = 0 , ∇ · w = 0 in �,

w = (ϕ · ν)ν on ∂� ,
(3.30)

which can be equivalently written as
{ − �w + ∇q = 0 , ∇ · w = 0 in �,

w = 0 on 	W , w = ϕ3̂k on 	I , w = ϕ3̂k on 	O .

As in the proof of Theorem 3.1 we can argue that (w, q) ∈ H2(�) × H1(�). For a given
s ∈ (−h, h], we define the region �(s) ⊂ R

3 as in (3.11). We clearly have
∫

�(s)
w ·̂k =

∫

∂�(s)
w · ν +

∫

	I

w ·̂k =
∫

�(s)
∇ · w +

∫

∂�−
ϕ · ν− = 0 +

∫

�−
∇ · ϕ = 0.

Therefore, w ∈ H2(�) ∩ V∗(�) and from (3.23) we deduce that
〈

ν − η
∂u

∂ν
, (ϕ · ν)ν

〉

∂�

=
〈

ν − η
∂u

∂ν
,w

〉

∂�

= 0 ,

which, once inserted into (3.29), proves (3.24). As u� is divergence-free in ��, [27, Theorem
IX.5.1] can be invoked again to deduce that u� ∈ H2

loc(��). Therefore, u ∈ H2(�), thus
showing that the boundary conditions for u in (3.13)2–(3.13)3–(3.13)4 are verified in the sense
of H3/2(∂�). Furthermore, from (3.21)weobtain ∈ H1(�), so that|∂� ∈ H1/2(∂�) and
the Green identity (3.22) holds in strong form for every ϕ ∈ H1(�). Given any ϕ ∈ V∗(�),
(3.23) then implies that

∫

∂�

(ϕ · ν) = η

∫

∂�

∂u

∂ν
· ϕ = −η

∫

	I

∂u3
∂z

ϕ3 + η

∫

	O

∂u3
∂z

ϕ3 = 0 , (3.31)

because u1 = u2 = 0 on 	I ∪ 	O , and so the regularity and incompressibility condition of
u imply that

∂u3
∂z

= −
(

∂u1
∂x

+ ∂u2
∂ y

)

= 0 on 	I ∪ 	O .
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Identity (3.31) states that
∫

	I

(ϕ · ν) +
∫

	O

(ϕ · ν) = 0 ∀ϕ ∈ V∗(�). (3.32)

We claim that

 = p− a.e. on 	I and  = p+ a.e. on 	O ,

for some constants p± ∈ R. As in [35, Section 4] and [46, Section 2], we take any two points
ξ1, ξ2 ∈ 	I and connect them by a curveϒ ⊂ �which is normal to 	I at each of them. Then
we consider a vector field ϕ0 ∈ V∗(�) having support confined to a small tube about ϒ , with
a unit net flux into � near ξ1, and out of � near ξ2. Taking ϕ = ϕ0 in (3.32) and letting the
radius of the tube to zero implies that (ξ1) = (ξ2). Thus, by repeating this argument we
deduce that  must be constant on 	I (and analogously, that  must be constant on 	O ). ��

Whenever K has a Lipschitz boundary, the extension argument of Theorem 3.2 cannot
be directly applied, as we are not able to guarantee that the solution of (3.30) belongs to
W 1,3(�), see [23, 28] for further details. As a consequence, we simply state the following:

Corollary 3.2 Let � be as in (1.1), K having a Lipschitz boundary. If u ∈ C2(�) and  ∈
C1(�) solve (3.13) in the classical sense, then u is a solution of the variational problem (3.19).
Conversely, if u ∈ V(�) is a weak solution of (3.13), then there exists a unique  ∈ L2

0(�)

such that the pair (u,) solves (3.13)1 in distributional sense in�. The boundary conditions
for u in (3.13)2-(3.13)3-(3.13)4 are satisfied in the sense of H1/2(∂�) (and also the condition
on the transversal flow rate (3.13)5).

3.2 Existence of solutions and explicit bound on F for unique solvability

As already stated, in order to prove the existence of a weak solution to (3.13) in �, we firstly
study the corresponding problem whenever the obstacle K has a smooth boundary. Here we
prove the following:

Theorem 3.3 Let� be as in (1.1), K having a C2-boundary. For any F ∈ R and f ∈ L2(�),
there exists at least one weak solution u ∈ V(�) of problem (3.13).

Proof Throughout this proof, C > 0 will denote a generic constant that depends on �, η and
F , but that may change from line to line. We follow closely the proof of [46, Theorem 3.1].

Let �∗ ∈ H2(�) ∩ V(�) be the vector field that arises from Theorem 3.1. To prove the
existence of a weak solution u ∈ V(�) of (3.13) amounts to show the existence of û ∈ V∗(�)

such that

η

∫

�

∇û · ∇ϕ+
∫

�

E (̂u + �∗)(̂u + �∗) · ϕ=
∫

�

f · ϕ − η

∫

�

∇�∗ · ∇ϕ ∀ϕ ∈ V∗(�) ,

(3.33)

so that the solution will be given by u = û + �∗. In (3.33) we have denoted by E(w) =
∇w − (∇w)� the skew-symmetric gradient of any w ∈ H1(�). For a fixed û ∈ V∗(�), the
applications

ϕ ∈ V∗(�) −→
∫

�

E (̂u + �∗)(̂u + �∗) · ϕ and ϕ ∈ V∗(�) −→
∫

�

( f · ϕ − η∇�∗ · ∇ϕ)
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clearly define linear continuous functions onV∗(�). Then, in viewof theRieszRepresentation
Theorem, the identity (3.33) may be written as

[η û + P (̂u) − F, ϕ]V(�) = 0 ∀ϕ ∈ V∗(�) ,

see (3.18), for some (unique) elements P (̂u),F ∈ V∗(�) such that

[P (̂u), ϕ]V(�) =
∫

�

E (̂u + �∗)(̂u + �∗) · ϕ and

[F, ϕ]V(�) =
∫

�

( f · ϕ − η∇�∗ · ∇ϕ) ∀ϕ ∈ V∗(�).

We have so defined a linear operator P : V∗(�) −→ V∗(�) and we are led to find a solution
û ∈ V∗(�) of the following the nonlinear operator equation:

û + 1

η
(P (̂u) − F) = 0 in V∗(�). (3.34)

Exactly as in [49, Chapter 5, Theorem 1] one can show that the operator P is compact.
Therefore, as a consequence of the Leray–Schauder Principle, in order to prove that (3.34)
possesses at least one solution, it suffices to guarantee that any vλ ∈ V∗(�) such that

vλ + λ

η
(P(vλ) − F) = 0 in V∗(�) , (3.35)

is uniformly bounded with respect to λ ∈ [0, 1]. Given λ ∈ [0, 1] and vλ ∈ V∗(�)\{0} such
that (3.35) holds, we clearly have

η

∫

�

∇vλ · ∇ϕ + λ

∫

�

E(vλ + �∗)(vλ + �∗) · ϕ

= λ

∫

�

f · ϕ − λ η

∫

�

∇�∗ · ∇ϕ ∀ϕ ∈ V∗(�). (3.36)

Notice that E(v)w · w ≡ 0 in �, for all v,w ∈ H1(�). By putting ϕ = vλ in (3.36) we
obtain

η‖∇vλ‖2L2(�)
+ λ

∫

�

E(vλ + �∗)(vλ + �∗) · vλ = λ

∫

�

f · vλ − λ η

∫

�

∇�∗ · ∇vλ.

(3.37)

As in the proof of Theorem 3.2, it can be shown that vλ ∈ H2(�) ∩V∗(�) and the existence
of a scalar pressure λ ∈ H1(�) ∩ L2

0(�) such that
{ − η�vλ + ∇λ = λ

[

f + η��∗ − E(vλ + �∗)(vλ + �∗)
]

almost everywhere in � ,

λ = pλ− on 	I , λ = pλ+ on 	O ,

(3.38)

for some constants pλ± ∈ R. Notice that, since �∗ × ν = 0 on 	I ∪ 	O , the regularity and
divergence-free condition of vλ imply that

∫

∂�

∂vλ

∂ν
· �∗ =

∫

	I

∂vλ

∂ν
· �∗ +

∫

	O

∂vλ

∂ν
· �∗ = 0. (3.39)

Likewise, (3.38)2 implies that
∫

�

∇λ · �∗ =
∫

∂�

λ(�∗ · ν) = F(pλ+ − pλ−)
.= Fpλ∗ , (3.40)
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and also

pλ− = 1

πR2

∫

	I

λ and pλ+ = 1

πR2

∫

	O

λ. (3.41)

We multiply (3.38)1 by �∗ and integrate by parts in � taking (3.39)–(3.40) into account,
obtaining

η

∫

�

∇vλ · ∇�∗ + λ

∫

�

E(vλ + �∗)(vλ + �∗) · �∗ + Fpλ∗

= λ

∫

�

f · �∗ + λ η

∫

�

��∗ · �∗. (3.42)

Adding the identities (3.37) and (3.42) gives us

η‖∇vλ‖2L2(�)
= −Fpλ∗ − η(1 + λ)

∫

�

∇vλ · ∇�∗

+λ

∫

�

f · (vλ + �∗) + λ η

∫

�

��∗ · �∗. (3.43)

On the other hand, observe that f + η��∗ − E(vλ + �∗)(vλ + �∗) ∈ L3/2(�). Moreover,
from (2.2), Hölder’s and Young’s inequalities we obtain the estimate

‖ f + η��∗ − E(vλ + �∗)(vλ + �∗)‖L3/2(�)

≤ ‖ f ‖L3/2(�) + η‖��∗‖L3/2(�) + ‖E(vλ + �∗)‖L2(�)‖vλ + �∗‖L6(�)

≤ ‖ f ‖L3/2(�) + η‖��∗‖L3/2(�) + 4√S6
(

‖∇vλ‖2L2(�)
+ ‖∇�∗‖2L2(�)

)

.

The pair (vλ,λ) ∈ W 2,3/2(�) × W 1,3/2(�) is also a strong solution to the Stokes system
(3.38)1 in�, with a right-hand side given by f +η��∗ −E(vλ +�∗)(vλ +�∗). If we apply
the same extension argument of the proof of Theorem 3.2 we can then invoke the usual local
regularity results for the Stokes equations (see, for example, [27, Theorem IV.4.1]) to obtain
the estimate

‖vλ‖W 2,3/2(�) + ‖λ‖W 1,3/2(�)

≤ C‖ f + η��∗ − E(vλ + �∗)(vλ + �∗)‖L3/2(�)

≤ C

[

‖ f ‖L3/2(�) + η‖��∗‖L3/2(�) + 4√S6
(

‖∇vλ‖2L2(�)
+ ‖∇�∗‖2L2(�)

)

]

.

(3.44)

From the trace inequality and (3.41)–(3.44) we then get

|pλ±| ≤ C

[

‖ f ‖L3/2(�) + η‖��∗‖L3/2(�) + 4√S6
(

‖∇vλ‖2L2(�)
+ ‖∇�∗‖2L2(�)

)

]

.

(3.45)

By contradiction, suppose now that the norms ‖∇vλ‖L2(�) are not uniformly bounded with
respect to λ ∈ [0, 1]. Then, there must exist λ0 ∈ [0, 1] and a sequence (λk)k∈N ⊂ [0, 1]
such that

lim
k→∞ λk = λ0 and lim

k→∞ Jk = +∞ , with Jk
.= ‖∇vλk‖L2(�) ∀k ∈ N.
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Given k ∈ N, if we divide the identity (3.43) (with λ = λk) by J 2k , we obtain

η = − p̂λk∗ F − η
1 + λk

Jk

∫

�

∇v̂λk · ∇�∗ + λk

Jk

∫

�

f ·
(

v̂λk + �∗
Jk

)

+η
λk

J 2k

∫

�

��∗ · �∗ ∀k ∈ N , (3.46)

where we have defined

v̂λk .= vλk

Jk
, ̂λk .= λk

J 2k
, p̂λk±

.= pλk±
J 2k

, p̂λk∗
.= pλk∗

J 2k
∀k ∈ N.

The sequence (̂vλk )k∈N is obviously bounded in V∗(�). The estimates (3.44)–(3.45) show
that, respectively, (̂λk )k∈N is bounded in W 1,3/2(�) and ( p̂λk± )k∈N is bounded in R. There-
fore, there exist v̂ ∈ V∗(�),̂ ∈ W 1,3/2(�) and p̂± ∈ R such that the following convergences
hold as k → ∞:

v̂λk⇀v̂ weakly in V∗(�) ; v̂λk → v̂ strongly in L p(�) for every p ∈ [1, 6) ;
̂λk⇀̂ weakly in W 1,3/2(�) ; ̂λk → ̂ strongly in L p(∂�) for every p ∈ [1, 2) ;
λk → λ0 and p̂λk± → p̂± in R ,

(3.47)

along sub-sequences that are not being relabeled, see also [61, Theorem 6.2]. By taking the
limit as k → ∞ in (3.46) (along the sequences satisfying (3.47)) we obtain

η = −( p̂+ − p̂−)F . (3.48)

A contradiction will be reached in (3.48) after proving that p̂+ = p̂−. In order to do so, recall
from (3.38) that for every k ∈ N we have

− η�vλk + λk E(vλk + �∗)(vλk + �∗) + ∇λk = λk ( f + η��∗) almost everywhere in �.

(3.49)

We multiply both sides of identity (3.49) by a vector field ϕ ∈ C∞
0 (�) (not necessarily

divergence-free), integrate by parts in � and then divide the resulting equality by J 2k in order
to obtain

η

Jk

∫

�

∇v̂λk · ∇ϕ + λk

∫

�

E
(

v̂λk + �∗
Jk

)(

v̂λk + �∗
Jk

)

· ϕ −
∫

�

̂λk (∇ · ϕ)

= λk

J 2k

∫

�

( f + η��∗) · ϕ , (3.50)

for every k ∈ N. In order to handle the nonlinear term appearing in (3.50), we write
∫

�

E (̂vλk )̂vλk · ϕ =
∫

�

E (̂vλk )̂v · ϕ +
∫

�

E (̂vλk )(̂vλk − v̂) · ϕ ∀k ∈ N. (3.51)

On one hand, for a fixed ϕ ∈ C∞
0 (�), we have that the application

ψ ∈ V∗(�) −→
∫

�

E(ψ)̂v · ϕ
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clearly defines a continuous functional on V∗(�), so that the weak convergences in (3.47)1–
(3.47)2 imply

lim
k→∞

∫

�

E (̂vλk )̂v · ϕ =
∫

�

E (̂v)̂v · ϕ and

lim
k→∞

∫

�

̂λk (∇ · ϕ) =
∫

�

̂(∇ · ϕ) = −
∫

�

∇̂ · ϕ. (3.52)

On the other hand, we notice that
∣

∣

∣

∣

∫

�

E (̂vλk )(̂vλk − v̂) · ϕ

∣

∣

∣

∣

≤ 2‖̂vλk − v̂‖L4(�)‖ϕ‖L4(�) ∀k ∈ N ,

so that the strong convergence in (3.47)1 implies

lim
k→∞

∫

�

E (̂vλk )(̂vλk − v̂) · ϕ = 0. (3.53)

By taking the limit in (3.50) as k → ∞, and observing (3.47)–(3.52)–(3.53), we get

λ0

∫

�

E (̂v)̂v · ϕ +
∫

�

∇̂ · ϕ = 0 ∀ϕ ∈ C∞
0 (�; R

3) ,

that is, the pair (̂v,̂) ∈ V∗(�)×W 1,3/2(�) satisfies in strong form the following Euler-type
equation:

λ0

[

∇v̂ − (∇v̂)�
]

v̂ + ∇̂ = 0 , ∇ · v̂ = 0 in �. (3.54)

Moreover, from (3.38)2 (replacing λ by λk and dividing both identities in (3.38)2 by J 2k , for
any k ∈ N), the strong convergences in (3.47)2–(3.47)3 imply that

̂ = p̂− on 	I and ̂ = p̂+ on 	O . (3.55)

We set v̂0
.= √

λ0 v̂ and ̂0
.= ̂ − |̂v0|2/2, so that the pair (̂v0,̂0) ∈ V∗(�) × W 1,3/2(�)

satisfies in strong form the Euler equation

(̂v0 · ∇ )̂v0 + ∇̂0 = 0 , ∇ · v̂0 = 0 in �.

Since v̂0 = 0 on 	W , the Bernoulli law [37, Lemma 4] (see [6, Theorem 2.2] and [41,
Theorem 1] as well) states that ̂0 must be constant on each of the connected components
of 	W . More precisely, if we denote the lateral boundary of M by

L .= {ξ ∈ R
3 | ρ = 1 , −h < z < −h

}

,

there exist constants p̂L, p̂K ∈ R such that ̂0 = p̂L on L and ̂0 = p̂K on ∂K . Thus,

̂ = p̂L on L and ̂ = p̂K on ∂K . (3.56)

Since ∂K ∩ ∂M = ∅, there also exist ρ∗ ∈ (0, R) and h1, h2 ∈ (−h, h) with h1 < h2 and
such that

K �
{

ξ ∈ R
3 | 0 ≤ ρ < ρ∗ , h1 < z < h2

}

. (3.57)

In view of (3.55) we have ̂(ρ, θ,±h) = p̂± for almost every (ρ, θ) ∈ (0, R) × [0, 2π].
Thus, for almost every (ρ, θ, z) ∈ (ρ∗, R) × [0, 2π ] × (−h, 0) we may write

p̂− − ̂(ρ, θ, z) = ̂(ρ, θ,−h) − ̂(ρ, θ, z) = −
z
∫

−h

∂̂

∂z0
(ρ, θ, z0) dz0.
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Integrating this last equality with respect to (θ, z) ∈ [0, 2π] × (−h, 0) gives us

ρ

0
∫

−h

2π
∫

0

| p̂− − ̂(ρ, θ, z)| dθ dz ≤ ρ

0
∫

−h

2π
∫

0

z
∫

−h

|∇̂(ρ, θ, z0)| dz0 dθ dz

≤ ρh

0
∫

−h

2π
∫

0

|∇̂(ρ, θ, z0)| dθ dz0. (3.58)

Since ∇̂ ∈ L1(�), given any integer n > n0
.= [1/(R − ρ∗)], the Mean Value Theorem

for Lebesgue integrals can be applied to deduce that
∣

∣

∣

∣

∣

∣

⎧

⎨

⎩

ρ ∈
(

R − 1

n
, R

) ∣

∣

∣

∣

ρ

0
∫

−h

2π
∫

0

|∇̂(ρ, θ, z0)| dθ dz0 ≤ n‖∇̂‖L1(�n)

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

> 0 ,

where �n
.= {ξ ∈ � | R − 1

n < ρ < R
}

for every integer n > n0. Therefore, we can find a
sequence of numbers (ρ−

n )n≥n0 ⊂ (ρ∗, R) such that ρ−
n → R as n → ∞ and

ρ−
n

0
∫

−h

2π
∫

0

|∇̂(ρ−
n , θ, z0)| dθ dz0 ≤ n‖∇̂‖L1(�n)

∀n ≥ n0. (3.59)

In view of the Euler-type equation (3.54), Hölder’s and Poincaré’s inequality we have

‖∇̂‖L1(�n)
= λ0‖(̂v · ∇ )̂v − (∇v̂)�v̂‖L1(�n)

≤ 2λ0‖∇v̂‖L2(�n)
‖̂v‖L2(�n)

≤ 2λ0
n

‖∇v̂‖2L2(�n)
,

which, once inserted into (3.59), gives

ρ−
n

0
∫

−h

2π
∫

0

|∇̂(ρ−
n , θ, z0)| dθ dz0 ≤ 2λ0‖∇v̂‖2L2(�n)

∀n ≥ n0.

Since ∇v̂ ∈ L2(�) and |�n | → 0 as n → ∞, the last inequality and (3.58) imply that

lim
n→∞

0
∫

−h

2π
∫

0

| p̂− − ̂(ρ−
n , θ, z)| dθ dz = 0. (3.60)

Similarly we can prove the existence of a sequence (ρ+
n )n≥n0 ⊂ (ρ∗, R) such that ρ+

n → R
as n → ∞ and

lim
n→∞

h
∫

0

2π
∫

0

| p̂+ − ̂(ρ+
n , θ, z)| dθ dz = 0. (3.61)

Also, in view of (3.56)–(3.57), for almost any (ρ, θ, z) ∈ (ρ∗, R) × [0, 2π] × (−h, h) we
have

p̂L − ̂(ρ, θ, z) = ̂(R, θ, z) − ̂(ρ, θ, z) =
R
∫

ρ

∂̂

∂ρ0
(ρ0, θ, z) dρ0 ,

123



  236 Page 36 of 57 G. Sperone

so that

ρ

h
∫

−h

2π
∫

0

|̂(ρ, θ, z) − p̂L| dθ dz ≤ ρ

h
∫

−h

2π
∫

0

R
∫

ρ

|∇̂(ρ0, θ, z)| dρ0 dθ dz

≤
h
∫

−h

2π
∫

0

R
∫

ρ

ρ0|∇̂(ρ0, θ, z)| dρ0 dθ dz ,

and since ∇̂ ∈ L1(�), the last inequality implies that

lim
ρ→R

h
∫

−h

2π
∫

0

|̂(ρ, θ, z) − p̂L| dθ dz = 0. (3.62)

Given any integer n ≥ n0 and (θ, z) ∈ [0, 2π ] × (−h, 0) we can therefore write

| p̂L − p̂−| ≤ | p̂L − ̂(ρ−
n , θ, z)| + |̂(ρ−

n , θ, z) − p̂−|.
By integrating this last inequality for (θ, z) ∈ [0, 2π ] × (−h, 0) we obtain

| p̂L − p̂−| ≤ 1

2πh

⎛

⎝

0
∫

−h

2π
∫

0

| p̂L − ̂(ρ−
n , θ, z)| dθ dz +

0
∫

−h

2π
∫

0

|̂(ρ−
n , θ, z) − p̂−| dθ dz

⎞

⎠

≤ 1

2πh

⎛

⎝

h
∫

−h

2π
∫

0

| p̂L − ̂(ρ−
n , θ, z)| dθ dz +

0
∫

−h

2π
∫

0

|̂(ρ−
n , θ, z) − p̂−| dθ dz

⎞

⎠ ,

so that, by taking the limit as n → ∞ in the last inequality and observing (3.60)–(3.62) we
deduce that p̂L = p̂−. In a similar fashion, as a consequence of (3.61)–(3.62) we obtain
p̂L = p̂+. Therefore, p̂− = p̂+ and a contradiction is reached in (3.48), so that the norms
‖∇vλ‖L2(�) are uniformly bounded with respect to λ ∈ [0, 1]. This concludes the proof. ��

Remark 3.3 In order to reach a contradiction in the proof of Theorem 3.3 we proved that
p̂+ = p̂− = p̂L, but no information is shed about the value of the constant p̂K ∈ R appearing
in (3.56). Nevertheless, as pointed out in [45, Section 2] and according to the counterexample
by Amick [6, Example 3.1], generally one cannot claim that p̂K = p̂+ = p̂− = p̂L. What
can be said about the value of p̂K ?

We are now in position to prove the main result of the present article:

Theorem 3.4 Let � be as in (1.1), K having a Lipschitz boundary. For any F ∈ R and
f ∈ L2(�), there exists at least one weak solution u ∈ V(�) of problem (3.13). Moreover,
if there exists a vector field � ∈ V(�) satisfying (3.1) and the inequality

S4
2

η2 > 2‖�‖L4(�)

(‖∇�‖L2(�)√S4
− ‖�‖L4(�)

)

+η
(

‖∇�‖L2(�) + 2
√

S4‖�‖L4(�)

)

+ ‖ f ‖L2(�)√S2
, (3.63)
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then the weak solution u ∈ V(�) of (3.13) is unique and admits the estimate

‖∇u‖L2(�) ≤
2η‖∇�‖L2(�) + ‖ f ‖L2(�)√S2

η − 2‖�‖L4(�)√S4

<
S4
2

η + ‖∇�‖L2(�) −√S4‖�‖L4(�) ,

(3.64)

where S2 ,S4 > 0 are as in (2.1).

Proof Following [60] (see [20, Theorem 5.1] for a simplified presentation and [8, Theorem
5.1] as well) we know that there exists a family of open domains (Kn)n∈N such that

• K ⊂ Kn ⊂ M and ∂Kn ∩ ∂M = ∅ for every n ∈ N;
• Kn has a boundary of class C2;
• Kn+1 ⊂ Kn for every n ∈ N and

K =
⋂

n∈N
Kn ; lim

n→∞ |Kn\K | = 0.

• For every n, the domains Kn and K are homeomorphic through a bi-Lipschitzmap having
a Lipschitz constant bounded independently of n (see [8, Remark 5.3]). In particular, the
sequence formed by the Lipschitz constants of the family (∂Kn)n∈N is uniformly bounded
(�).

In what follows, C > 0 will denote a generic constant that depends only on the Lipschitz
character of ∂�, but that may change from line to line.

We set �n
.= M\Kn , so that �n ⊂ � for every n ∈ N. Then, given any F ∈ R,

f ∈ L2(�) and n ∈ N, Theorem 3.3 ensures the existence of at least one weak solution
(un,n) ∈ V(�n) × L2

0(�n) of
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− η�un + E(un)un + ∇n = f , ∇ · un = 0 in �n ,

un = 0 on 	
(n)
W

un × ν = 0 , n = p−
n on 	I ,

un × ν = 0 , n = p+
n on 	O ,

∫

�n(s)
un ·̂k = F ∀s ∈ [−h, h] ,

(3.65)

for some (unknown) constants p±
n ∈ R, where we have defined

	
(n)
W

.= L ∪ ∂Kn and �n(s)
.= {ξ ∈ �n | 0 < ρ < R , z = s} ∀s ∈ [−h, h] , n ∈ N.

Furthermore we have (un,n) ∈ H2(�n) × H1(�n). For every n ∈ N we define the
functions

ũn
.=
{

un in �n,

0 in Kn\K ,
and ˜n

.=
{

n in �n ,

0 in Kn\K ,

so that ˜n ∈ L2
0(�), ũn ∈ S�(�) is divergence-free separately in �n and Kn\K , where we

have introduced

S�(�)
.= {v ∈ H1(�) | v = 0 on 	W ; v × ν = 0 on 	I ∪ 	O

}

,
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which is a closed subspace of H1(�). Moreover,

‖∇ũn‖L2(�) = ‖∇un‖L2(�n)
and ‖˜n‖L2(�) = ‖n‖L2(�n)

∀n ∈ N. (3.66)

Given n ∈ N, two essential observations are in order. Firstly, since n ∈ L2
0(�n), there

exists Xn ∈ H1
0 (�n) such that

∇ · Xn = n in �n and ‖∇Xn‖L2(�n)
≤ CB(�n)‖n‖L2(�n)

. (3.67)

From [10] we know thatCB(�n) (the Bogovskii constant of�n , see Sect. 2.3) depends on the
Lipschitz character of ∂�n (therefore, on the Lipschitz nature of ∂Kn), see also [27, Section
III.3]. Therefore, property (�) ensures that CB(�n) ≤ C for every n ∈ N. We multiply the
first identity in (3.65)1 by Xn and integrate by parts in �n to obtain

η

∫

�n

∇un · ∇Xn +
∫

�n

E(un)un · Xn − ‖n‖2L2(�n)
=
∫

�n

f · Xn ∀n ∈ N.

Let us denote by ˜Xn ∈ H1
0 (�) the zero extension of Xn inside Kn . We apply Hölder’s

inequality and (2.2)–(3.66)–(3.67) in order to write

‖n‖2L2(�n)
= η

∫

�n

∇un · ∇Xn +
∫

�

E(ũn)ũn · ˜Xn −
∫

�

f · ˜Xn

≤ η‖∇un‖L2(�n)
‖∇Xn‖L2(�n)

+ 2

S4
‖∇ũn‖2L2(�)

‖∇˜Xn‖L2(�)

+ 1√S2
‖ f ‖L2(�)‖∇˜Xn‖L2(�)

=
(

η‖∇un‖L2(�n)
+ 2

S4
‖∇un‖2L2(�n)

+ 1√S2
‖ f ‖L2(�)

)

‖∇Xn‖L2(�n)

≤ C

(

η‖∇un‖L2(�n)
+ 2

S4
‖∇un‖2L2(�n)

+ 1√S2
‖ f ‖L2(�)

)

‖n‖L2(�n)
,

thereby yielding

‖n‖L2(�n)
≤ C

(

η‖∇un‖L2(�n)
+ 2

S4
‖∇un‖2L2(�n)

+ 1√S2
‖ f ‖L2(�)

)

∀n ∈ N.

(3.68)

Secondly, observe that f −E(un)un ∈ L3/2(�n), so from (2.2)–(3.66) andHölder’s inequality
we estimate

‖ f − E(un)un‖L3/2(�n)
≤ ‖ f ‖L3/2(�) + ‖E(un)‖L2(�n)

‖un‖L6(�n)

= ‖ f ‖L3/2(�) + ‖E(ũn)‖L2(�)‖ũn‖L6(�)

≤ ‖ f ‖L3/2(�) + 2√S6
‖∇un‖2L2(�n)

∀n ∈ N.

The pair (un,n) ∈ W 2,3/2(�n)×W 1,3/2(�n) is also a strong solution to the Stokes system
(3.65)1 in �n , with a right-hand side given by f − E(un)un . If we apply the same extension
argument of the proof of Theorem 3.2 we can then invoke the usual local regularity results
for the Stokes equations (see, for example, [27, Theorem IV.4.1]) to obtain the estimate

‖un‖W 2,3/2(�n)
+ ‖n‖W 1,3/2(�n)

≤ Cn‖ f − E(un)un‖L3/2(�n)

≤ Cn

(

‖ f ‖L3/2(�) + 2√S6
‖∇un‖2L2(�n)

)

,
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for some constant Cn > 0 that depends on the Lipschitz character of �n (therefore, on the
Lipschitz nature of ∂Kn), see [12, Teorema, page 311]. Property (�) ensures the uniform
boundedness of such family of constants, so that

‖un‖W 2,3/2(�n)
+ ‖n‖W 1,3/2(�n)

≤ C

(

‖ f ‖L3/2(�) + 2√S6
‖∇un‖2L2(�n)

)

∀n ∈ N.

(3.69)

In the first part of the proof we will show that the norms ‖∇un‖L2(�n)
are uniformly

bounded with respect to n ∈ N. For this, given n ∈ N, we multiply the first identity in (3.65)1
by un and integrate by parts, each term separately, in the following way:

−
∫

�n

�un · un = ‖∇un‖2L2(�n)
−
∫

∂�n

∂un
∂ν

· un

= ‖∇un‖2L2(�n)
−
(∫

	I

∂un
∂ν

· un +
∫

	O

∂un
∂ν

· un
)

.

Since un × ν = 0 on 	I ∪ 	O , the regularity and incompressibility condition of un in �n

allow us to prove
∫

	I

∂un
∂ν

· un =
∫

	O

∂un
∂ν

· un = 0 ,

so that

−
∫

�n

�un · un = ‖∇un‖2L2(�n)
. (3.70)

Concerning the nonlinear term, we have
∫

�n

E(un)un · un = 0. (3.71)

Regarding the pressure term, from (3.65)3–(3.65)4–(3.65)5 we infer
∫

�n

∇n · un =
∫

∂�n

n(un · ν) = F(p+
n − p−

n ). (3.72)

By adding the identities (3.70)–(3.71)–(3.72) we obtain

η‖∇un‖2L2(�n)
+ F(p+

n − p−
n ) =

∫

�

f · ũn ∀n ∈ N. (3.73)

Notice that the boundary conditions for the pressure in (3.65)3–(3.65)4 imply that

p−
n = 1

πR2

∫

	I

n and p+
n = 1

πR2

∫

	O

n ∀n ∈ N. (3.74)

From the trace inequality (recall again property (�)) and (3.69)–(3.74) we then get

|p±
n | ≤ C√

πR

(

‖ f ‖L3/2(�) + 2√S6
‖∇un‖2L2(�n)

)

∀n ∈ N. (3.75)

By contradiction, suppose now that the norms ‖∇un‖L2(�n)
are not uniformly bounded with

respect to n ∈ N. Then, there must exists a sub-sequence (not being relabeled) such that

lim
n→∞ Jn = +∞ with Jn

.= ‖∇un‖L2(�n)
∀n ∈ N. (3.76)
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The estimates in (3.68)–(3.75) (see also (3.66)) enable us to establish that, along this divergent
sub-sequence, the following sequences are all uniformly bounded with respect to n ∈ N:

(ûn)n∈N
.=
(

ũn
Jn

)

n∈N
⊂ S�(�) ; (̂n)n∈N

.=
(

˜n

J 2n

)

n∈N
⊂ L2(�) ;

( p̂n
±)n∈N

.=
(

p±
n

J 2n

)

n∈N
⊂ R.

There must exist û ∈ S�(�), ̂ ∈ L2(�) and p̂± ∈ R such that the following convergences
hold:

ûn⇀û weakly in S�(�) ; ûn → û strongly in L p(�) for every p ∈ [1, 6) ;
̂n⇀̂ weakly in L2(�) ; p̂n

± → p̂± in R ,
(3.77)

as n → ∞, along sub-sequences that are not being relabeled. Notice that
∣

∣

∣

∣

1

J 2n

∫

�

f · ũn
∣

∣

∣

∣

≤ 1√S2 Jn
‖ f ‖L2(�)‖∇ûn‖L2(�) → 0 as n → ∞. (3.78)

If we then divide identity (3.73) by J 2n and let n → ∞ along the sub-sequences in (3.77),
we obtain

η = −F( p̂+ − p̂−). (3.79)

A contradictionwill be reached in (3.79) after proving that p̂+ = p̂−. Firstly, given any scalar
function φ ∈ C∞

0 (�), an integration by parts and the divergence-free condition in (3.65)1
imply that

∫

�

ûn · ∇φ = 1

Jn

∫

�n

un · ∇φ = 1

Jn

∫

∂�n

φ(un · ν) = 0 ∀n ∈ N ,

since un vanishes on ∂Kn and so does φ on ∂M. Then, along the subsequences (3.77), the
weak convergence in (3.77)1 yields

∫

�

û · ∇φ = −
∫

�

φ(∇ · û) = 0 ∀φ ∈ C∞
0 (�; R) ,

thus proving that ∇ · û = 0 almost everywhere in �, that is, û ∈ V(�). Secondly, we
multiply both sides of the first identity in (3.65)1 by a vector field ϕ ∈ C∞

0 (�) (not necessarily
divergence-free), integrate by parts in �n , each term separately, in the following way:

−
∫

�n

�un · ϕ =
∫

�n

∇un · ∇ϕ −
∫

∂�n

∂un
∂ν

· ϕ =
∫

�

∇ũn · ∇ϕ −
∫

∂Kn

∂un
∂ν

· ϕ.

(3.80)

Concerning the nonlinear term, we simply put
∫

�n

E(un)un · ϕ =
∫

�

E(ũn)ũn · ϕ. (3.81)

Regarding the pressure term, from (3.65)3–(3.65)4 we infer
∫

�n

∇n · ϕ = −
∫

�n

n(∇ · ϕ) +
∫

∂�n

n(ϕ · ν) = −
∫

�

˜n(∇ · ϕ) +
∫

∂Kn

n(ϕ · ν).

(3.82)
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By adding the identities (3.80)–(3.81)–(3.82), and then dividing the result by J 2n , we obtain

η

Jn

∫

�

∇ûn · ∇ϕ +
∫

�

E(ûn)ûn · ϕ −
∫

�

̂n(∇ · ϕ)

+ 1

J 2n

∫

∂Kn

(

nν − η
∂un
∂ν

)

· ϕ = 1

J 2n

∫

�n

f · ϕ ∀n ∈ N,

(3.83)

along the sub-sequences (3.77). The convergences in (3.77) (see again (3.51)–(3.52)–(3.53)–
(3.78)) imply

lim
n→∞

η

Jn

∫

�

∇ûn · ∇ϕ = 0 , lim
n→∞

∫

�

E(ûn)ûn · ϕ =
∫

�

E (̂u)̂u · ϕ ,

lim
n→∞

∫

�

̂n(∇ · ϕ) =
∫

�

̂(∇ · ϕ) , lim
n→∞

1

J 2n

∫

�n

f · ϕ = 0.
(3.84)

In view of Hölder’s inequality, the trace inequality (recall property (�)) and (3.69), the bound-
ary integral appearing in (3.83) can be treated as follows:
∣

∣

∣

∣

1

J 2n

∫

∂Kn

(

nν − η
∂un
∂ν

)

· ϕ

∣

∣

∣

∣

≤ 1

J 2n

∥

∥

∥

∥

nν − η
∂un
∂ν

∥

∥

∥

∥

L2(∂Kn)

‖ϕ‖L2(∂Kn)

≤ 1

J 2n

(‖n‖L2(∂Kn)
+ η‖∇un‖L2(∂Kn)

) ‖ϕ‖L2(∂(Kn\K ))

≤ C

J 2n

(‖n‖W 1,3/2(�n)
+ η‖un‖W 2,3/2(�n)

) ‖∇ϕ‖L2(Kn\K )

≤ C(1 + η)

(

1

J 2n
‖ f ‖L3/2(�) + 2√S6

‖∇ûn‖2L2(�)

)

‖∇ϕ‖L2(Kn\K ) → 0 as n → ∞,

(3.85)

because ϕ ∈ H1(�), (ûn)n∈N ⊂ S�(�) is uniformly bounded and |Kn\K | → 0 as n → ∞.
By taking the limit in (3.83) as n → ∞, and observing (3.84)–(3.85), we get

∫

�

E (̂u)̂u · ϕ −
∫

�

̂(∇ · ϕ) = 0 ∀ϕ ∈ C∞
0 (�; R

3) ,

that is, the pair (̂u,̂) ∈ V(�) × L2(�) satisfies in distributional form the following Euler-
type equation:

[

∇û − (∇û)�
]

û + ∇̂ = 0 , ∇ · û = 0 in �. (3.86)

SinceE (̂u)̂u ∈ L3/2(�), (3.86) proves that actuallŷ ∈ W 1,3/2(�). Now, from the properties
of the approximating family (Kn)n∈N we deduce the existence of � ∈ (0, h) such that

Kn � {ξ ∈ M | − � < z < �} ∀n ∈ N.

We introduce the following sub-domains of M (see Fig. 7 below):

�I
.= {ξ ∈ M | − h < z < −�} and �O

.= {ξ ∈ M | � < z < h} .

Along the weakly convergent subsequence (3.77)2, and in the light of (3.69)–(3.76), we
infer that the sequences (̂n)n∈N ⊂ W 1,3/2(�I ) and (̂n)n∈N ⊂ W 1,3/2(�O ) are uniformly
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Fig. 7 Representation of the domains �I and �O

bounded. Therefore, there exist ̂I ∈ W 1,3/2(�I ) and ̂O ∈ W 1,3/2(�O ) such that the
following convergences holds as n → ∞:

̂n⇀̂I weakly in W 1,3/2(�I ) ; ̂n⇀̂O weakly in W 1,3/2(�O ) ;
̂n → ̂I strongly in L2(�I ) ; ̂n → ̂O strongly in L2(�O) ;
̂n → ̂I strongly in L1(∂�I ) ; ̂n → ̂O strongly in L1(∂�O) ,

(3.87)

along sequences that are not being relabeled. In view of (3.65)3–(3.65)4, the strong conver-
gences in (3.87)3 imply that ̂I = p̂− on 	I and̂O = p̂+ on 	O . But since we also have
that̂n⇀I weakly in L2(�I ) and̂n⇀O weakly in L2(�O) as n → ∞, by uniqueness
of the weak limit there must hold ̂ = ̂I on �I and ̂ = ̂O on �O . Therefore, since
̂ ∈ W 1,3/2(�),

̂ = p̂− on 	I ; ̂ = p̂+ on 	O . (3.88)

We set ̂∗
.= ̂ − |̂u|2/2, so that the pair (̂u,̂∗) ∈ V(�) × W 1,3/2(�) satisfies the Euler

equation

(̂u · ∇ )̂u + ∇̂∗ = 0 , ∇ · û = 0 in �.

Since û = 0 on L, the Bernoulli law [37, Lemma 4] can be again applied to deduce the
existence of a constant p̂L ∈ R such that ̂∗ = p̂L on L. Thus, ̂ = p̂L on L. Exactly as
in the proof of Theorem 3.3 one can show that p̂L = p̂+ = p̂−, so we will not repeat the
argument here. This yields a contradiction in (3.79) and, therefore, enables us to state the
existence of a constant M > 0 such that

‖∇un‖L2(�n)
≤ M ∀n ∈ N. (3.89)

In the second part of the proof we construct a weak solution to (3.13). From (3.66)–(3.68)–
(3.89) we deduce that the sequences (ũn)n∈N ⊂ S�(�) and (˜n)n∈N ⊂ L2

0(�) are uniformly
bounded. Thus, there exist u ∈ S�(�) and  ∈ L2

0(�) such that the following convergences
hold as n → ∞:

ũn⇀u weakly in S�(�) ; ũn → u strongly in L p(�) for every p ∈ [1, 6) ;
ũn → u strongly in L p(∂�) for every p ∈ [1, 4) ; ˜n⇀ weakly in L2(�) ,

(3.90)

along sub-sequences that are not being relabeled. Now, given any scalar functionφ ∈ C∞
0 (�),

an integration by parts and the divergence-free condition in (3.65)1 imply that
∫

�

ũn · ∇φ =
∫

�n

un · ∇φ =
∫

∂�n

φ(un · ν) = 0 ∀n ∈ N ,
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since un vanishes on ∂Kn and so does φ on ∂M. Then, along the subsequence (3.90), the
weak convergence in (3.90)1 yields

∫

�

u · ∇φ = 0 ∀φ ∈ C∞
0 (�; R) ,

thus proving that ∇ · u = 0 almost everywhere in �, that is, u ∈ V(�). From (3.65)5 we also
deduce

∫

	I

ũn ·̂k = F ∀n ∈ N ,

so that the strong convergence in (3.90)2 gives
∣

∣

∣

∣

∫

	I

u ·̂k − F

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

	I

(u − ũn) ·̂k
∣

∣

∣

∣

≤ ‖ũn − u‖L1(	I )
≤ ‖ũn − u‖L1(∂�) → 0 as n → ∞.

Since u ∈ V(�), the previous computation combined with the Divergence Theorem allow
us to conclude

∫

�(s)
u ·̂k = F ∀s ∈ [−h, h]. (3.91)

Now, given any ϕ ∈ V∗(�) and n ∈ N, we multiply the first identity in (3.65)1 by ϕ and
integrate by parts, each term separately, in the following way:

−
∫

�n

�un · ϕ =
∫

�n

∇un · ∇ϕ −
∫

∂�n

∂un
∂ν

· ϕ

=
∫

�n

∇un · ∇ϕ −
∫

∂Kn

∂un
∂ν

· ϕ −
(∫

	I

∂un
∂ν

· ϕ +
∫

	O

∂un
∂ν

· ϕ

)

.

Since ϕ × ν = 0 on 	I ∪ 	O , the regularity and incompressibility condition of un in �n

allow us to prove
∫

	I

∂un
∂ν

· ϕ =
∫

	O

∂un
∂ν

· ϕ = 0 ,

so that

−
∫

�n

�un · ϕ =
∫

�n

∇un · ∇ϕ −
∫

∂Kn

∂un
∂ν

· ϕ =
∫

�

∇ũn · ∇ϕ −
∫

∂Kn

∂un
∂ν

· ϕ.

(3.92)

Concerning the nonlinear term, we simply put
∫

�n

E(un)un · ϕ =
∫

�

E(ũn)ũn · ϕ. (3.93)

Regarding the pressure term, from (3.65)3–(3.65)4 we infer
∫

�n

∇n · ϕ =
∫

∂�n

n(ϕ · ν) =
∫

∂Kn

n(ϕ · ν). (3.94)

By adding the identities (3.92)–(3.93)–(3.94) we obtain

η

∫

�

∇ũn · ∇ϕ +
∫

�

E(ũn)ũn · ϕ +
∫

∂Kn

(

nν − η
∂un
∂ν

)

· ϕ =
∫

�n

f · ϕ ∀n ∈ N ,

(3.95)
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along the sub-sequences given in (3.90). With the help of both convergences in (3.90)1 (see
again (3.51)–(3.52)–(3.53)–(3.78)) we can easily prove that

lim
n→∞

∫

�

∇ũn · ∇ϕ =
∫

�

∇u · ∇ϕ and lim
n→∞

∫

�

E(ũn)ũn · ϕ =
∫

�

E(u)u · ϕ.

(3.96)

Also, notice that
∣

∣

∣

∣

∫

�n

f · ϕ −
∫

�

f · ϕ

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

�\�n

f · ϕ

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Kn\K
f · ϕ

∣

∣

∣

∣

→ 0 as n → ∞ , (3.97)

because f · ϕ ∈ L1(�) and |Kn\K | → 0 as n → ∞. In order to handle the boundary term
appearing in (3.95), we employ Hölder’s inequality, the trace inequality (recall property (�))
and (3.69)–(3.89):

∣

∣

∣

∣

∫

∂Kn

(

nν − η
∂un
∂ν

)

· ϕ

∣

∣

∣

∣

≤
∥

∥

∥

∥

nν − η
∂un
∂ν

∥

∥

∥

∥

L2(∂Kn)

‖ϕ‖L2(∂Kn)

≤ (‖n‖L2(∂Kn)
+ η‖∇un‖L2(∂Kn)

) ‖ϕ‖L2(∂(Kn\K ))

≤ C
(‖n‖W 1,3/2(�n)

+ η‖un‖W 2,3/2(�n)

) ‖∇ϕ‖L2(Kn\K )

≤ C(1 + η)

(

‖ f ‖L3/2(�) + 2M2

√S6

)

‖∇ϕ‖L2(Kn\K ) → 0 as n → ∞ ,

(3.98)

because ϕ ∈ H1(�) and |Kn\K | → 0 as n → ∞. By taking the limit as n → ∞ in (3.95),
observing (3.96)–(3.97)–(3.98), we finally conclude that

η

∫

�

∇u · ∇ϕ +
∫

�

E(u)u · ϕ =
∫

�

f · ϕ ∀ϕ ∈ V∗(�) ,

that is, u ∈ V(�) is a weak solution of problem (3.13) in � (recall also (3.91)).
For the final part of the proof, suppose there exists � ∈ V(�) satisfying (3.1)–(3.63). As

a consequence of (2.2) we readily see that

‖∇�‖L2(�)√S4
≥ ‖�‖L4(�) ,

so that we also have

‖�‖L4(�) <

√S4
2

η.

We then claim that every weak solution u ∈ V(�) of (3.13) admits the estimate

‖∇u − ∇�‖L2(�) ≤
η‖∇�‖L2(�) + 2√S4

‖∇�‖L2(�)‖�‖L4(�) + ‖ f ‖L2(�)√S2
η − 2‖�‖L4(�)√S4

.

(3.99)

Since u − � ∈ V∗(�), we represent any such solution as u = v + �, for some v ∈ V∗(�).
Upon substitution of this representation into the weak formulation (3.19) and then by testing
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with ϕ = v, we get

η‖∇v‖2L2(�)
= −η

∫

�

∇v · ∇� −
∫

�

E(�)� · v +
∫

�

f · v −
∫

�

E(v)� · v.

After applying Hölder’s inequality and the Sobolev inequalities in (2.2) we deduce

η‖∇v‖2L2(�)
≤
(

η‖∇�‖L2(�) + 2‖∇�‖L2(�)√S4
‖�‖L4(�) + ‖ f ‖L2(�)√S2

)

‖∇v‖L2(�)

+2‖�‖L4(�)√S4
‖∇v‖2L2(�)

,

from where the estimate (3.99) follows. Now, assume that there exist two weak solutions
u1, u2 ∈ V(�) of (3.13), that are represented as u1 = v1 + � and u2 = v2 + � for some
v1, v2 ∈ V∗(�). We set w

.= v2 − v1 = u2 − u1 ∈ V∗(�) so that, by taking the difference
between the weak formulations (3.19) satisfied by u1 and u2 we deduce

η

∫

�

∇w · ∇ϕ =
∫

�

[(ϕ · ∇)v2 · w + (ϕ · ∇)w · v1 − (w · ∇)v2 · ϕ − (v1 · ∇)w · ϕ]

+
∫

�

[(ϕ · ∇)� · w + (ϕ · ∇)w · � − (� · ∇)w · ϕ − (w · ∇)� · ϕ]

∀ϕ ∈ V∗(�).

We put ϕ = w in this last identity, apply Hölder’s inequality and the estimates in (2.2)–(3.99)
to get

η‖∇w‖2L2(�)
=
∫

�

[(w · ∇)w · v1 − (v1 · ∇)w · w − (� · ∇)w · w + (w · ∇)w · �]

≤ 2
(‖v1‖L4(�) + ‖�‖L4(�)

) ‖∇w‖L2(�)‖w‖L4(�)

≤ 2√S4

(

1√S4
‖∇v1‖L2(�) + ‖�‖L4(�)

)

‖∇w‖2L2(�)

≤ 2√S4

⎛

⎜

⎜

⎝

η‖∇�‖L2(�) + 2√S4
‖∇�‖L2(�)‖�‖L4(�) + ‖ f ‖L2(�)√S2

η
√S4 − 2‖�‖L4(�)

+ ‖�‖L4(�)

⎞

⎟

⎟

⎠

× ‖∇w‖2L2(�)
,

which proves that w = 0 (and, therefore, unique weak solvability for (3.13)) provided that
(3.63) is observed. Finally, the estimate in (3.64) follows directly from (3.63)–(3.99), noticing
that

‖∇u‖L2(�) ≤ ‖∇u − ∇�‖L2(�) + ‖∇�‖L2(�) ≤
2η‖∇�‖L2(�) + ‖ f ‖L2(�)√S2

η − 2‖�‖L4(�)√S4

<

η‖∇�‖L2(�) + S4

2
η2 − 2√S4

‖∇�‖L2(�)‖�‖L4(�) + 2‖�‖2
L4(�)

− 2η
√S4‖�‖L4(�)

η − 2‖�‖L4(�)√S4

= S4

2
η + ‖∇�‖L2(�) −√S4‖�‖L4(�).

��
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Remark 3.4 Theorems 3.1, 3.2, 3.3 and 3.4 remain valid if, instead of a circular tube, we
consider a container of arbitrary cross-section, that is, if we set

M = {(x, y, z) ∈ R
3 | (x, y) ∈ �, −h < z < h

}

,

with � ⊂ R
2 being any open bounded domain having a smooth boundary. In this case, the

corresponding Hagen–Poiseuille flow (3.3) is defined as (we use Cartesian coordinates):

U0(x, y, z) = F

�0
v0(x, y)̂k ∀(x, y, z) ∈ M ,

where v0 ∈ H1
0 (�; R) is a weak solution of the following torsion problem:

−�v0 = 1 in �, v0 = 0 on ∂� ,

and

�0
.=
∫

�

v0 =
∫

�

|∇v0|2 �= 0.

Remark 3.5 Let � be as in (1.1), K having a Lipschitz boundary. Given F ∈ R and the
approximation scheme (Kn)n∈N described at the beginning of the proof of Theorem 3.4,
from Theorem 3.1 we deduce the existence of a vector field �n ∈ H2(�n) satisfying

⎧

⎪

⎨

⎪

⎩

∇ · �n = 0 in �n ; �n × ν = 0 on 	I ∪ 	O ;
�n = 0 on 	

(n)
W ;

∫

�n(s)
�n ·̂k = F ∀s ∈ [−h, h] , (3.100)

together with the estimate

‖∇�n‖L2(�n)
≤ 2|F |

πR2 (1 + 3CB(�n))
(

2
√

πh +√CapM(Kn)
)

∀n ∈ N.

(3.101)

From [10] we know that CB(�n) depends on the Lipschitz character of ∂�n (therefore, on
the Lipschitz nature of ∂Kn), see also [27, Section III.3]. Therefore, property (�) ensures
that CB(�n) ≤ C for every n ∈ N, where C > 0 is a constant determined by the Lipschitz
character of ∂�. On the other hand, since Kn ⊆ K0 for every n ∈ N, we clearly have

CapM(Kn) ≤ CapM(K0) ∀n ∈ N.

Therefore, the vector field

˜�n
.=
{

�n in �n ,

0 in Kn\K ,

is an element of S�(�) such that

‖∇˜�n‖L2(�) ≤ 2|F |
πR2 (1 + 3C)

(

2
√

πh +√CapM(K0)
)

∀n ∈ N.

As a consequence, there exists � ∈ S�(�) for which the following convergences hold as
n → ∞:

˜�n⇀� weakly in S�(�) ; ˜�n → � strongly in L p(�) for every p ∈ [1, 6) ;
˜�n → � strongly in L p(∂�) for every p ∈ [1, 4).

(3.102)
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along a (not relabeled) sub-sequence. As in the proof of Theorem 3.4 we can show that
� ∈ V(�) and

∫

�(s)
� ·̂k = F ∀s ∈ [−h, h] ,

so that � is a flux carrier of F in the sense of Corollary 3.1.

In the absence of an external force, and combined with Theorems 2.2-2.4-2.5, Theorem
3.4 can be formulated in a quite explicit way. For this we define

S∗
.= π

3

h2 max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,

√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

2

− 2

h2 max

⎧

⎨

⎩

π 3

√

2π

3(|M| − |K |) ,

√

16h2μ2
0 + π2R2

4Rh

⎫

⎬

⎭

3/2 ,

which corresponds to the lower bound for S4 given in Theorem 2.2, and prove the following:

Corollary 3.3 Let � be as in (1.1), K having a Lipschitz boundary, and suppose f = 0. For
any F ∈ R, there exists at least one weak solution u ∈ V(�) of problem (3.13). Moreover, if

|F | <

√
13 − 3

64

√
π R2S∗

√
h +

6
√
3

√

3

√

4π

|K | − 3

√

2

R2h

η , (3.103)

there exists a unique weak solution u ∈ V(�) of (3.13) which, moreover, admits the estimate

‖∇u‖L2(�) ≤ 8

5 − √
13

1

πR2 (1 + 3CB(�))
(

2
√

πh +√CapM(K )
)

|F |. (3.104)

Proof We can select � = �∗ in the proof of Theorem 3.4, �∗ ∈ H1(�) being the flux
carrier built in Corollary 3.1. In view of (2.2), the condition for unique solvability (3.63) is
certainly satisfied if

S4
2

η2 >
2

S4
‖∇�∗‖2L2(�)

+ 3η‖∇�∗‖L2(�),

which is equivalent to

‖∇�∗‖L2(�) <

√
13 − 3

4
S4 η. (3.105)

In turn, from (3.2) we observe that (3.105) will be satisfied if

2|F |
πR2 (1 + 3CB(�))

(

2
√

πh +√CapM(K )
)

<

√
13 − 3

4
S4 η. (3.106)

By inserting into (3.106) the lower bounds given in (2.49) and Theorem 2.5 (as well as S∗)
we obtain (3.103). Since (2.2)–(3.105) also imply that

‖�∗‖L4(�) <

√
13 − 3

4

√

S4 η , (3.107)
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the estimate (3.104) follows directly from (3.2)–(3.64)–(3.107). ��

Remark 3.6 Theorem 3.4 gives an upper bound on the “size” of the transversal flow rate F
and external force f that guarantees unique solvability for (3.13). Corollary 3.3 expresses
this upper bound in terms of the viscosity, the volume of K , the radius and diameter ofM, but
is independent of the shape and position of K inside M. Both results should be compared
with [46, Theorem 5.1].

Remark 3.7 Given F ∈ R and f ∈ L2(�) such that (3.63) holds, from Theorem 3.4 we know
that there exists a unique weak solution u ∈ V(�) of (3.13) which, moreover, admits the
estimate (3.64). Then, Corollary 3.2 ensures the existence of a unique  ∈ L2

0(�) such that
the pair (u,) solves (3.13)1 in distributional sense in �. Exactly as in (3.68) we recover
the estimate

‖‖L2(�) ≤ CB(�)

(

η‖∇u‖L2(�) + 2

S4
‖∇u‖2L2(�)

+ 1√S2
‖ f ‖L2(�)

)

. (3.108)

Assuming that K is the unit ball ofR
3, an explicit upper bound forCB(�) is given in Remark

2.6. This, once inserted into (3.108) and combined with (2.6)–(2.21)–(2.52)–(3.64), would
provide an explicit upper bound on the L2(�)-norm of the Bernoulli pressure, in terms of η,
the length and radius of M.

Remark 3.8 Suppose that f = 0 and that K has a C2-boundary. Given F ∈ R\{0}, from
Theorems 3.2-3.3-3.4 we deduce the existence of a unique pair (u,) ∈ (H2(�)∩V∗(�))×
(H1(�) ∩ L2

0(�)) that satisfies the system (3.13) point-wise almost everywhere in �, for
some unknown constants p± ∈ R. After multiplying the first identity in (3.13)1 by u and
integrating by parts in � we obtain

η‖∇u‖2L2(�)
+ F(p+ − p−) = 0 , (3.109)

so that the (unknown) pressure drop p− − p+ has the same sign as F (similarly to what
is expressed in the Hagen–Poiseuille law, see [53, Chapter II]). From (3.13)5 and the trace
inequality we easily obtain

|F | ≤
∫

	I

|u| ≤ √
πR ‖u‖L2(	I )

≤ C‖∇u‖L2(�) ,

for some constant C > 0 that depends only on � (and that may change from line to line).
By inserting the above inequality into (3.109) we get

η‖∇u‖L2(�) ≤ C |p+ − p−|.
If we further suppose that (3.103) holds, upon substitution of (3.104) into (3.109) we may
also estimate the (unknown) pressure drop in terms of the transversal flow rate as follows:

|p− − p+| ≤ 64η

(5 − √
13)2

1

π2R4 (1 + 3CB(�))2
(

2
√

πh +√CapM(K )
)2 |F |.

The Author warmly expresses his gratitude to Professor Giovanni Paolo Galdi (Pittsburgh)
for his fruitful insight and useful comments that led to the inclusion of Remark 3.8 in the
present article.
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Remark 3.9 Suppose that f = 0, K is the unit ball of R
3 and that (3.103) holds. As a

consequence of Proposition 2.2, Theorem 2.6 and (3.104), for sufficiently large h > 1 we
then have

‖∇u‖L2(�) ≤ C(η, R) h7/4 log(h)3/4 |F | ,
where C(η, R) > 0 depends only on η and R. Such growth rate (with respect to h) must
be confronted with the one given by Ladyzhenskaya & Solonnikov in [51, Equation 3.4].
Similarly, from (2.29)–(3.99) we deduce that

‖∇u − ∇�∗‖L2(�) < C(η, R) h7/2 log(h)3/2 |F |2 ,

which should be compared to [46, Lemma 5.1].

3.3 Axial symmetry

Given φ ∈ [0, 2π], we denote by

Rz(φ) =
⎡

⎣

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤

⎦

the rotation matrix about the z-axis by an angle φ. It can be easily verified that Rz(φ)−1 =
Rz(φ)�, and therefore det(Rz(φ)) = 1, for every φ ∈ [0, 2π]. In order to determine the
existence of generalized solutions to problem (3.13) displaying rotational symmetry with
respect to the z-axis, the following definition is given (see [1]):

Definition 3.2 – We say that a domain D ⊂ R
3 is axisymmetric (with respect to the z-axis)

if

ξ ∈ D ⇐⇒ Rz(φ)ξ ∈ D ∀φ ∈ [0, 2π].
– If D ⊂ R

3 is an axisymmetric domain, we say that a scalar function g : D −→ R is
axisymmetric (with respect to the z-axis) if

g(ξ) = g(Rz(φ)ξ) ∀ξ ∈ D, φ ∈ [0, 2π].
Then, given a scalar function g : D −→ R and φ ∈ [0, 2π], we denote by

gφ(ξ)
.= g(Rz(φ)ξ) ∀ξ ∈ D ,

its “axially rotated” transform by an angle φ.
– If D ⊂ R

3 is an axisymmetric domain, we say that a vector field G : D −→ R
3 is

axisymmetric (with respect to the z-axis) if

G(ξ) = Rz(φ)�G(Rz(φ)ξ) ∀ξ ∈ D, φ ∈ [0, 2π].
Then, given a vector field g : D −→ R

3 and φ ∈ [0, 2π], we denote by
Gφ(ξ)

.= Rz(φ)�G(Rz(φ)ξ) ∀ξ ∈ D ,

its “axially rotated” transform by an angle φ.

It is clear from Definition 3.2 that if � is as in (1.1), then � is axisymmetric if and only if the
obstacle K is axisymmetric. In order to study the existence of axisymmetric weak solutions of
problem (3.13), we must firstly build an axisymmetric flux carrier. We accompany Theorem
3.1 with the following result:
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Theorem 3.5 Let � be as in (1.1), K being axisymmetric and having a C2-boundary. Given
F ∈ R, there exists an axisymmetric vector field X∗ ∈ H2(�) such that

⎧

⎪

⎨

⎪

⎩

∇ · X∗ = 0 in � ; X∗ × ν = 0 on 	I ∪ 	O ;
X∗ = 0 on 	W ;

∫

�(s)
X∗ ·̂k = F ∀s ∈ [−h, h]. (3.110)

Moreover, there holds the estimate

‖∇X∗‖L2(�) ≤ 2|F |
πR2 (1 + 3CB(�))

(

2
√

πh +√CapM(K )
)

. (3.111)

Proof Let �∗ ∈ H2(�) ∩ V(�) be the vector field that arises from Theorem 3.1, which can
represented in cylindrical coordinates as

�∗(ξ) = �
ρ∗ (ρ, θ, z)ρ̂ + �θ∗ (ρ, θ, z)̂θ + �z∗(ρ, θ, z)̂z ∀ξ ∈ �.

Then, inspired by [57, Lemma 12], we define the axisymmetric vector field

X∗(ξ)
.= 1

2π

[(∫ 2π

0
�

ρ∗ (ρ, θ, z) dθ

)

ρ̂ +
(∫ 2π

0
�θ∗ (ρ, θ, z) dθ

)

̂θ

+
(∫ 2π

0
�z∗(ρ, θ, z) dθ

)

ẑ

]

∀ξ ∈ �,

which is an element of H2(�). After differentiating under the integral sign we observe that

(∇ · X∗)(ξ) = 1

2π

[

1

ρ

∂

∂ρ

(

ρ

∫ 2π

0
�

ρ∗ (ρ, θ, z) dθ

)

+ ∂

∂z

(∫ 2π

0
�z∗(ρ, θ, z) dθ

)]

= 1

2π

∫ 2π

0

(

1

ρ

∂

∂ρ
(ρ�

ρ∗ )(ρ, θ, z) + ∂�z∗
∂z

(ρ, θ, z)

)

dθ

= − 1

2πρ

∫ 2π

0

∂�θ∗
∂θ

(ρ, θ, z) dθ

= 1

2πρ

[

�θ∗ (ρ, 0, z) − �θ∗ (ρ, 2π, z)
] = 0 for a.e. ξ ∈ �,

that is, X∗ is divergence-free. Since K is axisymmetric and

�∗ × ν = 0 on 	I ∪ 	O ; �∗ = 0 on 	W ,

we easily deduce that also

X∗ × ν = 0 on 	I ∪ 	O ; X∗ = 0 on 	W ,

thus implying that X∗ ∈ V(�). By noticing that

X∗(ρ,−h) ·̂k = 1

2π

∫ 2π

0
�z∗(ρ, θ,−h) dθ = 1

2π

∫ 2π

0
U0(ρ, θ,−h) ·̂k dθ

= 2F

πR4 (R2 − ρ2) ∀ρ ∈ [0, R] ,
see (3.3), we obtain

∫

�(−h)

X∗ ·̂k = F ,
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but as X∗ ∈ V(�), this immediately implies
∫

�(s)
X∗ ·̂k = F ∀s ∈ [−h, h].

In order to prove that X∗ does not increase the Dirichlet norm of �∗, we start by noticing
that

(∇X∗)(ρ, z) = 1

2π

∫ 2π

0
∇�∗(ρ, θ, z) dθ for a.e. ξ ∈ �,

(some elements of the Jacobian matrix ∇X∗ are identically zero), so that an application of
Jensen’s inequality yields

|(∇X∗)(ρ, z)|2 ≤ 1

2π

∫ 2π

0
|∇�∗(ρ, θ, z)|2 dθ for a.e. ξ ∈ �. (3.112)

Since� is axisymmetric, there exists a domain˜� ⊂ R
2 such that the following representation

holds:

� = {ξ ∈ R
3 | (ρ, z) ∈ ˜� , θ ∈ [0, 2π]}.

Subsequently, from (3.112) we obtain

‖∇X∗‖2L2(�)
= 2π

∫

˜�

ρ |(∇X∗)(ρ, z)|2dρ dz

≤
∫ 2π

0

∫

˜�

ρ|∇�∗(ρ, θ, z)|2 dρ dz dθ = ‖∇�∗‖2L2(�)
,

which gives the estimate (3.111) in view of (3.2), and also concludes the proof. ��
The main goal of this section is to complement, in an axisymmetric framework, Theorem

3.3 with the following result; see also [30, Theorem 3.4] and [63, 76] for related works in
unbounded domains (the whole R

3 and an infinitely long nozzle, respectively).

Theorem 3.6 Let� be as in (1.1), K being axisymmetric and having a C2-boundary. Assume
also that f ∈ L2(�) is an axisymmetric external force. Then, given any flux rate F ∈ R,

– there exists (at least) one axisymmetric weak solution u ∈ V(�) of (3.13), that is, it
satisfies (3.19) for every axisymmetric vector field ϕ ∈ V∗(�);

– if u ∈ V(�) is a weak solution of (3.13), then uφ ∈ V(�) and it is also a weak solution
of (3.13), for every φ ∈ [0, 2π ];

– if there exists an axisymmetric vector field � ∈ V(�) satisfying (3.1)–(3.63), then the
unique weak solution of (3.13) is axisymmetric.

Proof Let X∗ ∈ H2(�) ∩ V(�) be the vector field arising from Theorem 3.5. We introduce
the space

Z∗(�) = {v ∈ V∗(�) | v is axisymmetric } ,

which is a closed subspace of V∗(�) and therefore it constitutes a Hilbert space under the
Dirichlet scalar product of the gradients, see (3.18). To prove the existence of an axisymmetric
weak solution u ∈ V(�) of (3.13) amounts to show the existence of û ∈ Z∗(�) such that

η

∫

�

∇û · ∇ϕ +
∫

�

E (̂u + X∗)(̂u + X∗) · ϕ =
∫

�

f · ϕ − η

∫

�

∇X∗ · ∇ϕ ∀ϕ ∈ Z∗(�) ,

(3.113)
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so that the solution will be given by u = û + X∗. For a fixed û ∈ Z∗(�), the applications

ϕ ∈ Z∗(�) −→
∫

�

E (̂u + X∗)(̂u + X∗) · ϕ and ϕ ∈ Z∗(�) −→
∫

�

( f · ϕ − η∇X∗ · ∇ϕ)

clearly define linear continuous functions on Z∗(�). Then, in view of the Riesz Representa-
tion Theorem, the identity (3.113) may be written as

[η û + P (̂u) − F, ϕ]V(�) = 0 ∀ϕ ∈ Z∗(�) ,

for some (unique) elements P (̂u),F ∈ Z∗(�) such that

[P (̂u), ϕ]V(�) =
∫

�

E (̂u + X∗)(̂u + X∗) · ϕ and

[F, ϕ]V(�) =
∫

�

( f · ϕ − η∇X∗ · ∇ϕ) ∀ϕ ∈ Z∗(�).

We have so defined a linear operator P : Z∗(�) −→ Z∗(�) and we are led to find a solution
û ∈ Z∗(�) of the following the nonlinear operator equation:

û + 1

η
(P (̂u) − F) = 0 in Z∗(�). (3.114)

Exactly as in [49, Chapter 5, Theorem 1] one can show that the operator P is compact.
Therefore, as a consequence of the Leray–Schauder Principle, in order to prove that (3.114)
possesses at least one solution, it suffices to guarantee that any vλ ∈ Z∗(�) such that

vλ + λ

η
(P(vλ) − F) = 0 in Z∗(�) , (3.115)

is uniformly bounded with respect to λ ∈ [0, 1]. This can be achieved imitating the corre-
sponding part of the proof of Theorem 3.3 (restricting ourselves to spaces of axisymmetric
scalar or vector functions), and therefore is omitted here. In conclusion, (3.13) has at least
one axisymmetric weak solution.
Now, let u ∈ V(�) be a weak solution of (3.13). For φ ∈ [0, 2π], as is Definition 3.2 we set

uφ(ξ) = Rz(φ)�u(Rz(φ)ξ) ∀ξ ∈ �.

It is then clear that uφ ∈ H1(�), uφ = 0 on 	W and uφ × ν = 0 on 	I ∪ 	O . Moreover,
given s ∈ [−h, h], the change of variables ξ ∈ �(s) −→ Rz(φ)ξ ∈ �(s) yields

∫

�(s)
uφ ·̂k =

∫

�(s)
u ·̂k = F ∀s ∈ [−h, h].

On the other hand, we have

∇uφ(ξ) = Rz(φ)� ∇u(Rz(φ)ξ) Rz(φ) for a.e. ξ ∈ �. (3.116)

Given any ϕ ∈ V∗(�), by properties of the matrix trace operator and the Frobenius inner
product (in particular, cyclic permutations) we deduce from (3.116) the following identities
for a.e. ξ ∈ �:

• (∇ · uφ)(ξ) = tr(∇uφ(ξ)) = tr((∇u(Rz(φ)ξ)) = (∇ · u)(Rz(φ)ξ) = 0, so that uφ is
also divergence-free. This already proves that uφ ∈ V(�);

• ∇uφ(ξ) · ∇ϕφ(ξ) = ∇u(Rz(φ)ξ) · ∇ϕ(Rz(φ)ξ);
• [∇uφ(ξ) − (∇uφ(ξ))�

]

uφ(ξ) ·ϕφ(ξ) = [∇u(Rz(φ)ξ) − (∇u(Rz(φ)ξ))�
]

u(Rz(φ)ξ) ·
ϕ(Rz(φ)ξ);
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Fig. 8 Upper bound for the Reynolds number (3.117) as a function of h > R, for R = 5

• f (ξ) · ϕφ(ξ) = f (Rz(φ)ξ) · ϕ(Rz(φ)ξ), since f is axisymmetric.

Since u ∈ V(�) is a weak solution of (3.13), successive applications of the change of
variables

ξ ∈ � −→ Rz(φ)ξ ∈ �

allow us then to conclude that

η

∫

�

∇uφ · ∇ϕφ +
∫

�

[

∇uφ − (∇uφ)�
]

uφ · ϕφ =
∫

�

f · ϕφ ∀ϕ ∈ V∗(�).

In particular,

η

∫

�

∇uφ · ∇ϕ +
∫

�

[

∇uφ − (∇uφ)�
]

uφ · ϕ =
∫

�

f · ϕ ∀ϕ ∈ Z∗(�) ,

thus showing that uφ is also a weak solution of (3.13), for every φ ∈ [0, 2π]. In order to
conclude the proof, we observe that if there exists an axisymmetric vector field � ∈ V(�)

satisfying (3.1)–(3.63), then necessarily u = uφ for every φ ∈ [0, 2π], where u ∈ V(�) is
the unique weak solution of (3.13). This proves that u is axisymmetric. ��

If we maintain the radius R of the cylinder M fixed, the result of Corollary 3.3 yields
an explicit upper bound for the Reynolds number (here understood as the ratio between the
transversal flux rate and the viscosity) that ensures the existence of a unique weak solution
of problem (1.3) (in the absence of external forcing) which, moreover, is axisymmetric. In
Fig. 8 we plot the quantity

F
.=

√
13 − 3

64

√
π R2S∗

√
h +

6
√
3

√

3

√

4π

|K | − 3

√

2

R2h

η , (3.117)

as a function of h > R, for η = 1, R = 5 and assuming that K is the unit ball of R
3.
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Furthermore, from Theorem 2.3 we know that

lim
h→∞S∗ = π

3

√

μ0

R
.

Therefore,

F ∼ 1√
h

as h → ∞ ,

which should be compared with [31, Remark 4.2]. Is it possible to improve this asymptotic
behavior?
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