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Abstract: This paper proposes an offset-free distributed implementation of a model predictive
controller that employs fuzzy negotiation between agents. The scheme is based on model
augmentation with additional disturbances to enable zero-offset tracking. Moreover, we code
the negotiation criteria as a set of suitable fuzzy rules and consider stability and feasibility
guarantees in the controller design for the linearized subsystems. We applied the method to an
experimental four-tank plant, showing its effectiveness despite the coupling between subsystems
and system-model mismatch.
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1. INTRODUCTION

The increasing industrial requirements in efficiency, qual-
ity, flexibility, safety, and environmental impact have led
to the development of large complex processes involving
many interacting units. Non-centralized control techniques
seem adequate to handle these complex systems and re-
duce computational efforts (Negenborn and Maestre, 2014;
Maestre et al., 2011). In particular, distributed model
predictive control (DMPC) divides the problem into sub-
problems managed by local agents with local information
about the system, and they can communicate with each
other to reach an agreement in the overall control action.
See (Maestre and Negenborn, 2014) for multiple DMPC
schemes based on cooperative, non-cooperative, hierarchi-
cal, and others.

In order to validate these and other advanced control
techniques, the four-tank plant has been proposed as a
benchmark due to its highly coupled states (Johansson,
2000), and its straightforward sectorization. For example,
a multi-agent DMPC based on fuzzy negotiation is stated
in Francisco et al. (2019) and Morales-Rodelo et al. (2019),
and extended by Masero et al. (2021) to eight-coupled
tanks with stability guarantees. Grancharova et al. (2018)
apply a dual-model DMPC to the four-tank plant, and, in
Segovia et al. (2019), agents’ coordination is performed
limiting the difference between the available solutions
inspired by a Lagrangian relaxation problem. However,
only few studies (Mercangöz and Doyle III, 2007; Orihuela
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(a) Plant located in our labs. (b) Schematic diagram.

Fig. 1. Quadruple-tank plant.

et al., 2016; Alvarado et al., 2011) are evaluated in an
experimental plant.

In this paper, we propose a fuzzy DMPC scheme based on
Masero et al. (2021) and particularized for two agents due
to the available experimental setup, but include further im-
provements to prevent steady-state offset. The offset-free
procedure is based on an augmented model that includes
disturbances such as noise and modeling errors (Maeder
et al., 2009). Therefore, each local MPC works with a local
state estimator that provides the state and disturbances
to make set-point corrections and enhance steady-state
accuracy. The choice of the disturbance model in the
augmented model, which is the key to achieving a suitable
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1. INTRODUCTION

The increasing industrial requirements in efficiency, qual-
ity, flexibility, safety, and environmental impact have led
to the development of large complex processes involving
many interacting units. Non-centralized control techniques
seem adequate to handle these complex systems and re-
duce computational efforts (Negenborn and Maestre, 2014;
Maestre et al., 2011). In particular, distributed model
predictive control (DMPC) divides the problem into sub-
problems managed by local agents with local information
about the system, and they can communicate with each
other to reach an agreement in the overall control action.
See (Maestre and Negenborn, 2014) for multiple DMPC
schemes based on cooperative, non-cooperative, hierarchi-
cal, and others.

In order to validate these and other advanced control
techniques, the four-tank plant has been proposed as a
benchmark due to its highly coupled states (Johansson,
2000), and its straightforward sectorization. For example,
a multi-agent DMPC based on fuzzy negotiation is stated
in Francisco et al. (2019) and Morales-Rodelo et al. (2019),
and extended by Masero et al. (2021) to eight-coupled
tanks with stability guarantees. Grancharova et al. (2018)
apply a dual-model DMPC to the four-tank plant, and, in
Segovia et al. (2019), agents’ coordination is performed
limiting the difference between the available solutions
inspired by a Lagrangian relaxation problem. However,
only few studies (Mercangöz and Doyle III, 2007; Orihuela

‹ This paper was founded by the Spanish government under the Pre-
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(a) Plant located in our labs. (b) Schematic diagram.

Fig. 1. Quadruple-tank plant.

et al., 2016; Alvarado et al., 2011) are evaluated in an
experimental plant.

In this paper, we propose a fuzzy DMPC scheme based on
Masero et al. (2021) and particularized for two agents due
to the available experimental setup, but include further im-
provements to prevent steady-state offset. The offset-free
procedure is based on an augmented model that includes
disturbances such as noise and modeling errors (Maeder
et al., 2009). Therefore, each local MPC works with a local
state estimator that provides the state and disturbances
to make set-point corrections and enhance steady-state
accuracy. The choice of the disturbance model in the
augmented model, which is the key to achieving a suitable
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3.2 Control algorithm

We consider the Hp-length control input sequence of agent
i at time instant k:

Uipkq fi ruipkq, uipk ` 1q, . . . , uipk ` Hp ´ 1qsJ, (10)

and the optimal input sequence from minimizing (9):

U˚
i pkq fi ru˚

i pkq, u˚
i pk ` 1q, . . . , u˚

i pk ` Hp ´ 1qsJ. (11)

A shifted sequence Us
i pkq can be obtained by adding

Ki xipk`Hpq to the tail of the sequence Uipk´1q obtained
at the previous time instant:

Us
i pkq fi ruipk ` 1q, . . . , uipk ` Hp ´ 1q,Kixipk ` HpqsJ,

(12)
where Ki is a feedback gain for stability (see details in
Remark 4), and xipk ` Hpq is the state predicted at the
end of the horizon Hp with the data available at k ´ 1.

The proposed hierarchical DMPC algorithm is based
on (Maestre et al., 2011) in combination with the fuzzy
negotiation process to compute the final control sequences.
At each time instant k, the algorithm of Fig. 2 is executed.
First, a coordinator agent calculates the set point (6) and
sends the local reference to the other agent (Step 0.i),
which computes Ki, Pi, and Ωi if there is a change in
reference. Afterwards, agent i solves its MPC problem and
exchanges information to calculate its shifted sequence U s

i
(Step 1.i), its optimal sequence U˚

i (Step 2.i) and the
sequence that wishes for its neighbor j (Step 3.i). In Step
4.i, each agent i fuzzifies the sequences:

tU˚
i , U

s
i , U

wj

i u (13)

to calculate its final U f
i and its cost Jipxipkq, U f

i pkqq (Step
5.i). The overall cost J calculated as the sum of local costs
is compared with the cost of the previous instant time.
Provided that J decreases, agent i applies U f

i ; otherwise,
U s
i is applied instead (Step 6.i). Finally, agent i measures

the current state/output ymi and estimates the state and
disturbance in k ` 1 using its local observer (Step 7.i).

Remark 3. A coordinator agent (in this case, i “ 1)
computes xr and ur with (6) in a centralized manner
due to the coupling between the subsystems. There is no
significant increase in the computational load for this agent
because it is a straightforward algebraic calculation.

Remark 4. In this work, due to the mild nonlinearity of the
plant, we consider the stability approach of Maestre et al.
(2011) by using feedback gains Ki and terminal regions Ωi

for each local MPC problem. However, a rigorous stability
and feasibility analysis would require the inclusion of
terms arising from linearization and estimation errors,
as well as characteristics of the input-to-state stability
framework (Limon et al., 2009; Huang et al., 2013).

3.3 Fuzzy negotiations

Once agent i has its tuple of control sequences (13), the
idea is to fuzzy them to calculate a final input U f

i that
reduces the cost-to-go, and guarantees the stability of the
linearized DMPC scheme. One of the advantages of fuzzy
negotiation is that the computation of the final control
inputs does not require numerous communication steps
to reach a consensus, only merging the input proposals
of each agent. In this work, the specific parameters for
membership functions and fuzzy rules have been selected
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Fig. 3. Fuzzy sets employed in the fuzzy inference process with two
and three alternatives (‘low’, ‘medium’, and ‘high’), assuming
typical triangular and trapezoid shapes for the sets.

heuristically by trial and error considering experimental
results for this case study. The main steps of the fuzzy
negotiation process are the following:

(1) Fuzzification: Crisp numerical values are converted
into fuzzy numbers by considering the degree of
membership in the fuzzy sets based on specific criteria
(refer to Fig. 3).

(2) Rule evaluation: The fitness of control actions is
obtained evaluating all fuzzy rules Nr using the fuzzy
numbers obtained in the previous step. The number of
fuzzy rules is determined by all possible combinations
of linguistic variables and negotiation criteria.

(3) Defuzzification: This step transforms linguistic vari-
ables into crisp numbers that represent the fitness
of a control action considering all rules. The de-
fuzzification method employed is a Sugeno-type fuzzy
inference with constant singleton output membership
functions.

tracking (Pannocchia and Rawlings, 2003), is also studied
in the context of the real application. The main benefits
of fuzzy negotiation considered in this work include the
computation of control inputs that provide smooth re-
sponses and the consideration of economic and other pro-
cess criteria to improve overall performance. Our proposed
scheme is tested in the real plant shown in Fig. 1a, which is
located in the laboratories of the University of Salamanca,
Spain. Therefore, the contribution of the paper is two-
fold: further improvement of a distributed MPC method
to provide offset-free reference tracking, and its first time
assessment in a real plant.

The rest of the paper is organized as follows. Section 2
introduces the problem settings. Section 3 details the
DMPC scheme and the fuzzy negotiation procedure. The
real plant is presented in Section 4, and the results are
provided in Section 5. Conclusions are given in Section 6.

2. PROBLEM SETTING

Consider the following discrete-time non-linear dynamics
of the real plant:

xppk ` 1q “ fpxppkq, uppkqq,
yppkq “ gpxppkqq, (1)

where k is the time instant, and xp P R4, up, yp P R2

are respectively the state, input, and output vectors. The
objective is to design an MPC controller to track outputs
using the linear internal model:

xpk ` 1q “ Axpkq ` B upkq,
ypkq “ C xpkq, (2)

where A,B,C are the state, input and output matrices.

Assumption 1. The pair pA,Bq is controllable and the pair
pA,Cq is observable, with C having a full-row rank.

In light of the possible mismatch between the plant (1)
and the system model, the model (2) is augmented with a
disturbance model as

xpk ` 1q “ Axpkq ` B upkq ` Bd dpkq,
dpk ` 1q “ dpkq

ypkq “ C xpkq ` Cd dpkq,
(3)

where d is the disturbance vector that includes the mod-
eling error, and Bd, Cd are the matrices that link distur-
bances with states and outputs, respectively.

An observer is designed to estimate both the state and
disturbance based on the augmented model (3):

„

x̂pk ` 1q
d̂pk ` 1q

ȷ

“
„

A Bd

0 I

ȷ „

x̂pkq
d̂pkq

ȷ

`
„

B
0

ȷ

upkq

`
„

Lx

Ld

ȷ

`

´ yppkq ` Cx̂pkq ` Cdd̂pkq
˘

,
(4)

where x̂ and d̂ are, respectively, the estimated global
state and disturbance vectors, and Lx, Ld are the observer
matrices. In this work, the observer is designed as a
Kalman filter due to the existence of noisy signals, as
detailed in Section 5.

Proposition 2. ((Pannocchia and Rawlings, 2003, Lemma
1)) The observability of the augmented system (3) is
guaranteed iff the pair pA,Cq is observable and the matrix:

„

A ´ I Bd

C Cd

ȷ

(5)

has a full-column rank.

If Assumption 1 and the condition of Proposition 2 hold,
the augmented system is observable and, therefore, there
exist matrices Lx and Ld in such a way that the stability
of the estimator (4) is guaranteed. Let us define z “ H ym
as the tracked outputs and r as their corresponding ref-
erences. The overall state and input references pxr, urq
should satisfy the following to guarantee offset-free track-
ing for the MPC controller:

„

A ´ I B
H C 0

ȷ „

xr

ur

ȷ

“
„

´Bd d̂pkq
rpkq ´ H Cd d̂pkq

ȷ

. (6)

For further details of this condition and its proof, the
reader is referred to the work of Maeder et al. (2009).

3. DISTRIBUTED MPC CONTROL

We propose a distributed MPC algorithm for two agents
based on fuzzy negotiation. The system is partitioned into
two subsystems i P N “ t1, 2u coupled by inputs, as shown
in Fig. 1b. Note that the partition selection is limited by
the approach to only consider input couplings. Each agent
i makes use of its corresponding linear subsystem model,
which is disaggregated from (2) as:

xipk ` 1q “ Aixipkq ` Biiuipkq ` Bdi
dipkq ` wipkq, (7)

with states xi P Xi, inputs ui P Ui, and wipkq “ Bijujpkq P
Wi being the input coupling with its neighbor j ‰ i. Sets
Xi,Ui, and Wi are compact convex sets that contain the
origin in their interiors. The estimated local state and
disturbance can also be disaggregated from (3).

3.1 Control objective

The overall objective is to track a predefined set-point:

xr “ rxr1 , xr2sJ, ur “ rur1 , ur2sJ, (8)

while minimizing the sum of local cost functions and
satisfying the constraints. At time instant k P N0, each
local MPC controller i P t1, 2u minimizes its cost function
over a predictive horizon Hp:

Jipxipkq, Uipkq, Ujpkqq “
Hp´1
ÿ

n“0

´

}xipk ` nq ´ xripk ` nq}2Qi

` }uipk ` nq ´ uripk ` nq}2Ri

` }ujpk ` nq ´ urj pk ` nq}2Rj

¯

` }xipk ` Hpq ´ xripk ` Hpq}2Pi

(9)

with j P t1, 2u and j ‰ i, subject to:

xipk ` 1q “ Aixipkq ` Biiuipkq ` Bijujpkq ` Bdi
dipkq,

dipk ` 1q “ dipkq,
yipkq “ Cixipkq ` Cdi

dipkq,
xip0q “ x̂ipkq,
dip0q “ d̂ipkq,

xipk ` nq P Xi, n “ 1, . . . , Hp ´ 1,
xipk ` Hpq P Ωi

uipk ` nq P Ui, n “ 1, . . . , Hp,

where xri and uri are the state and input references

that are computed with (6) and (8); x̂i and d̂i are,
respectively, the estimated state and disturbance; Ωi is
a set of terminal states region used as a constraint for
stability (see Remark 4); and Qi ě 0 and Ri, Pi ą 0 are
matrices of appropriate dimensions.
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3.2 Control algorithm

We consider the Hp-length control input sequence of agent
i at time instant k:

Uipkq fi ruipkq, uipk ` 1q, . . . , uipk ` Hp ´ 1qsJ, (10)

and the optimal input sequence from minimizing (9):

U˚
i pkq fi ru˚

i pkq, u˚
i pk ` 1q, . . . , u˚

i pk ` Hp ´ 1qsJ. (11)

A shifted sequence Us
i pkq can be obtained by adding

Ki xipk`Hpq to the tail of the sequence Uipk´1q obtained
at the previous time instant:

Us
i pkq fi ruipk ` 1q, . . . , uipk ` Hp ´ 1q,Kixipk ` HpqsJ,

(12)
where Ki is a feedback gain for stability (see details in
Remark 4), and xipk ` Hpq is the state predicted at the
end of the horizon Hp with the data available at k ´ 1.

The proposed hierarchical DMPC algorithm is based
on (Maestre et al., 2011) in combination with the fuzzy
negotiation process to compute the final control sequences.
At each time instant k, the algorithm of Fig. 2 is executed.
First, a coordinator agent calculates the set point (6) and
sends the local reference to the other agent (Step 0.i),
which computes Ki, Pi, and Ωi if there is a change in
reference. Afterwards, agent i solves its MPC problem and
exchanges information to calculate its shifted sequence U s

i
(Step 1.i), its optimal sequence U˚

i (Step 2.i) and the
sequence that wishes for its neighbor j (Step 3.i). In Step
4.i, each agent i fuzzifies the sequences:

tU˚
i , U

s
i , U

wj

i u (13)

to calculate its final U f
i and its cost Jipxipkq, U f

i pkqq (Step
5.i). The overall cost J calculated as the sum of local costs
is compared with the cost of the previous instant time.
Provided that J decreases, agent i applies U f

i ; otherwise,
U s
i is applied instead (Step 6.i). Finally, agent i measures

the current state/output ymi and estimates the state and
disturbance in k ` 1 using its local observer (Step 7.i).

Remark 3. A coordinator agent (in this case, i “ 1)
computes xr and ur with (6) in a centralized manner
due to the coupling between the subsystems. There is no
significant increase in the computational load for this agent
because it is a straightforward algebraic calculation.

Remark 4. In this work, due to the mild nonlinearity of the
plant, we consider the stability approach of Maestre et al.
(2011) by using feedback gains Ki and terminal regions Ωi

for each local MPC problem. However, a rigorous stability
and feasibility analysis would require the inclusion of
terms arising from linearization and estimation errors,
as well as characteristics of the input-to-state stability
framework (Limon et al., 2009; Huang et al., 2013).

3.3 Fuzzy negotiations

Once agent i has its tuple of control sequences (13), the
idea is to fuzzy them to calculate a final input U f

i that
reduces the cost-to-go, and guarantees the stability of the
linearized DMPC scheme. One of the advantages of fuzzy
negotiation is that the computation of the final control
inputs does not require numerous communication steps
to reach a consensus, only merging the input proposals
of each agent. In this work, the specific parameters for
membership functions and fuzzy rules have been selected
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Fig. 3. Fuzzy sets employed in the fuzzy inference process with two
and three alternatives (‘low’, ‘medium’, and ‘high’), assuming
typical triangular and trapezoid shapes for the sets.

heuristically by trial and error considering experimental
results for this case study. The main steps of the fuzzy
negotiation process are the following:

(1) Fuzzification: Crisp numerical values are converted
into fuzzy numbers by considering the degree of
membership in the fuzzy sets based on specific criteria
(refer to Fig. 3).

(2) Rule evaluation: The fitness of control actions is
obtained evaluating all fuzzy rules Nr using the fuzzy
numbers obtained in the previous step. The number of
fuzzy rules is determined by all possible combinations
of linguistic variables and negotiation criteria.

(3) Defuzzification: This step transforms linguistic vari-
ables into crisp numbers that represent the fitness
of a control action considering all rules. The de-
fuzzification method employed is a Sugeno-type fuzzy
inference with constant singleton output membership
functions.
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Fig. 5. Tanks levels #1 and #2 for the disturbance
matrices considered.

Table 3. Performance indices for multiple dis-
turbance matrices

Indices B1
d B2

d B3
d

Mp1 [%] 4.74 2.53 1.71
Mp2 [%] 5.36 2.02 1.76
ISE1 259.56 217.73 227.10
ISE2 207.48 86.91 93.19
∆u1 13.25 21.03 36.03
∆u2 16.24 27.97 50.73

of the current local measurements and the previous control
action. At each sampling instant, the supervisor agent
provides the set-point (8) to each agent. The estimator
gain Ld is the identity matrix, and Lx has been selected
based on a Kalman filter:

Lx “

»

—

–

0.0093 0.0019 0.0083 0.0020
0.0019 0.0080 0.0016 0.0082
0.0068 0.0015 0.0136 ´0.0001
0.0019 0.0069 ´0.0001 0.0149

fi

ffi

fl

. (19)

Due to the significant plant-model mismatch affecting the
states and outputs, constant non-zero disturbances affect-
ing input and output must be considered. Specifically,
matrices Cd “ I and Bd are designed to achieve suitable
performance (Pannocchia and Rawlings, 2003) while fulfill-
ing the controllability requirements of (5). A performance
comparison is presented in Fig. 5 and Table 3 given three
different disturbance-model matrices:

B1
d “ diagpr0.03, 0.04, 0.03, 0.04sq, (20)

B2
d “ diagpr0.12, 0.12, 0.12, 0.12sq, (21)

B3
d “ diagpr0.24, 0.24, 0.24, 0.24sq. (22)

As shown in Fig. 5, overshoot decreases when Bd increases,
but at the expense of increasing control efforts (see Fig. 6).
In this case, comprising all performance objectives, B2

d
provides the best results. For the performance analysis
given in Table 3, ISE is the integral square error, ∆ui is
defined as in (18) but integrated for the entire simulation
time, and Mpi “ ppxi,max ´xriq{xriq is the overshoot with
xi,max being the peak value of xi.
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Fig. 6. Flow rate of pumps for the disturbance matrices.

Table 4. Fuzzy rules weights

Alternative Case 1 Case 2 Case 3

∆ui

Low (w1) 1 1 1
Medium (w2) 1 0.2 0.2
High (w3) 1 0.1 0.01

Table 5. Performance indices.

Indices Case 1 Case 2 Case 3 Centralized MPC

Mp1 [%] 3.75 3.32 – 3.62
Mp2 [%] 3.72 2.79 – 3.48
ISE1 230.37 308.35 927.92 213.06
ISE2 141.67 195.01 626.65 119.64
∆u1 13.93 7.54 3.43 22.59
∆u2 17.54 9.60 1.92 27.45

5.2 Reference tracking

The experiment consists of applying two successive step
references. First, from hr1 “ 18 cm to hr1 “ 20 cm for
h1, and then, from hr2 “ 20 cm to hr2 “ 22 cm for
h2, as illustrated in Fig. 7. In this experiment, Bd “
diagpr0.04, 0.06, 0.04, 0.06sq have been slightly detuned to
produce a noticeable overshoot for better validation of
the fuzzy negotiation impact. We study the performance
indices of the DMPC for three cases with different weights
for the fuzzy rules (see Figs. 7, 8 and Table 5) together
with a centralized MPC, showing no relevant performance
loss with the proposed distributed framework. Case 1
represents an equal activation of rules for different ∆ui

to give the total fitness of a control sequence, and Cases
2 and 3 have a higher fitness for ‘low’ ∆ui (see Table 4).
The control performance is suitable because the output
trajectories follow the reference signals with small over-
shoots, except Case 3, because an excessive penalization
of control moves prevents reaching set-point.

6. CONCLUSIONS

We present a fuzzy-based distributed predictive controller
for reference tracking, which has been applied to a real
four-coupled tank plant. A procedure to cancel the offset

The fitness of control action U for rule Rr is computed as

αRr pUq “ wx
r ¨ µrpxq ¨ wy

r ¨ µrpyq (14)

where r denotes the r-th rule, µrpxq and µrpyq are fuzzy
sets with wx

r , w
y
r being their corresponding weights regard-

ing the considered linguistic variables (‘low’, ‘medium’,
and ‘high’) and x, y representing two algebraic variables
representing criteria for negotiation (in our case, control
efforts and hydraulic residence time). Thus, the total fit-
ness of the control action for all rules Nr is:

αpUq “
Nr
ÿ

r“1

αRr
pUq. (15)

Regarding Step 4.i of the proposed algorithm, the final
control action U f

i of agent i is calculated as a linear
combination of the triplet of control sequences (13):

U f
i “ Us

i ¨ αpU s
i q ` U˚

i ¨ αpU˚
i q ` U

wj

i ¨ αpUwj

i q
αpU s

i q ` αpU˚
i q ` αpUwj

i q
(16)

Remark 5. Since neighbor j calculates the control se-
quence U

wj

i without considering the state constraints of
agent i, it is necessary to check if the state constraints of
agent i are satisfied. Otherwise, U

wj

i is excluded from (16).

4. A REAL CASE STUDY

The plant is composed of four coupled tanks (Johansson,
2000), which are interconnected as shown in Fig. 1b. The
aim is to track reference water levels considering pumping
energy and other operational requirements. The plant has
two centrifugal pumps (qa and qb) and two manual three-
way valves (γ1, γ2) that distribute the flow rate according
to their opening. The selected partition leads to agent 1
(tanks #1 and #3, and pump b) and agent 2 (tanks #2
and #4 and pump a). This choice is based on the coupling
because the effect of qa is more significant on the agent 2,
and the same holds for qb with agent 1.

Taking into account the parameters from Table 1, each
subsystem is defined by matrices:

A1 “

»

—

–

´1

τ1

S3

S1τ3

0
´1

τ3

fi

ffi

fl

, A2 “

»

—

–

´1

τ2

S4

S2τ4

0
´1

τ4

fi

ffi

fl

,

B11 “ 1

3600

« γ1
S1
0

ff

, B21 “ 1

3600

«

0
1 ´ γ1
S4

ff

,

B12 “ 1

3600

«

0
1 ´ γ2
S3

ff

, B22 “ 1

3600

« γ2
S2
0

ff

,

C1 “
„

1 0
0 1

ȷ

, C2 “
„

1 0
0 1

ȷ

,

where τn “ Sn

an
¨

d

2h0
n

g
with n P t1, . . . , 4u. The inputs

and states are constrained as follows:
0 ă hnpkq ď 0.3, @n P t1, . . . , 4u,
0 ă qmpkq ď 0.5, @m P ta, bu. (17)

Table 2 shows the tuning parameters, the local feedback
gains Ki, and terminal costs Pi. In Fig. 4, we display the
maximal RPI set of each subsystem i, which has been
computed considering constraints (17) and disturbance set

Table 1. Plant parameters.

Parameter Value Description [units]

Si 0.0123 Cross-sectional area of tanks [m2] (i “ 1, ..., 4)
a1 7.21e-5 Tank 1 discharge constant [m2]
a2 7.28e-5 Tank 2 discharge constant [m2]
a3 7.72e-5 Tank 3 discharge constant [m2]
a4 7.83e-5 Tank 4 discharge constant [m2]
h0
1 0.181 Steady state level of tank 1 [m]

h0
2 0.206 Steady state level of tank 2 [m]

h0
3 0.031 Steady state level of tank 3 [m]

h0
4 0.032 Steady state level of tank 4 [m]

q01 0.34 Steady state of q1 [m3{h]
q02 0.33 Steady state of q2 [m3{h]
γ1 0.33 Opening of manual valve 1
γ2 0.35 Opening of manual valve 2
g 9.81 Acceleration of gravity [m{s2]

Table 2. Summary of MPC matrices.

Agent 1 Agent 2

Qi:

„

1 0
0 0

ȷ „

1 0
0 0

ȷ

Ri: R1 “ 1, R2 “ 1 R1 “ 1, R2 “ 1
Ki:

“

´0.0728 ´0.0769
‰ “

´0.0817 ´0.0856
‰

Pi:

„

8.9809 6.0872
6.0872 6.1129

ȷ „

9.4428 6.4978
6.4978 6.5073

ȷ

Fig. 4. Invariant sets (terminal regions) for both agents.

Wi “ BijUj . The prediction horizon for both agents is
Hp “ 30, and the sample time is Ts “ 2 s.

Regarding the fuzzy criteria, we just include the control
efforts (directly linked to pumping energy) in the fuzzy
negotiation because their effects are the most significant
for this case study. In particular, we consider the three
fuzzy sets with trapezoid shapes shown in Fig. 3b. The
control effort of agent i is calculated as:

∆uipkq “ |uipkq ´ uf
ipk ´ 1q|, @i P t1, 2u, (18)

where uipkq is the first element of the corresponding
control sequence available for negotiation in each agent,
and uf

ipk ´ 1q is the control action applied to the plant
at the previous time instant. The knowledge base for the
fuzzy inference system consists of Nr “ 3 fuzzy rules,
where the fitness of each control sequence Ui according
to each rule is:

αrpUiq “ wr ¨ µrp∆uiq, @r P t1, 2, 3u, @i P t1, 2u,
and the total fitness is calculated as (15).

5. EXPERIMENTAL RESULTS

5.1 Estimator

The offset-free procedure requires an observer (3) to es-
timate the disturbance d that captures the plant-model
mismatch, and update the states of each agent, making use
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Fig. 5. Tanks levels #1 and #2 for the disturbance
matrices considered.

Table 3. Performance indices for multiple dis-
turbance matrices

Indices B1
d B2

d B3
d

Mp1 [%] 4.74 2.53 1.71
Mp2 [%] 5.36 2.02 1.76
ISE1 259.56 217.73 227.10
ISE2 207.48 86.91 93.19
∆u1 13.25 21.03 36.03
∆u2 16.24 27.97 50.73

of the current local measurements and the previous control
action. At each sampling instant, the supervisor agent
provides the set-point (8) to each agent. The estimator
gain Ld is the identity matrix, and Lx has been selected
based on a Kalman filter:

Lx “

»

—

–

0.0093 0.0019 0.0083 0.0020
0.0019 0.0080 0.0016 0.0082
0.0068 0.0015 0.0136 ´0.0001
0.0019 0.0069 ´0.0001 0.0149

fi

ffi

fl

. (19)

Due to the significant plant-model mismatch affecting the
states and outputs, constant non-zero disturbances affect-
ing input and output must be considered. Specifically,
matrices Cd “ I and Bd are designed to achieve suitable
performance (Pannocchia and Rawlings, 2003) while fulfill-
ing the controllability requirements of (5). A performance
comparison is presented in Fig. 5 and Table 3 given three
different disturbance-model matrices:

B1
d “ diagpr0.03, 0.04, 0.03, 0.04sq, (20)

B2
d “ diagpr0.12, 0.12, 0.12, 0.12sq, (21)

B3
d “ diagpr0.24, 0.24, 0.24, 0.24sq. (22)

As shown in Fig. 5, overshoot decreases when Bd increases,
but at the expense of increasing control efforts (see Fig. 6).
In this case, comprising all performance objectives, B2

d
provides the best results. For the performance analysis
given in Table 3, ISE is the integral square error, ∆ui is
defined as in (18) but integrated for the entire simulation
time, and Mpi “ ppxi,max ´xriq{xriq is the overshoot with
xi,max being the peak value of xi.
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Fig. 6. Flow rate of pumps for the disturbance matrices.

Table 4. Fuzzy rules weights

Alternative Case 1 Case 2 Case 3

∆ui

Low (w1) 1 1 1
Medium (w2) 1 0.2 0.2
High (w3) 1 0.1 0.01

Table 5. Performance indices.

Indices Case 1 Case 2 Case 3 Centralized MPC

Mp1 [%] 3.75 3.32 – 3.62
Mp2 [%] 3.72 2.79 – 3.48
ISE1 230.37 308.35 927.92 213.06
ISE2 141.67 195.01 626.65 119.64
∆u1 13.93 7.54 3.43 22.59
∆u2 17.54 9.60 1.92 27.45

5.2 Reference tracking

The experiment consists of applying two successive step
references. First, from hr1 “ 18 cm to hr1 “ 20 cm for
h1, and then, from hr2 “ 20 cm to hr2 “ 22 cm for
h2, as illustrated in Fig. 7. In this experiment, Bd “
diagpr0.04, 0.06, 0.04, 0.06sq have been slightly detuned to
produce a noticeable overshoot for better validation of
the fuzzy negotiation impact. We study the performance
indices of the DMPC for three cases with different weights
for the fuzzy rules (see Figs. 7, 8 and Table 5) together
with a centralized MPC, showing no relevant performance
loss with the proposed distributed framework. Case 1
represents an equal activation of rules for different ∆ui

to give the total fitness of a control sequence, and Cases
2 and 3 have a higher fitness for ‘low’ ∆ui (see Table 4).
The control performance is suitable because the output
trajectories follow the reference signals with small over-
shoots, except Case 3, because an excessive penalization
of control moves prevents reaching set-point.

6. CONCLUSIONS

We present a fuzzy-based distributed predictive controller
for reference tracking, which has been applied to a real
four-coupled tank plant. A procedure to cancel the offset
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Fig. 7. Tank levels #1 and #2 for multiple weights in
fuzzy rules: Case 1 (green), Case 2 (magenta), Case 3
(cyan), Centralized MPC (blue)
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Fig. 8. Pump flows for multiple weights in fuzzy rules:
Case 1 (green), Case 2 (magenta), Case 3 (cyan),
Centralized MPC (blue).

has also been included to account for plant-model mis-
match. In particular, the mismatch is caused by phenom-
ena such as the actual opening parameters of the three-way
valves, which are critical for the plant coupling, and the
sensors’ noise. Suitable results for typical reference changes
have been achieved through proper selection and tuning of
the estimator. The use of fuzzy negotiation in our approach
avoids the need to evaluate all combinations of available lo-
cal control actions (as in the cooperative game of Maestre
et al. (2011)), providing smooth responses unlike the work
of (Alvarado et al., 2011), where some abrupt changes
occurred. This method can be easily extended to larger
processes with more than one non-coordinator agent.
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