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Abstract: Planning maintenance strategies in advance with respect to the installation and running of 

manufacturing assets positively affects operational expenditure during their usage. However, the early 

stages of the asset lifecycle are poor of operational data. Thus, domain knowledge of experts, related to 

the asset, the process and production requirements, is the primary source to determine which maintenance 

strategy better fits in a specific context. Hence, ontology-based systems represent a relevant help in this 

direction. In this work, given the importance of the criticality analysis (CA) for maintenance planning, 

the CA is analyzed from an ontological perspective to automatically associate a maintenance strategy to 

the asset under analysis. Moreover, to unveil the power of CA, its multi-attribute nature is considered, 

including not only availability as guiding criterion, but also quality and energy. The developed ontology-

based CA allows to (i) semantically align all involved experts, and (ii) potentiate the analysis through 

reasoning capabilities. Finally, preliminary results from an industrial case in a food company are shown. 
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1. INTRODUCTION 

Planning maintenance strategies in advance with respect to 

the installation and running of manufacturing assets 

positively affects operational expenditure during their usage 

(Roda et al., 2020). However, in the BoL (Beginning of Life) 

of the asset, operational data are not available, if not from 

testing phases, benchmarks and data banks, whose conditions 

are generally far from the reality in which the asset will work. 

Nonetheless, an a priori maintenance strategy definition 

provides many advantages (Márquez et al., 2009). Thus, 

several analyses may be adopted, among which the criticality 

analysis (CA) is widespread. It combines experts’ knowledge 

to devise a decision on the maintenance strategy that better 

fits each manufacturing asset (Gopalakrishnan et al., 2020). 

As such, the CA is useful both in the design phase as well as 

in the commissioning phase of manufacturing assets. 

To promote the use of CA and systemize its steps, a multi-

attribute ontology-based criticality analysis (MOCA) is 

proposed. Two choices are at its root: 

1. the multi-attribute nature of CA, defining the criticality 

of an asset not merely on its availability, but considering 

other criteria that, properly combined, helps promoting 

a better maintenance strategy selection (Braglia, 2000); 

2. the ontology model forming the backbone of the CA, 

since (i) it univocally defines the adopted terminology, 

by semantically aligning involved experts (Matsokis et 

al., 2010); (ii) it allows for reasoning and inferencing. 

After an overview on the application areas of ontologies in 

maintenance, the ontological model supporting MOCA is 

presented and applied in an industrial case. 

2. ONTOLOGY FOR MAINTENANCE OF PHYSICAL 

ASSETS: APPLICATION AREAS 

In information systems, ontologies (namely, computational 

ontologies) are artifacts that describe a portion of the world 

for some purpose (Staab and Studer, 2010). Being the current 

an information-based (industrial) world (Arp et al., 2015), the 

application of ontology engineering to maintenance is 

growing in all sectors due to the potentialities they offer in 

exploiting domain-related tacit and explicit knowledge (Potes 

Ruiz et al., 2013). In the scientific literature, ontologies used 

for maintenance on physical assets could be grouped in two 

main areas (see 2.1): ontologies for PHA (Process Hazard 

Analysis), ontologies for PHM (Prognostics and Health 

Management). Moreover, ontologies for IoT (Internet of 

Things) and CPS (Cyber Physical Systems) are also relevant 

in the realm of smart manufacturing (see 2.2), providing the 

means where to embed advanced maintenance approaches. 

 

Fig. 1. Application areas for ontologies in maintenance. 

Common to all is the goal of enhancing any sort of analysis 

of data to finally improve the maintenance decision-making 

performance, by semantically enriching already available 
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knowledge (Karray et al., 2012). The remainder of this 

section reports examples for each of the three areas 

previously enlisted, i.e. PHA, PHM and IoT and CPS, based 

on a selection of relevant literature from the review process. 

2.1 Ontologies for PHA and PHM 

PHA includes all analyses in order to capture the knowledge 

of the asset and related processes to support maintenance 

activities, like asset/failure mode prioritization and root cause 

identification. Among them, FMEA/FMECA, i.e. Failure 

Modes and Effects (and Criticality) Analysis, covers a 

primary role and is widely used in industry. For example, 

(Rehman and Kifor, 2016) proposes an ontology-based 

system to support experts in completing FMEA with potential 

causes and associated risk. In (Zhou et al., 2015) an 

intelligent diagnosis systems of faults for wind turbines based 

on FMECA, ontologically formalised, is proposed, allowing 

maintenance personnel be aware of the fault cause and plan a 

proper solution. Considering another PHA analysis, (Zhao et 

al., 2009) develops PetroHAZOP, a case-based reasoning 

expert system fostering HAZOP analyses by comparing 

already available cases and find the more similar, if any. 

On the other hand, elaborating multi-sourced data to take 

reactive and proactive maintenance actions is the goal of 

PHM, which is increasingly adopted in the current data-

driven approach to the management of assets (Guillén et al., 

2016). To semantically enrich data gathered from the 

shopfloor and reason over available domain knowledge, 

several ontologies are developed. An example is represented 

by (Nuñez and Borsato, 2018), where an ontology for PHM, 

called OntoProg, is proposed, able to guide data collection 

and support inference over relationships between failure 

modes and failure causes. Moreover, (Medina-Oliva et al., 

2014) developed an ontology for a fleet-wide approach to 

capitalize dispersed knowledge for advanced diagnosis. Also, 

a smart condition monitoring systems for triggering 

maintenance interventions is proposed by (Cao et al., 2019), 

where the related tasks are formalised though the ontology. 

Overall, the common goal of ontologies for PHA and PHM is 

to promote knowledge sharing between experts to advance 

and ease the analysis of asset and its failures (and related 

modes, causes, effects, etc.) to plan at best maintenance 

strategies and trigger eventual reactive or proactive actions. 

2.2 Ontologies for IoT and CPS 

IoT and CPS represent the building blocks of smart 

manufacturing. The former refers to the set of intelligent 

equipment that gather and share large amount of data 

(Kharlamov et al., 2019); the latter, instead, relates to the 

capability of collaboration between smart industrial objects, 

leveraging on real-time computation in the cyber space to 

have impact on how real objects act (Garetti et al., 2015). 

Regarding IoT-related ontologies, (Gulati and Kaur, 2019) 

developed an ontological model to represent a reference 

architecture orchestrating smart objects to completely exploit 

all services and functionalities made available. Also, in 

(Mozzaquatro et al., 2018) an ontology-based framework is 

proposed to connect industrial smart equipment while 

guaranteeing high standards of cyber-security. On the side of 

CPS, (Ansari et al., 2018) proposed an ontology that facilitate 

human-CPS collaboration and thus enhancing problem-

solving capabilities. Moreover, (Maleki et al., 2017) 

supported sensors integration in CPS by allowing engineers 

select and integrate all those sensors which are really useful 

for decision-making. 

Concluding, ontologies for IoT and CPS are seen as main 

means to guarantee semantic and technical interoperability 

between smart objects/systems present in production plants. 

2.3 Concluding remarks 

The identified areas of application of ontologies outline the 

directions to address in order to develop an ontology for 

maintenance decision-making support. Ontologies are in fact 

usable in order (i) to understand, relate, and infer the asset 

characteristics in PHA and (ii) to semantically enrich the 

available data for PHM goals; besides, it is required (iii) to 

guarantee interoperability between and orchestrate industrial 

objects and systems based on IoT and CPS. All of them point 

towards supporting and extending capabilities for modern 

maintenance in the smart manufacturing context. 

Even though the identified areas do not cover the entire set of 

application of ontologies, they offer some insights for future 

research. Indeed, most of the ontologies: 

1. share some common concepts, mainly related to the 

physical asset decomposition and manufacturing 

process description; however, the formalised concepts 

change from one ontology to another, arising 

interoperability issue; thus, there is a need to leverage 

on application-independent ontologies and reuse them to 

guarantee the very ground compatibility; 

2. are confined in the MoL (Middle of Life); indeed, 

today, maintenance, with the evolution driven by the 

digitalisation, is majorly analysed and addressed when 

the asset is already operating and maintained; although, 

there is a need to concentrate on knowledge exploitation 

at the very first stage of the asset lifecycle, i.e. BoL; 

thus, being PLM a most advanced research in ontologies 

and their practice, a look towards PLM-fitted ontologies 

should be given to understand how it could help in 

improving maintenance strategy design and planning. 

Therefore, this work aims at contributing to the use of 

ontology also in the BoL of the asset, where almost no data 

are available, and experts’ knowledge remain the primary 

source for decision-making. The next section 3 describes the 

development of a multi-attribute ontology-based criticality 

analysis (thus within the ontologies for PHA area), called 

MOCA, which enables maintenance strategies planning of 

manufacturing assets in BoL. 
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knowledge (Karray et al., 2012). The remainder of this 

section reports examples for each of the three areas 

previously enlisted, i.e. PHA, PHM and IoT and CPS, based 

on a selection of relevant literature from the review process. 

2.1 Ontologies for PHA and PHM 

PHA includes all analyses in order to capture the knowledge 

of the asset and related processes to support maintenance 

activities, like asset/failure mode prioritization and root cause 

identification. Among them, FMEA/FMECA, i.e. Failure 

Modes and Effects (and Criticality) Analysis, covers a 

primary role and is widely used in industry. For example, 

(Rehman and Kifor, 2016) proposes an ontology-based 

system to support experts in completing FMEA with potential 

causes and associated risk. In (Zhou et al., 2015) an 

intelligent diagnosis systems of faults for wind turbines based 

on FMECA, ontologically formalised, is proposed, allowing 

maintenance personnel be aware of the fault cause and plan a 

proper solution. Considering another PHA analysis, (Zhao et 

al., 2009) develops PetroHAZOP, a case-based reasoning 

expert system fostering HAZOP analyses by comparing 

already available cases and find the more similar, if any. 

On the other hand, elaborating multi-sourced data to take 

reactive and proactive maintenance actions is the goal of 

PHM, which is increasingly adopted in the current data-

driven approach to the management of assets (Guillén et al., 

2016). To semantically enrich data gathered from the 

shopfloor and reason over available domain knowledge, 

several ontologies are developed. An example is represented 

by (Nuñez and Borsato, 2018), where an ontology for PHM, 

called OntoProg, is proposed, able to guide data collection 

and support inference over relationships between failure 

modes and failure causes. Moreover, (Medina-Oliva et al., 

2014) developed an ontology for a fleet-wide approach to 

capitalize dispersed knowledge for advanced diagnosis. Also, 

a smart condition monitoring systems for triggering 

maintenance interventions is proposed by (Cao et al., 2019), 

where the related tasks are formalised though the ontology. 

Overall, the common goal of ontologies for PHA and PHM is 

to promote knowledge sharing between experts to advance 

and ease the analysis of asset and its failures (and related 

modes, causes, effects, etc.) to plan at best maintenance 

strategies and trigger eventual reactive or proactive actions. 

2.2 Ontologies for IoT and CPS 

IoT and CPS represent the building blocks of smart 

manufacturing. The former refers to the set of intelligent 

equipment that gather and share large amount of data 

(Kharlamov et al., 2019); the latter, instead, relates to the 

capability of collaboration between smart industrial objects, 

leveraging on real-time computation in the cyber space to 

have impact on how real objects act (Garetti et al., 2015). 

Regarding IoT-related ontologies, (Gulati and Kaur, 2019) 

developed an ontological model to represent a reference 

architecture orchestrating smart objects to completely exploit 

all services and functionalities made available. Also, in 

(Mozzaquatro et al., 2018) an ontology-based framework is 

proposed to connect industrial smart equipment while 

guaranteeing high standards of cyber-security. On the side of 

CPS, (Ansari et al., 2018) proposed an ontology that facilitate 

human-CPS collaboration and thus enhancing problem-

solving capabilities. Moreover, (Maleki et al., 2017) 

supported sensors integration in CPS by allowing engineers 

select and integrate all those sensors which are really useful 

for decision-making. 

Concluding, ontologies for IoT and CPS are seen as main 

means to guarantee semantic and technical interoperability 

between smart objects/systems present in production plants. 

2.3 Concluding remarks 

The identified areas of application of ontologies outline the 

directions to address in order to develop an ontology for 

maintenance decision-making support. Ontologies are in fact 

usable in order (i) to understand, relate, and infer the asset 

characteristics in PHA and (ii) to semantically enrich the 

available data for PHM goals; besides, it is required (iii) to 

guarantee interoperability between and orchestrate industrial 

objects and systems based on IoT and CPS. All of them point 

towards supporting and extending capabilities for modern 

maintenance in the smart manufacturing context. 

Even though the identified areas do not cover the entire set of 

application of ontologies, they offer some insights for future 

research. Indeed, most of the ontologies: 

1. share some common concepts, mainly related to the 

physical asset decomposition and manufacturing 

process description; however, the formalised concepts 

change from one ontology to another, arising 

interoperability issue; thus, there is a need to leverage 

on application-independent ontologies and reuse them to 

guarantee the very ground compatibility; 

2. are confined in the MoL (Middle of Life); indeed, 

today, maintenance, with the evolution driven by the 

digitalisation, is majorly analysed and addressed when 

the asset is already operating and maintained; although, 

there is a need to concentrate on knowledge exploitation 

at the very first stage of the asset lifecycle, i.e. BoL; 

thus, being PLM a most advanced research in ontologies 

and their practice, a look towards PLM-fitted ontologies 

should be given to understand how it could help in 

improving maintenance strategy design and planning. 

Therefore, this work aims at contributing to the use of 

ontology also in the BoL of the asset, where almost no data 

are available, and experts’ knowledge remain the primary 

source for decision-making. The next section 3 describes the 

development of a multi-attribute ontology-based criticality 

analysis (thus within the ontologies for PHA area), called 

MOCA, which enables maintenance strategies planning of 

manufacturing assets in BoL. 

 

 

     

 

3. MULTI-ATTRIBUTE ONTOLOGY-BASED 

CRITICALITY ANALYSIS 

The purpose that drives the development of MOCA is to 

support the selection of the most appropriate maintenance 

strategy for each asset in a complex production system, 

which is in its BoL, namely during the commissioning phase. 

Being this the scope of work, the selection of the 

maintenance strategy is done at asset as indenture level, 

looking for a gross design of the strategies, while leaving 

detailed analyses later. 

MOCA is built upon an ongoing research project, in which 

ORMA (Ontology for Reliability-centred MAintenance) 

ontology is developed. Thus, when talking about MOCA we 

refer to the set of concepts, properties and axioms belonging 

to ORMA and specific for the multi-attribute criticality 

analysis, as described in subsection 3.1. 

3.1 Development of ORMA for criticality analysis 

The development of ORMA stems from the need of 

investigating and enhancing ontology engineering for 

maintenance-related purposes. In the scope of this work, 

ORMA is extended in concepts and relationships to foster the 

adoption of ontology-based knowledge management systems 

even from the asset BoL. 

As a background for ORMA modelling, recent ontology 

engineering methodologies, such as DOGMA (Spyns et al., 

2008) and NeOn (Suárez-Figueroa et al., 2015), are 

considered, as well as relevant best practice, such as the 

selection of a reference foundational ontology, the definition 

of competency questions (CQs), and reuse of ontological and 

non-ontological knowledge. 

As Fig. 2 sketches out, ORMA imports ROMAIN (Karray et 

al., 2019) and the IOF-maintenance ontology 

(www.industrialontologies.org/maintenance-wg/), which are 

domain specific reference ontologies, i.e. a higher level of 

specialisation of an ontology for specific domains. Indirectly, 

ORMA reuses also some domain independent reference 

ontologies, that are CCO (Common Core Ontologies) 

(CUBRC, 2020), which further includes very basic 

ontologies like time ontology or unit of measurement 

ontology, and IAO (Information Artifact Ontology) 

(Ceusters, 2012). Concerning the reference foundational 

ontology, ORMA considers BFO (Basic Formal Ontology) 

(Arp, 2015), as suggested by the draft of the ISO 21838. 

 

Fig. 2. Positioning of ORMA with respect to other 

ontologies, all BFO-compliant. 

All the reused ontologies are BFO-compliant. Moreover, 

during the development of ORMA, additional ontological 

resources are used, like those described in section 2.1, after a 

re-engineering process. The following subsection 3.2 details 

the classes of ORMA fitted for MOCA purposes. 

3.2 Main classes for MOCA 

The very core classes of ORMA, useful for MOCA, are 

represented by the physical decomposition of the production 

plant. Both ROMAIN and IOF differ each other in this 

regard; also, they differ from the international normative, like 

the ISO 14224. Thus, Fig. 3 reports how ORMA formalises 

the physical decomposition, complementing and aligning 

afore-mentioned resources with authors’ industrial 

experience. As for graphical representation, UML (Unified 

Modeling Language) class diagram is used as formalism. 

 

Fig. 3. Physical decomposition in ORMA. 

From CCO, the artifact is an “an object that was designed by 

some agent to realize a certain function”. Then, asset, 

functional_unit, and component are inheritance of artifact, 

are disjoint classes, and are related through has_part 

relationships as shown in Fig. 3. Consistently with ROMAIN, 

maintainable_item is also an artifact, which is the target of a 

maintenance strategy. However, maintainable_item is not 

disjoint with any classes “on the other branch” since, 

according to the specific industrial need, an instance could be 

a component and a maintainable_item at the same time 

according to the interesting indenture level. Also, the three-

level physical decomposition is selected according to authors’ 

industrial experience, where decomposing up to the third 

level of granularity is common. This allows avoiding the use 

of reflexive relationships (like, component has_part 

component) that may give flexibility to the model, but it is far 

from the industrial practice and nomenclature. 

The classes devoted to the representation of the multi-

attribute criticality analysis extends from maintainable_item. 

According to the goal of MOCA, the classes and their 

relationships must scheme out the three attributes, i.e. 

Availability, Quality, and Energy, and, for each of them, the 

three FMECA-related parameters, i.e. Occurrence, Severity, 

Detectability, must be modelled. All these classes are 

inheritance of designative_information_content_entity since 

they are symbols denoting entities (Karray, 2019). Fig. 4 

reports the class diagram of this part of ORMA. 
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Fig. 4. Criticality analysis: ontological structure. 

Also, at certain criticality values, the proper 

maintenance_strategy_type should be inferred, which is a 

directive_information_content_entity since it prescribes the 

entity. Thus, the last set of main classes needed to complete 

MOCA refers to the possible maintenance strategy types that 

could be adopted for each asset, as depicted in Fig. 5, 

according to ISO 13306. 

 

Fig. 5. Maintenance strategy types. 

The selection of the maintenance strategy is determined by 

the criticality value, as described in subsection 3.3. 

3.3 Functioning model of MOCA 

For MOCA to function correctly, it is fundamental to 

leverage on the reasoning potentiality of ontologies. In this 

case, two are the main capabilities required to the ontology: i) 

compute the criticality values (both the 

specific_criticality_value and the criticality_value); ii) infer 

which is the strategy to allocate to each asset. Fig. 6 depicts 

how MOCA logically works (functioning model), starting 

from a maintainable_item. 

The first SWRL-based rule (Rule#1) represents the set of 

rules that allows to evaluate the RPN (Risk Priority Number) 

for each attribute, by multiplying occurrence, severity, and 

detectability. For the availability, the rule is expressed as: 

maintainable_item(?a) ^ has_avail_sev_param(?a, ?AS) ^ 

has_value(?AS, ?ASv) ^ has_avail_det_param(?a, ?AD) ^ 

has_value(?AD, ?ADv) ^ has_avail_occ_param(?a, ?AO) ^ 

has_value(?AO, ?AOv) ^ swrlb:multiply(?ACv, ?ASv, ?ADv, 

?AOv) ^ has_avail_criticality(?a, ?AC) -> has_value(?AC, 

?ACv) 

The rules for quality and energy are defined analogously. 

Also, Rule#2 (weighted RPN per attribute) and Rule#3 (RPN 

of the asset) are expressed similarly. Then, to associate to 

each maintainable item a certain maintenance strategy, an 

axiomatic expression should be used, after the Rule#4 linked 

the maintainable_item with the criticality value. Here an 

example for the predictive_maintenance_strategy (when 

inferred, it will collect all maintainable items eligible for that 

strategy): 

maintainable_item and (has_criticality_value some 

xsd:decimal[>=45]) 

 

 

 

 

Fig. 6. Functioning of MOCA: asserted and inferred knowledge complemented by rule-based reasoning. 

4. INDUSTRIAL CASE IN A FOOD COMPANY: 

PRELIMINARY RESULTS 

The industrial case is the one of a world leader food 

company, whose goal is to plan the maintenance strategies 

for production plants in their commissioning/ramp-up phase, 

so no operational data are available. As a Proof of Concept 

(PoC), one plant is selected, which includes around 380 

assets. For each of them, thus considering the asset as 

maintainable_item, a maintenance strategy should be selected 

amongst corrective, preventive, condition-based and 

predictive. Thus, firstly, ORMA (with MOCA-related 

classes) needs to be validated; then, it is applied to allocate 

maintenance strategy and results are briefly shown. 
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4.1 Implementation and verification of MOCA 

The ontological model ORMA, and its classes related to 

MOCA, is implemented in OWL. The ontology editor is 

Protégé, which allows to interrogate the asserted and inferred 

knowledge through several plug-ins. The verification of 

MOCA is carried out by answering to competency questions 

(CQs), like Which are the assets, their categorises and the 

corresponding asset systems to which they belong? Which 

are the assets that has manufacturing as main function?. 

These CQs are answered through SPARQL queries and can 

reflect the current system knowledge. 

4.2 Results 

The selection of the most suitable maintenance strategy is 

based on the reasoning and inferencing capabilities of 

ORMA. The evaluation of the RPNs is obtained through the 

application of SWRL-based rules (see subsection 3.3), while 

the allocation of proper maintenance strategy to each asset is 

up to the reasoner (Pellet is selected). The mapping of the 

criticality value of the maintainable_item, i.e., the asset in 

this PoC, with the maintenance strategy is driven by the 

expertise of the company manager and defined in Table 1. 

Table 1. Criticality value – maintenance strategy map. 

Criticality value (CV) Maintenance strategy 

CV ≥ 45 Predictive or Condition-based 

15 ≤ CV < 45 Preventive 

0 ≤ CV < 15 Corrective 

The CV thresholds are defined qualitatively with the asset 

manager. It is worth noting that for CV ∈ [45; +∞) the 

maintenance strategy may be predictive either condition-

based (currently, also, the ontology does not discern between 

the two); this will be assessed later in the project. Leveraging 

on the company expertise the user-defined values (i.e., the 

values of occurrence, severity, and detectability) are inserted. 

Then, ORMA can infer which is the best maintenance 

strategy for each asset type, as shown in Fig. 7 (?asset is a 

proxy for maintainable_item, and ?mStrat is a proxy for 

maintenance_strategy_type), where Snap SPARQL query is 

used since it allows querying over inferred knowledge. 

 

Fig. 7. Allocation of assets to suitable maintenance strategy. 

5. CONCLUSIONS AND FUTURE RESEARCH 

This research work focuses on the development of MOCA to 

enable knowledge exploitation in the BoL of the asset. As 

support to this activity, an ontological model (ORMA) is 

realised. MOCA is formalised and demonstrated for the 

commissioning phase of the asset, whilst advantages may be 

also envisioned for the design phase, where experts’ 

knowledge may be even more impactful. The industrial 

investigations demonstrate the MOCA capability to infer the 

maintenance strategy according to criticality value provided 

by company experts. In the long run, the developed ontology 

will help the company in aligning how CA is performed in 

the several facilities the company owns. 

Ongoing and future research are on the side of the ontological 

model extension: 

1. Integrate knowledge from similar assets operating in 

other facilities and used as benchmarks to improve 

maintenance strategy allocation, also with additional 

information (such as preventive maintenance frequency 

defined based on the benchmarks). 

2. Integrate knowledge from the operating assets to 

dynamically update the criticality values, leveraging on 

specific algorithms, like in PHM, for asset healthiness 

definition and eventual maintenance strategy adaptation. 

Instead, on the side of technological deployment the effort is 

on: adopt Apache Jena–Fuseki semantic framework 

(https://jena.apache.org) for industrial usage of the 

knowledge base; introduce multi-stakeholders support, 

mitigating opinions through traditional and fuzzy techniques; 

develop a web application to ease knowledge introduction by 

experts, especially in the global context. 

Furthermore, the retrieval of the plant layout and asset 

structure from company EIS represents a step forward. This 

will remove the manual inputting so that the activity will be 

less error prone, and it will guarantee always up-to-date data 

in ORMA/MOCA for shopfloor-synchronized decisions. 
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