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ABSTRACT Predicting wind energy production accurately is crucial for enhancing grid management and
dispatching capacity. However, the inherent unpredictability of wind speed poses significant challenges to
achieving high prediction accuracy.To address this challenge, this study introduces a novel pre-processing
framework that leverages thirteen nature-inspired optimization algorithms to extract and combine Intrinsic
Mode Functions (IMFs) of atmospheric and wind speed variables. The objective function ensures that the
selected IMF combinations exhibit high correlation, enhancing their predictive relevance.The outputs of these
algorithms are further refined using the proposed Optimal Search IMF (OAIMF) algorithm, which reduces
redundancy and selects a minimal yet highly relevant set of IMF combinations for wind speed prediction.The
methodology was validated through a case study conducted at the Climate, Energy, and Water Research
Institute (CEWRI), NARC, Islamabad, Pakistan, leveraging real-world atmospheric data.Experimental results
demonstrate that the proposed framework significantly outperforms direct prediction methods and state-of-
the-art pre-processing techniques. For instance, the framework achieved an RMSE of 2.73 on an LSTM
network and 3.86 on a GRU network, compared to RMSE values of 19.78 and 18.89, respectively, for
direct prediction. Superior performance was also observed across MAE, MAPE, and R2 metrics.This study
highlights the critical role of robust pre-processing in enhancing deep learning-based wind speed prediction.
By integrating nature-inspired optimization with a novel IMF selection strategy, the proposed approach
advances the state-of-the-art in renewable energy forecasting.

INDEX TERMS Wind speed, wind power prediction, renewable energy resource, deep learning, artificial
intelligence, empirical mode decomposition, gated recurrent units, long short-term memory, nature-inspired
algorithms.

NOMENCLATURE
RECNN Residual CNNs.
SVM Support Vector machine.
WPD Wavelet packet decomposition.
OAIMF Optimal Search IMF algorithm.
AGRU Attentive mechanism GRU.
CLSTM Convolution long short term memory.
GRNN Generalized regression neural network.
MBE Mean Bias Error.

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MSE Mean Squared Error.
MPE Main Percentage Error.
MRE Mean Relative Error.
NRMSE Normalized Root Mean Square Error.
NMAE Normalized Mean Absolute Error.
MLP Multi-layer perception.
IMF Intrinsic Mode Function.
Nl(t) Lower envelope of signal.
Nu(t) Upper envelope of signal.
∇L(θi) Gradient of loss function.
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M Momentum.
θi Training parameter i.
DF Dragon Fly Algorithm.
GA Genetic Algorithm.
BSO Bird Swarm Optimization.
WOA Whale Optimization Algorithm.
COOT Coot Algorithm.
JSO Jump Spider Optimization.
COKOO− III Cokoo-III Algorithm.
MAO Mexican Axolotl Optimization Algorithm.
PSO Particle of Swarm Optimization.
Firefly Firefly Algorithm.
Harmony Harmony Algorithm.
ABC Artificial Bee Colony Algorithm.
COKOO− II Cokoo-II Algorithm.

I. INTRODUCTION
Renewable energy sources (RESs) have gained importance
compared with conventional non–renewable energy sources
due to numerous factors [1]. It is important for developing
countries to increase the utilization of RESs in different energy
sectors to achieve sustainable growth [2]. Amongst these
RESs, wind energy is an important source due to its free
availability and abundance in quantity [3]. It further reduces
the pollutant emissions involved while producing electricity
as well as a reduction in the operational costs of conventional
plants [4]. The wind speed pattern is highly irregular and
unpredictable [5]. Therefore, wind power integration into
power grids will affect its stability and reliability [6]. Due
to the large-scale integration of wind power and its variations,
power system operation is disturbed as extra reserves are
needed to balance net power [7]. This further increases
the operating costs as changes occur in wind power plants
output [8]. The irregular nature of wind turbine generators can
produce voltage dips, frequency variations, and absorption
of reactive power in a power system [9]. Therefore, precise
prediction of wind speed is important in the regulation of a
power system and addressing all challenges [10]. Wind power
is influenced by two important parameters wind speed and its
direction [11], [12]. The initiation of wind speed prediction
is urgent and crucial for the efficient control of power in
wind farms [13]. There are three steps involved in wind speed
forecasting; wind speed prediction, wind data processing and
performance criteria.
In [14], CNN and GRU are combined for estimating

features and dependencies in wind series data. A deep belief
network (DBN) is used for the prediction of wind speed [15].
In [16], a residual-based CNN is proposed that shows good
performance. The short-term model is proposed that reduces
the training time [17]. A stacked denoising auto-encoder
(SDAE) based LSTM network is proposed with suitable
feature selection to obtain the desired results [18]. Adaptive
LSTM is applied to co-relate factors involved in the prediction
of wind data [19]. An empirical mode decomposition (EMD)

is used for the decomposition of wind data, and then the LSTM
model is used for its forecasting [20]. LSTM-E (encoder-
decoder) is used to predict wind speed time series data [21].
In [22] attention mechanism (A-GRU) is used for the feature
extraction. Selecting the most valuable factors in wind power
production, the residual convolution network (RE-CNN) is
proposed by comparing lower level features with high level
features to get the spatial information [23].
In literature, wind speed forecasting models can be

categorized as physical models, statistical models, artificial
intelligence (AI), and hybrid models [24]. The physical model
depends on the climate and geographical data in order to
forecast wind speed with long-term or short-term accuracy.
The pre-processing of wind speed data is helpful in improving
its accuracy [25]. In statistical models, time series data and real-
time data correspond to each other to predict future behavior,
making it challenging in terms of accuracy [26]. AI-based
methods use algorithms to capture nonlinear attributes in wind
speed data and achieve forecasting by training this data [27].
The deep learning method is applied for the prediction of wind
speed using long short-term memory (LSTM) and convolution
neural network (CNN) models, but it includes drawbacks of
overfitting and degrading performance [28]. Recently, a lot
of attention has been focused on Hybrid models due to their
numerous advantages. In these models, pre-processing and
optimized algorithms are used for filtering the raw wind
speed data and improving prediction accuracy by further
implementing deep neural networks [29].
A decomposition method is proposed to remove inflated

noise from data using Generalized Regression Neural Network
(GRNN) and Extreme Learning Machine (ELM) models [30].
A hybrid model with different deep learning networks,
including CNN, LSTM, and CNN-LSTM, are compared, but
results were strictly site-specific [31]. Another hybrid model
with decomposition, forecasting and optimization modules is
proposed. The data was pre-processed with wavelets transform
accompanied by GRU (Gated recurrent unit) for perdition, and
finally, SNN (Skipping Neural Network) is applied in reducing
error [32]. A non-iterative decay method based on VMD and
Convolution LSTM is used for predicting and LSTM method
for error reducing [33]. These deep learning methods merge
with different algorithms for data decomposition, and the
feature option has shown better accuracy in the prediction
of wind speed. However, more tunning parameters and
processing time are needed, and optimization of parameters
is required to achieve optimal performance. Nature-inspired
algorithms can provide optimized solutions and are extensively
used in different areas of renewable energy systems. These
algorithms adopt nature’s intelligence and behavior and
resolve problems in several technical issues [34]. These
algorithms include Genetic Algorithm (GA) [35], Particle
SwarmOptimization (PSO) [36], Artificial Bee Colony (ABC)
[37], Firefly (FA) [38] and grey wolf optimizer (GWO) [39].
The role of these algorithms is to discover the optimized

performance parameters of predicted models [40]. A wind
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forecasting structure is developed based on wind data pattern
association with climate data improving the accuracy in
predicting electric output power [41]. A PSO method is used
to predict wind power utilizing ANN [42]. These nature-
inspired individual algorithms indicate good performance in
simple problems, whereas hybrid algorithms accomplish better
results in addressing complex issues. However, difficulty in
tuning of multi-parameters and computational complexity
are disadvantages in the implementation stage. Therefore for
wind power forecasting, the most suitable selection of meta-
heuristic algorithm is essential.

Standard Empirical mode decomposition (EMD) [43] splits
the signal into Intrinsic Mode Functions (IMFs) and a residual
trend using an iterative sifting process, but it is subject to
mode mixing and is highly sensitive to noise. Ensemble
EMD (EEMD) [44] improves upon this by adding white
noise, therefore, smartly reducing mode mixing through
averaging over several decompositions and extracting IMFs.
Complete Ensemble EMD with Adaptive Noise (CEEMDAN)
[45] refines EEMD further by using adaptive noise for
reducing mode mixing as well as preserving the characteristics
of signals. Multivariate EMD (MEMD) [46] processes
several associated signals at the same time while Bivariate
EMD (BEMD) [47] deals with two interrelated signals
together. EMD with data preprocessing applies techniques
such as detrending before EMD so as to increase precision.
Hilbert-Huang transform (HHT) combines EMD with Hilbert
Transform in order to conduct an elaborate analysis of time-
frequency domain. Nonlinear EMD [48] variants alter standard
methods for effectively handling certain types of signals or
improving performance in particular situations.

A. MOTIVATION AND RESEARCH CHALLENGES
The following motivation and key scientific challenges
linked with the prediction of wind speed requires further
investigation;

1) Energy Crisis: Fossil fuel are unfriendly to the
environment and responsible for climate changes in the
world. There is a mismatch between demand and supply
and problem of power shortages can be addressed by
utilizing renewable energy resources to generate electric
power [49].

2) Renewable Energy Resources: Wind energy is con-
sidered as a clean and environmental friendly energy
resource. However, wind speed prediction models need
accurate climate data including parameters i.e., wind
speed, humidity, and wind direction [50]. Due to wind
speed irregular nature, interfacing with grid may create
certain challenges and issues. Therefore, accuracy in
wind speed prediction is an important factor in solving
these issues [51].

3) Exploration of Deep Learning Methods: The wind
power output from generator can be shown in Eqn. 1.

P =
1
2
ρAv3 (1)

where ρ represents air density (kg/m3), A is the extent
area of wind turbine (m2) and v shows wind speed in m/s.
The relationship between wind power and wind velocity
is almost 3 times. An error in wind speed forecasting can
influence the wind power production significantly [52].
Deep learning algorithms are accurate in hybrid models
but need additional parameters for training at the cost
of processing time. To overcome this issue, different
types of optimization algorithms interfaced with deep
learning methods are to be tested and needs further
exploration [53].

Nowadays, the AI and deep learning (DL) approaches have
gained popularity in predicting wind speed [31]. The results of
these studies dependent on several factors including variation
in prediction window, different metrics and types of data
used [54]. The future trends in wind speed forecasting will be
architecture of input system, wind speed features, and effective
utilization of metrics in improving accuracy.

FIGURE 1. Optimization flow diagram of the proposed strategy for wind
speed forecasting.

B. NOVEL CONTRIBUTIONS
Weather prediction is a complex endeavor, requiring knowl-
edge and prediction of different atmospheric conditions. Wind
speed is a critical element in predicting weather as it can affect
wind power generation. Nonetheless, accurately predicting
wind speeds, particularly during highly fluctuating conditions,
is a challenge. In order to address the previously stated
challenges, the following contributions have been claimed:
• To address the challenges, the proposed work utilized
algorithms inspired by natural processes (Fig. 1 step 2).
Thirteen such algorithms have been evaluated for wind
speed prediction. The aim of these algorithms is to
discover the relationship between distinctive weather
variables and produced wind speed. This is achieved
by inspecting the correlation between combinations of
Intrinsic Mode Functions (IMFs) of these variables.
IMFs refer to the basic constitutive elements resulting
from empirical mode decomposition (EMD) of time
series data which are especially suitable for studying
intricate and nonlinear systems such as the atmosphere.
The proposed work aims to imitate the adaptability and
efficiency of natural systems by using algorithms inspired
by nature when dealing with complex interactions present
in atmospheric data. These algorithms may be based on
various natural phenomena like bird swarming, foraging
by ants, or processes of optimization seen in biological
evolution. The proposed technique aims to make wind
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TABLE 1. Literature Review-state of the art.

speed forecasts more accurate and reliable by blending
such algorithms with sophisticated modeling techniques
and large data sets.

• An optimal search algorithm (Fig. 1 step 3) has been
proposed to further refine the output of nature-hinted IMF
combinations for wind speed predictions. This algorithm
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ensures the most suitable and minimum number of IMF
combinations sets for restoration of predictable wind
speed data.

• Deep learning approaches (Fig. 1 step 4) like the LSTM
and GRU networks have been employed for training
and testing on IMF combinations outcomes of above
mentioned optimal search algorithm.

• An atmospheric dataset (Fig. 1 step 1) collected from the
Climate, Energy, and Water Research Institute (CEWRI),
NARC, Islamabad has been analyzed for wind speed
prediction.

• Subsequently, the experimental analysis (Fig. 1 step 5)
indicates a higher predictive performance advantage as
compared to a direct method over atmospheric and wind
speed data recorded.

The proposed method outperformed conventional on various
metrics for both LSTM and GRU networks. For LSTM,
it achieved RMSE, MAE, MAPE, R2 values of 3.72, 1.22,
1.53×10−3, and 0.8, respectively. For GRU, it achieved
RMSE, MAE, MAPE, R2 values of 3.85, 1.22, 0.07, and
0.98, respectively. The three-wavelet approach yielded RMSE,
MAE, MAPE, R2 values of 12.7, 9.03, 0.03, and 0.79,
respectively, for LSTM, and RMSE, MAE, MAPE, R2 values
of 12.56, 9.23, 0.51, and 0.79, respectively, for GRU. The
direct approach had lower performance, with RMSE, MAE,
MAPE, R2 19.78, 14.38, 0.06, and 0.50 for LSTM, and 18.89,
13.67, 0.68, and 0.52 for GRU.

This paper has been divided into different sections. Every
section offers the particulars of the corresponding part of
the proposed method. Section I describes the introduction,
literature review, contributions, motivation, and research
challenges. The overview of the proposed prediction approach
is presented in section II. Details of nature-inspired algorithms
and their objective function are also provided in this section.
Section III gives the details of experimental analysis including
data acquisition, empirical mode decomposition, performance
measures, and experimental results discussion. The proposed
work is concluded in section IV.

II. PREDICTION FRAMEWORK
A. OVERVIEW
The proposed forecasting method is based on extracting
the best time series signals from the recorded atmospheric
variables. The proposed analysis of input weather features
and wind speed begin with essential phase of time series
data decomposition. Empirical mode decomposition (EMD)
is one of the practical approach for data decomposition.
To simplify the investigation, the EMD is employed (Fig. 2
step 1)which converts input weather variables f1, f2, f3, . . . , fn
data into their corresponding intrinsic mode functions and
residuals. Consequently, each weather feature f including
wind speed data yields IMFs e1, e2, e3, . . . , en. In order to
explore the expressive time series data, the approach explores
each possible combination of the given e1, e2, e3, . . . , en
components for each weather feature. All the possible

additions (Fig. 2 step 2) for given IMFs belonging to each
feature are computed without repetition.
All the IMF combinations for each feature are gathered

to find the correlation between input weather variables and
wind speed data. To minimize the objective function, thirteen
nature-inspired algorithms (Fig. 2 step 3) are evaluated for the
given combinations belonging to each feature. This objective
function ensures the selection of inputs that have maximum
similarity with IMF combinations of wind speed data. λ is
varied from 1.5, 2, 3, . . . , 15 for each algorithm evaluation. The
outcome of each evaluation is an index row of six elements.
Each index belongs to a specific IMF combination of a
given input feature. The outcome is a 15 ×6 row matrix
for each. As there are thirteen algorithms, the outcome is
a 196 × 6 matrix. Each row of this matrix has an overall
correlation, entropy, and number of combined IMFs of wind
speed associated with it. Algorithm 01 (Fig. 2 step 4) ensures
the selection of appropriate output and input signals from
it. These signals are fed into deep learning (Fig. 2 step 5)
algorithms for prediction. Where hyper-parameters of each
deep learning algorithm are optimized using Particle Swarm
Optimization. After combining each signal, the final step
evaluates (Fig. 2 step 6) the prediction performance using
RMSE, MAE, MAPE, and R2 measures.

B. NATURE-INSPIRED ALGORITHMS
In recent years, to mitigate environmental challenges and meet
electricity demands, the grid increasingly requires renewable
sources like wind to produce electricity. In case of wind
energy, electricity generation is considered as of high potential
due to its sustainable use as well as expandable capacity.
Nonetheless, the way in which wind energy is utilized will
depend largely on how well we understand the intricate
interaction existing between atmospheric input parameters
and wind speed produced.
The thirteen optimization algorithms are selected due

to their ability to balance exploration and exploitation,
robustness, versatility, adaptability, convergence time, adap-
tive mechanisms, implementation simplicity, and handling
complex problems compared to other algorithms. These
are all well-established swarm-based algorithms, with good
performance in the literature

Each of these algorithms holds different strengths, and using
them collectively provides quite a powerful search. DF, WOA,
PSO, and Firefly algorithms provide a good balance between
exploration and exploitation, which helps avoid local optima
and improves the likelihood of finding the global optimum.
GA, ABC, and CUCKOO algorithms are robust for different
types of optimization problems (both continuous and discrete).
It is their versatility that enables them to adjust to distinct
problem features and limitations. Coot, MAO, and JSO are
more adaptable to dynamic environments, where challenges
evolve with time. JSO, PSO, and Firefly algorithms have fast
convergence compared to other techniques. BSO, MAO, and
Harmony algorithms maintain diversity among populations,
avoid premature convergence, and through exploration. GA,
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FIGURE 2. Block diagram of the step-by-step implementation of the proposed prediction technique.

PSO, and ABC algorithms are simple to implement and
flexible, which makes them practical for various problems.
DFA, WOA, Firfly, and Cuckoo algorithms are more suitable
for handling complex and high dimensions problems. Coot,
Harmony, and MAO algorithms can change their search
strategies according to the characteristics of problems or the
performance of the algorithm.
The connection between input and output prediction

variables is important in raising the reliability of wind speed
prediction. A high correlation between input versus output data
implies any changes in input will influence observable outputs
in a predictable manner making predictive ability better.
The same idea about a correlation can be extended to

Intrinsic Mode Functions (IMFs) and their combination of
atmosphere variables. Fig. 3 shows the atmospheric data
versus day index (daily atmospheric data for the five-year
horizon, i-e., 2016-2020). While the Fig. 5 shows selected
IMFs of climate variables. These IMFs represent the inherent
oscillatory modes within the atmospheric input data, offering
a nuanced understanding of its dynamic nature. The study
uses dot product analysis to determine the effect of different
IMF combinations of input data on wind speed. The dot
product is utilized as a measure to determine the relationship
between IMF combinations of atmospheric input data and
target wind speed data. Element-wise multiplication followed
by the addition of the two vectors determines the similarity
between them. The higher value of the scaler product identifies
more similarity between two vectors. The R ratio is obtained
from the scalar product divided by the modulus (magnitude)
of the two vectors providing important information on how
much stronger or weaker these atmospheric input quantities are
related to wind speed data hence guiding predictive modeling

as well as a decision-making process.

R =
C .W
|C||W |

(2)

Eqn. 2 utilizes two variables C andW in optimization of the
correlation between weather and wind speed. Here C denotes
IMFs combinations of weather factors whereas W denotes
IMFs combinations. The correlation measure ranges from
−1 to +1, signifying relationship strength between the two
variables. A score approaching +1 implies a strong positive
correlation while one close to −1 indicates negativity. On the
other side, values close to zero or precisely zero imply a lack
of connection between them. The main idea of this analysis is
to determine the optimal IMFs combinations C andW, thereby
maximizing the correlation between weather conditions and
wind speed, crucial for enhancing efficiency and performance
in renewable energy systems.
Algorithm 1 initializes with matrix, M ′ where each row

represents indices of combinations of input and wind features
for a lambda value using a specific optimization algorithm.
Each row has a corresponding Entropy, E and objective criteria
value ξ . Algorithm 1 starts (line 3) by separating the indices
of wind data from the given matrix,M ′ which is performed by
collecting all the rows with a fixed column no. 6. The next step
(line 4) involves retrieving the set of numbers that contains the
constituent IMF numbers for each index of wind data. Each set
length is different. The maximum length is chosen in the next
step (line 5). There are multiple indices as there are more than
one maximum length exists in the input vector. These indices
are further narrowed down by looking for a minimum value
of the objective for the above indices. Line 6 provides these
indices where objective values are minimum. Lastly, resultant
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FIGURE 3. Graphs of data acquisition through different atmospheric sensors for duration of 2016 to 2020 are presented in (a) Maximum
Temperature (b) Minimum Temperature (c) Pan Evaporation (d) Relative Humidity Recording 1 (e) Relative Humidity Recording 2 (f) Average
Humidity Reading (g) Wind Speed.

TABLE 2. Metrics used in algorithm 1.

indices (line 7) are fed to the entropy tensor to provide a single
index l.

By indexing l into p, an IMF numbers set is retrieved into set
f . This set is subtracted (line 9) from sf in order to find out the
IMF number other than f . The resultant set (line 11) is given to
invconstituants to find the combination waveform w’. Line 10
takes union with set f and s to add the number of set f into set
s. Line 12 calls the function step 2, which returns the newM ′,
E and ξ . After the first iteration, set s will become populated.
Therefore, in the second iteration else section of the algorithm
executes. However, this time the algorithm only picks the index
of minimum objective function value. Line 15 to 17 find the
appropriate set f like in if part of the code. Line 18 performs
the union sf and f . Unlike if section, the line 19 identifies the
subtraction of s from sf . If the result in s′ is non-empty, lines
21 and 22 will execute, otherwise, they skipped. While loop
will run until s is not equal to sf .

EMD algorithm decomposes the data regarding climate
conditions of minimum and maximum temperature, pan
evaporation, relative humidity 1, relative humidity 2, average
relative humidity, and wind speed into 7, 8, 10, 9, 9, 9, and
10 individual components. The proposed approach should
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Algorithm 1 Optimal Search Algorithm (OAIMF) for the
Nature-Hinted IMF Combinations of Wind Speed
Input: MatrixM ′, vectors E , ξ , sets s, sf and initialize s=∅
Output: o=invconstiuants(f)
1: while s ̸= sf do
2: if s=∅ then
3: wi=1,2,...,N ← M ′

:,7
4: pi′=1,2,...,N ,j← constituants(wi=1,2,...,N )
5: ei′′=1,2,...,N ← argmax∀i′ (length(pi′=1,2,...,N ,j))
6: ci′′′=1,2,...,N ′ ← argmin∀i′′ (ξ (e

′′
i ))

7: l← argmax∀i′′′ (E(ci′′′ ))
8: f ← pl,j
9: s′← sf − f

10: s← s ∪ f
11: w′← invconstituants(s′)
12: M ′,E, ξ ← functionsetp2(w′)
13: else
14: ind ← argmin∀i′′′′ (ξi′′′′ )
15: wv=1,2,...,N ← M ′

:,7
16: pi=1,2,...,N ,j← constituants(wv=1,2,...,N )
17: f ← pind,j
18: s← s ∪ f
19: s′← sf − s
20: if s′ ̸= ∅ then
21: w′← invconstituants(s′)
22: M ′,E, ξ ← functionsetp2(w′)
23: end if
24: end if
25: end while

explore all the possible combinations of these components.
Therefore, there are 119, 246, 1012, 501, 501, 1012, and
1012 numbers for combination for each climatic condition.
In total, the proposed approach has to pick optimal sets from
119× 246× 1012× 501× 501× 501× 1012≈ 3.77× 1018

number of possibilities. This selection is performed through a
naturally inspired algorithm and proposed search algorithm 1.

The primary selection of IMF combinations is performed by
naturally inspired optimization algorithms. These algorithms
explore IMF combinations with the optimal value of the
objective function. These multiple approaches range λ from
1.5 to 15, resulting in multiple choices of IMF combinations
for each climate feature. Therefore, there is a requirement to
find the most appropriate IMF combinations for the feature
of wind speed, because, the sum of these IMF combinations
should reconstruct the original wind speed data. Algorithm 1
selects two combinations of IMFs related to wind speed data.
It ensures the minimization of the number of combinations.
Each wind-related IMF combination will require a separate
training mechanism for prediction.
Minimizing these numbers of wind speed-related IMF

combinations will directly reduce the computational require-
ments. However, that is only one requirement, the second is to
have weather-related IMF combinations that have maximum

similarity with these two selected IMF combinations related
to wind speed data.
Table 3 identifies these choices where the first selection

corresponds to wind speed combination index 1002. This
combination index relates to the combination of IMF numbers
from 3 to 10. The corresponding objective function value,
ξ is 7.26. The correlation coefficient, R of minimum and
maximum temperature, pan evaporation, relative humidity 1,
and relative average humidity is around 0.8, which shows
the high similarity between these variables and wind speed
data. While the relative humidity 2 data exhibits a correlation
value below 0.8. Table 3 also shows corresponding constituent
IMF sets for each case. Subsequently, algorithm 1 is left
with only the choice to pick the combination index 1. The
signal of this index has the constituent IMF set of {1, 2}. The
given method outcomes in weather-related IMF combinations
with small similarities or even with opposite polarity. The
corresponding objective function value for this selection
is 97.18, which is way higher compared to the first IMF
combination index of 1002. Figs. 6 and 7 are illustrating
the selected combinations and their constituent IMFs set
corresponding to each atmospheric variable for wind speed
related 1 and 2001 index, respectively.

FIGURE 4. Representation of a relationship between regularization factor
λ and objective function value ξ in (a) and ξ ′ in (b) of thirteen
nature-inspired algorithms and their mean value.

C. FORMULATION OF OPTIMIZATION FUNCTION
Nature-inspired algorithms can mimic the principles and
behaviors seen in nature to address difficult optimization or
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search problems. These algorithms draw ideas from natural
evolution processes such as survival of the fittest breed and
inheritance of genes as well as from social animals’ generic
interactions like ants, bees, and birds. Inspired by nature, these
algorithms are powerful tools for addressing a wide range of
challenges.
Nature-based algorithms have the ability to adapt and

improve on their own with time. They respond to varying
situations and adjust their strategies dynamically like
the animals habituate themselves to the new conditions.
Additionally, algorithms inspired by nature are frequently
strong as well as flexible, so they are the right choice
for solving massive optimization problems in complicated
systems where traditional methods may struggle.
In order to facilitate the prediction algorithm, inputs with

high correlation to output should be selected. However,
in addition to that, a minimum number of outputs for training
is required, which is only possible when we have an output
IMF combination of more IMFs. In objective function, nature-
inspired algorithms search to minimize the reciprocals of
the sum of correlations between inputs and output and the
weighted reciprocal of the number of IMFs in the output
IMF combination. This formulation will ensure heightened
correlations between inputs and output alongwith the selection
of an output IMF combination with a high number of
IMFs.
In our case, we have various climate features which

include different types of temperature, pan evaporation, and
humidity readings. To analyze their behavior, the EMDmethod
decomposes them into different IMFs. The proposed method
inclines to find the maximum similarity between input feature
and wind speed data. Therefore, the approach dives to consider
the combinations of these IMFs, and for all seven variables we
have nearly 3.77× 1018 possibilities of combinations. In order
to find the most suitable consolidation, the approach should
have an objective function. Nature-inspired algorithms should
minimize the following objective function, ξ :

ξ =

N∑
i

1
Ri
+

λ

nw
(3)

ξ ′ =

N∑
i

1
Ri

(4)

In Eqn. 3, ξ is the objective function, and in Eqn. 4, ξ ′ denotes
the objective function without the regulation term. N is the
total number of input weather features. Whereas, Ri denotes
the correlation value of wind speed IMF combination and IMF
combination related to other weather variables. nw denotes the
number of constituents IMFs for a particular IMF combination
related to wind speed data. λ signifies the regularization term
which ranges from 1.5 to 15. The larger value of λ forces
these algorithms to select the IMF combination with the large
number of constituents IMFs related to wind speed which is
the desired goal. However, increasing the values of λ will also
increase the average objective function values, ξ and xi′ in

Fig. 4(a,b) for all the nature-inspired algorithms. Therefore,
there is a necessity to seek a better optimization approach for
selecting the best group of IMFs for all weather parameters.
Algorithm 1 searches the best group of IMFs among many
optimized IMF combinations. Tables 8-20 show the results of
searching of these algorithms. Further, table 3 demonstrates
entries from all these algorithms based on the best objective
value, ξ .

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA ACQUISITION
In order to predict the wind speed for a short term, a duration
of 24 hours is considered. The data gathered at the Climate,
Energy and Water Research Institute (CEWRI) field station,
National Agricultural Research Centre (NARC), Islamabad,
Pakistan. The data accumulation is performed on daily basis
at 0900. The latitude and longitude coordinates for data
registration are 33.4o North and 73.8o East at an altitude
of 1632 feet. The atmospheric field station is equipped
with multiple sensors, which record the data of wind
speed, maximum temperature, minimum temperature, pan
evaporation, relative humidity at two different times e.g.,
humidity 1, humidity 2, and their average relative humidity.
Fig. 8 shows some of these sensors. For pre-processing and
training purpose, the considered duration is five years. The
considered daily data range from 2016 to 2020.

B. EMD
In signal processing and data analysis, where complex datasets
are involved, they cannot be analyzed using traditional
methods due to their non-linearity and non-stationary nature.
As an effective technique, Empirical Mode Decomposition
(EMD) is seen as having the ability to unfold complex
dynamics within such datasets. In the late 1990s, Huang
et al. developed EMD as a method of decomposition signals
into a finite number of intrinsic mode functions (IMFs) as
well as the residual. Unlike Fourier-based methods which
use predetermined basic functions, EMD decomposes signals
into IMFs that are capable of capturing localized oscillations
adaptively. The key steps involved in EMD include:

1) Data Preparation: The entire process starts with the
decomposition of a one-dimensional signal x(t) into
its internal oscillatory elements.

2) Identification of Extrema: The second step includes
the identification of all the local maxima and minima
related to that signal x(t). These points are referred to
as extrema.

3) Construction of Upper and Lower Envelopes: Attach
the maxima and minima to create the upper and
lower envelopes respectively. These envelopes, however,
should be equisurfaces passing through the maxima and
minima.

4) Calculation of Mean Envelope: Calculate a mean m
envelope using the upper Nu(t) and lower Nl(t) ones.
The signal’s local trend can be illustrated by this mean
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FIGURE 5. Representation of IMFs and Residual decomposed components by Empirical Mode Decomposition algorithm of different
atmospheric sensors for duration of 2016 to 2020 in (a) Maximum Temperature (b) Minimum Temperature (c) Pan Evaporation (d)
Relative Humidity Recording 1.
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FIGURE 5. (Continued.) Representation of IMFs and Residual decomposed components by Empirical Mode Decomposition
algorithm of different atmospheric sensors for duration of 2016 to 2020 in (e) Relative Humidity Recording 2 (f) Average
Humidity Reading (g) Wind Speed.

envelope. Eqn. 5 represents the same.

m =
Nu(t)+ Nl(t)

2
(5)

5) Extraction of the First Intrinsic Mode Function (IMF):
In Eqn. 6, after subtraction of the mean envelope from
original signal, which is denoted as I1(t) resonates with

the fast oscillations that are found in the original signal.
This is first IMF.

Ii = x − m (6)

6) Repeat the EMD Process: Consider Ii(t) as a fresh signal
and employ steps 2-5 again to extract another IMF at
t , where this process is iterative until a given stopping
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FIGURE 6. Graphs of 1st optimal IMFs combination chosen by nature-inspired algorithms and algorithm 1 of different atmospheric sensors for
duration of 2016 to 2020 are presented in (a) Maximum Temperature (b) Minimum Temperature (c) Pan Evaporation (d) Relative Humidity
Recording 1 (e) Relative Humidity Recording 2 (f) Average Humidity Reading (g) Wind Speed.

TABLE 3. Selection of IMFs combinations of wind speed data and weather variables with corresponding similarities, objective value ξ , and entropy.

rule is achieved. Frequently, this rule can be the point at
which a set number of IMFs are achieved or when the
residue is too tiny.

7) Residue Extraction: In Eqn. 7, by subtracting the sum of
all extracted IMFs from the original signal, the residue
is derived. Residue refers to the remaining signal or
low-frequency components that were not caught by

IMFs.

Residual = x −
N∑
i

Ii (7)

8) Repeat EMD on the Residue: Sometimes, it is
advantageous to apply EMD recursively on the residue,
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FIGURE 7. Graphs of 2nd optimal IMFs combination chosen by nature-inspired algorithms and algorithm 1 of different atmospheric sensors for
duration of 2016 to 2020 are presented in (a) Maximum Temperature (b) Minimum Temperature (c) Pan Evaporation (d) Relative Humidity
Recording 1 (e) Relative Humidity Recording 2 (f) Average Humidity Reading (g) Wind Speed.

TABLE 4. Experimental results of the proposed technique and their corresponding time cost.

TABLE 5. PSO optimized hyper-parameters for LSTM and GRU.

such that more IMFs and one residue are obtained.
This process can be continued until the residue is

TABLE 6. Computational resources for LSTM and GRU models training.

insignificant or until some decomposition target is
achieved. However, the step is optional.
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FIGURE 8. Data sensors are located at CEWRI field station, NARC,
Islamabad, Pakistan for atmospheric data collection (a) Temperature
Sensor (b) Wind and humidity sensors (c) Pan Evaporation.

TABLE 7. Architecture of LSTM or GRU models.

9) Termination Condition: The EMD process ends if the
defined stop rule is reached when further decomposition
does not yield significant additional information.

10) Post-processing: When the decomposition process is
completed, some post-processing techniques may be
used, including filtering and reconstruction of the
extracted IMFs along with the residue, according to
the application requirements.

By adhering to these measures, Empirical Mode Decomposi-
tion (EMD) facilitates the splitting up of signals into intrinsic
oscillatory components giving beneficial perspectives to the
fundamental dynamics of data. EMD enables to effectively

analyze intricate signals that have a nonlinear characteristic.
This method gives us an idea about different datasets’ basic
dynamics. EMD helps us remove useful data by separating
the signals into what we call IMFs adaptively. It means that by
using EMD, one has an opportunity to get useful information
for different signal-processing applications.

C. PERFORMANCE MEASURES
In mathematical modeling, Root Mean Square Error (RMSE)
can be thought of as a foundation stone, because, it acts
as a strong measure that assesses how far apart forecasts
from reality are. The basic meaning of RMSE is the
average difference between estimator predictions and actual
observations. The disparity between data inputs and the
regression line epitomizes a pivotal point when assessing
how well a predictive model would perform in the future.
This difference computes unambiguously as the Root Mean
Square Error (RMSE) which is also the standard deviation of
these differences known as the residuals. In other words, the
residuals are the differences between the actual values and
the ones forecasted by a model. The RMSE functions as a
gauge that measures how closely the data points fall on the
regression line. When the RMSE is close to one, it means
that there are almost no residuals and, consequently, the data
points are tightly clustered around the regression line. In other
words, if you have a small RMSE value, then your model
is more accurate than when you have a higher one. RMSE
measures are not only statistical but enable to predict with
greater accuracy.

RMSE =

√∑n
i (yi − xi)2

n
(8)

In Eqn. 8, yi denotes the original or ground truth values while
xi represents the output values of the prediction model and n
denotes the total length of yi or xi.
In the realm of data analytics and predictive modeling,

Mean Absolute Error (MAE) is a simple and fundamental
metric that describes the accuracy of predictions. At its
core, MAE measures the degree to which predicted values
deviate from their actual values. Essentially, MAE computes
differences between individual predicted values (forecasted
observations) against actual ones without considering their
directions. This property allows MAE to handle exceptions or
extreme values more safely than others since it gives the same
value for every deviation without considering its size and sign.
Mathematically, the formula for MAE is straightforward:

MAE =
1
n

n∑
i

|yi − y′i| (9)

whereas, in Eqn. 9, n represents the total number of data points
and yi denotes the original or true value of the ith data point.
While y′i represents the predicted value for the i

th data point
and |. | denotes the absolute value operator.
MAE provides an aggregate view of the total predictive

performance of a model by taking the sum of the absolute
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FIGURE 9. Results graphs of the proposed and comparative techniques.

differences between predicted values and true values for each
point and then averaging them. One of the key advantages of
MAE is its interpretability. The mean absolute error (MAE) in
contrast to other error metrics is not squared, meaning that it
preserves the original scale of a dataset which makes it more
intuitive to interpret prediction errors as well as being directly

interpretable into original units. MAE is a robust framework
to evaluate model performance across various datasets and
contexts, because, this method is simple to calculate and easy
to understand.
The mean absolute percentage error (MAPE) serves as a

crucial metric in forecasting and prediction. Its significance
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FIGURE 10. Error graphs of training and testing data for GRU and LSTM networks.

lies in its ability to offer a relative measure of error with
different datasets and forecasting scenarios. MAPE facilitates
easy comparisons and evaluations of forecasting performance
by expressing the error as a percentage of the actual
values.

One critical benefit of MAPE is its adaptability; in addition
to indicating how well a model predicts, it closely resembles
the loss functions defined relative to regression training sets.
Consequently, the use of MAPE within machine learning
allows for optimizing prediction accuracy through shrinkage
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FIGURE 11. Graphs of errors and R2 across GRU and LSTM.

property between estimated (output) and measured (true)
values. The main focus of the MAPE algorithm is on
appraising prediction techniques so as to connect the gap
between theoretical projections and actual results; which
makes it a compelling benchmark as well as an effective
measure of accuracy. This approach drives precise forecasts
that are reliable predictions across diverse domains.

Mathematically, MAPE can be expressed as,

MAPE =
1
n

n∑
i

|
yi − xi
yi
| (10)

In Eqn. 10, yi denotes the vector having actual values, xi is the
vector of predicted values and n denotes the total length of yi
or xi.
R2 performance measure has a significant impact on

regression or prediction models’ evaluation. It gauges the
level of explanations given by the independent variable(s) in a
model to variations of the dependent variable. In other words,
R2 measures the proportion of variability in the dependent
variable that is attributable to the independent variable(s) in

the model. R2 is a measure that ranges from zero to one and
indicates how well a model fits data. It provides a clear signal
of how well a model fits data. Large values of R2 signify a
model that fits well while small values suggest poor fit. It is
significant to note that R2 is useful for measuring accuracy
but not precision in terms of data prediction. In other words,
it is usually used together with other evaluation metrics when
appraising how well a model work.
The computation of R2 is based on a mathematical

framework that entails contrasting the variance of the original
data set against that predicted by a specific model in terms
of prediction accuracy. This comparison allows for the
determination of the proportion of variability in the dependent
variable that is accounted for by the independent variable(s)
in the model. The mathematical framework of R2 is as

R2 = 1−

∑n
i (yi − xi)∑n
i (yi − ŷ)

(11)

In Eqn. 11, yi denotes the vector of actual values, xi is vector
of the predicted values, and ŷ denotes the average over y.
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TABLE 8. Dragon fly.

TABLE 9. Genetic algorithm.

VOLUME 12, 2024 184247



M. D. Sabir et al.: Nature-Inspired Driven Deep-AI Algorithms for Wind Speed Prediction

TABLE 10. Bird swarm optimization.

TABLE 11. Whales optimization algorithm.
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TABLE 12. COOT.

TABLE 13. Jump spider optimization.
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TABLE 14. COKOO-III.

TABLE 15. MAO.
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TABLE 16. Particle swarm optimization.

TABLE 17. Fire fly algorithm.
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TABLE 18. Harmony optimization.

D. EXPERIMENTAL SETUP
Deep learning approaches of LSTM and GRU networks are
implemented for experimental verification and evaluation
of the proposed pre-processing technique with comparative
methods. Two other methods are considered for comparison,
one is the direct method which is without any pre-processing
atmospheric data is fed into the deep learning models for train-
ing. The second method [55] involves sample entropy-based
reconstruction of segregated IMFs of atmospheric variables.
This technique results in three frequency-based signals that
are low-frequency component, periodic component, and high-
frequency component. These signals are trained separately
on deep learning models to predict each component. In order
to assess the overall wind speed, these three components are
utilized to reconstruct a signal. However, more components
introduce higher reconstruction error as well as more training
and testing resources. This limitation is addressed by our
method by minimizing the components to two sub-signals
for reconstruction.
The deep learning approaches of LSTM and GRU

utilize Adaptive Moment Estimation (ADAM) as the default
optimizer. The mechanism of the ADAM’s [56] updating is
very similar to the RMSP, which is an optimization method
commonly used for training deep learning networks. The
model parameters updating of both methods are performed at
each iteration through moving averages. ADAM, however,
takes an additional step by adding a moment term in its
computation. ADAM employs parameter gradients and their

corresponding squared values for running average calculations
at each element. This utilization of parameter gradients and
their squared terms in overall calculation allows for finer-
grained as well as dynamic changes in models’ weights. These
squared values enable the ADAM to adaptively adjust the
learning rates for different parameters in the model. This can
be advantageous in instances, where some parameters require
faster updates while others don’t need such rapid adjustments
during training.

Mi+1 = β1Mi + (1− β1)∇L(θi) (12)

vi+1 = β2vi + (1− β2)[∇L(θi)]2 (13)

θi+1 = θi −
lMl
√
ui + ε

(14)

In Eqn. 12 and 13, β1 and β2 are the decay rates of
gradients and their squares, respectively. Eqn. 14 illustrates
the parameter updating procedure similar to RMSP, θi denotes
training parameter i, and l represents the learning rate, which
should be greater than zero.M describes the momentum while
∇L(θi) represents the gradient of the loss function. Whereas,
in Eqn. 14, ε is the small value for prevention if the square
root value of vi is zero.
The experimental analysis demonstrates the lead of the

proposed method over the state-of-the-art deep learning
models like LSTM and GRU. For the analysis purpose, the
performance criterion of RMSE, MAE, MAPE, and R2 are
considered in the table 4. Further, Fig. 9 illustrates the
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TABLE 19. Artificial bee colony.

prediction responses of each method. The proposed method
achieved 3.72, 1.22, 1.53 × 10−3, and 0.8 values of RMSE,
MAE, MAPE, and R2 for the LSTM network. While 3.85,
1.22, 0.07, and 0.98 values of RMSE, MAE, MAPE, and
R2 for the GRU network. The three-wavelet approach acquired
12.7, 9.03, 0.03, and 0.79 values of RMSE, MAE, MAPE, and
R2 for the LSTM network. On the GRU network, 12.56, 9.23,
0.51, and 0.79 values of RMSE, MAE, MAPE, and R2 are
achieved. The direct approach obtains 19.78, 14.38, 0.06, and
0.50 values of RMSE, MAE, MAPE, and R2 for the LSTM
network. While 18.89, 13.67, 0.68, and 0.52 values of RMSE,
MAE, MAPE, and R2 for the GRU network.
PSO is the algorithm that mimics the social behavior

of individual birds in a swarm to find the best solution
to a particular problem. Each swarm individual is called a
particle, which represents a potential solution to the problem.
Particles roam through the search space also known as possible
solutions looking for the most suitable solution. The key
advantage of PSO is its simplicity and straightforwardness to
implement. It can work without gradient data, which makes
it good for improvement issues without gradients or with
poor computation properties. Given these properties of the
PSO, the approach employed it to find hyper-parameters
tuning of LSTM and GRU networks. Table 5 demonstrates the
values of the optimized hyperparameters for both LSTM and
GRU networks. Table 6 describes the computational resources
utilized to train these networks. Table 7 provides the details
of the architecture of both networks.

The experiment outcomes demonstrate enhanced perfor-
mance as compared to the other methods for each performance
measure. Fig. 9 illustrates the responses of these proposed and
comparative techniques. The figure includes the first column
of the GRU network while the second column illustrates the
responses of the LSTM network. While the first row belongs
to the direct approach, the second row shows the responses
to the prediction of the three-wavelet method and the last
row demonstrates the responses of the proposed method. The
graphs evidently show the proposed technique’s performance,
which is far better than its counterpart techniques.

Fig. 10 illustrates the error graphs of both training and
testing, separately. Overall, the training errors are for less
than testing errors for the LSTM and GRU networks. Error
analysis of the proposed method and comparative methods
is provided in Fig. 11. The error and its corresponding
standard deviation are considered for these methods across
GRU and LSTM networks. The direct, three-wavelet, and
proposed methods represent the error averages over both
networks. The direct method demonstrates the maximum
error in all error measures. Fig. 11(a) illustrates the averages
and their corresponding standard deviations related to the
mean square error. Fig. 11(b) represents the same mean
average error. Fig. 11(c) demonstrates the means and their
standard deviations for mean average percentage error. Lastly,
the R2 value demonstrates the best value for the proposed
technique in Fig. 11(d). Overall, the proposed method, has
less error and a higher R2 value than its counterparts.
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TABLE 20. COKOO-II.

IV. CONCLUSION
Wind energy is a readily available and clean renewable energy
source (RES) that could play a vital role in the sustainable
growth of developing countries like Pakistan. However, wind
energy generation forecasting is quite difficult due to the
unpredictable nature of the wind speed. Management of
energy utilization can become very efficient if knowledge
about the wind blowing is available in advance. This work
represents a framework of a deep learning-based approach
to wind prediction, which involves a pre-processing step
of feature selection using nature-inspired algorithms. Our
proposed technique can speculate the wind speed in advance
with higher accuracy than the other state-of-the-art techniques.
The experiment is evaluated on available recorded atmospheric
data from 2016 to 2020 at the Climate, Energy, and Water
Research Institute (CEWRI), NARC, Islamabad, Pakistan. The
results demonstrate the superiority of the proposed approach
over other deep-learning methods. The proposed method
achieved an RMSE of 3.72 for the LSTM network and an
RMSE of 3.85 for the GRU network. The nearest performance
of RMSE based on the LSTM network is 12.70, while for
the GRU network, the RMSE is equal to 12.56. However, the
time cost of the proposed technique is 5× more than the three-
wavelet approach due to the computation requirements of
optimized deep learning networks architecture. Our proposed
method can be implemented in a field where it can effectively
predict the wind speed by considering the other atmospheric
variables. The computation time of our proposed architecture

can be reduced by utilizing different the network cut and
precision reduction of trained parameters such as pruning
and quantization, which can be taken up as a future work.

APPENDIX A
TABLES
See Tables 8–20.
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