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Abstract: This paper presents a practical method for analyzing drivers’ eye movements, providing
a valuable tool for understanding their behavior during driving simulations. The method, which
utilizes an image processing technique, addresses the challenges when the driver’s attention is on
points without information about the image depth. The screen image changes or moves with the
simulation. It allows us to identify the gaze position relative to the road, determining whether the
glance is inside or outside. This is achieved by transforming RGB images (frames) collected by the
eye-tracker video camera into a b/w image using the Canny filter. This filter can identify objects’
contours by evaluating the change in color of their surfaces. A window is then applied to these new
images to extract information about the gaze position in the real world. Four drivers were used as a
sample for the method’s testing. The findings demonstrate various driver variations and a disparity
between driving in curved and rectilinear segments. The gaze is typically inside the road in curved
sections, whereas in rectilinear sections, the gaze is frequently outside.

Keywords: gaze analysis; driver behavior; image processing; driving simulator; eye-tracker

1. Introduction

One of the most important contributing factors to traffic crashes is driver behavior,
which has been the subject of numerous investigations. This activity may now be accom-
plished while considering various potential danger conditions in a perfectly safe driving
environment, thanks to driving simulators. Examining drivers’ eye movements is critical
as a sign of their focus and readiness to operate a motor vehicle. The number of vehicles is
continuously rising, and road crashes have increased in frequency and severity, becoming
one of the world’s leading causes of mortality [1]. Despite advances in improving the
regulation of important risk factors, road crashes remain a primary cause of death and
serious injury in many developed and developing nations. According to the World Health
Organization (2018) [2], road traffic crashes cost the lives of over 1.35 million people glob-
ally each year. Road traffic injuries are the eighth biggest cause of mortality for people of
all ages. Human error is a common cause of traffic crashes, which becomes more likely
as a driver’s cognitive ability deteriorates [1]. According to the European Commission’s
road safety manual (European Commission) [3], motor vehicle crashes are caused by a
combination of human, vehicle, and environmental factors.

Mental workload (MWL) is one indicator that may be used to evaluate human–machine
interaction, and it is an essential design paradigm for investigating human–technology
interactions [4]. Pupil diameter change [5], blink duration [6], horizontal gaze disper-
sion [7], blink frequency [8], gaze duration, saccade number [9], standard deviation (SD) of
horizontal eyeball rotation [8], and variations in gaze points [10] have been proposed as
powerful indicators of MWL among the numerous eye-tracking measurements.

Moreover, driver distraction is “the diversion of attention away from activities vital
to safe driving and toward a competing activity” [11]. It is also becoming recognized as a
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contributing cause of many vehicle crashes [12–15]. Eye tracking technology is valuable
for measuring mental workload and driver distraction by examining visual attention and
gaze behavior. Changes in gaze behavior have been observed to reflect varying cognitive
demands, offering insights into the mental demands of a task. Similarly, longer fixation
durations and less frequent fixations have been observed in distracted drivers performing
secondary tasks. These changes can be used to develop objective measures of driver
distraction and to design safer human–machine interfaces [16,17].

According to data analysis from the 100-car naturalistic driving study of adult drivers,
the probability of road crashes or near-crashes rose with eye glances away from the forward
roadway lasting more than two seconds. The data from this naturalistic investigation were
subjected to further analysis. The results showed a correlation between the likelihood of
a crash and the total or cumulative duration of eye movements away from the forward
roadway [18].

In another study, using advanced gravitational force detection techniques,
42 new teenage drivers had equipment installed in their cars to monitor crashes and
near-crash events (CNCs). Video footage from the six seconds before each CNC and ran-
domly selected non-CNC road segments were coded to determine the length of eye glances
off the front roadway and the existence of secondary task engagement. A more reliable
indicator of a distraction than the single most prolonged glance was the total duration the
eyes were off the forward roadway. Generally, the longer the distraction, regardless of
activity, the greater the CNC risk [19].

To enhance road safety, it is essential to investigate drivers’ behavior and identify their
weaknesses. This will help to identify critical situations when drivers are distracted by
secondary tasks or gaze-related activities.

This study aims to develop a method for analyzing gaze and determining where
drivers look at the road simulation scenario rather than just on the simulation’s screen. The
exact position on the screen may show different points of the scene according to simulation
dynamics. The presented approach is based on an image processing technique that can
recognize the boundaries of the road and, to them, the point where the driver is looking,
whether inside or outside the road section. Our research is driven by the need to directly
integrate eye-tracking data with simulation to analyze driver behavior comprehensively.
The analysis of eye-tracker video recordings alone presents limitations due to the lack of
correlation with the simulation environment. To overcome this, we propose a method
that links eye-tracking data with simulation in virtual reality settings. This approach
efficiently analyzes driver gaze data, even with devices lacking depth and lane data,
offering advantages in understanding driver behavior and attention allocation. Examining
gaze positions at road borders, our study aims to significantly enhance understanding of
driver cognition and contribute to substantial improvements in road safety measures.

The paper includes five other sections. In Section 2, a review of papers about the
driver’s visual behavior and its relationship with driving attention is carried out; in addi-
tion, the techniques used to analyze glance data are also presented here. In Section 3, the
Methodology adopted for the analysis is described. The results are presented in Section 4
and then discussed in Section 5. Finally, in Section 6, the Conclusions are drawn.

2. Literature Review

Several studies demonstrate that driving context could influence drivers’ glance
behavior [20,21]. Studies have been conducted to evaluate both the effect of the du-
ration of the occlusion and the different road conditions on the driver’s attention [22].
Green (2002) [23] highlighted that driving on curves is riskier than driving on straight
roads, and one would anticipate some shift in fixation distributions because of curvature.
Driving on curves has garnered much attention, partly because it is more complex than
driving on straight segments and partly because collisions are more probable. Drivers
spend more time gazing at the edge lines when driving on curves than when driving
straight ahead to obtain essential guiding signals. According to Olson et al. (1989) [24], the
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time spent on the inner road edge climbs from around 10% for a straight stretch to roughly
30% for left curves and 40% for right curves of unknown radius. Drivers have a higher
preview distance for wider curve radii, typically staring toward the vanishing point and
scattering their fixations over a larger region [25,26]. Drivers on sharper road curves looked
at the forward road more frequently and longer [27].

Another study [28] investigated where drivers glance when approaching bends on
a twisty road. Prior models of visual processes in curve driving have concentrated on
path-control behavior. The occlusion point of a curve was defined in the study as the
nearest point where the vision of the road was covered by some barrier (e.g., due to wild
vegetation). The study revealed that drivers approach open bends on rural roads and look
towards the occlusion point.

Safe driving depends on appropriate visual behavior. Drivers who engage in non-
visual cognitive tasks tend to focus more on the road ahead (on-path glances), neglecting
off-path hazards, worsening scanning patterns, and increasing the risk of missing critical
information about potential dangers [29]. Vision is crucial for lane keeping and path
planning in low-traffic driving scenarios, with the gaze typically fixed on a target point
determined by future car position. In complex environments like urban areas, vision is
needed to monitor other drivers and traffic signs. Due to human vision’s limited accuracy
outside the foveal area, drivers must shift their gaze between the projected route and
surrounding objects [28]. A shift in the fixation pattern is a more qualitative distinction
between straight and curved parts. According to the research by Bengler et al. (1996) [30], a
significant percentage of changes left and right are often seen at a fair distance in front of
the car when driving in bends.

Though similar patterns are also present in curve fixation patterns, the prevailing
pattern for straight portions is thought to entail more of a straight-ahead close-far variety.
Zwahlen (1993) [31], for instance, claims that the typical fixation pattern creates a series
of fixes, each of which entails gazing incrementally farther down the road before making
a fixation closer to the vehicle to resume the sequence. There is a tendency to glance
towards the inside of curves, mainly right-hand curves. However, it is essential to note that
sight distance is typically shorter along the curves’ interior than the exterior. Detection of
targets depends on frequent gaze direction, with curves on the right side receiving more
attention, especially from experienced drivers at higher speeds. According to the study by
Shinar et al. (1977) [32], a curve has more intense visual search activity than a straight
line. When drivers are not looking at the road, crash risk is increased. In the paper by
Green (2002) [23], the expected number of fatalities from an in-vehicle task can be predicted
from a combination of the number of glances at the device per use, the mean glance
duration, and the frequency of device use per week.

Hristov (2019) [33] assessed the gaze behavior during actual trips by test subjects
utilizing a measurement vehicle equipped with an exact “Smart Eye Pro” remote eye-
tracking system using corneal reflection. The researchers plotted the fixation distributions
in straight portions and the right and left curves. The study concludes that driver stress
is higher in bends than on straight stretches, resulting in increased attention. Specific
patterns distinguish the gaze behavior on the left and right horizontal curves. On straight
lines, the driver’s sight is nearly uniformly spread throughout the whole width of the road.
Compared to straight stretches, a reduced gaze dispersion might be achieved when driving
through bends. Curves, on the other hand, have a more intense quest for information.
The study revealed that horizontal curves cause higher eye stress and concentration than
straight segments.

Due to their inexperience and limited field of vision, inexperienced drivers are more
likely to misunderstand the information they gather while driving. The results showed that,
compared to experienced drivers, novice drivers displayed a higher dwell time on traffic
signals, pedestrians, and passing cars, as well as a longer fixation duration on the dashboard
and navigation system [34]. Previous studies have revealed that beginner and expert drivers
differ in various ways. In general, novice drivers have less developed vehicle control
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abilities and fewer spare attentional capacities than expert drivers [35,36]. For instance,
crash rates are high in the first few months after obtaining a driver’s license and decline
as drivers gain experience [37,38]. Furthermore, rookie drivers have a worse capacity
to perceive and predict traffic hazards than experienced drivers [39,40]. Additionally,
inexperienced drivers tend to fixate on the local area more frequently, depend less on
peripheral vision for vehicle control, and adjust their visual search less successfully to the
environmental conditions [41–44].

The research by van Leeuwen et al. (2015) [45] examined how 52 inexperienced drivers’
driving abilities and gaze patterns changed as they gained experience in the simulator. The
participants drove as close as possible to the middle of the right lane over four sessions of
six to eight minutes each on a rural road with several 90-degree turns. The eye-tracking data
revealed that participants stretched their visual search more and reduced gaze tunneling.
Gaze tunneling involves focusing on a single point instead of scanning the surroundings
and happens when drivers are stressed or engaged in tasks such as navigating or reading
signs. This behavior is dangerous, as it can lead to missed hazards and a higher likelihood
of collisions. In the study by Hristov (2019) [33], the researchers used the parameter “scan
route length” to measure gaze tunneling by determining the length of the driver’s gaze path.
Moreover, the results show that from the first to the fourth session, the standard deviation
of lateral position (SDLP) and steering activity dramatically reduced, gaze variation rose,
and self-reported workload decreased.

Horng et al. (2004) [46] presented a vision-based real-time driver weariness monitoring
system for safe driving. Image processing methods, such as the HSI color model, were
employed in this study to detect faces in input photos, and the Sobel edge operator was used
to estimate eye positions and produce eye images as dynamic templates for eye tracking.
In the study, the system’s eye recognition and tracking had an average accuracy rate of
99.1%, correctly detecting all instances of human-marked fatigue. Regarding identifying
driver fatigue, the system has an accuracy rate of up to 88.9%.

Ohn-Bar and Trivedi (2014) [47] employed image processing algorithms to estab-
lish a vision-based system for categorizing hand motions that uses a combined RGB and
depth descriptor. The method was being investigated for use in vehicles for human–
machine interaction. A hand detection and user determination step were used first to
demonstrate a comprehensive system, followed by a real-time spatiotemporal descrip-
tor and gesture classification technique. A collection of 19 gestures was divided into
four subgroups for use in diverse interactive applications. The dataset used in the study
presented challenges due to variations in hand motions and lighting conditions. To ad-
dress these challenges, the researchers tested multiple temporal descriptors and discovered
that combining RGB and depth information (RGBD fusion) was an effective method for
accurately identifying hand gestures.

Zhang et al. (2017) [48] proposed a computation technique employing the PERCLOS
(percentage of eye closure time) parameter based on machine vision to determine whether
a driver’s eyes were fatigued. The recommended approach for evaluating driver fatigue
utilizes image processing and provides rapid calculation, high detection, and precision
in recognition. Xi and Zhang (2018) [49] designed a safety feature detection system to
ensure the safety of long-distance transportation by detecting fatigued driving, distracted
driving, and uncontrolled driving. Eigenface, Fisher Face, and LBPH image processing
algorithms provided a 100% face recognition rate. Histogram of Oriented Gradients (HOG)
and Support Vector Machine (SVM) algorithms delivered an 80% recognition rate for
recognizing drivers’ mobile phones.

3. Methodology

This section provides an overview of the survey environment and the procedures
adopted in the experiments for using the eye tracker and driving simulator. The collection
and preliminary analysis of eye-tracker data were reported. Additionally, the method



Appl. Sci. 2024, 14, 6123 5 of 22

for processing the frames of the simulation video was thoroughly discussed, along with
definitions of the guidelines for an appropriate gaze analysis.

3.1. The Experimental Setup

A driving simulator was utilized to conduct tests on a driving scenario with man-
ifold aims besides the eye-tracker analysis. The specific eye-tracker testing phase in-
volved four participants, and the data collected during the testing was analyzed using
the newly proposed methodology. The driving simulator used in the experiment is made
up of a fixed seating buck, a set of vehicle controls (force-feedback steering wheel, gear
shifter, and pedals), and three 32” full-HD monitors with a 175-degree field of view to
display the virtual driving scenario (Figure 1). The IPG Automotive CarMaker 7.0.3
(CarMaker, 2024) [50] software was used to simulate the scenarios. CarMaker is a vehicle
simulation software with intelligent driver models, detailed vehicle models, and highly
adaptable road and traffic models.
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Figure 1. The driving simulator during the experimental test.

The Politecnico di Milano Campus Bovisa, La-MASA district, located northwest of
Milan, is the case study application for evaluating the proposed analysis method. The
modeled area is 350 m × 350 m wide, and the driving simulation path is 1.12 km long,
corresponding to the public one-way ring road that travels along and between the university
area. The area consists primarily of isolated structures (university buildings) surrounded
by open spaces and fences.

The 3D models utilized in this study were created using the SketchUp 3D 2019 design
software (SketchUp, 2019) (Figure 2).

A digital camera was used to take images of visible facades from the road. An identical
route was proposed for all participants. The route was solely designed to be driven in a
counterclockwise orientation. The speedometer display was visible in the top left corner of
the screen.

The survey involved 4 participants aged between 21 and 26 years with driving ex-
perience between 2 and 5 years. All the participants hold valid driver’s licenses. The
drivers were identified as #1, #2, #3, and #4. The ethical committee of Politecnico di Milano
approved the survey protocol.
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Figure 2. A SketchUp 3D design of the La Masa area, Bovisa Campus.

3.2. The Procedure of the Experiment

Participants were first asked to sign an informed consent form, which outlined the
procedures and tasks of the experiment. After some preliminary activities, they completed
a questionnaire on their social information, and the eye-tracker glasses were worn. All
drivers run through the path of the testing scenario twice. The road section was divided
into eight straight and eight curved portions based on the road radius ratio. Figure 3
represents the road segments with numbers ranging from 1 to 16. Segments 2 and 5 (the
curvilinear and rectilinear, respectively) were then selected for the following analysis.
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were selected for the analysis.

3.3. Data Collection and Pre-Processing

The Pupil Labs eye tracker device’s handbook describes the World Camera as the
physical scene camera that records the subject’s field of vision (called world video), referring
to the driver’s perspective. The world video was acquired from the Pupil Labs 3.0 software,
together with the timestamps of each frame. Because the gaze locations are given in 2D
normalized space, a program was built to convert them to 2D image space. To determine the
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exact position of the gaze on the image of the frames, the gaze coordinates were projected
onto the image frame of 1280 × 720 pixels. Consequently, precise gaze positions on the
frame photos were obtained. Constructing a reference array addressed the difference in
timestamps between gaze locations and video frames. This reference array facilitated the
selection of the nearest frames and gaze positions to a new reference array that still had a
100-millisecond time step. The choice of this time step for the reference array was aligned
with the CarMaker vehicular data sampling time step. The matching procedure involved
filtering the nearest time steps of the frames and gaze positions based on the reference
array. The results of the matching procedure indicated a satisfactory degree of precision,
with the most significant error being on the order of 10 milliseconds. An example of the
matching procedure is provided in Table 1, where the accuracy (|gaze_time-frame_time|)
column displays the errors, and the frame_time and gaze_time columns display the time
steps of the nearest frames and gaze positions chosen relative to the reference array.

Table 1. A partial listing of nearest frame timestamps to gaze position timestamps for segment 2.

Segment Gaze Location
in the X-Axis

Gaze Location
in the Y-Axis

Time
(Reference) Gaze_Time Frame_Time Accuracy Frame_Number

2 677.391 415.385 103.2 103.204 103.195 0.0087 4861
2 677.391 415.385 103.3 103.300 103.296 0.0041 4866
2 677.391 415.385 103.4 103.396 103.396 0.0004 4872
2 677.391 415.385 103.5 103.501 103.514 0.0130 4878

This sequence of operations is synthesized in the flow chart in Figure 4. Table 2 reports
the total number of available frames and those used for the analysis. It is easy to see
that the percentage of frames analyzed in the curvilinear segment is generally lower than
in the rectilinear one due to the substantial change in the driver’s perspective and the
shorter length of the curvilinear segment. Obstructions to the driver’s view, such as the
front and side windows or side-view mirrors, may prevent the capture of road boundary
coordinates, resulting in frames where one or both road borderlines cannot be discerned
and are excluded from the analysis. In addition, the analysis utilized only a tiny fraction
of the total frames in the segments, ranging from 9% to 22%. This limited proportion was
mainly caused by the need to match eye-tracker video camera frames with vehicular data
sampled at a 100-millisecond timestep.
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Table 2. Statistics of total vs. functional and analyzed eye-tracker video camera frames.

Segments

Driver #1 Driver #2 Driver #3 Driver #4

# of Total
Frames

# (%) of
Analyzed

Frames

# of Total
Frames

# (%) of
Analyzed

Frames

# of Total
Frames

# (%) of
Analyzed

Frames

# of Total
Frames

# (%) of
Analyzed

Frames

Segment 5, Rectilinear 443 96 (22%) 734 133 (18%) 650 135 (21%) 579 113 (20%)
Segment 2, Curvilinear 187 30 (16%) 296 27 (9%) 109 24 (22%) 232 22 (9%)

3.4. Image Processing

There are four types of representations to show the pixels of an image: grayscale,
binary, color (RGB), and indexed color. A grayscale or binary pixel has one data value, and
a color pixel has three data values (each for one of the color channels). Additionally, an
indexed color image has one data value per pixel, which is an index for a color map.

The frames collected by the world camera were picked to be evaluated to compare
gaze positions and road borders to identify the driver’s gaze position and whether it was
inside or outside the road limits during the driving session. Figure 5 proposes one frame
with the point of the gaze (the red dot in the center of the green circle).
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Figure 5. This is an example of the frame image before processing. The red dot inside the green circle
(pointed by the black arrow) represents the gaze.

To determine the road borders in the image, first, the RGB image was converted into a
grayscale image, and then the Canny algorithm (Canny, 1986) [51] was used to detect the
edges in the image, which also included the borders of the road. Figure 6 shows an example
of an image frame after it has been converted from an RGB image to a grayscale image. The
Canny algorithm was applied to each extracted image, and the locations with a significant
color shift in the images were detected. It is a function that searches for local maxima of the
gradient of the input image to detect edges. This approach detects solid and weak edges
using two thresholds and includes weak edges in the output if they are related to solid
edges. The Canny approach is less likely than other methods to be deceived by noise and
more likely to detect actual weak edges, thanks to the use of two thresholds. However, this
study utilized the Canny edge detection algorithm with a single threshold value to identify
and include solid edges in the output binary image. This threshold value was selected based
on the maximum edge strength that should result in a grayscale image. Consequently, any
edge with a strength greater than the chosen threshold value was considered a solid edge
and included in the output image. The driver gaze position was acquired after converting
the gaze positions from 2D normalized to 2D image space (Section 3.3).
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Figure 6. The three cases considered to pinpoint the gaze (the red dots and circles magnified on the 
right) are as follows: (a) the gaze is inside the road; (b) the gaze is outside the road, and there are no 
buildings; and (c) the gaze is outside the road on the facade of a building. 

Figure 6 illustrates a processed image of a frame from a world movie with all identi-
fied edges and the driver’s gaze location. The Canny algorithm generates a binary picture 
filled with 1 and 0 values. The pixels with value 1 in the frame are known as image edges; 
these are the image portions where color transitions occur. 

Here, we explain the algorithm used to pinpoint the gaze. 
The primary hypothesis is that the gaze refers to a point on a plane belonging to a 

relatively wide object; this object can be the road surface, a vertical sign, a building facade, 
or a generic wall. 

The images from the simulation are in 2D, so we need further information to obtain 
the third dimension. This is achieved by using the buildings whose bases, in our scenario, 
lie on the same road plane. We use the same binary picture generated by the Canny algo-
rithm to determine the basis of buildings. 

We identify three prominent cases shown in Figure 6: 
(a) The gaze is inside the road; the roadside y-coordinates are the same as the gaze; 

Figure 6. The three cases considered to pinpoint the gaze (the red dots and circles magnified on the
right) are as follows: (a) the gaze is inside the road; (b) the gaze is outside the road, and there are no
buildings; and (c) the gaze is outside the road on the facade of a building.

Figure 6 illustrates a processed image of a frame from a world movie with all identified
edges and the driver’s gaze location. The Canny algorithm generates a binary picture filled
with 1 and 0 values. The pixels with value 1 in the frame are known as image edges; these
are the image portions where color transitions occur.

Here, we explain the algorithm used to pinpoint the gaze.
The primary hypothesis is that the gaze refers to a point on a plane belonging to a

relatively wide object; this object can be the road surface, a vertical sign, a building facade,
or a generic wall.

The images from the simulation are in 2D, so we need further information to obtain the
third dimension. This is achieved by using the buildings whose bases, in our scenario, lie
on the same road plane. We use the same binary picture generated by the Canny algorithm
to determine the basis of buildings.

We identify three prominent cases shown in Figure 6:

(a) The gaze is inside the road; the roadside y-coordinates are the same as the gaze;
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(b) The gaze is outside the road, and there are no buildings. The roadside y-coordinates
(in the frame space) are the same as the gaze. Some errors may be inserted due to
perspective distortions, especially if the gaze is far from the road;

(c) The gaze is outside the road, on the facade of a building; the projection of the gaze
on the base of the building and the roadside y-coordinates are the same. Some errors
may be inserted due to the inaccurate definition of building boundaries, especially
when shades hide them.

A selection window was created to choose the road borders from the image’s edges.
Its size must be large enough to include only the roadsides, and the height must be as small
as possible to avoid errors in detecting the y-coordinates. However, the driver’s perspective
is influenced by various factors such as head movement, vehicle position, and orientation,
which makes it challenging to maintain a consistent selection window. To overcome this
issue, the selection window was designed to adjust to the constant shifts in the driver’s
perspective. The selection window’s size and placement were kept as consistent as possible
to evaluate more frames with proper road border coordinates. Despite the efforts to keep
the selection window consistent, maintaining the same window in curvilinear segments
of the circuit is hindered by the significant shift in the driver’s view caused by the road
curvature radius. A larger radius of curvature leads to a more significant shift in the
driver’s viewpoint.

The flow chart in Figure 7 reports the image processing procedure executed on each
frame to detect the road borderlines.
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As mentioned, many elements affect the driver’s perspective, including head move-
ment, curvature radius, vehicle location and orientation along the circuit path, and so on. 
Detecting points on the road borderlines is impossible due to either a blockage by the 
vehicle’s window frames or the absence of one of the road borderlines in the image due 
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Figure 7. Flowchart of a summary of the image processing procedure for the detection of road borderlines.

Another critical issue that should be addressed for some of the frames, particularly in
the curvilinear segments, is that sometimes the roadsides are not included in the driver’s
view because the vision of one or both of the road boundaries is entirely covered by the
frame of the front and left or right windows of the vehicle, and other times by the side-view
mirrors of the vehicle. In these situations, capturing the road boundary coordinates is
impossible due to visibility limitations. Since there was no way to discern one of the road
borderlines or both, these frames were not included in the analysis.

As mentioned, many elements affect the driver’s perspective, including head move-
ment, curvature radius, vehicle location and orientation along the circuit path, and so on.
Detecting points on the road borderlines is impossible due to either a blockage by the
vehicle’s window frames or the absence of one of the road borderlines in the image due to
the driver’s perspective (Figure 8).
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Figure 8. The frame image shows where the vehicle window frame obstructs the visibility of the 
road’s left borderline. 

3.5. Gaze Analysis 
After the road boundaries were identified, to comprehend whether the driver’s gaze 

is within or outside the road, the following calculations were conducted using the coordi-
nates of the gaze and the roadsides (assuming that the origin of the axes is located on the 
roadside at right). By computing the distance between the gaze coordinates and the coor-
dinates of the right roadsides, it is possible to identify whether the gaze is within or be-
yond the road boundaries. 

Figure 9 shows the image of the processed frame with the gaze point (red circle), 
whereas Figure 10 depicts the details of Figure 9 concerning the calculation of variables a 
and b. Distance a is the horizontal distance between the driver’s gaze and the roadside at 
the right, whereas distance b represents the road width in the image (Figure 11). It is worth 
noting that the actual value of b is known. After a and b were calculated, the variable ratio 
was calculated as the ratio between a and the absolute value of b: 

ratio = a/abs(b) (1)

 
Figure 9. A processed image shows the distances a and b (see Figure 10 for details). 

Figure 8. The frame image shows where the vehicle window frame obstructs the visibility of the
road’s left borderline.

3.5. Gaze Analysis

After the road boundaries were identified, to comprehend whether the driver’s gaze is
within or outside the road, the following calculations were conducted using the coordinates
of the gaze and the roadsides (assuming that the origin of the axes is located on the roadside
at right). By computing the distance between the gaze coordinates and the coordinates
of the right roadsides, it is possible to identify whether the gaze is within or beyond
the road boundaries.

Figure 9 shows the image of the processed frame with the gaze point (red circle),
whereas Figure 10 depicts the details of Figure 9 concerning the calculation of variables a
and b. Distance a is the horizontal distance between the driver’s gaze and the roadside at
the right, whereas distance b represents the road width in the image (Figure 11). It is worth
noting that the actual value of b is known. After a and b were calculated, the variable ratio
was calculated as the ratio between a and the absolute value of b:

ratio = a/abs(b) (1)

Appl. Sci. 2024, 14, 6123 11 of 22 
 

 
Figure 8. The frame image shows where the vehicle window frame obstructs the visibility of the 
road’s left borderline. 

3.5. Gaze Analysis 
After the road boundaries were identified, to comprehend whether the driver’s gaze 

is within or outside the road, the following calculations were conducted using the coordi-
nates of the gaze and the roadsides (assuming that the origin of the axes is located on the 
roadside at right). By computing the distance between the gaze coordinates and the coor-
dinates of the right roadsides, it is possible to identify whether the gaze is within or be-
yond the road boundaries. 

Figure 9 shows the image of the processed frame with the gaze point (red circle), 
whereas Figure 10 depicts the details of Figure 9 concerning the calculation of variables a 
and b. Distance a is the horizontal distance between the driver’s gaze and the roadside at 
the right, whereas distance b represents the road width in the image (Figure 11). It is worth 
noting that the actual value of b is known. After a and b were calculated, the variable ratio 
was calculated as the ratio between a and the absolute value of b: 

ratio = a/abs(b) (1)

 
Figure 9. A processed image shows the distances a and b (see Figure 10 for details). Figure 9. A processed image shows the distances a and b (see Figure 10 for details).



Appl. Sci. 2024, 14, 6123 12 of 22Appl. Sci. 2024, 14, 6123 12 of 22 
 

 
Figure 10. Processed image with the reference origin chosen as the right borderline of the road. 
The distance a is the horizontal distance between the driver’s gaze and the roadside at the right. 
The distance |b| represents the absolute value of the road width. 

 
Figure 11. The sequence of operations to obtain a, b, and ratio. 

By analyzing the variable ratio, we can draw the following rules: 
 If the ratio is < 0 and the ratio is > −1, the gaze is assumed to be inside the road. 
 If the ratio is > 0 or the ratio is < −1, the gaze is assumed to be outside the road. 
 If the ratio = −1, the gaze is on the left road borderline. 
 If the ratio = 0, the gaze is on the right road borderline. 

We can calculate the location of gaze in the real world, a', because we know the real 
value b_real of b, which in turn is affected by perspective. According to Equation (2), we 
could compare the gazes along a hypothetical section of the road by using this linear trans-
formation: 

a′ = (a/b) × b_real (2)

Thresholds were defined using a constructed selection window to choose the road 
limit pixel coordinates on the x-axis. They were updated according to the subsequent con-
siderations necessary to accurately interpret the driver’s gaze. 

The selection window must always be adjusted with proper thresholds, especially in 
critical situations, such as when the driver’s gaze is very close to the right borderline of 
the road. This is because the perspective in those cases (driving counterclockwise) can 
lead to an incorrect interpretation of whether the gaze is inside or outside the road. The 
following Figure 12 provides an example of such a scenario. If the chosen road boundary 
pixels have a lower value on the y-axis (closer to the vehicle), the interpretation would be 

Figure 10. Processed image with the reference origin chosen as the right borderline of the road. The
distance a is the horizontal distance between the driver’s gaze and the roadside at the right. The
distance |b| represents the absolute value of the road width.

Appl. Sci. 2024, 14, 6123 12 of 22 
 

 
Figure 10. Processed image with the reference origin chosen as the right borderline of the road. 
The distance a is the horizontal distance between the driver’s gaze and the roadside at the right. 
The distance |b| represents the absolute value of the road width. 

 
Figure 11. The sequence of operations to obtain a, b, and ratio. 

By analyzing the variable ratio, we can draw the following rules: 
 If the ratio is < 0 and the ratio is > −1, the gaze is assumed to be inside the road. 
 If the ratio is > 0 or the ratio is < −1, the gaze is assumed to be outside the road. 
 If the ratio = −1, the gaze is on the left road borderline. 
 If the ratio = 0, the gaze is on the right road borderline. 

We can calculate the location of gaze in the real world, a', because we know the real 
value b_real of b, which in turn is affected by perspective. According to Equation (2), we 
could compare the gazes along a hypothetical section of the road by using this linear trans-
formation: 

a′ = (a/b) × b_real (2)

Thresholds were defined using a constructed selection window to choose the road 
limit pixel coordinates on the x-axis. They were updated according to the subsequent con-
siderations necessary to accurately interpret the driver’s gaze. 

The selection window must always be adjusted with proper thresholds, especially in 
critical situations, such as when the driver’s gaze is very close to the right borderline of 
the road. This is because the perspective in those cases (driving counterclockwise) can 
lead to an incorrect interpretation of whether the gaze is inside or outside the road. The 
following Figure 12 provides an example of such a scenario. If the chosen road boundary 
pixels have a lower value on the y-axis (closer to the vehicle), the interpretation would be 

Figure 11. The sequence of operations to obtain a, b, and ratio.

By analyzing the variable ratio, we can draw the following rules:

• If the ratio is < 0 and the ratio is > −1, the gaze is assumed to be inside the road.
• If the ratio is > 0 or the ratio is < −1, the gaze is assumed to be outside the road.
• If the ratio = −1, the gaze is on the left road borderline.
• If the ratio = 0, the gaze is on the right road borderline.

We can calculate the location of gaze in the real world, a’, because we know the real
value b_real of b, which in turn is affected by perspective. According to Equation (2), we
could compare the gazes along a hypothetical section of the road by using this
linear transformation:

a′ = (a/b) × b_real (2)

Thresholds were defined using a constructed selection window to choose the road
limit pixel coordinates on the x-axis. They were updated according to the subsequent
considerations necessary to accurately interpret the driver’s gaze.

The selection window must always be adjusted with proper thresholds, especially in
critical situations, such as when the driver’s gaze is very close to the right borderline of the
road. This is because the perspective in those cases (driving counterclockwise) can lead to
an incorrect interpretation of whether the gaze is inside or outside the road. The following
Figure 12 provides an example of such a scenario. If the chosen road boundary pixels have
a lower value on the y-axis (closer to the vehicle), the interpretation would be that the gaze
is inside the road boundaries, which would be incorrect. Because of this, it is necessary
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to precisely arrange the selection window that picks the road margins, especially in those
kinds of unique situations.
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Figure 12. The dashed green line represents the selection window adjustment in critical
cases. The filled red dots represent chosen road coordinates, while the red circle indicates the
driver’s gaze position.

Another guideline that was attempted to be implemented was locating the selection
window as close as possible to the gaze position to appropriately understand the gaze’s
situation, whether inside or outside. This means all outcomes are correct and do not need a
comparison test.

4. Results

The following investigations demonstrate how the results obtained using the previ-
ously mentioned method can be utilized to analyze driver visual behavior.

4.1. Analysis by Ratio and b per Driver

Figures 13 and 14 show each a multiple plot (2 × 2 subplots) by drivers of gazes for
a rectilinear and a curvilinear segment, respectively. The two black stripes on the ratio-b
plane identify the two roadsides.

On the X axis, there is ratio [%] (see Equation (1)); on the Y axis, absolute b [pixels];
and on the Z axis, the frequency. It is worth noting that (when the road section is constant,
like in our case), due to perspective, when b is high, the gaze points close to the vehicle, and
vice versa. When b is small, it means the gaze point is far from the vehicle. Hence, in those
figures, the data closest to the X-axis are related to the farthest gazes. The two black stripes
on the X-Y plane for X = 0 and X = −1 (100%) delimit the road, and the data between them
are inside the road.

The dispersion of data is almost similar per driver. The frequency peaks are always
inside the road, but some data are outside, mainly for the rectilinear segment. For the
curvilinear segment, data outside are very scarce (see also Tables 3 and 4) and not very far
from the roadsides (no more than 16 m against the 32 m in the rectilinear segment). Data
are tendentially farther in the rectilinear segment. A clear example of this is in the subplot
of Figure 14 for driver #4.
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Table 3. Statistics of gaze distribution by driver in the 2D space of a’ [m] for the rectilinear segment 5
and the curvilinear segment 2.

Segments
Driver #1 Driver #2 Driver #3 Driver #4

Mean Median Mode Mean Median Mode Mean Median Mode Mean Median Mode

Segment 5, Rectilinear −2.89 −2.25 −1.83 −6.02 −4.37 −2.91 −8.25 −6.93 −6.62 −10.0 −9.28 −6.62
Segment 2, Curvilinear −2.37 −2.18 −1.44 −3.67 −3.25 −2.75 −2.96 −4.35 −4.20 −7.79 −7.82 −10.06

Table 4. Statistics of gazes within the road in the rectilinear segment 5 and the curvilinear segment 2.

Segments
Driver #1 Driver #2 Driver #3 Driver #4

% Inside # of Frames % Inside # of Frames % Inside # of Frames % Inside # of Frames

Segment 5, Rectilinear 84.5% 434 68.5% 532 57.5% 540 34.0% 520
Segment 2, Curvilinear 88.0% 151 100.0% 151 84.5% 107 53.0% 90

4.2. Analysis by Section per Driver

This analysis focuses on the distribution of gazes along the road section. The data
are the same as those from previous analyses plotted in a 3D graphic but projected and
summed along the ratio plane. A detailed study of gaze distribution inside vs. outside the
road, closer to the right or left roadside, is easier to carry out from these graphics.

Figures 15 and 16 show the distribution of gaze data for the rectilinear and curvilinear
segments, respectively. Besides the different scale of frequency (due to the different number
of available frames) and the differences by drivers, the two sets of distributions have a
different structure: in the rectilinear segment, the shape of the distributions is mainly
unimodal, though with a different mean by driver, whereas it tends to be bimodal in the
curvilinear segment for some drivers.
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Figure 16. Gaze distribution by driver in the 2D space of ratio and frequency for the curvilinear
segment 2.

Table 2 reports some statistics of a’ (mean, median, and mode, calculated using b_real,
the actual value of b, that is, the road section width). The differences between drivers are
evident for all three quantities. The only feature common to all drivers is that the absolute
values for the curvilinear segment are always less than those for the rectilinear one, and the
mean is greater than the median, which in turn is greater than the mode (the only exception
is the mode of driver #4). This confirms that the gaze distribution of data is not symmetric,
has a peak closer to the roadside on the right than the mean and the median, and has a
longer queue toward the environment on the left side of the road than that on the right.
Except for driver #4, these statistical values are all inside the road section.

Notably, the mean, median, and mode values for the curvilinear segment are con-
sistently lower in absolute value than those for the rectilinear segment (except for driver
#4’s mode value). This suggests that drivers tend to look more towards the center of the
road during curvilinear sections, possibly due to the increased attentional demands of
navigating curves and bends.

Table 4 reports the total number of frames used and their percentages with the gaze
inside the road for a rectilinear and a curvilinear segment. In the rectilinear segment, the
percentage of looking within the road is almost always lower than that in the curvilinear
segment, though it varies much from driver to driver.

Looking at the histograms drawn for each driver (Figures 15 and 16), it is evident that
some drivers glance more at the right road borderline, whereas others look more at the left
road borderline. However, the gaze distribution is more concentrated near the roadsides,
inside or outside the road, for the curved portion.

Figures 17 and 18 show the gaze sequence of driver #1 for the rectilinear and curvilinear
segments, respectively. These data allow a dynamic analysis of gaze, which is not the aim of
this paper, but it is reported to show the method’s potential. Knowing how far or frequently
a point on the scene is looked at can add further insight into driver behavior.

The chosen points on the left and right borderlines change as the driver’s gaze shifts
during the driving session. The road border coordinates were changed because of the
selection window’s placement and size adjustments. These adjustments were needed due
to changes in the driver’s view of the simulation path and variations in the road’s geometry
along the track, with more substantial variations occurring in curvilinear sections and
milder ones in rectilinear sections.
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5. Discussion

The method proposed to analyze the eye-tracker data on gaze locations requires a
series of data processing steps to overcome the lack of 3D information in the collected data.

As already argued, the lack of 3D vision means a lack of information about where the
gaze position and road borders are in 3D space and the distance between them. Conse-
quently, for all the reasons stated above, it is vital to set specific guidelines to overcome this
significant limitation as much as possible. Of course, the link between the 2D images and
the 3D model of the circuit can overcome this limitation, but it must be carefully planned
before the simulations are integrated with them.

Accurately analyzing gaze position according to road borders requires consideration
of the effect of perspective. Placing the road boundary coordinates in the same y-coordinate
as the gaze or the projection of the gaze on the base of the building (when the gaze is on a
building facade) is ideal. Please see Figure 7 for the cases mentioned above. However, this
kind of placement can be time-consuming and sometimes not even possible in situations
where the gaze or the projection of the gaze is not parallel to the road borders, such as
when the driver is looking straight ahead to the horizon. To address this limitation, a
“ratio” variable approach has been proposed, where the gaze is considered inside the road
boundary if the ratio is between 0 and −1, eliminating the need for parallel alignment.
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Nevertheless, to ensure precise results in scenarios where the gaze or the projection of the
gaze is not parallel to the road, it is essential to account for perspective by positioning
the road boundary coordinates lower in the y-axis than the gaze coordinates to avoid
misinterpretations of the gaze as being outside the road borders when it is inside. This
proper adjustment is achieved by narrowing the selection window size in the y-axis for the
road coordinates to ensure that the chosen road border coordinates are lower in the y-axis
than the driver’s gaze position.

Another critical aspect that should be considered when analyzing gaze position at
road borders is appropriately adjusting the selection window in critical situations. For
instance, when the driver’s gaze is near the right borderline of the road, it is imperative to
adjust the selection window to an appropriate size. This is particularly important when the
driver is driving counterclockwise (in right-hand drive), as the perspective can lead to an
erroneous interpretation of the gaze direction. Therefore, adjusting the selection window
to an optimal size under such critical circumstances is essential to ensuring an accurate
interpretation of the driver’s gaze. Refer to Figure 13 to better understand the selection
window adjustment in critical scenarios.

The difference between a counterclockwise and a clockwise circuit depends on the
direction of circulation. In a right-hand circulation and a counterclockwise circuit, the
driver must drive close to the roadside on the right, whereas in a left-hand circulation, he
must drive close to the left roadside. The vehicle’s trajectory and speed profile may be
affected if the road section is wide enough (more than one lane).

Curvilinear segments are generally short, and fewer frames are available for analysis.
Besides this, some of them could be unusable because the road line border is not visible
due to either the perspective of a curvilinear stretch or the obstruction of the door pillar
(for left curves) or the windscreen pillar (for right curves).

Outcomes show where the driver looks, outside or inside the road, depending on
the driver’s style. We can know where he is looking with a resolution limited only by
perspective distortion, which cannot be controlled by our method. This effect is much less
intense for the portions of images in the center of the scene than when the driver is looking
inside the road section. The higher the distance from the roadside, the higher the distortion.
The procedure has a further step in the presence of buildings or objects. It must identify
where the gaze points; then, the vertical plane (the facade in the case of a building) on
which the gaze is located must be identified, and along this plane, its projection on the
ground determines the location of the gaze. This procedure is cumbersome, and besides the
error introduced by perspective distortion, it can be affected by the difficulty of identifying
the ground border. In any case, there is no alternative to this set of data. We decided to use
only the projection of the gaze on the ground because the point on the facade is affected
by a higher distortion than the corresponding projected point on the ground. It is worth
noting that the method can also be applied to images collected by the same devices while
driving in real life.

Anh Son et al. (2019) [52] quantified driver mental workload using a combined
vestibular–ocular reflex (VOR) and optokinetic reflex (OKR) model, which is essential
for maintaining stable vision while driving. However, their method’s reliance on head
movements presents a significant limitation, particularly as modern vehicle suspensions
and improved road conditions reduce the necessary vibrations for accurate modeling. Their
approach assumes that discrepancies between predicted and observed eye movements
indicate cognitive distraction.

Our proposed method addresses this limitation by eliminating the need for head move-
ments. We use an image-processing algorithm to link eye-tracker data with the simulation.
While our research focus differs slightly, our method can assess drivers’ attention allocation
to road geometry, helping to detect distraction and analyze the impact of different road
types. Despite differing specific aims, both studies aim to improve understanding of driver
distraction and attention.
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While we acknowledge the benefits of the Canny approach in our study, particularly
its robustness in detecting weak edges amidst noise, the novelty of our method lies in its
integration and adaptation of various components to analyze gaze positions concerning
road borders. Our approach specifically addresses the challenge of analyzing gaze data
without 3D information, a prevalent constraint in eye-tracker studies of this nature. We
overcame this challenge by carefully considering perspective and introducing innovative
adjustments such as the “ratio” variable approach and selection window adjustment. Addi-
tionally, our method seamlessly connects eye-tracker data with virtual reality simulation,
tackling a significant challenge in such simulator environments.

While we drew from both older and recent literature, finding recent studies yielding
robust results on road geometry analysis via gaze data was challenging. A gap persists
between older studies and current driving conditions, despite newer research. Integrating
vehicle technology and road infrastructure advancements could enhance driver behavior
analysis, but few recent studies have explored this. However, filling this gap remained
challenging, as did finding methods for accurately pinpointing driver focus in virtual
environments lacking 3D information. To overcome this, we established a novel connection
between gaze data and simulation, enabling a more precise examination of driver behavior
concerning road geometry. Its versatility allows for application across diverse scenarios,
such as assessing advertisement effectiveness along roadways and comparing distraction
levels pre- and post-implementation of proposed urban layout changes.

Although our method has certain limitations, it addresses many challenges associated
with 2D data collection. In the absence of 3D data, this represents the best achievable
outcome. While acknowledging these limitations is essential to scientific research, refin-
ing the method for future applications is equally crucial. Although the process may be
labor-intensive and not always yield consistent results, it represents a significant step
forward in addressing a complex problem. We anticipate further advancements and
iterations to enhance its efficiency and accuracy. Integrating AI, as demonstrated by
Zemblys et al. (2017) [53], can potentially automate and improve our method, reducing
labor intensity and increasing consistency by leveraging machine learning techniques for
more robust and efficient analysis.

6. Conclusions

The proposed method hinges on image processing techniques to overcome most
limitations due to the 2D images collected by the eye-tracker video camera. This holds with
high accuracy for what concerns gazes inside the road, where distortion due to perspective
is limited. For gazes outside the road, accuracy can be affected by perspective and the
presence of buildings. The farther the facades of the buildings are from the road, the more
uncertain the assessment of the coordinates of the gaze looking at them. This uncertainty
can be solved only by using the 3D model of the scenery.

After the gazes are collected, their distribution over the road section and their temporal
sequence are analyzed straightforwardly. This allows for an in-depth analysis of the driver’s
behavior. This will be a future step of the research, which implies a different setup of the
simulation experiments from that used in the presented work.

The current study quantitatively explores how drivers allocate their gaze positions
relative to road curvature, significantly influencing safety behavior. While it may seem
intuitive that drivers focus more on curves, quantifying this behavior provides valuable
insights into attention distribution and informs strategies for designing safer road environ-
ments. It was realized by establishing a connection between eye-tracker data and virtual
reality simulation, addressing a challenge in such simulator environments.

It is worth mentioning that the proposed method can also be applied to images
collected in a naturalistic survey. However, future research will also consider a larger
sample to improve the significance of the findings by considering different classes of
drivers by age and different driving scenarios.
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