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1. Introduction 

In-situ monitoring of the laser material interaction is a 
fundamental aspect to derive information in real-time regarding 
the state of the laser cutting process [1,2]. Various works in 
literature have studied and proved a strong correlation between 
the formation of defects and process emission, for both fusion 
[3] and flame [4] laser cutting. Through the years, coaxial 
camera monitoring has been proposed as a promising solution 
to detect the cutting process conditions [5] and build quality 
defects’ estimation (Duflou et al. [6,7]). Pacher et al. [8,9,10] 
developed a real-time dross estimation via Convolutional 
Neural Network (CNN) based on the extraction of geometrical 
features of the melt pool from process emission images. 
Furthermore, the authors implemented a real-time speed control 

algorithm capable of improving cut quality and boosting 
productivity in fusion laser cutting. On the other hand, such 
approaches have been implemented only in limited scientific 
scenarios regarding specific cases but never tested in real-life 
industrial applications.

In industrial systems, metal sheets are positioned on a 
metallic grid that sustains the plate during the entire cutting 
operation. It is not possible to define a priori a laser grid map 
due to its interchangeable position accordingly to different 
applications. Moreover, during the cutting process blown and 
resolidified wasted material adheres to the laser grid, resulting 
in unpredictable thickness. The effects of laser grid on camera 
sensor images have not been thoroughly explored in literature; 
academic articles primarily concentrate on analyzing the 
constraints of the supporting grid solely to enhance the nesting 
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phase (Struckmeier et al. [11,12]). However, the interaction 
between laser radiation escaping from the kerf and the grid, 
along with the difficult outflow of molten material, causes 
changes in the captured images, which are characterized by a 
significant increase of the intensity and geometrical dimensions 
of the melt pool. These changes on the recorded images strongly 
affect the geometrical feature extraction upon which the 
Machine Learning (ML) models of the defects’ prediction are 
based. For these reasons, although the grid represents an 
essential supportive element to the metal plate in industrial 
applications, its presence strongly hinders the reliability of the 
defects’ estimation approach thus influencing the feedback 
control performances.  

Within this framework, the development of a robust 
classification algorithm capable of detecting the presence of the 
grid and adjusting or disabling the control action accordingly 
plays a crucial role for the industrial applicability of feedback 
control approaches. The current work proposes a real-time grid 
identification and classification-based machine learning 
algorithm that has been developed and tested during the fusion 
cutting of 6 mm thick Al5754, exploiting a NIR coaxial 
monitoring system. A novel control architecture with laser grid 
supervisor has been implemented. Furthermore, real-time speed 
control experiments with dross estimates were performed, 
demonstrating a correct identification of the laser grid that 
paves the way for a feasible industrial application of this 
approach. 

2. Materials and Methods 

2.1. Materials  

The experiments of this research work were carried out on 
aluminium Al5754 with thickness 6 mm. The nominal 
chemical composition is reported in Table 1. 

Table 1. Chemical composition of aluminum Al5754 (wt%). 

Si Mn Cu Mg Zn Cr Ti Mn+Cr Al 

0.40 0.50 0.10 3.6 0.20 0.30 0.15 0.6 balanced 

2.2. Laser cutting and monitoring system 

The experiments in this research utilized an industrial laser 
cutting machine (LC5, BLM Group, Levico Terme, Italy). The 
system is equipped with a laser cutting head featuring a 
collimating lens with focal length of 100 mm and a focusing 
lens with focal length of 200 mm (HPSSL, Precitec, Gaggenau, 
Germany). A 6 kW laser source emitting at λ=1070 nm from a 
transport fiber diameter of 100 µm was employed (YLS-6000-
CUT, IPG Photonics, Cerro Maggiore, Italy).  

The cutting head is equipped with a coaxial monitoring 
system, enabling observation of the process emission. The 
monitoring architecture, previously detailed in past 
publications [8,9,10], consists of a CMOS industrial camera 
(XiQ MQ013MG-ON, Ximea, Munster, Germany) utilising Si 
photodetectors and near infrared wavelength filtration to 
capture the process dynamics. The band pass and short pass 
filter are centered at 750 nm and 1000 nm, respectively. The 
imaging chain observes the laser-material interaction with a 

spatial resolution of 9.6 µm/pixel. Process emissions images 
were acquired at 750 Hz with an exposure time of 400 µs. A 
STM32 microcontroller (NUCLEOF767ZI, 
STMicroelectronics, Geneva, Switzerland) was employed to 
realize real-time control experiments with a control frequency 
of 375 Hz. The overall configuration of the laser cutting and 
monitoring system is reported in Table 2. 

Table 2. Laser cutting and monitoring system specifications. 

Laser system specifications Values 

Maximum emission power, Pmax [W]  6000 

Emission wavelength, λ [nm]   1070 

Beam quality factor, M2 11.7 

Collimation lens, fcol [mm]  100 

Focal lens, ffoc [mm]  200 

Fiber core diameter, dcore [μm]  100 

Beam waist diameter,  dwaist [μm]  200 

Monitoring system Values 

Acquisition frequency, facq, [Hz] 750 

Control frequency, fctrl [Hz] 375 

Spatial resolution, SR [µm/pixel] 9.6  

Camera exposure time, texp, [µs] 400 

Observation wavelength, λobs [nm] 750±10 

Field of View, FOV [pixel x pixel] 320 x 320 

2.3. Experimental design and Machine Learning approach  

An experimental study was designed exploiting a supervised 
machine learning approach to develop a real-time classification 
algorithm to the detect the presence of the supporting grid 
structure while cutting a 6 mm thick Al sheet (as shown in the 
experimental set up of Fig. 1a). Linear cuts were performed 
transversally with respect to the supporting grid at different 
levels of cutting velocity whilst the monitoring chain allowed 
to observe and capture process emission images (Fig. 1b). The 
acquired frames were then labelled according to the presence 
of the supporting grid and were used as training and testing 
dataset for the real-time grid identification algorithm.  

Fig. 1. (a) Laser cutting system with the grid sustaining the metal sheet and cut 
path (in blue); (b) Process emission image; (c) Geometrical feature extraction 
on the binarized image with a hard-threshold of 15. 

Fixed parameters were chosen based on prior experiments 
whilst the variable factor corresponded to the cutting velocity 
(which is also the variable of the controller architecture 
employed). The laser emission power was fixed at 6kW, while 
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employing nitrogen as an assist gas at 12.5 bar. The focal 
position was fixed at -5.5 mm with respect to the nozzle whilst 
a stand-off distance from the sheet was kept at 0.7 mm. Linear 
cuts according to the linear trajectory shown in Fig. 1a) were 
conducted at three levels of velocity (namely 2800, 3200 and 
3600 mm/min) corresponding to high, middle and low dross 
formation conditions. Two repetitions of each experimental 
condition were performed. The fixed and variable parameters 
of the experimental design are reported in Table 3. 

Table 3. Experimental design to train the supervised ML algorithm for real-
time grid identification. 

Fixed parameters Values 

Laser power, P [W] 6000 
Assistant gas N2

Gas pressure, p [bar] 12.5 
Focal position, FP [mm] -5.5 
Stand-off Distance, SOD [mm] 0.7 
Cut length, [mm] 400 

Variable parameters 

Cutting speed, v [mm/min] 2800; 3200; 3600 

The images were binarized through hard thresholding of the 
grayscale images at a predetermined value of 15 (as shown in 
Fig 1c). The process emission images were then analyzed to 
extract geometrical features of the melt pool in order to obtain 
real-time estimation of the dross formation (as shown in prior 
research [8,9,10]).  For each feature, both the mean and 
standard deviation were computed on a lookback window of 75 
frames, aimed at enhancing the dimensionality of the feature 
space. The same features could be exploited to train 
classification algorithms for the real-time grid detection. 

The acquired images were also labeled in accordance to the 
presence of the grid which could be determined given that the 
path, sampling frequency and position of the metal sheet were 
imposed. Hence, the dataset was manually labeled resulting in 
a set of binary numbers, i.e. 1 or 0, indicating the presence or 
absence of the grid. This information was then associated to the 
geometrical features of the single images. 

Exploiting the dataset generated via the experimental 
design, different Machine Learning (ML) models were trained 
and tested with the aim of classifying the passage of the nozzle 
on the laser grid. To determine the most effective model, 
evaluations were conducted based on their validation and 
testing accuracy, as well as statistical indicators, including 
Precision (P), Recall (R) and F1 Score. The tested ML 
algorithms consisted in Linear Discriminant (LD), Linear 
Support Vector Machine (SVM) and an Artificial Neural 
Network (ANN). The ANN employed is a Feed Forward 
network with one connected layer (of size 10) and ReLU
(Rectified Linear Units) activation function, used to add non 
linear transformations to the output of the connected layer. The 
Linear SVM model is based on two Support Vectors and a 
linear Kernel. Moreover, the authors chose a ten times higher 
misclassification cost for the false negative (FN) grid 
classification conditions, with the goal of reducing the FNs rate 
and improving the robustness of the developed approach [13].  

After training and testing the grid classification, another 
experimental plan was designed to validate it while performing 
linear cuts with an active feedback control on the cutting 
velocity. The developed novel control scheme is constituted by 
a speed regulating loop coupled with a supervisor loop 
dedicated to the grid identification algorithm.  Fig. 2 illustrates 
the control architecture: G(s) represents the model of the laser 
cutting process, gest represents the identification of the laser 
grid, vPI represents the cutting speed calculated by the PI 
controller PI(s) and vg the actual speed value when a laser grid 
condition is detected. Moreover, dest and dref represents 
respectively the estimated value of dross and the setpoint level 
of dross which is imposed by the user to achieve a target cut 
quality.  The regulator is a general Proportional-Integral (PI) 
controller where the control variable v in the time-domain is in 
the form shown in the following equation: 

𝑣𝑣�𝑡𝑡� = 𝐾𝐾� ∙ 𝑒𝑒(𝑡𝑡) + 𝐾𝐾� ∙ ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡                                           (1) 

where e represents the error between the reference target 
quality dref and the estimated variable dest. The proportional part 
Kp and the integral part Ki were set -400 and -2750 respectively. 
The aim of the controller was to update the cutting speed in 
real-time based on the error value e. The PI controller modifies 
the cutting speed vPI aiming to achieve the desired level of dross 
as long as the grid is not detected (gest = 0). When the laser grid 
is identified by the supervisor loop (gest = 1), the speed 
regulating loop of the controller maintains a fixed cutting 
velocity vg until the grid is no longer detected (gest = 0).  

Fig. 2. Control scheme in the Laplace domain of the novel controller 
architecture with laser grid supervisor. 

The laser grid identification algorithm was tested in real-
time while performing linear cuts. Two experiments were 
performed to validate the novel control architecture. Each 
experiment aimed at a different reference quality level (i.e. the 
value of dross dref) while starting at different cut velocities. 
Hence, a high reference dross level corresponding to  0.025 mm 
was targeted starting from a cut velocity of 2400 mm/min, 
while the second run aimed achieve 0.01 mm of dross starting 
from a cut velocity of 4000 mm/min respectively. Table 4 
outlines the fixed and variable parameters used to test the novel 
control architecture with the real-time laser grid identification. 

Table 4. Fixed and variable parameters used to test the novel control 
architecture with the laser grid supervisor. 

Fixed parameters Values 

PI proportional part, Kp -400 
PI integral part, Ki -2750 

Variable factors Values 

Starting sets 
Cutting speed, v [mm/min] – Dross 
reference value dref [mm] 

2400 – 0.025,  
4000 – 0.01 
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3. Results 

3.1. Laser grid effects on captured images and defects estimate 

The grid identification is crucial because the growth in 
brightness and dimension of the kerf when the nozzle passes on 
the grid leads to important changes in the acquired images. The 
intensity and geometrical dimensions of the melt pool 
significantly increase, as evidenced by Fig. 3a and Fig. 3b, 
which illustrate the difference between the captured frame 
outside or along the grid respectively. Consequently, the 
extracted features from the images are subject to variations 
influencing the dross estimate, as shown in Fig. 3c. As it can 
be noticed, there is an overestimation of dross (represented in 
orange) with high peaks when the grid is encountered 
(represented in blue). 

Fig. 3. Process emission images showing (a) cut without the presence of the 
grid and (b) with the presence of the grid; (c) Effect of the laser grid on the 
dross estimate. 

3.2. Machine learning model selection 

In this section, the performances of the trained ML models 
are presented and discussed. The Linear Discriminant exhibits 
the highest Recall value, as shown in Fig. 4. However, it is 
important to note that its Precision value is the lowest one, 
indicating an overestimation of false positives. Consequently, 
it was excluded from the final model choice. Moving forward, 
both the NN and the Linear SVM demonstrate excellent and 
comparable performances. Nonetheless, the authors opted to 
discard the NN due to its computational requirements for real-
time implementation in an industrial setting into the machine 
architecture. Instead, the Linear SVM was selected as final 
choice, because it offers optimal overall performances with a 
lower computational effort.  

Fig. 4. Performances of the different ML models for laser grid classification.

3.3. Novel controller architecture results 

In this section, the results of the real-time control 
experiments with the grid classification algorithm are 
presented. In the first scenario, when the starting speed is lower 
than the nominal value of 3000 mm/min, the expected 
behaviour is an increase of the cutting speed up to the steady-
state value. Fig. 5 shows the cutting speed signal (in red) 
compared to the grid detection (in blue). As depicted, the 
cutting speed remains constant as long as a grid condition is 
detected and eventually reaches the steady state value, ensuring 
a good cut quality. Moreover, Fig. 6 shows the control 
experiment conducted with a starting cutting speed of 4000 
mm/min. The PI controller is responsible for the reducing of 
the speed to the nominal value of 3000 mm/min. Similarly, 
when the grid condition is detected, the cutting speed provided 
by the PI controller remains constant, despite the dross 
overestimation.  

Fig. 5. Cutting speed signal compared to grid detection for a controlled cut 
starting from 2400 mm/min. 

Fig. 6. Cutting speed signal compared to grid detection for a controlled cut 
starting from 4000 mm/min.  

4. Discussion 

This work studies the extension of cutting speed feedback 
control scheme to industrial scenarios where the laser grid has 
an essential supporting role, but simultaneously hinders the 
reliability of the control algorithm. The presented approach is 
based on the deactivation of the control action on the cutting 
speed as long as a grid condition is detected by the supervisor 
loop. Accordingly, considering an average 3 mm thick grid and 
a 2400÷4000 mm/min speed range, each grid identification 
introduces a delay within the range of 45÷75 ms in controlling 
the cutting speed signal. As future developments, robust and 
adaptive feedback control schemes (such as H-infinity loop-
shaping or Loop Transfer Recovery) could be considered as 
interesting alternatives [14]. The mentioned control algorithms 
design different control laws addressing specific system 
behavior modes and could be employed for an ad hoc 
adjustment of the control action despite the presence of the 
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grid. Finally, additional sensors, such as photodiodes, could be 
exploited to identify the grid together with the geometrical 
feature extraction approach, to enhance the reliability of the 
classification algorithm.  

5. Conclusions 

In this study, a real-time grid identification and 
classification based machine learning algorithm was developed 
during the fusion cutting of 6 mm thick Al5754, exploiting a 
NIR coaxial monitoring system to capture process emission 
images. Different ML algorithms were trained, and a Linear 
SVM was selected to classify the grid condition. Moreover, a 
novel controller architecture with laser grid supervisor was 
implemented and tested during real-time control experiments 
with dross estimation. These experiments demonstrated an 
effective identification of the grid and highlighted the 
feasibility of the proposed approach for industrial control 
applications.  
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