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Abstract

Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and
improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs
is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last
two decades, various categories of metal particles, i.e., intermetallics, bulk metallic glasses, high-entropy alloys, and shape
memory alloys, have become popular as reinforcement choices for MMCs. These groups of metal particles offer a combina-
tion of outstanding physico-mechanical properties leading to unprecedented performances; moreover, they are significantly
more compatible with the metal matrices compared to traditional ceramic reinforcements. In this review paper, the recent
developments in MMCs are investigated. The importance of understanding the active mechanisms at the interface of the
matrix and the reinforcement is highlighted. Moreover, the processing techniques required to manufacture high-performance
MMC:s are explored identifying the potential structural and functional applications. Finally, the potential advantages and
current challenges associated with the use of each reinforcement category and the future developments are critically dis-
cussed. Based on the reported results, the use of metal particles as reinforcement in MMCs offers a promising avenue for the
development of advanced materials with novel mechanical properties. Further progress requires more in-depth fundamental
research to realize the active reinforcing mechanisms at the atomic level to precisely identify, understand, and tailor the
properties of the integrated composite materials.

Keywords Composite - Metal matrix composite - Interface - High entropy alloy - Bulk metallic glass - Intermetallic - Shape
memory alloys - Microstructure - Mechanical properties - Reinforcement
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EPMA Electron probe microanalysis

FFT Fast Fourier transformation

FIB Focused ion beam

FSP Friction stir processing

HAZ Heat affected zone

HEA High entropy alloy

HER Hydrogen evolution reaction

HP Hot pressing

HPT High-pressure torsion

HRTEM  High-resolution transmission electron
microscope

IPF Inverse pole figure

LPBF Laser power bed fusion

MG Metallic glass

MMC Metal matrix composite

OER Oxygen evolution reaction

PSN Particle stimulated nucleation

RROLM  Rolling of randomly oriented layer-wise
materials

SAED Selected-area electron diffraction

SB Shear band

SEM Scanning electron microscope

SMA Shape memory alloy

SME Shape memory effect

SPD Severe plastic deformation

SPS Spark plasma sintering

SZ Stir zone

TMAZ Thermo-mechanically affected zone

UTS Ultimate Tensile Strength

YS Yield Strength

1 Introduction

Metal matrix composites (MMCs) consist of a metal matrix
reinforced by one or more secondary phases, such as par-
ticles, fibers, or whiskers. They can render significantly
higher mechanical and functional properties in comparison
to their monolithic metallic counterparts, making MMCs
promising materials for a wide range of applications [1-5].
The increasing demand for high performance compounds in
various industries, e.g., aerospace, transportation, electronic
packaging and thermal management, recreational products
and sporting goods, energy, and biomedical devices has moti-
vated the rapid development of novel MMCs [6—11]. Despite
the high potential, further advancement in the field of MMCs
requires solutions to address the major technical challenges,
including lack of efficient material design approaches, limited
compositional control especially at the interfaces, and the
need for cost-effective fabrication methods [12-15].
Conventional reinforcements of MMCs are ceramic par-
ticles (i.e., oxides, carbides, nitrides, borides, etc.), which
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are ionic and/or covalent compounds, as opposed to the
metallic matrices characterized with the metallic bond
between their atoms; the covalent/ionic bonds lead to high
strength, high Young’s modulus, high hardness, low deform-
ability, low electrical thermal conductivity, and relatively
low density [16—-19]. However, there are several drawbacks
associated with the use of ceramic particles. Typically, the
surface energy of ceramic reinforcing particles, especially
at nano-size, is higher than that of metals, making wetting
and adherence between the particles and the metal matrices
difficult. Partial bonding might cause premature failure as
a consequence of interfacial decohesion upon loading. In
addition, the high surface energy of ceramic particles can
promote agglomeration due to van der Waals forces, thus
significantly deteriorating the composite strength. Moreover,
undesired reactions can occur at the ceramic/metal inter-
face, resulting in the formation of unwanted phases, such
as Al,C;, which are produced by the reaction between SiC
and molten aluminum in an Al/SiC system [20]. The rough
nature of the interface can lead to stress localization, which
is detrimental to mechanical performance. In most cases, a
significant difference in the coefficient of thermal expansion
(CTE) between metals and ceramics can cause dimensional
instability and cracking during thermal cycles. The intrinsic
brittleness and limited toughness of ceramic particles fur-
ther increase the risk of cracking under stress, affecting the
strength, durability, and machinability of MMCs [21-24].
To mitigate the challenges associated with ceramic parti-
cles, several strategies have been proposed. One commonly
used route is surface modification of ceramic particles
through preheating, chemical etching, plasma treatment, or
coating with a more compatible compound with the matrix
to enhance the wettability and adhesion. Modifying the metal
matrix by introducing various alloying elements such as Mg,
Ca, Li, Zr, Ti, and P is another way to improve the wettability.
Techniques like compo-casting, temperature- and pressure-
induced powder metallurgy, and severe plastic deformation
(SPD) offer benefits as well. Despite these efforts, controlling
the size and distribution of ceramic particles can be also quite
challenging. Nonetheless, considering the complications and
limited efficiency of most of the current solutions, researchers
have been actively looking for alternative remedies [25-31].
Within the last decade, the use of metallic particles as
the reinforcement phase in metal matrices have garnered
significant attention [32-36]. The primary driving force
behind employing metallic particles lies in achieving a
modulable particle-matrix interface. This effort aims at
establishing a perfect balance between the physical and
chemical properties of the matrix and the reinforcement.
Such compatibility enhances performance [37, 38], lead-
ing to improved strength, ductility, and toughness, helping
to prevent cracking and improving the formability [39].
Moreover, metallic particles can be processed at lower
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temperatures compared to ceramics, thereby reducing the
fabrication cost and energy requirements for MMCs.

Furthermore, a broader range of metallic compounds
is available for use as the reinforcement phase, including
intermetallics, bulk metallic glasses (BMGs), high entropy
alloys (HEAs), shape memory alloys (SMAs), and other
metals, which can offer a broad spectrum of performance
characteristics. It is worth mentioning that BMGs and
HEAs, as the most eye-catching candidates of these groups,
exist in hundreds of various compositions. This indicates
a vast and uncharted path ahead for researchers interested
in MMCs. While there are some invaluable reviews on the
development of BMG—matrix and HEA-matrix composites
[40—43], to the best of our knowledge, no review paper has
specifically investigated the advancements in using metallic
particles as the reinforcement of MMCs.

In this review paper, the development of various MMCs
reinforced by the mentioned novel categories of metallic
materials is overviewed. Thereafter, the most popular fab-
rication techniques of metal particle reinforced MMCs are
introduced. Finally, the potential applications, challenges,
and prospects are discussed, trying to provide a holistic

Fig. 1 Schematic illustration

of various categories of MMCs
reinforced with metal particles,
their main features and applica-
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overview on the progress and advancements in this exciting
field of research. Figure 1 represents the schematics illustra-
tions of various categories of MMCs reinforced with metal
particles, highlighting their main features and applications.

2 Materials development
2.1 Intermetallics

Intermetallic compounds are solid phases composed of two
or more metallic or semi-metallic elements in an ordered
structure, differing from alloys which generally retain the
distinct structure of their constituent metallic elements
[44-46]. Unlike alloys, intermetallic compounds may form
bonds not solely metallic, but a combination of metallic,
ionic, and covalent bonding, creating a complex bonding
structure. This mixed bonding imparts exceptional properties
to intermetallic compounds, including enhanced brightness,
stiffness, strength, and corrosion resistance, particularly at
elevated temperatures [47-51]. The distinct crystal lattice
and long periodicity of intermetallic compounds, combined
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with the large Burgers vectors of their dislocations, contrib-
ute to relatively high plastic strength at high temperatures
[49, 50, 52]. These special characteristics make intermetallic
compounds highly attractive candidates for various applica-
tions, for instance, as reinforcing additives in MMCs. This
is mostly due to the ability of intermetallic phases to form a
good interface and bonding with the matrix [53, 54]. How-
ever, the efficiency of this reinforcement strongly depends on
factors such as the load transfer from matrix to intermetallic
reinforcements, the type of additive, heat treatment, and the
density of reinforcements.

The load-carrying capacity in intermetallics-reinforced
MMCs hinges on the bond strength between the reinforcing
intermetallic particles and the matrix, significantly influ-
enced by the fabrication method. Heim et al. [55] employed
the Rolling of Randomly Oriented Layer-wise Materials
(RROLM) as the manufacturing methodology, achieving
a layer-wise aligned distribution of micro-scale Al;Ni and
Al;Ti intermetallics formed within a ductile Al matrix. Both
strengthening and toughening mechanisms were observed in
this specially designed particle reinforced composite due to
the intrinsic crack deflection mechanisms achieved by cre-
ating layer-wise rectangular-like intermetallic particle rein-
forcements. Moreover, high resolution transmission electron
microscopy (HRTEM) images and fast Fourier transform
(FFT) patterns of Al;Ni, Al;Ti, and Al matrix indicated a
clear distinct transition zone between the Al matrix and both
AL;Ni (Fig. 2a—d) and Al;Ti (Fig. 2f-i) intermetallics. These
transition zones can be responsible for the excellent cohesion
and bonding strength between the intermetallic particles and
the tough Al matrix, thereby improving load carrying capac-
ity and preventing decohesion during cracking. Moreover,
scanning electron microscope (SEM) images detected some
thermally formed nano-sized Ni or Ti-based precipitates
surrounding intermetallic particles in the Al matrix. These
nano-sized particles not only pin dislocations (Fig. 2e), but
also form low-energy dislocation structures with the size
of several hundred nanometers along the particle boundary
(Fig. 2j), improving the hardness around the intermetallic
particles. In addition to hardness, ultimate tensile strength
(UTS) of NiTi-Al foil (includes both Al;Ni and Al;Ti parti-
cles) enhanced to roughly 5.3 and 1.5 times higher than that
of pure Al and Ni—Al foil samples, respectively (Fig. 2k, ).
Although the toughness of NiTi-Al (3.3 MJ m™) decreased
with respect to the pure Al, it was much higher than that of
Al foil (1.7 MJ m™3) and Ni-Al foil (0.78 MJ m™) speci-
mens. Therefore, by utilizing the RROLM process, it was
possible to increase the UTS and toughness simultaneously
[56].

Friction stir processing (FSP) is another fascinating solid-
state process that leverages plastic deformation to fabricate
in situ intermetallic/MMCs. During the FSP process, sam-
ples are exposed to highly localized low temperatures for a
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few seconds, which is highly favorable. By taking advantage
of the exothermic reaction between Al and Nb particles dur-
ing FSP, AL;NDb intermetallic particles could be formed in
Al1050 matrix, as confirmed by the SEM micrograph in
Fig. 2m [57]. The smaller size of Nb particles enhances the
chance of atomic diffusion through the core, resulting in the
complete transformation of Nb to AI/Nb particles (arrow C).
Conversely, larger Nb particles prohibit complete transfor-
mation and instead contribute to core (Nb, arrow A)/shell
(Nb/Al arrow B) particle formation. In addition, the number
of FSP passes can have a positive impact on the mechanical
properties of MMCs reinforced by intermetallic particles.
More pass numbers result in a higher density of Al;Nb par-
ticles and their more uniform distribution, thereby enhanc-
ing composite’s hardness and strength. Specifically, four
FSP passes were required to achieve a surface with evenly
distributed Nb-Al;Nb particles and significantly improved
mechanical properties, with hardness and UTS increasing
by approximately 2 and 1.85 times, respectively) [58, 59].

Instead of its role in the in situ formation of particles, FSP
also serves as a complementary post-fabrication method.
FSP has been reported to be capable of modifying the struc-
ture, achieving a more uniform redistribution of Al;Ti and
Al;Zr intermetallic particles, that were externally embedded
in the AA6061 matrix during casting [60]. The segregation
of needle-shaped Al;Zr particles was eliminated after FSP,
transforming into a homogeneous distribution of spherical-
shaped AlyZr particles through fragmentation. Moreover,
due to induced severe plastic strains by FSP, the Al;Ti clus-
ters were crushed, facilitating a complete rearrangement of
particles. This led to an enhanced microhardness, approxi-
mately 1.4 times that of the as-cast composite, due to the
induced grain refinement, and reduced the wear rate of the
composite by factors of 1.7 and 1.4 for FSPed AA6061/
Al;Ti and AA6061/Al;Zr, respectively (see Table 1).

Despite the effectiveness of fabrication methods in
enhancing mechanical properties of MMCs with interme-
tallics, post-treatment procedures also offer notable benefits.
For instance, a new type of aluminum matrix composite
(AMC), reinforced with Ti—Al intermetallic particles and
subjected to spark plasma sintering (SPS), underwent hot
rolling and T6 heat treatment (solution treating and artificial
aging) [61]. The AMC processed with SPS followed by hot
rolling exhibited the highest tensile strength (~454 MPa),
which was 19% higher than that of the reference alloy
tested under similar conditions. During T6 heat treatment,
the intermetallic shell thickened from 2.30 to 3.87 um. This
thickening, in conjunction with the soft Ti-core, hindered
micro-crack nucleation and thus improved the ductility of
the composite.

In an attempt to develop MMCs that retain their prop-
erties at high temperatures, the TNM alloy—a y-TiAl-
based intermetallic alloy widely utilized in the aerospace
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Fig.2 HRTEM/TEM images and diffraction patterns of the matrix
(Al) and the two different reinforcing compounds (Al;Ni and Al;Ti).
Atomic elemental percentages detected by energy-dispersive X-ray
spectroscopy (EDS) are displayed: (a—d) the interface between the
matrix and the ALNi particle, with the corresponding HRTEM
images and FFT patterns of the AI;Ni particle, Al matrix, and the
interface, respectively; (e) dislocations pile up near the boundary of
the intermetallic particles; (f—i) the interface between the Al matrix
and the AL;Ti particle, with the corresponding HRTEM images and
FFT patterns of the Al;Ti particle, Al matrix, and interface, respec-
tively; (j) low-energy dislocation structures are formed around the

and automotive industries—was explored as a reinforcing
additive. At high temperature, the microstructure is com-
posed by three ordered phases: y-TiAl (L1,-structure),
a,-TizAl (DO,g-structure), and B,-TiAl (B2 structure)
[68]. To investigate the application of TNM alloy and

edges of the intermetallic particles [55] (reprinted with permission
from WILEY-VCH, Copyright © 2018); (k) tensile test results and
sample dimensions (strain rate of 1 mm/min) for three materials
(NiTi-Al Foil, Al Foil, and Ni—Al Foil composites) in a strain hard-
ened state (85% reduced by cold work); (I) comparison of UTS and
toughness between pure Al, Al Foil, NiTi-Al Foil, and Ni-Al Foil
[55] (reprinted with permission from WILEY-VCH, Copyright ©
2018); (m) the SEM micrograph of in situ formed Al;Nb intermetal-
lics and Nb/AL;Nb core-shells [57] (reprinted with permission from
Elsevier B.V., Copyright © 2017)

formation of ordered o,-Ti;Al phases, Ti6242 alloy
(Ti—-6Al-2Sn—4Zr-2Mo, in wt.%) was reinforced with boron
(B), and Ti6242S alloy (Ti-6Al-2Sn—-4Zr-2Mo-0.1Si,
in wt.%) was strengthened using particles of TNM alloy
(Ti-28.6A1-9Nb-2.3M0-0.03B, in wt.%) [62]. The
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p-eutectic element Si played an important role in Ti6242S
composition since it caused the formation of stable interme-
tallic (Ti,Zr)sSi; precipitates at the a/f lamellae boundaries
and grain boundaries, which in turn enhanced the mechani-
cal properties at elevated temperatures [69]. The addition of
Sn increased the volume fraction of the hexagonal o,-Ti;Al
intermetallic phase, serving as an effective barrier to dislo-
cation glide and climb. Near-a Ti alloys exhibited a fully
lamellar microstructure, with o lamellas interspersed with
retained P phase, achieving the highest service temperatures
[70, 71]. In this case, the final microstructure featured o
colonies delineated by a continuous « layer (o seam) at the
boundaries (Fig. 3a). A more refined microstructure was
obtained by addition of B and TNM particles (see Fig. 3b
and c). Due to the tendency of forming TiB intermetallics
when adding B, a finer microstructure is observed in Fig. 3b
compared to Fig. 3c. Based on Fig. 3d, by increasing the
temperature up to 1150 °C, the TNM particles get dissolved

leading to a larger grain size compared to Fig. 3c. Further-
more, the formation of ordered a2-Ti;Al intermetallic phase
in the microstructure of Ti6242S and Ti6242S + 10 m.%
TNM 1150 °C samples were analyzed using TEM. Accord-
ing to the diffraction patterns, addition of 10 wt.% TNM
particles into the Ti6242S matrix transformed the disordered
structure of a phase into an ordered o2 phase [72, 73]. Fig-
ure 3e presents a high angle annular dark field from scanning
transmission electron microscopy image of an o/f colony
in Ti6242S + 10 wt.% TNM 1150 °C sample. The insert in
Fig. 3f shows the diffraction patterns of a selected area taken
in [1213] zone axis, where the illuminated regions are the
ordered domains of a2 phase. The whole grain is almost
fully occupied by these ordered domains having a size of
less than 10 nm.

The addition of TNM powder particles to the Ti6242S
matrix has been reported to increase the yield strength
compared to pure Ti6242S across all tested temperatures.

Fig.3 Light optical microscopy images of the Kroll etched speci-
mens in as-SPS condition: (a) Ti6242S; (b) Ti6242+1 m.%
B; (¢) Ti6242S+TNM, dwell temperature 1100 °C and (d)
Ti6242S +TNM, dwell temperature 1150 °C; (e) TEM investiga-
tion of the Ti6242S+TNM 1150 °C specimen in as-SPS condition.
Dark-field scanning transmission electron microscopy image of o/f
colonies, where the dark o lamellae are separated by bright retained
{ phase; (f) dark-field image of an a lamella. The insert shows the

corresponding [1213] diffraction pattern of the selected area, which
reveals the hexagonal structure as well as superlattice reflections.
The 1011a2 superlattice reflection was used for the DF image. This
101102 DF image illuminates nanometer-sized ordered a2 domains
separated by disordered o phase or antiphase boundaries, which
appears in dark contrast [62] (reprinted with permission from Else-
vier B.V., Copyright © 2020)
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Samples with B variant exhibited higher yield strength com-
pared to those with TNM. However, a sharp drop in yield
strength was observed above 550 °C due to boundary slid-
ing. This sudden decline was not observed in the samples
containing TNM powders. In addition, 20% yield strength
improvement was reported in Ti6242S samples due to the
addition of y-TiAl-based alloy particles [62].

Recently, there has been a growing interest in core—shell
structured (CSS) intermetallic particles, primarily due to
their potential to enhance both strength and ductility simul-
taneously. This unique benefit stems from their composi-
tion: a stiff intermetallic shell surrounding a softer core.
Studies have explored reinforcing AMCs with CSS inter-
metallic particles [61, 74-76]. These CSS reinforcements
typically feature a hard, in situ—formed intermetallic shell
with a soft Ti-core in the center [61, 74]. Compared to
the large needle-like shaped Al;Ti particles fabricated by
conventional techniques, these CSSs have the benefits of
reducing the chance of cracking during plastic deformation
and improving the ductility of the integrated composites
[77]. A novel AMC reinforced by CSS Ti—Al intermetal-
lic particles was developed using SPS at a relatively low
temperature [78]. This composite, consisting of an 88% gas-
atomized Al-alloy (Al-5.6Zn-2.5 Mg—1.6Cu-0.23Cr) and
12% Ti powder, showed significant improvements in both
high tensile strength and elongation (up to 27%) compared
to AMCs reinforced by single Al;Ti particles. The inter-
facial strains were also calculated to be minimal, suggest-
ing that a coherent boundary was formed between the CSS
reinforcements and the matrix. No cracks were formed along
the interface or in the shell, indicating strong bonding at
the interface. Tensile tests showed that under all conditions,
the tensile strength of AMC was greatly improved through
the formation of CSS particles. This can be attributed to
Orowan-Bowing strengthening effect caused by interme-
tallic-shell with high specific-stiffness and grain-refining
strengthening effect [79].

Finally, discovering the optimal quantity of intermetallic
additive particles is crucial to achieving the desired mechan-
ical properties. It was reported that addition of (Ni,Cu);Al
intermetallic particles into an AMC led to adverse effects
when particles concentration exceeded 8 wt.% [63]. Micro-
hardness enhanced from 26 to 254 HV as the intermetallic
concentration rose from 3 wt.% up to 8 wt.%. However, the
microhardness of the sample with 10-wt.% concentration
experienced a drop to 230 HV, which could be attributed to
the increase in material porosity [80, 81]. f-Al;Mg, interme-
tallic particles were added into an Al-based matrix with dif-
ferent volume percentages of 20, 40, 60, and 80 vol.% [64].
The addition of low-density b-Al13Mg2 particles significantly
improved the specific strength by lowering the overall den-
sity below that of pure Al. Moreover, composites reinforced
with 20 and 40 vol.% of intermetallic particles exhibited

@ Springer

yield and compressive strengths 2—3 times higher than those
of pure Al, while maintaining a notable plastic deformation
ranging from 45 to 15%. While increasing the p-Al3Mg2
phase to 60 and 80 vol.% could further enhance strength,
the capacity for plastic deformation would be severely lim-
ited. Thus, selecting the optimal volume fraction of the addi-
tive demands careful consideration, tailored to the specific
requirements of the target application.

2.2 Bulk metallic glasses

Metallic glasses (MGs), recognized as an important member
of advanced materials, were first identified in 1960 with the
discovery of highly disordered atomic arrangements in solid
state (Au,5Siys) [40, 82]. Initially, the creation of metallic
glass compounds required rapid cooling to prevent crystal-
lization kinetically, necessitating a cooling rate between
105 and 10% K/s. This meant that the materials had to be
extremely thin in at least one dimension to facilitate such
rapid heat extraction, resulting in metallic glasses typically
being formed into ribbons and wires [40, 41]. Thereafter,
scientists looked for a BMG composition that could be
obtained with bulk dimensions (at millimeter scale). The
first bulk MG (BMG) was developed in the Pd—Cu-Si sys-
tem in 1974, requiring critical cooling rate of 10° K/s. A
general rule to design BMG alloys involves selecting ele-
ments of varying sizes to form a complex structure that resist
crystallization. Another guiding principle is to find alloy
compositions with deep eutectics, to stabilize liquid state at
low temperatures. Nonetheless, the knowledge behind the
formation mechanism and the main effective factors on glass
forming ability of alloys are yet not fully understood.

One specific characteristic of BMGs is the absence of
dislocations, which considerably boosts their ultrahigh
strength (up to 5 GPa), hardness, and wear resistance [83].
Moreover, BMGs exhibit excellent dimensional tolerance in
casting process, enabling the production of complex shapes.
Since crystallization is accompanied with volumetric shrink-
age, there would be a low dimensional variation upon cool-
ing of the BMG melts due to lack of crystallization [84].
BMG components can be constructed into complex shapes
by reheating the as-cast product into the supercooled liquid
region, allowing net-shape forming. The other advantage
of BMGs is their considerable viscosity drop in the super-
cooled liquid region, contributing to achieve higher den-
sities [38, 85, 86]. Moreover, BMGs possess exceptional
elastic limit (2%), alongside superior corrosion and wear
resistance, biocompatibility, and soft magnetism properties.
These properties have recently attracted remarkable attention
especially as the reinforcement phase of the MMCs [82].

The performance of a composite is highly influenced by
the interaction at interface between the matrix and the rein-
forcement. Numerous studies have focused on identifying
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the key parameters that affect these interactions, especially
in composites reinforced with BMGs. However, the crystalli-
zation potential of MGs adds complexity to the reactions that
occur at these interfaces. Therefore, it is critical to recog-
nize the optimal conditions for material processing in these
cases. For instance, A17075 alloy reinforced with 30vol.%
of Fe;,Cr,sMo,B;C; produced by the SPS technique and
sintered at a temperature of 450°C and a pressure of 30 MPa
exhibited a 34% increase in microhardness (from 119 to 160
HV) attributed to the excellent interfacial bonding without
the formation of any new phases or layered structures [87].
In contrast, a composite with 20 vol.% of FescCr;(NbsB g,
sintered at 570°C, reached an optimized hardness of 280 HV,
indicating the importance of precise control over each pro-
cess step. In this case, sintering at 540 “C was insufficient as
the hardness of Al matrix only reached 75 HV. Moreover, the
sample sintered at 570 °C displayed an interfacial layer that
was 10—15-um thick around the Fe-based cores. The forma-
tion of reaction layers can be considered a positive structural
feature, as it facilitates load transfer from the soft and weak
matrix to the hard shell and core. Excitingly, when the sam-
ple was prepared by sintering at 500 °C followed by anneal-
ing at 570 °C, a thinner interface layer was observed [88].
The thicker interfacial layer observed in the sample sintered
at a higher temperature without annealing can be attributed
to the occurrence of higher local overheating at the interface
during SPS. Therefore, it is important to consider interfacial
resistance as a significant factor in the phase formation at the
interface of MMCs, as it can lead to overheating at the inter-
face [89, 90]. In a detailed research, He and colleagues real-
ized Al/Fe 5 ,Coyq §B 9,514 gNb, composite and investigated

Fig.4 (a) Dispersoid (insolu-
ble) particles in the A12024
matrix; the inset shows the mag-
nified micrograph of the rectan-
gular area; (b, ¢) SAED patterns
of the particles labeled b and ¢
in (a), confirming the exist-
ence of Al;Cu,Fe and Al6Mn
type phases, respectively [91]
(reprinted with permission

from Elsevier B.V., Copyright
© 2020)

the role of the effective parameters on the interfacial product
[91]. It was shown that the interface characteristics can be
tailored by manipulating the heat treatment temperature,
soaking time, and particle size. For instance, by increasing
the soaking temperature and time from 480 °‘C and 10 min to
490 °C and 25 min, the thickness of interface layer increased
from 224 +50 nm to 353 +45 nm when the median particle
size (Ds,) was 16 um. By using particles with Dsy=72 pm
in the previous heat treatment, the thickness of the inter-
face enhanced from 227 +36 nm to 316 +56 nm, i.e., the
interfacial layer became thinner. The EDX and XRD results
demonstrated that the interfacial product is an intermetal-
lic compound of Al,Cu,Fe. The XRD patterns revealed the
presence of minor peaks that were attributed to an insoluble
compound of Al;Mn, which was also observed in the SEM
images (indicated by arrows). Furthermore, the existence of
this compound was confirmed through selected-area electron
diffraction (SAED) analysis (Fig. 4a—c).

FCC a-Al, Al,Cu,Fe intermetallic compound, and BMG
reinforcement can be recognized in the HRTEM images of
interface of the composite and SAED pattern (Fig. 5a—e).
Moreover, a well chemical bonding can be observed between
the matrix and intermetallic compound, while a transition
region that bonded the intermetallic phase to MG (shown
by yellow dotted line in Fig. 5a, f, and g) can be identi-
fied [91]. One important observation in these images was
the maze-like nanostructure (Fig. Sh), characteristic of
the amorphous phase, in the lower region of the transition
zone with interplanar distance of about 2 nm and size of
3-5 nm. Thermodynamically, Cu-Fe and Al-Fe are both
immiscible; however, there is a high chance of forming

(131)

Al Mn: [211]
Al Cu,Fe: [312]
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/N
~/

Interphase

Fe-based MG

200 nm

Al.Cu Fe (002)

0.746 nm

Transition zone ', &,

Fig.5 TEM images of Al2024/Fe-based MG with Ds,=16 pm after
763 K/25 min heat treatment. (a, b) Morphology of the interface
between Al2024 matrix and Fe-based MG, where (a) is the magnified
image of the rectangular area in (b); (c—e) SAED patterns of Al2024
matrix, interphase and glassy particle, confirming the FCC-Al struc-
ture, formation of Al,Cu,Fe phase and amorphous structure of the
MG, respectively [91] (reprinted with permission from Elsevier B.V.,
Copyright © 2020). (f) HRTEM image of the Al/Al 7 Cu 2 Fe inter-

intermetallic compounds such as Al;Fe and AlFe; in the
Al-Fe system due to the high affinity between Al and Fe.
On the other hand, during the solid solution treatment of
Al2024, Al,Cu and Al,CuMg soluble phases might be dis-
solved into the a-Al lattice. When Fe-based MG is present,
there would be a chance of diffusion of the atoms through
the interface at high enough temperatures. As the diffusion
coefficient of Al is higher than that of Fe, it is expected that
more Al atoms diffuse toward the amorphous phase, result-
ing in the formation of Al-Fe intermetallic compounds. In
this way, the presence of Al ;Fe, nanocrystals in zone h

@ Springer

N\

Fe-based MG

face, corresponding to the zone f in (a); the inset shows the FFT of
the FCC-Al; (g, h) HRTEM observation of the zone between Al 7 Cu
2 Fe phase and metallic glass, corresponding to the rectangular areas
g and h in (a), respectively, showing the existence of a transition layer
between these two phases and the formation of nanocrystals in the
transition zone [ 91 ] (reprinted with permission from Elsevier B.V.,
Copyright © 2020)© 2020).

of the composite (Fig. Sh) can be described. As the inter-
face is a swift diffusion pathway, Cu atoms might react with
Al,;Fe, to form the Al,Cu,Fe intermetallic compound [91].
Moreover, decreasing the interface thickness by increasing
the particle size would be described by gradually increasing
the diffusion path after the formation of intermetallic layer.
Indeed, before the existence of the intermetallic product,
there was no obstacle against the diffusion of atoms across
the interface [91].

In addition to optimizing fabrication parameters, it
is also essential to investigate the optimal amount of
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reinforcement phase. For instance, when Al7056 was rein-
forced by Zr-Al-Ni—Cu, it was found that increasing the
Al alloy content in BMG from 10 to 30 vol.% reduced the
mechanical properties, particularly strength [92]. Moreo-
ver, the selection of the appropriate reinforcement compo-
sition for the desired application is of utmost importance.
HEAs as newly found metallic materials have captivated
researchers due to their outstanding properties, which will
be discussed in detail in the following sections. Face-cen-
tered cubic structures in HEAs (e.g., FeCoCrNiMn alloy)
are attractive owing to their supreme plasticity and fracture
toughness in cryogenic conditions [93, 94]. However, their
low yield strengths are a main drawback. Ceramic nano-
particles manifested great power in enhancing the yield
strength of FeCoCrNiMn significantly, but their plasticity
reduced [95, 96]. Li et al. [97] showed that employing Fe-
based MG of Fey;7,C0;3Cry ;M0,56Cy55B43Y 9 (at.%)
as the reinforcement phase can address the limitations of
FeCoCrNiMn through such complex interactions in the
atomic scale. Accordingly, the composite fabricated by an
additive manufacturing technique named laser powder bed
fusion (L-PBF) resulted in a crack-free and homogenous
microstructure with a uniform distribution of the reinforce-
ment, as illustrated in Fig. 6¢ and d. In TEM images of the
interfaces, three main regions were recognized, namely, I
(polycrystalline region), II (strip region), and III (carpet-like
region) (Fig. 6a—d). Region I constituted FeMo,, which indi-
cates that a part of MG was crystalized since Mo was only
present in the MG composition. The Fe-based utilized MG
has a high glass-forming ability; however, the element diffu-
sion between the HEA matrix and MG caused a composition
deviation. Evaluation of the strip structure also confirmed
the composition deviation, and thus, zone II-1 was identified
as the HEA matrix while zone II-2 represented the original
amorphous phase which was crystallized into a new HEA
(Fig. 6e). Importantly, the inset II-1 demonstrates that the
FCC structure of the matrix was preserved, and as a result
of diffusion, the amorphous phase evolved into another FCC
structure, as shown in spot 5 of region III. The carpet-like
area also constituted HEA in the center and an amorphous
phase in the surroundings [97]. This excellent continuous
interface led to a high mechanical performance.

As depicted in Fig. 7a, by adding 0-20 wt.% Fe-based
MG to HEA matrix, the yield strength increased from 315
to 916 MPa (more than 190% increment); however, the plas-
tic strain reduced from more than 0.8 to 0.39 [97]. Further
amount of MG caused brittle fracture since additional MG
particles led to microcrack formation during the L-PBF
process, which is also reported elsewhere [98]. In addition,
according to Fig. 7b, incorporating more MG particles into
the HEA matrix enhanced the strength while fracture tough-
ness dramatically decreased. Nonetheless, for HEA/20 wt.%
MG, the strength and fracture toughness of 1517 MPa and

65.67 MPa.m'? were obtained, respectively, which is in the
acceptable range for many engineering applications [99].
Another parameter that requires to be taken into account
to select an appropriate BMG reinforcement is the crystal-
lization temperature of the reinforcement. Indeed, this is
a limiting parameter in the MG family since they are in a
non-equilibrium thermodynamic state and tend to be crystal-
lized by heat treatment. Ni-based MGs suggest high crystal-
lization temperatures that turn them into ideal candidates
as the reinforcement of the heat-treatable metals [14, 100],
especially aluminum matrix in which crystallization can be
achieved after heat treating for a long time at temperatures
higher than 580 °C [33, 35]. Ertugrul and coworkers exam-
ined how the heat treatment will affect the microstructure
and mechanical behavior of Al2024/Nig)Nb,, [101]. The
well-mixed powders were consolidated by hot pressing
(HP) at 400 °C at a pressure of 640 MPa with a holding
time of 10 min. Thereafter, the heat treatment process was
carried out with solutionizing at 500 °C for 1 h, followed by
rapid cooling in water, and finally an aging step at 150 C
for 18 h. The XRD patterns showed the presence of a-Al as
the main phase, CuAl, and Al,CuMg intermetallic phases,
and a broad peak attributed to the MG phase. After the heat
treatment, Al,CuMg almost vanished and new phases of
CuNiAl and NbNiAl emerged as a result of interfacial reac-
tions. The SEM images clearly illustrate that the interface
was intact before heat treatment, while in the heat-treated
composites, a thin surrounding layer (2-3 pm for 20 vol.%
and 2-10 pm for 40 vol.% NigNb,, samples) was observed
around the reinforcements. Stress—strain diagrams obtained
from compression tests indicated the notable role of heat
treatment in enhancing the yield strength of all samples
(e.g., about 41% enhancement from 229 to 323 MPa for
Al12024/20vo0l.%NigzNb,,). Importantly, the addition of 20
vol.% Nig)Nb,, did not place any adverse implications on
its plasticity up to 20% strain. In a similar work, Li et al.
[102] employed Ni-based MG of NisgZr,,Ti,S1,5n5 (at.%)
(with crystallization temperature of 602 ‘C) to strengthen
the heat-treatable Al-Zn—-Mg—Cu alloy. The addition of 20
vol.% of NisoZr,,Ti,651,Sn; without heat-treating process
was sufficient to enhance the yield strength from 263 to
401 MPa. By heat treatment, the yield strength improved
significantly from 494 to 728 MPa, which was much higher
than the reported value for heat-treated A12024/20 vol.%
NigyNby, [96]; this observation indicated the exceptional
response of the Ni-based MGs to heat treatment that can be
attributed to the excellent interface bonding along with the
formation of various phases including Al;NiCu and com-
plex phases of Al-Zn-Mg—Cu. Despite adding 20 vol.% of
NisgZr,qTi; 651,505, the plasticity of the composite was found
acceptable with a fracture strain of 17% [102]. Thus, exploit-
ing Ni-based MG particles as the reinforcement for Al matri-
ces would reward high mechanical strength and plasticity
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Fig.6 (a) SEM micrographs represent random distribution of MG
(20 wt.%) in HEA. (b) The line scanning as shown in the inset reveals
possible interfacial transition layer. (¢) The TEM bright-field micro-
graph of the interfacial zone as marked in the inset of (b), which is
divided into three regions (I, II, III); (d) bright-field micrograph
of region I, zone I-1 reveals multi-crystal feature, zone I-2 shows

simultaneously, which might be considered an evolution in
advanced materials industries.

Tailoring the physical characteristics of reinforcement
is another effective way to control the performance of
the reinforced MMC. MGs are mostly utilized in micron
size, which can benefit the MMC through direct strength-
ening effect owing to load bearing capacity and indirect
strengthening effect from the matrix. However, MMCs
with micron-size reinforcement are highly prone to crack

@ Springer

nanocrystals FeMo, phase; (e) bright-field micrograph of region II,
zone II-1 shows FCC crystal, while the diffraction pattern in zone II-2
reveals two different crystals; (f) bright-field micrograph of region III,
which further demonstrates the two different crystals [97] (reprinted
with permission from Elsevier B.V., Copyright © 2020)

initiation and swift propagation, assisting also by a dra-
matic deterioration of the ductility. One promising solution
is to take advantage of the bimodal size particle reinforce-
ment since the incorporation of nanoparticles contributes
to Orowan strengthening mechanism by providing barriers
against dislocations, and consequently promoting Orowan
loops around the reinforcements [103, 104]. Recently,
bimodal Ti-based (Tiss sCu,g sNi;; sAlg 5) MG particles
were exploited to reinforce A17075 matrix [105]. By taking
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Fig.7 (a) True stress—strain curves of HEA composed of gradi-
ent fraction of the Fe-based MG (0-30%). (b) Fracture toughness
vs. strength curve of the HEA and MG composite, the insert image

advantage of a well-designed procedure composed of ball
milling, cold pressing, and hot extrusion, the initial micron-
sized (<38 pm) MG particles blended with Al17075 pow-
der were broken into nano-sized particles as demonstrated
by blue arrows in Fig. 8a. For instance, in Al7075/6 vol.%

depicts a fractural sample (HEA-20%MG) compared with the original
one [97] (reprinted with permission from Elsevier B.V., Copyright ©
2020)

Tiss sCuyg sNi;; sAlg s as a composition with the best per-
formance, 1.7 vol.% of the reinforcements was in the range
of nanometer. Nanosized MgZn, precipitates were also
formed in the matrix as shown by green arrows in Fig. 8d.
In addition, ultrafine reinforcements assisted in reducing
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Fig.8 (a) Dark-field and (d) bright-field TEM micrographs of
Al7075 reinforced with 6 vol.% Tiss sCu,g sNi; sAlg 5 particles. (b)
Density and relative density of the composites. (¢) Room-tempera-
ture compressive stress—strain curves of the Al7075 reinforced with
different volume fractions of TisssCu g sNij;sAlg s particles. (¢, d)
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The SEM micrographs of the lateral surface for the composite with
2 vol.% and 17 vol.% reinforcements after compressive test, respec-
tively [105] (reprinted with permission from Elsevier B.V., Copyright
© 2020)
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the average grain size from 3 um to 250 nm by pinning the
grains, hindering or decelerating the grain growth.

A low amount of MG particulates of Tiss sCu;g sNij7 sAlg s
up to 6 vol.% were reported to promote the Al-based com-
posite densifications, as shown in Fig. 8b, while using
ceramic particles usually causes a lowering the densities.
Indeed, during the hot extrusion process, MG particles are
in the supercooled liquid state; thus, they can readily fill the
pores and cracks by the applied shear deformation. By opti-
mizing the sample preparation procedure, the reinforcement
particles were well dispersed in the matrix and no agglom-
eration and voids were observed. However, utilizing higher
amounts of the reinforcement up to 17 vol.% led to MG
particle agglomeration and pore formation. During the hot
extrusion phase, shear stresses are applied, which are capa-
ble of moving large particles, sticking them to the neigh-
boring ones, and thus resulting in clustering. In addition,
fracture and interfacial debonding can be a consequence of
the large stress concentration around the coarse particles.

It is interesting to note that introducing up to 6 vol.%
bimodal reinforcement to the matrix enhanced the frac-
ture strain in comparison with pure Al7075, as depicted in
Fig. 8e, highlighting a better densification. Utilizing higher
contents of the Tiss sCu,;5 sNi;; 5Alg s was found effective
in increasing the yield strength and ultimate compressive
strength at the expense of diminishing the ductility. Fractog-
raphy analysis indicated that the microparticles were more
prone to be fractured than the nano particles (Fig. 8c), due to
the higher local stress concentration around the larger parti-
cles paired with the higher probability of intrinsic imperfec-
tions due to their larger size. Interestingly, the micrographs
showed that the generated cracks in the microparticles failed
to propagate along the interface, attributed to the excellent
chemical bonding at the interface (Fig. 8f).

In addition to incorporating bimodal-sized Ti-based MG
reinforcement, nanoscale Ti-based MG particles (8 vol.%
Tis,CuyoNij;Aly ;) were utilized to reinforce an Al-7075
matrix [106]. The composite powder was prepared by
ball milling micron-sized (20-50 pm) MG particles with
Al alloy powder for an extended duration of 10-50 h. The
harsh milling conditions resulted in the majority of the MG
particles being crushed into nanoscale particles, especially
after 30 h of milling. The composite powder was then com-
pacted through the cold pressing (CP) method, followed
by hot extrusion at 400 “C under a pressure of 590 MPa.
Microstructural analysis of the samples after compressive
deformation indicated the formation of a 4-5-nm interdiffu-
sion layer at the interface, with no signs of debonding. The
30-h milled sample exhibited a uniform dispersion of ultra-
refined nano-MG particles, which resisted active dislocation
movement due to the large stress field around them. The
yield strength of the composites remarkably increased with
increasing the milling time, from 297 MPa for the Al-7075
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matrix to 530, 880, and 1014 MPa for the composites milled
for 10, 30, and 50 h, respectively. However, the plasticity
of the samples decreases significantly with an increase
in milling time, from 27% for the monolithic Al alloy to
almost 0% for the sample milled for 50 h. The high density
of dislocations accumulated during milling and severe plas-
tic deformation during short-time hot extrusion may have
contributed to this trend [106]. Further research is necessary
to overcome this bottleneck toward leveraging the benefits
of nanoscale MG particles while ensuring that plasticity is
not adversely affected. In Table 2, additional information is
provided regarding the preparation methods and the physico-
mechanical properties of MMCs reinforced with BMG and
SMA particles.

2.3 Shape memory alloys

SMAs have gained considerable attention owing to the abil-
ity to remember their original shape and return to it after
deformation, known as the shape memory effect (SME)
[114-116]. This class of advanced materials encompasses
various alloys, such as Cu-based, Fe-based, Co-based, Au-
Cd-based, and Nitinol (nickel-titanium) [117]. SME refers
to the remarkable ability of SMAs to retain their original
shape after experiencing thermal or stress-based deforma-
tion [118]. This effect is mainly attributed to the two distinct
phases that SMAs exhibit at different temperatures: austenite
at higher temperatures and martensite at lower temperatures.
Cooling at a high rate or applying external forces can drive
the transformation of austenite to martensite, resulting in
deformation in the structure. This deformation is reversible
by heating the material above a specific temperature, which
induces the martensite to transform back to austenite [114].
In addition to their SME, SMAs exhibit also other unique
properties, such as superelasticity, significant damping
capacity, and excellent corrosion resistance. These proper-
ties make them attractive candidates for use in a wide range
of applications, including biomedical devices, aerospace,
robotics, actuators, sensors, and energy harvesting devices.

These unique properties have led to the development of
a new type of high-performance MMCs that incorporates
embedded SMA particles within metal matrices. One of the
main purposes of adding SMA particles to a metal matrix
is to enhance the compressive and room temperature tensile
plasticity of BMGs, which are prone to the formation of
fatal cracks due to the rapid propagation of localized sin-
gle shear bands. By incorporating SMAs into the BMG, the
stress-induced phase transformation of the embedded SMA
particles can help to alleviate stress concentration, promote
the formation of multiple small shear bands, and induce
work hardening. For instance, by incorporating 20 vol.%
of porous NiTi into a Mgsg sCu,, ¢Gd; | Age ¢ (at.%) matrix,
not only SME was attributed to the composite but also its
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Table 2 (continued)

Ref

Remarks

Physico-mechanical properties

Fabrication method and condition

Composite

Improvement of tensile ductility of BMG [111]

composites

Plastic strain: 10.6%

Mgsq sCu,, ¢Gd,;Agg «/NiTi (20 vol.%) Melting at 1273 K for 3 min

Fracture strain: 12.1%

Copper mold casting

Fracture strength: 1173 MPa
Fracture stress: ~592 MPa

[112]

Enhancement of corrosion resistance in Hank’s

solution

Ingot preparation: introducing the NiTi

Mg67Zn29Ca4/porous NiTi (3 vol.%)

particles into the Mg—Zn—Ca melt at 1073 K

under mechanical stirring
Final samples: remelting the ingots followed

by injection into a copper mold

[113]

The highest ductility was obtained from the

Cylindrical rod preparation by suction casting  Yield strength: 1424 MPa

Cu51.5Zr48.5/CuZr (6 vol.%)

sample which embedded the reinforcements
with a volume fraction of ~30-40%

Maximum strength: 1935 MPa

Fracture strain: 9.5%

arc-melter of the molten pure Zr and Cu
Cooling rate (rod surface): 5000 K/s

Cooling rate (rod axis): 220 K/s

plastic strain and fracture strength increased by up to 10.6%
and 1173 MPa, respectively (Fig. 9a). This is because the
porous NiTi undergoes a stress-induced phase transforma-
tion that contributes to the release of stress concentration,
forming multiple small SBs that induce work hardening
(Fig. 9b) [111]. The phenomenon of work hardening has
been also observed in other types of composites and verified
through three-dimensional finite element simulations. The
addition of Ni-Ti alloys into Zr-based BMG-Vitreloy-1 com-
posites was reported to enhance the work hardening effect
under uniaxial loading. This observation was correlated to
the phase transformation between austenite to martensite
in Ni-Ti alloys as well as the rise of carried stress by the
embedded Ni—Ti particles [119].

In addition to its ability to improve the mechanical prop-
erties of metal matrix composites, porous NiTi has also been
shown to enhance the corrosion resistance of Mg—-Zn—Ca
BMGs in Hank's solutions. Incorporating NiTi particles
into the Mg¢,Zn,,Ca, composite resulted in a significant
reduction in current density and increased positive poten-
tial compared to pure magnesium and the base alloy. This
was demonstrated through typical potentiodynamic polari-
zation curves (Fig. 9¢) [112]. In addition to NiTi particles,
CuZr SMA particles have also been shown to be effective
in improving the mechanical properties of BMGs. Incorpo-
rating CuZr SMA particles with a volume fraction of 30%
increased the compressive ductility of Cus, sZr,3 s BMG
[113]. This enhancement was attributed to three distinct
energy-absorbing mechanisms: martensitic transformation of
the CuZr particles, microcracking, and crack deflection. The
martensitic transformation of the CuZr particles contributed
to the energy absorption by inducing local plastic deforma-
tion and promoting the formation of SBs in the BMG matrix.
Microcracking, which occurred at the interface between the
martensite and parent phase, reduced the localized stress
concentration and further promoted plastic deformation. The
crack deflection protects the tip of the crack and induces
localized plasticity as the result of interactions between
shear bands and microcracks [67].

To achieve optimal results, it is important to recognize
and optimize the effect of different parameters on the prop-
erties of the composite. The volume fraction and size of
SMA particles are among the most important parameters
affecting tensile strain enhancement. A numerical study
using a free volume model revealed that the SMA volume
fraction is directly associated with the tensile ductility of the
composites. Specifically, a composite with 32 vol.% SMA
formed multiple SBs by inducing the intersection of the SBs
and blocking their propagation, whereas a composite with
5 vol.% SMA exhibited localized plastic deformation in
one SB without any blocking effect [120]. The size of NiTi
particles also affects the tensile strength of the composite,
with smaller particles resulting in higher strength and larger
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Fig.9 (a) Compressive stress—
strain curves of unmodified and
modified Mgsg sCuy, ¢Gd;1Ags 6
matrix by porous NiTi particles
[111] (reprinted with per-
mission from Elsevier B.V.,
Copyright © 2016). (b) SEM
image from the surface of the
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from Elsevier B.V., Copyright
© 2016). (c) Potentiodynamic

True strain(%)

polarization results of pure ( C) a Hank's solution
Mg, Mg¢,Zn,,Ca, alloy, and 0
Mgg,Zn,4Ca,/NiTi BMG bl 4
composite [112] (reprinted with
permission from MDPI, Copy-
right © 2018). (d) HRTEM

of heat-treated 6061Al/NiTi
composite fabricated by FSP
process [110] (reprinted with
permission from Elsevier B.V.,
Copyright © 2014) 10° . .
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particles leading to lower strength. This may be due to the
high surface area to volume ratio of small particles, which
allows for a greater degree of interaction with the matrix
[110].

Employing an appropriate fabrication method is another
important factor in order to prepare proper samples. Pow-
der metallurgy and hot extrusion are commonly used pro-
cesses that expose the samples to elevated temperatures for
a prolonged duration, resulting in intermediate compound
formation. For instance, due to the reactions between NiTi
reinforcements and Al2124 alloy matrix, numerous interme-
diate phases (such as Al;Ni and Al;Ti) were formed, which
had a negative impact on the SME and mechanical proper-
ties of the obtained composite [117]. FSP is an effective
method for fabricating SMA composites with good SME and
mechanical properties. The use of FSP has resulted in sig-
nificant improvements in the yield and UTS of Al1100/NiTi
particle composites, with an increase of approximately 70%
[121]. This is a testament to the unique capabilities of the
FSP process. There are two ways to make the FSP process
more efficient: first, using a well-designed multi-hole parti-
cle mode for trapping secondary particles has been found to
be more effective than using a groove or a few holes. This
process distributes Niyg sTis, 5 (at.%) particles homogene-
ously in the A16061-T651 matrix without interfacial reac-
tions, resulting in higher ductility [110]. Second, aging at
low temperatures after heat treatment for a short duration
can further strengthen the composite. This results in high
UTS and ductility without forming intermediate phases or
negatively impacting SME (Fig. 9d) [110]. Apart from the
FSP process, pretreatment strain also influences the final

@ Springer

mechanical properties of composites reinforced by SMAs.
Simulation results have revealed that increasing pretreat-
ment strain (preloading process) to about 6.5% significantly
enhances composite yield strength and reduces tensile plas-
ticity, lowering the work-hardening ability of the composite.
This can be attributed to the weakening of martensite phase
transformation [120].

Overall, the unique properties of SMA particles have
shown great potential in enhancing the mechanical proper-
ties of MMCs, and with further research on the interface
between matrix and reinforcement and optimization of key
parameters such as particle size, particles’ volume fraction,
and fabrication methods, SMAs can become a promising
option for a wide range of engineering applications.

2.4 High entropy alloys

First introduced by Yeh et al. in 2004, high-entropy alloys
(HEAs) are a novel family of structural materials, which
are typically composed of five or more principal elements
in equiatomic proportions [122]. The exceptional proper-
ties of HEAs take root from the following key factors: (1)
high-entropy effect, which makes HEA elements reluctant
to participate in reactions, resulting in considerable chemi-
cal stability even at elevated temperatures; (2) severe lattice
distortion effect, which stems from different atomic radius of
HEA constituent elements; (3) sluggish diffusion effect due
to the distortion effect since severe distortions limit the solid
diffusion process; and finally (4) cocktail effect, regarding
HEAs being consisted of different elements, it can be con-
sidered as an atomic scale composite. These features offer
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the possibility to tune the properties of HEAs by altering
their specific atomic compositions (for instance, increasing
Al% would promote the formation of the BCC phase in HEA
structure) [122, 123].

Recently, the use of HEA particles as reinforcements in
MMCs has been expanded due to their superior characteris-
tics such as ultra-high strength and ductility, good thermal
stability, high-temperature mechanical properties, impres-
sive wear, and corrosion resistance [124—127]. The metallic
property of HEA is advantageous for boosting the interfacial
strength of MMCs when compared to the ceramic reinforc-
ing phase. MMCs reinforced by HEAs can be considered in
the form of bulk structural materials and functional coat-
ings or films [128-130]. Although introducing HEAs into
the MMCs has solved the wettability problems of reinforce-
ment up to considerable extents, controlling the interfacial
reactions between the matrix and the reinforcement remains
challenging for tunning the composite properties.

Varying microstructures with different properties have
been obtained based on different production procedures.
Most recent surveys have focused on limiting the production
of thick intermetallic compound formation at the interface to
obtain hard composites with sufficient toughness to prevent
the formation and propagation of brittle cracks. A common
structure seen in many recent studies is known as core—shell
structure. Wang et al. used SPS to prepare various samples
of MMCs reinforced with different concentrations (10, 20,
and 30 vol.%) of CuZrAlTiNiW HEA [131]. According to
FESEM images of Al10 SPS-treated samples (Fig. 10a, b),
there is a core—shell structure consisting of an Al-, Ti-, Ni-,
Cu-, Zr-, and W-enriched core surrounded by an Al- and
Ni—Cu-depleted egg-white-like shell. The core structure is
BCC-HEA, whereas the shell structure is (Ti, Zr, W) Al,
phase with a cubic structure, according to the EDS data.
Moving from the core toward the Al matrix, different zones,
namely, the main shell structure (zone II), transition layer
(zone III), and dark gray phase (zone IV) (Fig. 10b), can be
observed. The FESEM images shown in Fig. 10c—f for the
Al20 and Al30 composites reveal the presence of more pre-
cipitates in these samples. Moreover, a lack of fried egg—like
structure is observed. In Al20 and AI30 samples moving
from the core toward the shell, WA112 phase (denoted by
zone II) can be observed, followed by the dark gray phase
(denoted by zone III corresponding to zone IV of the Al10
sample) and finally Al matrix (denoted by zone IV). The
larger concentration gradient of Al in A110 sample explains
the difference in the structure between Al10 and A120/A130
samples. Al diffusion can promote the formation of egg-
white structure, which was more obvious in Al10 sample.
It is accepted that HEA particles with high lattice distor-
tions exhibit less thermal conductivity than Al matrix [132],
thus heat can be quickly transferred by the Al matrix from
the area of contact with HEA particles. This facilitates the

diffusion of Al into the HEA particles, leading to the in situ
formation of WAI112 and Ni—Al rich B2 phases around the
reinforcing particles. The higher the density of the HEA
particles promoted a higher microhardness resulting in the
highest obtained value of about 331 HV for the AI30 sample
which is ten times higher than that of pure Al. This hardness
enhancement was attributed to the HEA BCC phase and B2
and WAI12 phases, which hinder the dislocations’ movement
and enhance the plastic deformation resistance. According to
the compression stress—strain curve in Fig. 11a, in AI10 sam-
ple, the presence of core—shell structure effectively coordi-
nated the deformation between HEA particles and the matrix
[131]. This coordination helped in passivating the crack tips
when cracks reached the core—shell structure, which in turn
preserved the ductility of the material. On the other hand,
the Al20 composite showed the most remarkable increase in
UTS and o6, (yield stress), but also experienced the most
severe ductility loss among all the samples. These strength
and hardness improvements are provided by precipitation
strengthening of a phase that was formed in situ paired by
dispersion strengthening from BCC reinforcing particles.
However, in the A130 composite, there was a large reduc-
tion in UTS. Despite having an average particle size similar
to that of the A120 composite, the precipitations in the A130
composite were not well distributed. According to Lu et al.
[133], insufficient precipitation content or nonuniform dis-
tribution can prevent further improvement of the mechanical
properties of the composite. Moreover, the higher thickness
of the transition layer in AI30 sample was found to be harm-
ful to o; and o, , values as was proved in the previous studies
[134].

Using the same production procedure, Yuan et al.
[89] found structures similar to the previously described
core—shell structure using CoCrFeMnNi HEA in an Al
matrix. Due to the different diffusion rates of HEA elements
in solid and liquid aluminum, the structure of the interdif-
fusion layer was laminated and serrated, as seen in Fig. 11c
and d. According to the microhardness tests, an increase in
creep depth was found as the distance from the HEA par-
ticles through the matrix increased. However, there was no
significant increase in the creep depth when the indentation
tip was pointed toward the interior of the particles. When the
tip was pointed near the edge of the particles, the creep depth
varied from 1.3 to 2.8 nm, also indicating an increase in Al
concentration. The average hardness of the reinforcing par-
ticles was much higher than that of the composite, with aver-
age hardness values of 277 HV) 5 for the HEAs, 80 HVj 5
for the matrix and 131 HV, j5 for composite samples [89].

Utilizing sintering at different temperatures may be an
efficient remedy to avoid the transition layer formation in
MMC:s [135]. The absence of a transition layer in the sin-
tered AlICoCrFeNi HEA/AI samples at 540 °C was a con-
sequence of this microstructure modification. However,
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Fig. 10 (a, b) FESEM patterns of Al/10%vol%CuZrAITiNiW,
(b-1-b-6) the elemental mappings corresponding to image (b),
(¢, d) FESEM npatterns of Al/20%vol%CuZrAlITiNiW and (e, f)

optimizing the sintering temperature is a vital issue as higher
temperatures induce the formation of thicker transition lay-
ers. At higher temperatures, transition layers appeared in
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A1/30%vol%CuZrAlTiNiW composites [131] (reprinted with permis-
sion from Elsevier B.V., Copyright © 2020)

the samples. Detailed TEM analysis in Fig. 11e—i shows
how the transition layer phase changes from BCC near the
border of HEA particles with BCC phase to FCC phase near
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Fig. 11 (a) Room-temperature compression stress—strain
curves of the SPS-ed pure Al, and Al/10%vol%CuZrAlTiNiW,
Al/20%vol%CuZrAlITiNiW, and Al/30%vol%CuZrAlTiNiW com-
posites [131] (reprinted with permission from Elsevier B.V., Copy-
right © 2020). (b) Schematic diagram of the transition layer forma-
tion mechanism [135] (reprinted with permission from Elsevier B.V.,
Copyright © 2019). SEM images of the Al2024/CoCrFeMnNi): (c)

35 grain

ID layer

1pm

low magnification, (d) high magnification [89] (reprinted with per-
mission from Elsevier B.V., Copyright © 2019). (e) TEM images of
the 5 vol.% AlCoCrFeNi reinforced Al matrix composite sintered at
600 °C, (f) the sample for TEM analysis prepared by FIB technique;
(g—i) presents the microstructure of regions denoted by “1,” “2,” and
“3” in (e) [135] (reprinted with permission from Elsevier B.V., Copy-
right © 2019)
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the border of Al matrix with FCC phase. Compared to the
grain size of reinforcements and the matrix, which are 20
and 4 um, respectively, transition layer grains are much finer
(about 600 nm). The reason for such a structure in the transi-
tion layer is the inhomogeneous distribution of temperature
in the composite during the sintering. According to experi-
mental findings and also numerical simulations, the border
area between the particles and the matrix has the highest
temperature during sintering, which is above the melting
temperature of the amorphous matrix [132, 136, 137].
Besides, it is generally agreed that HEAs with higher lattice
distortions have lower thermal conductivity [138]. Combin-
ing this temperature effect with higher thermal conductivity
of the matrix compared to the HEA particles (about 20 times
higher), moving from particles interior toward the matrix,
temperature drops significantly near the matrix as heat is
transmitted through the matrix. This is the reason behind
the formation of a columnar grain structure near the HEA
border followed by fine equiaxed grains near the matrix, as
shown in Fig. 11b.

Analyzing fracture surfaces is highly valuable as it can
reveal the reason behind, and the mechanism associated
with damage initiation and evolution. Fractography analy-
sis of a MMC with AlgsCu4 sTi 5 s amorphous alloy as the
matrix and Al (CoCrFeNi HEA particles as reinforcement
indicated the amorphous nature of the matrix as the main
cause of composite fracture, considering the intrinsic brit-
tle characteristics of both the matrix and reinforcement.
Besides, the presence of microcracks as sintering defects
in the matrix suggested that these cracks could propagate
in the matrix under loading. The notable difference between
the microhardness of the matrix (~ 16 GPa) and the inter-
diffusion layer and HEA particles (~ 14 GPa and ~9 GPa,
respectively) led to stress concentration at the interface
area between interdiffusion layer and HEA particles under
loading. Since HEA particles can plastically deform, they
show better load-bearing ability; therefore, it is assumed
that the matrix is mainly responsible for the failure of the
MMC. SEM analysis of fracture surfaces in Fig. 12a and
b exhibit two types of textures: mirror-like area and dome-
like area. Numerous pits and tubers on the surface of HEA
spheres resulted from the fracturing of submicron grains
of the interdiffusion layer, as seen in a magnified view
of the dome-like area. Microcracks propagated in linear
paths in the matrix under loading conditions (Fig. 12c-g),
until they reached interdiffusion areas, where they were
deflected. Since interdiffusion layers were made up of sub-
micron grains, cracks continued to propagate along grain
boundaries. This intergranular propagation path increased
the fracture surface, resulting in higher composite strength
[139, 140]. Furthermore, increasing the volume percent-
age of HEA particles (thus increasing the interdiffusion
layer volume fraction) reduced the amount of amorphous
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phase and the number of defects in the matrix, resulting
in increased composite strength. However, the composite
had poor flexibility since the hard interdiffusion layer was
unable to efficiently coordinate deformation toward the
HEA particles [141].

Yuan et al. [142] employed hot vacuum sintering to
manufacture samples with different HEA contents, uti-
lizing commercially available A15052 as the matrix and
Al ¢CoCrFeNi powder as the reinforcement. Microstruc-
tural analysis (Fig. 12h-m) revealed the presence of dark
gray Al, (CoCrFeNi particles, black second-phase particles,
and the yellowish-gray background phase as the Al alloy
matrix. According to the XRD results, the Al, ;CoCrFeNi
particles had a single-phase BCC solid solution structure.
However, after sintering, a new phase of Al (Co, Fe) and
Al,Mg,,; emerged in the composite. The increased dif-
fraction peaks shift with the increase in the heat treatment
temperature (Fig. 12n, o) could be attributed to the lattice
distortion caused by the diffusion of HEA elements into the
Al matrix [131]. Moreover, mechanical tests revealed that
heat treatment time had a limited effect on Young’s modu-
lus but a huge impact on hardness values. The thickness
of the interfacial layer raised as the heat treatment dura-
tion increased, lowering the composite's Young's modulus
and hardness. Hardness was increased from 1.43 GPa in the
original sample to 1.81 and 1.60 GPa in the samples heat
treated at 500 °C for 12 and 24 h, respectively. This can be
attributed to the transformation of the discontinuous thin
interfacial layer into a continuous layer, the increase in its
thickness, and the release of accumulated stresses within
this layer [142].

The elemental distribution data at 500 °C compared to
non-heat-treated samples (Fig. 13a, b) demonstrate a dif-
ferent distribution of alloying elements, which is due to the
hysteresis characteristic of diffusion kinetics of HEA and the
difference in the diffusion coefficient of each element. The
larger diffusion of Fe and Ni in Al matrix hinders the diffu-
sion of Cr, as we can see its lower distribution in the matrix.

Nanocrystalline CoNiFeCrAl,¢Ti,, HEAs were
employed in another study by Lu et al. [143] to evaluate the
effect of existing large grain boundaries as non-equilibrium
states on grain size. A core—shell structure, consisting of a
core of bigger HEA particles and a shell area with smaller
particles, can be seen in Fig. 13d and e. The results of bright-
field TEM confirm the nanocrystalline stability of HEA in
the final sample (Fig. 13c), which is a consequence of the
sluggish diffusion of HEA elements and their great thermal
stability, as also reported in previous studies [145, 146].
HEA reinforcements could significantly promote the grain
refinement, in the way that with the addition of a higher
amount of HEA in the composite, average grain size reduced
from 5.1 to 1.1 pm which was the result of the pinning effect
on grain boundary movements in the matrix.
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Fig. 12 SEM images of the fracture surface morphology at (a) low
magnification and (b) high magnification, (c-d) crack propagation
paths in the composite (AlgsCu g 5Ti g 5/Aly CoCrFeNi) and (e-g) the
sketch of the crack propagation paths in different regions of the com-
posite [141] (reprinted with permission from Elsevier B.V., Copy-
right © 2016). (h-m) Metallographic images of composites (A15058/
Al (CoCrFeNi) under different heat treatment conditions; (h) origi-

In order to boost the diffusion of HEA constituents at
the interfacial layer, Yu et al. [144] utilized Al ;CoCrFeNi
HEAs in a Cu matrix. They prepared two sets of samples:
the first group involved direct sintering of milled HEA and
Cu particles (HEA/Cu), while the second group involved
ball milling of HEA particles with M powder (M represents
transition layer elements such as Cu) prior to adding them to
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nal sample, (i) 350 °C+24 h, (j) 500 °C+ 12 h, (k) 500 °C+24 h, (I)
500 °C+48 h, (m) 600 °C+24, and XRD patterns of the composites
(A15052/Al, (CoCrFeNi) under different heat treatment conditions.
(n) Heat treatment at different temperatures at 24 h; (o) heat treatment
at 500 °C at different times [142] (reprinted with permission from
Elsevier B.V., Copyright © 2020)

the matrix (HEA/M/Cu). The formation of numerous defects
and new free surfaces on HEA particles covered with Cu
allows for diffusion to occur at lower temperatures compared
to the typical diffusion temperatures, ultimately resulting in
a homogeneous composition through simultaneous particle
diffusion and dissolution. The formation of the transition Cu
layer had a significant impact on the mechanical properties
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Fig. 13 Elemental distribution of composite materials (A15052/
Al (CoCrFeNi) (a) before heat treatment; (b) heat treated at 500 °C
for 24 h [142] (reprinted with permission from Elsevier B.V.,
Copyright © 2020); (c) bright-field TEM image of the 60 h milled
CoNiFeCrAl,(Ti,, HEA powder; (d, e) BSE images of the 15-h
milled Al2024/7.5HEA composite powder [143] (reprinted with per-
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mission from Elsevier B.V., Copyright © 2019). EPMA line distri-
butions of (f) HEA/Cu and (g) HEA/M/Cu composites at interface
and (h) schematic diagrams of the effect of transition layer structure
on elemental diffusion during sintering for HEA/Cu and HEA/M/
Cu composites [144] (reprinted with permission from Elsevier B.V.,
Copyright © 2019)
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of the composite. The EPMA (electron probe microanalysis)
(Fig. 131, g) revealed that the additional ball milling process
significantly altered the distribution of different elements
in the HEA. The formation of a transition layer caused the
accumulation of Cr and Al elements in the interface layer.
Moreover, the presence of oxygen at the interface facilitated
the formation of (Al,Cr),0;. Differential thermogravimetric
analysis results illustrated evidence for a chemical reaction
in the HEA/M/Cu sample, which may have been caused by
the reaction between Cr, Al, and oxygen contamination. The
transition layer also had an impact on the diffusion pathway,
facilitating the diffusion of elements such as Ni and result-
ing in the accumulation of Al and Cr in the interface layer
to form complex oxides (Fig. 13h).

The overall hardness of the HEA/M/Cu composite (60
HV) was about 20% higher than that of the unreinforced
matrix. However, the hardness of the HEA particles in the
HEA/Cu sample was higher. This may be explained by
the accelerated diffusion rate of different elements in the
HEA/M/Cu sample, facilitated by the development of the
transition layer. Additionally, tribological tests showed more
severe grooves on the HEA/Cu sample, indicating a 30%
higher wear resistance for the HEA/M/Cu sample, compared
to the sample prepared without the milling step, due to the
formation of the transition layer [144].

Among various implemented manufacturing methods,
FSP is believed to successfully limit the formation of seri-
ous interfacial reactions. In research conducted by Gao
et al. [147], FSP was used to prepare A15083 reinforced by
FeCoNiCrAl HEA, focusing on the effect of the number of
FSP passes. According to the SEM micrographs and EDS
maps (Fig. 141, g), the clear boundary observed between
the particles and the matrix demonstrated that no interfacial
reaction occurred throughout the procedure, which is in line
with the findings of prior research [142, 148]. This is due to
the relatively short time needed for FSP and lower process
temperature compared to the melting point of HEA parti-
cles (1350 °C). Moreover, four distinct zones were detected,
namely, stir zone (SZ), thermo-mechanically affected zone
(TMAZ), heat affected zone (HAZ), and base material (BM).
In SZ, which is the most affected zone by the heat and plastic
flow, recrystallization occurred and equiaxed small grains
were formed. HAZ and TMAZ are considered transition
zones between BM and SZ, where deformation occurred but
no recrystallization was observed (Fig. 14a). By increasing
the number of passes, according to Fig. 14b—e, particle dis-
tribution became more uniform, particle breakage occurred
more frequently, and tunneling defects were eliminated. It
is worth mentioning that non-uniformity in particle distri-
bution still exists at the edges of friction stir zones due to
the lack of plastic flow. Regarding Fig. 15a—e, the general
wear resistance of composite improved by increasing the
number of passes and further grain refinement resulted from

addition of HEAs, i.e., fluctuations in friction—time curves
decreased, and the wear mechanism shifted from adhesive
wear to moderate abrasive wear.

The addition of HEA particles and increasing the number
of passes enhanced the average microhardness from 78 to
158 HV, which can be attributed to several factors. First, the
hardness of the base material increased after one pass due to
grain refinement, which is explained by the Hall-Petch rela-
tion. Second, the addition of reinforcing particles improved
the hardness by obstructing the dislocations, according to
the Orowan mechanism. Furthermore, the difference in ther-
mal contractions between the HEA particles and the matrix
also contributes to the increased hardness due to the quench
hardening effect.

Li et al. [148] used FSP to fabricate commercially avail-
able Al (AA5083-H111) matrix reinforced with pre-alloyed
AICoCrFeNi particles. During the FSP treatment, samples
experienced an interfacial reaction, which gave rise to an
interdiffusion layer between the particles and the matrix. In
comparison to samples produced through SPS, those pro-
duced through FSP demonstrated a much thinner diffusion
layer, without the presence of any intermetallic compounds.
This can be attributed to the lower working temperature of
FSP, which enhances the bonding between the matrix and
particles [148]. Particles’ dispersion during FSP is promoted
through SPD, with fully overlapping passes minimizing any
asymmetry of particle flow in the SZ. Following four FSP
passes, HEA particles maintained their spherical shape,
indicating their excellent mechanical stability. The inverse
pole figure (IPF) map presented in Fig. 15f and g shows
equiaxed grain morphologies for both Al alloys and MMC.
As dynamic recrystallization occurs during FSP, the addition
of HEA particles resulted in a reduction in grain size. The
average grain size for the Al alloy sample ranged between
7 and 14 pm, whereas for the MMC sample, it ranged from
2.8 to 4.6 um. The presence of reinforcing particles with
sizes larger than 0.5 um promoted recrystallization through
the particle-stimulated nucleation mechanism [149]. The
interfacial region between the HEA particles and matrix
was found to be continuous and compact. In addition, an Al
concentration gradient layer (with a thickness of less than
1.0 um) was observed, which was attributed to the diffu-
sion of Al into the HEA particles. This phenomenon has
already been demonstrated in other studies [128, 135, 150].
The absence of intermetallic compounds at the interfacial
region, along with miniature interfacial diffusion, resulted in
a clear and compact interfacial layer, which exhibited excel-
lent load-bearing abilities within the composite.

The factors that have been reported to influence the
mechanical properties of samples produced through FSP
include grain refinement, the formation of a thin interfacial
layer without the intermetallic compounds, and the uniform
distribution of reinforcing particles throughout the matrix
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Fig. 14 (a) Macroscopic overview of cross section of 5-pass FSPed
composite (Al5083/FeCoNiCrAl), SEM images of composite fabri-
cated with different processing passes: (b) 1 pass, (¢) 3 passes, (d) 5
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passes, and (e) SEM image of edge of FSP zone. (f) EDS spectrum of
the red box in (b), and (g) EDS elemental mapping [147] (reprinted
with permission from Springer Nature, Copyright © 2020)
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Fig. 15 Variation of friction coefficient with time in composite
(A15083/FeCoNiCrAl) in (a) base material, (b) without particles
1 pass, (c) with particles 1 pass, (d) with particles 3 pass, and (e)
with particles 5 pass [147] (reprinted with permission from Springer
Nature, Copyright © 2020). IPF maps of composite (AIS083/

AlygCoCrFeNi); (f) the FSPed Al alloys and (g) the FSPed MMCs,
the legend shows the IPF coloring of Al, (h-k) fractographs for (h, i)
the FSPed Al alloys and (j, k) the FSPed MMCs [148] (reprinted with
permission from Elsevier B.V., Copyright © 2020)
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[148]. The average hardness recorded in the SZ for FSPed
MMCs was 125.7 HV,) ,, whereas for FSPed Al it was about
80 HV,,. The fractography analysis presented in Fig. 15 h-k
depicts the ductile nature of the fracture for both samples,
whereas the wider and deeper dimples in AMC samples indi-
cate the composite's lack of ductility. The presence of HEAs
at the bottom of dimples without breaking and detachment is
evidence of good matrix—reinforcement interfacial bonding.

An interesting alteration to FSP is underwater FSP
(UFSP), which is exploited to prevent the development of
intermetallic compounds at the interface. Through lowering
the working temperature, UFSP can also minimize the risk
of interfacial reactions between the HEA particles and the
matrix. Another advantage is the prevention of density gra-
dient formation, which is a common phenomenon at higher
temperatures caused by matrix melting [150—154]. The
thickness of the formed interface layer in UFSP is roughly
200 nm, which is comparatively thinner than the interfa-
cial layer found in composites produced by other methods,
such as laser melt injection, laser additive synthesis, and
SPS [135, 155, 156]. Due to this thin layer, the development
of microcracks at the interface may be avoided [141, 157]
and load transfer from the matrix to the particles during
sliding wear can also be improved. The UFSPed samples
exhibit a greater number of high angle grain boundaries
(black lines) than the as-received and the UFSPed Al sam-
ples (Fig. 16a—c). The addition of HEA particles increased
the number of dislocations in the interfacial area, result-
ing from differences in CTEs and elastic modulus between
the HEA particles and the matrix. Furthermore, broken
HEA particles and already-formed small intermetallic
compounds acted as nucleation sites, facilitating recrystal-
lization through the particle stimulated nucleation (PSN)
mechanism. In Fig. 16d—i, the amount of recrystallized
(blue), sub-structured (yellow), and deformed (red) grains
in different samples are shown. The UFSPed samples exhibit
a higher fraction of recrystallized grains, while the UFSPed
AMC:s show a greater number of sub-structured grains, indi-
cating higher matrix deformation due to the incorporation
of HEA particles. SEM analysis of the wear surface of the
as-received Al and UFSPed Al in Fig. 16j—m indicates that
adhesive wear was the primary wear mechanism in these
samples, as evidenced by the signs of delamination, wear
debris, peeling off sites, and deep grooves. Also, the pres-
ence of tiny grooves and debris in UFSPed AMCs suggests
that abrasive wear was the major wear mechanism at play
[158]. The study found that FSP had a minimal effect on
the hardness improvement in plain, unreinforced samples
of Al. However, it dramatically increased hardness values
in MMC:s. Figure 17 depicts the limited effect of UFSP on
the hardness of as-received Al samples. During UFSP, the
grain refinement effect due to dynamic recrystallization and
work-hardening increases the hardness, but this process also
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leads to the release of residual stresses and a decrease in
dislocation density, which can offset the hardness improve-
ment. The refinement of grains improves hardness through
Hall-Petch strengthening, while HEA particles and inter-
metallic compounds enhance hardness through Orowan
strengthening. Bao et al. [159, 160] derived an equation for
calculating the plasticity index of UFSPed MMCs (88.0%),
which is lower than that of both as-received Al (91.8%) and
UFSPed Al (91.2%). This indicates that the HEA particles
increased the stiffness of the matrix. Besides, this difference
in plasticity index between samples indicate that strengthen-
ing was not only affected by the HEA particles but also by
the matrix itself [158].

Friction deposition is established as a new method for
additive manufacturing of advanced composite materials.
Al-Mg alloy matrix (AA5083) reinforced with nanocrystal-
line HEA particles of CoCrFeNi (12 vol.%) were fabricated
utilizing this method [161]. To compare the results, sev-
eral multi-layer monolithic (without the addition of HEA)
friction deposited samples and a few single-layer friction
stir-welded samples were also prepared. CoCrFeNi was
chosen due to its stability against reacting with Al, thus the
formation of brittle intermetallic compounds was mainly
prohibited. As confirmed by EBDS analysis in Fig. 17b,
no intermetallic compounds were formed. The crystallin-
ity of the HEAs after the friction deposition was also con-
firmed by diffraction analysis [161]. During the friction
deposition process, dynamic recrystallization occurred,
resulting in a much finer grain size. Moreover, the differ-
ence in CTE between the reinforcements and the matrix
leads to a significant increase in dislocation density. Other
evidence, such as the formation of sub-grains and a high
concentration of dispersoid particles (resulting from alloy
5083), further confirm the occurrence of the PSN mecha-
nism [161]. Another study investigated the effects of ball
milling time on a 6061 Al matrix composite reinforced with
7.5% nanocrystalline CoNiFeAl, ,Ti, (Cr, s [162]. Different
samples were prepared to identify the optimized ball milling
time (10, 20, and 40 h) to improve the mechanical properties
[162]. The addition of reinforcements led to the formation
of ultra-fine grains in the sample, which was the reason for
the 5-6 times higher strength. However, these samples also
exhibited limited ductility. Interestingly, the average size of
particles increased during the first 20 h of ball milling, but
then decreased again as some larger particles broke down,
leading to an overall decrease in average particle size after
40 h of ball milling. The cross-sectional morphology of the
three composite powder samples (10, 20, and 40 h) showed a
more uniform distribution of reinforcing particles in the 10-h
ball-milled sample. However, the banding phenomena, i.e.,
formation of clusters of HEA, and areas depleted from HEA
particles were evident in both the 20-h and 40-h ball-milled
samples. The formation of HEA clusters during the 40 h of
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Fig. 16 (a—c) EBSD results of the as-received Al, UFSPed Al, and
UFSPed MMC (AA5083/CoCrFeNi), (d-f) the inverse pole figure
(IPF), recrystallization maps, (g) grain size distribution, (h) sum-
marized results of high- and low-angle grain boundaries, (i) summa-

ball milling induced recrystallization, giving rise to a hetero-
geneous grain structure consisting of a portion of ultra-fine,
large, and elongated grains. The presence of fine particles
tended to slow down grain boundary movement, which in
turn delayed recrystallization and grain growth (known as

UFSPed Al UFSPed AMCs
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I Substructured
B Deformed

90
N HAGBs (1)0 I
B LAGBs
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As-recieved Al UFSPed Al UFSPed AMCs

4 Delamination
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rized results of recrystallized, sub-structured, and deformed region
and SEM morphologies of worn surfaces for (j) the as-received Al,
(k) UFSPed Al, () UFSPed AMCs, and (m) HEA particles [158]
(reprinted with permission from Elsevier B.V., Copyright © 2020)

the Zener drag effect). The fraction of the sample that under-
went recrystallization increased with increasing milling time
up to 20 h, but then decreased up to 40 h of milling time.
These findings were consistent with those reported in other
studies [163].
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A new study reported the development of a novel AMC
reinforced by CoCrFeNi HEA using cold spray (CS) deposi-
tion technology for the first time [164]. The samples were
further improved by using subsequent FSP, which contrib-
uted to a significant enhancement of their mechanical and
anti-wear properties as well as the elimination of cold spray
defects such as micropores and microcracks in the stir zone.
Figure 18b—e demonstrate micropores in cold sprayed sam-
ples, along with the well-distributed reinforcement particles,
which mostly retained their spherical morphology with an
average size of 21 pym. Some HEA particles collided with
each other and caused severe jetting at the boundaries of
the particles (see Fig. 16d). SEM images of FSPed sam-
ples clearly illustrate the micropores and cold spray defects’
removal. Additionally, a few HEA particles were fragmented
and further distributed throughout the matrix, resulting in
the formation of white-band structures in the macro profiles
(Fig. 16a). According to the EBDS results (Fig. 19a—f), many
fine grains were accumulated in the area close to the HEAs

@ Springer

in the matrix after cold spraying. Subsequent sintering made
this heterogeneous grain texture more homogeneous. Further-
more, the average grain size slightly increased after sinter-
ing, which was due to the coarsening of recrystallized grains
provided by the high heat input of SPS. As suggested by other
studies, HEAs as reinforcement induce recrystallization by
particle-stimulated nucleation, which inhibits grain growth
[158, 165]. However, sintering provides enough thermal
energy for grain growth to occur. A thicker interfacial layer
was formed in the FSPed samples compared to cold sprayed
series, which can be attributed to the high FSP temperature
and longer duration. Mechanical tests showed that the micro-
hardness greatly increased in the FSPed samples (from 74
to 141 HV) due to the homogenization and densification of
the microstructure under the effect of FSP. This is consistent
with other studies on other cold sprayed composites modi-
fied by FSP [166-168]. The UTS and elongation of FSPed
samples increased by 60% and 130%, respectively. Fractogra-
phy analysis of the samples revealed that the fracture surface
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Fig. 18 Macro-profiles and
cross-section of cold sprayed (a)
deposits (6061 Al/CoCrFeNi)
after FSP (a). SEM images
representing the cross-sectional
morphologies of cold-sprayed
sample (b, d) before and (c, e)
after FSP [164] (reprinted with
permission from Elsevier B.V.,
Copyright © 2022)

N

of the cold sprayed samples exhibited a brittle nature due
to the high work hardening of the deposit and the presence
of micropores and cracks. On the other hand, the fracture
surface of the FSPed samples displayed small dimples all
over the matrix indicating a ductile nature of fracture in these
samples (Fig. 19g—j). A summary of the preparation methods
and the physico-mechanical properties of MMCs reinforced
with HEA particles is presented in Table 3.

2.5 Other metals

Four main groups of metallic reinforcements have been pro-
posed and studied to improve the physico-mechanical char-
acteristics of the MMCs, by far. In this section, additional
reports on introducing unique secondary particles into the

%

metal matrix to boost mechanical properties such as frac-
ture toughness, hardness, and plastic strain are covered. To
demonstrate their outstanding performance in reinforcing
the matrix, we can refer to their development in BMGs,
which have recently shown remarkable results in the studies
performed in recent years. Since thanks to the shear bands
(SBs) generated under glass transition temperature, T,,, mac-
roscopic plastic deformation is facilitated in BMGs. On the
other hand, the failure of the BMGs subjected to the uniaxial
tension is the consequence of nucleation and propagation of
SBs, which can provide insignificant ductility [170]. Intro-
ducing a microstructure being able to resist the propagation
of SBs, like a composite, can provide ductility, which can
boost reliability and toughness [171]. To address the room-
temperature brittleness of BMGs, bulk metallic glass matrix

@ Springer
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Fig. 19 The EBSD images

of the (a, ¢, e) CSed sample
(6061A1/CoCrFeNi) and (b, d,
f) FSPed sample; (a—d) IPF;

(e, f) grain boundaries. SEM
micrographs of fracture surfaces
of tensile samples observed in
the (g, h) CSed sample and (i, j)
FSPed sample [164] (reprinted
with permission from Elsevier
B.V., Copyright © 2022)
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Table 3 (continued)

Ref

Remarks

Physico-mechanical properties

Fabrication method

Matrix/reinforcement

AAS5083

[169]

In samples with 15 vol.% HEA, hardness was

Microhardness (15 vol.% HEA content): 136

Cooling-assisted FSP (rotation speed of

increased by 65.9%, wear rate was decreased
by 43.0%, and wear loss was reduced by

57.8%

1400 rpm, processing speed of 40 inch/min)

Al-Mg/AlCoCrFeNi
5, 10, and 15 vol.%

1

Wear rate: 8.5x 10~ mm*/m

Wear loss: 1.6 mg

composites (BMGMCs) have been developed due to their
specific structure that can be strengthened by both in situ
produced secondary phases or ex situ directly introduced
secondary particles [172].

2.5.1 Insitu and ex situ BMGMCs

Two methods can be introduced for manufacturing BMG-
MCs according to the formation of the second phase in the
crystal. Regarding the in situ BMGMC:s, the crystalline sec-
ond phase is produced during manufacturing, and due to the
lack of surface oxides and low interface energy between the
secondary phase and the matrix, it tends to strongly con-
nect with the glassy matrix, which is the main advantage of
in situ BMGMC formation [172, 173]. However, the ex situ
BMGMCs are made by adding high-melting-temperature
reinforcements such as Ti, W, Ta, and ceramic particles,
which can cause the formation of multiple SBs during homo-
geneous plastic deformation in the case of homogeneous
dispersion [173]. Therefore, the ex situ approach necessitates
a good match between the BMG matrix and the secondary
crystalline phase; otherwise, impurities, oxides, and voids at
the BMG matrix/crystalline phase interface would severely
degrade the mechanical performance of BMGMCs [174]. In
the following, the influence of metallic secondary phases as
reinforcements in BMGMC:s will be discussed.

2.5.2 Ti-reinforced BMGMCs

Most Mg-based crystalline alloys exhibit extremely fast cor-
rosion and degradation rates, which can be addressed by
exploiting BMGs such as MgZnCa presenting a much lower
corrosion rate. However, monolithic BMGs are exceptionally
brittle, the characteristic that places adverse implication on
the toughness of metallic composites. To tackle this chal-
lenge, BMGs require to be composited with a secondary
phase to promote their strength as well as plasticity [175].
Since Ti metal is well known for its immiscible interac-
tion with the Mg matrix, Ti particles were chosen by Wong
et al. [175] to be added to the Mg¢,Zn;sCas-based BMGs
to increase their plasticity with different volume fractions
of Ti (20, 30, 40, and 50 vol.%), all of which were prepared
by induction melting. The illustrative differential scanning
calorimetry scans of the Mgq,Zn;sCas-based BMGMCs in
Fig. 20a demonstrated that by increasing the volume per-
centage of Ti particles, both 7, and crystallization tempera-
ture () decreased. The multiplication of heterogeneous
nucleation sites from the interfaces between the Mg-based
glassy matrix and Ti particles might be the cause for such
modifications [175].

The fracture strength of Mg,Zn;sCas-based composites
was significantly enhanced by increasing the volume percent-
age of ex situ added Ti particles. However, the majority of

@ Springer
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Fig.20 (a) Representative differential scanning calorimetry scans
of Mgg,Zn;5sCas-based BMGMC samples containing different vol-
ume fractions of 75-105-pm-sized Ti particles. Back-scatter elec-
tron images of the developed brittle TiZn intermetallic compound in
Mgy,Zn;sCas-based BMGMC samples containing different particle
sizes of 50% Ti particles: (b) 20-75 pm; (¢) 75-105 pm; (d) 105-

samples exhibited failure strains of less than 3%. This can
be attributed to the formation of a brittle TiZn intermetal-
lic compound that developed around the interface of the Ti
particle and amorphous matrix, which led to embrittlement
of the composites, as illustrated in Fig. 20b—d. Due to the
limited interface adhesion of Ti dispersoids to the matrix, it
is believed that they are unable to entirely prevent the propa-
gation of SB. This phenomenon is demonstrated in Fig. 20e,
where Ti particles were observed to have been torn away from
the matrix. In addition, Fig. 20f clearly indicates the melt-
ing trace and vein pattern [175]. It is well known that as SB
planes are locally melted by heat or free volume created dur-
ing deformation, vein patterns are often observed on the frac-
ture surfaces of amorphous alloys [176]. Large vein patterns
indicate rapid SB propagation due to the significant plastic
movement before local melting and solidification, whereas
small vein patterns suggest slow SB propagation [177]. Thus,
the adhesion ability of the interface between Ti particles and
the amorphous matrix is crucial to the performance of Mg-
based BMGMCs. Overall, the dispersion of Ti particles in
Mgg,Zn;5Cas BMG alloys is considered a promising strategy
for enhancing their plasticity and yield strength [175].

@ Springer

130 pm. SEM micrographs of (e) fracture surface of specimen after
compression test for the Mgg,Zn;5Cas BMGMC containing 50 vol.%
Ti particles with sizes of 75-105 pm; (f) enlarged image of (e), some
areas display vein pattern mixed with melting trace around Ti parti-
cles [175] (reprinted with permission from MDPI, Copyright © 2016)

In situ development of $-Ti reinforced Ti-based BMGMCs
has demonstrated excellent plasticity during deformation
[178]. However, since B-Ti is metastable at room tempera-
ture, it is necessary to add specific alloying elements (such
as Mo, V, Nb, and Ta) to the parent alloys in order to stabilize
the B-Ti phase [179]. The microstructures and mechanical
properties of Mo-microalloyed BMGMCs were investigated
by Guo et al. [178] with different amounts of Mo (0, 2, 5
at.%, denoted as base, Mo2, Mo5). The results showed that
in both compression and bending tests, the p-Ti reinforced
BMGMCs outperformed the monolithic glassy equivalent in
terms of plasticity and fracture strength. The soft and ductile
B-Ti phase distribution appeared to effectively obstruct the
quick propagation of the primary SB, resulting in multiple
SBs. As shown in Fig. 21a, while the monolithic BMG had
a plastic strain of 3% and a fracture strength of 2050 MPa,
the B-Ti Mo2 BMGMC exhibited significantly higher plastic
strain (up to 13.4%) and fracture strength (up to 2160 MPa).
Furthermore, the Mo2 BMGMC displayed work-hardening
behavior after yielding, which was not observed in the base
BMGMC. This could possibly be attributed to the shear-
induced local dilatation or the increased free volume [180].
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Fig.21 (a) Compressive true stress—strain curves for (i) base, (ii)
Mo2, and (iii) Mo5; SEM images for as-fractured samples: (b) base;
(¢) Mo2; (d) element mapping of Mo at the fracture surface of Mo2
[178] (reprinted with permission from Elsevier B.V., Copyright ©
2017). (e) XRD patterns obtained from the fractured Co5 and Col
specimens. (f) TEM image obtained from the fractured Co5 with an

The significance of variations in hardness between the
metallic glass and the secondary phase has been demon-
strated in the toughening of metallic glass through the
introduction of a secondary phase [178]. During loading,
yielding and deformation in the secondary phase increased,
while they were restricted by the surrounding matrix when
the secondary phase was softer than the matrix [181]. The
fracture surfaces of both the base and Mo2 were studied by
SEM to explore the reinforcing processes, as illustrated in
Fig. 21b—d. The flexibility of the as-fractured monolithic
glassy base sample was confirmed by the presence of SBs
on the lateral surface (Fig. 21b). Multiplied SBs, on the other
hand, appeared on the lateral surfaces of the as-fractured
Mo?2 (Fig. 21c¢), indicating that the propagation of the single
SB was affected by the interfaces between the softer p-Ti
and the glassy matrix, causing the SB to deflect, branch, or
multiply. The element mapping of Mo is shown in Fig. 21d,
indicating significant interactions between the softer p-Ti
phase and the matrix. Moreover, it appears that the B-Ti
phase undergoes yielding and deformation following elastic
deformation of both p-Ti and the glassy matrix, leading to
work-hardening behavior [178].

Yet, among the numerous reinforcing phases, in situ pre-
cipitation of crystalline dendritic phases into the amorphous
matrix during solidification seems to be the most promising
[182]. Zr/Ti-based BMGMCs containing 3-Zr/Ti dendrites
have been explored to fabricate a material with both high
strength and ductility [170]. Extensive research into the

Base

[ Shear bands

SAED pattern of f-Ti. Note the absence of »-Ti or martensitic phases
in dendrites of Co5. (g) TEM image of fractured Col with SAED pat-
terns of B-Ti and a”-Ti. (h) SEM image of fractured Col, illustrating
that a relatively fewer number of shear bands penetrate B-Ti crystals
that contain a”-Ti plates [170] (reprinted with permission from Else-
vier B.V., Copyright © 2019)

plastic deformation processes in B-type BMGMCs showed
that the crystalline B-Zr/Ti phase yields at a substantially
lower stress than the amorphous matrix [183]. The yield
strength of the amorphous matrix sets the upper limit for
the strength of a BMGMC since it is the harder of the two
components. In the early stages of composite deformation,
plastic deformation in the dendrites and elastic deforma-
tion in the matrix are compatible due to the matrix's abil-
ity to withstand elastic stresses (up to 2%). Further strain-
ing increases strain incompatibility at the matrix—dendrite
interface, promoting the formation of SBs in the matrix. In
this situation, neighboring dendrites in BMGMCs might
stop the propagation of SBs, which is in turn influenced
by a variety of parameters, e.g., size, shape, and relative
crystallographic orientation [170]. The researchers also
investigated how the sensitivity of -Ti to stress-induced
phase transformation during tensile deformation affects the
mechanical behavior of BMGMC:s. Their findings revealed
that the stress-induced martensitic transformation of the
dendritic Ti phase from P to o” (the martensitic phase in Ti)
enhanced the composite's resistance to SB propagation and
thus provided significant strain hardening capacity. Addi-
tionally, increasing the number of converted particles by
decreasing the metastability of p-Ti further improved the
mechanical properties of the BMGMCs. However, when the
Co content of the alloy was increased beyond 5 at.%, the
B-Ti phase not only became more resistant to phase trans-
formation but also became softer, as demonstrated by tests

@ Springer



3 Page 40 of 68

Advanced Composites and Hybrid Materials (2025) 8:3

where the Co content varied from 1 to 5 at.%. By lowering
the Co concentration to less than 1 at.%, on the other hand,
the p-Ti phase decomposed quickly to a-Ti and numerous
other brittle intermetallics [184]. TEM images of specimens
with different Co contents (1 and 5 at.%, denoted as Col
and Co5, respectively) subjected to tensile testing are pre-
sented in Fig. 21e—h. Nanoindentation studies revealed that
dendrites could effectively prevent SB propagation under
certain conditions: they must be (i) favorably oriented for
shear transformation to occur and (ii) large enough to absorb
the strain energy generated by SB propagation, preventing
the SB from transmitting across the dendrite. It is important
to note that not all metastable p-Ti dendrites undergo mar-
tensitic transformation during deformation. The efficiency
of dendrites against SB propagation would be insignificant
if most dendrites remained untransformed, resulting in early
commencement of necking. Additionally, reducing the inter-
dendritic spacing can minimize the average distance that an
SB travels before encountering another dendrite, increas-
ing the number of barriers and enhancing the overall SB
resistance of the BMGMCs [185]. When the influence of
dendrite size and inter-dendritic spacing is considered, the
involvement of Co in changing the metastability of the
phase is critical because it eliminates the requirement for
volume fraction (V) >70%, which is the major reason for
the low strength of the composite. The objective of overcom-
ing the strength—ductility conflict in BMGMCs would have
remained elusive without this adjustment [170].

2.5.3 Ta-reinforced BMGMCs

It is widely recognized that melting a second phase into an
amorphous matrix can induce significant changes in the

composition, structure, glass-forming ability, crystalliza-
tion behavior, and other properties of the resulting glassy
alloy. Liu et al. [186] reported that increasing the Ta concen-
tration in the alloy led to the formation of a homogeneous
glassy phase at low Ta concentrations. Further increment of
Ta concentration increased both glass transition temperature
Ty and the crystallization onset temperature (7). Structural
and thermal analysis revealed that incorporating Ta particles
into Cus,Zr,,TigNig powder and subsequent consolidation
using high-pressure torsion (HPT) for the production of
BMGMC disks failed to alter the amorphous nature of the
BMG matrix [187]. This is due to the fact that the Ta parti-
cles were only physically combined with the BMG powder
before being distorted mechanically during HPT. However,
the addition of Ta powder had an inevitable influence on the
consolidation behavior and microstructure of the monolithic
BMG sample. Their inclusion indeed enhanced the suscep-
tibility of monolithic BMG powders to plastic deformation,
as demonstrated in Fig. 22e-h. As a result, the increased
flexibility of BMGMC powder compared to Ta-free powder
hindered the significant localized internal stresses formed in
the HPT setup's limited shape. Ta particles were shown to
limit the propagation of SB and cracks, which improved the
mechanical characteristics of BMGMC:s, as can be seen in
Table 4. Specifically, the BMGMC sample with a Ta content
of 30 vol.% exhibited the most favorable combination of
fracture load and fracture deflection [187].

Additive manufacturing technique based on laser powder
bed fusion (LPBF) was implemented in a study for fabrica-
tion of large-scale BMGs and components with complex
geometries [188]. This technique also offers a possible
way to improve Zr-based BMG’s mechanical properties
by ex situ addition of ductile particles such as Ta [188].

Fig.22 OM micrographs from BMGC disks fabricated by HPT with
2 turns at room temperature (a, c, €, g) and at 200°C (b, d, f, h) con-
taining various amounts of Ta: (a, b) O (monolithic BMG), (¢, d) 10

@ Springer

vol.%, (e, f) 20 vol.%, and (g, h) 30 vol.%. The micrographs show the
microstructure near the middle regions [187] (reprinted with permis-
sion from Springer Nature, Copyright © 2018)
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Table 4 (continued)

Ref

Remarks

Physico-mechanical properties

Fabrication method and condition

Matrix

[193]

Increase in the strength of CoCuFeNi HEA

Arc melting (argon atmosphere, solidified ina For W 15 vol.%:

CoCuFeNi/W

while retaining good ductility
The interfaces between FCC matrix and W

Yield strength: 354 MPa

water-cooled Cu crucible)

Ultimate tensile strength: 570 MPa

particles were semi-coherent

This is particularly relevant since additive manufactured
BMGs exhibit limited plasticity, even under compressive
loading. As shown in Fig. 23a, both toughness and plastic
strain of the additive manufactured BMG composite were
comparable to the as-cast BMG composite. SEM images
from the fracture surface, as shown in Fig. 23b, clearly show
three distinct regions: smooth (see the inset for a magni-
fied view), vein-like pattern region, and dimple region, all
of which are consistent with the typical morphology of
as-cast BMGs reported in the literature [194]. The smooth
region is thought to be created by SB shear-off [195], which
is an indicator of the SB’s motion at early stages. On the
other hand, adiabatic slippage of the major SBs is linked
to the vein pattern area [195], while the dimple pattern on
the fracture surface is associated with rapid crack propa-
gation. Figure 23c illustrates the two key roles played by
Ta particles: generating numerous SBs and hindering crack
propagation, as evidenced by the arrows. These aspects are
thought to contribute to the enhanced toughness observed in
the composites, compared to the previously reported addi-
tive manufactured single phase BMGs [188]. Furthermore,
the interfaces between the glassy matrix ZrssCu;oNisAl;,
and in situ ductile Ta-rich particles were studied by Guo
et al. [189]. TEM images of a sample reinforced with 10
at.% Ta, without any oxide or intermetallic compound layers
(Fig. 23d, e), demonstrate a highly distinct interface between
the Ta-rich phase and the amorphous phase of the BMG.
Additionally, selected area diffraction patterns (SADs) of
each region show a gradient change from the crystalline
ordering fringe of the Ta-rich phase to the maze typical of
the amorphous phase in Fig. 23e. Based on these findings,
it can be inferred that the Ta-rich phase and the matrix have
a strong interface, which enhances the composite's ductility.
The composites exhibit higher plastic strain with increasing
volume fraction of Ta-rich particles. For example, when the
Ta content was increased from 7 to 10%, the true plastic
strain of the composite in compression testing increased by
more than 2 times to 43.5%, while the true fracture stress
decreased by only 4.5% to 1993 MPa [189].

Recently, it has been proposed that the fracture resist-
ance of BMGs stems from the interplay between shear
banding and cavitation/void nucleation [196]. While the
mechanism of shear banding is well established, there is
still limited understanding of the deformation process in
BMGs guided by cavitation/void nucleation. Previous stud-
ies have shown the presence of nanoscale cavities in shear
bands, which are typically associated with brittle fracture
[197]. It was found by Pan et al. [190] that an increase in
the volume fraction of Ta particles in notched BMGMCs
led to a significant reduction in fracture strength. For exam-
ple, the fracture strength decreased from 2.70 GPa in the
monolithic ZrsCuys ¢Nij, 4AlyTa, BMG to 1.20 GPa in
the Zrs,Cus ¢Ni;, 4Al;Tag alloy with 3.3% Ta particles.

@ Springer



3 Page 44 of 68

Advanced Composites and Hybrid Materials (2025) 8:3

5
~
=2
5 See?

- (a)

[ 73.2:0.73]]’-1:“2 ‘ g

- 60.8:46MPam’ 2 Itk
L SLM samples ¢
As-cast samples |
- 1
‘ !
. 1t

Ta10 @
matrix \

Ta particle

K 12

q(MPa'm ")

8 8 & 2 8 3 8 8
T

Ta particle

Fig.23 (a) Fracture toughness of Zr-based BMG composite sam-
ples fabricated by LPBF and casting, the inset image shows a frac-
ture toughness sample; (b) fracture surface of LPBF Zr-based BMG
composite sample after fracture toughness test; (c¢) shows the shear
bands and crack near Ta precipitation on the side cross-section of a
LPBF sample [188] (reprinted with permission from Elsevier B.V.,
Copyright © 2019). (d) Bright-field TEM and (e) HRTEM images of

According to the findings, in the triaxial stress condition,
shear banding may be effectively controlled in notched
BMGs and BMGMCs [198], and cavitation may transform
to the dominant deformation mechanism at the first stage
of failure [199]. In notched monolithic BMGs, decohesion
developed at nanoscale soft areas, which made the decohe-
sion difficult and resulted in high fracture strength and deco-
hesion stress. In notched BMGMC, however, the presence of
an interface between Ta particles and the amorphous matrix
might facilitate void nucleation and coalescence, leading to
reduced fracture strength. A Ta La map was studied on a
specific dimple on the fracture surface of the alloy with 8%
Ta, as illustrated in Fig. 23f and g. Regardless of the effect
of height, the Ta element was concentrated mostly near the
center of the dimple, which corresponded to the position
of protrusions. Since the center of the dimple was where
voids began to form or nucleate, voids were likely to form
at the interfaces between the Ta particles and the amorphous
matrix [190]. The nucleation and coalescence of voids at
the interface of Ta particles and the amorphous matrix can
be attributed to two factors: (i) the strength of the inter-
face between Ta particles and matrix is significantly weaker
than the atomic bonding in monolithic BMGs, resulting in
a lower BMGMC decohesion stress; and (ii) during defor-
mation, stress concentration at the interface may be caused
by incompatibility between Ta particles and the amorphous

@ Springer

a composite reinforced by 10 at.% Ta. The selected area diffraction
patterns of both Ta-rich particle and the glassy matrix are inserted in
(e) [189] (reprinted with permission from Elsevier B.V., Copyright
© 2019). (f, g) High magnification image of the dimple on fracture
surface of notched Ta8 BMGC, as well as the corresponding Ta La
map [190] (reprinted with permission from Elsevier B.V., Copyright
©2019)

matrix. The Young's modulus of Ta was 186 GPa, which
is more than twice that of the amorphous matrix with a
Young's modulus of 81 GPa. This difference in Young's
modulus promotes void nucleation and coalescence at the
interface [190]. Therefore, it is hypothesized that factors
such as particle type and size, as well as particle-matrix
adhesion, may influence fracture behavior and require fur-
ther examination in future research.

2.5.4 Other-elements-reinforced BMGMCs

The use of ultrasonic vibration—assisted thermoplastic to
achieve metallurgical bonding at the interface of TigAl,V
frame reinforced Zr;5TizpBe,q 75Cug 5 BMG compos-
ites was described by Li et al. [174]. The introduction of
TicAl,V frame increased the number of SBs and deflected
crack propagation, resulting in a substantial improvement
in fracture toughness for the produced Zr—-BMG compos-
ites. In Fig. 24a, a bright-field picture shows a clear con-
nection between the BMG matrix and the TicAL,V frame,
confirming metallurgical bonding between the two. The dif-
fraction pattern from region C1, which corresponds to the
TicALV side, reveals a typical single crystal with a zone
axis along [0001]. Conversely, no crystalline diffraction
pattern is observed in region C2, indicating the presence of
the amorphous BMG matrix. Enlarging the area in Square
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S3 in Fig. 24a reveals an interlayer at the interface of the
BMG matrix and TigAl,V frame, as illustrated in Fig. 24b
[174]. Figure 24c shows HRTEM images that provide a
more detailed description of Region C3. The interlayer's
boundaries, with a thickness of about 60 nm, are clearly
visible and marked by dotted lines. Furthermore, regions 1,
2, and 3 are magnified for closer examination. Area 1 dis-
plays crystalline grains, while area 3 is entirely amorphous.
The presence of both amorphous and crystalline phases in
the interlayer is confirmed by the presence of lattice stripes
and a labyrinth pattern in Area 2. The diffraction pattern
displays a halo ring, indicating the presence of an amor-
phous phase in the interlayer. In addition, the diffraction
pattern from C3 reveals significantly finer nanocrystals of
intermetallic complex, which confirms the metallurgical
bond between the BMG and TigAl,V frame [174].

In order to prove the effectiveness of metallurgical bond-
ing, the fracture toughness Kj and bending strength of the
BMG composites were measured. The results revealed that
while monolithic BMG had a fracture toughness of about
80 MPa.m” and a bending strength of about 780 MPa, the
best composite sample had a fracture toughness of 213 MPa.
m”, which exhibited a 170% increase over monolithic BMG
(85 MPa.m”?), and the bending strength was also enhanced
to 1030 MPa [174].

Ti6AI4V

Ti6AI4V

Fig.24 TEM examination on the interface between BMG and
TicALV frame. (a) The interface between BMG and the Ti ALV
frame; insets show the SAED, (b) bright-field image of Area S3
from (a); the inset shows element distribution along line L2 and (c)
HRTEM on the interface between BMG and the frame. The inset

In another study, the boundaries between reinforcement
and matrix in tungsten particles reinforced Zr-based amor-
phous composites with varying infiltrating periods were
examined [176]. The time of interfacial reaction, which
is closely related to the infiltration time, is a critical fac-
tor affecting the performance of composite materials, as
the Zr-based alloy melt exhibits reactive wetting behavior
toward tungsten particles. Interfacial interactions between
the tungsten particles and amorphous matrix facilitated
heterogeneous nucleation at the interfaces, leading to
crystal formation. As the infiltration time increased, the
number of crystals at the boundaries also increased. The
interfacial reaction strengthened the interfacial bond, and
the small crystals formed at the boundaries exhibited a
pinning effect, further enhancing the interfacial strength
[176].

Increasing infiltration time resulted in continued heat
stress on the tungsten particles, leading to the formation
of additional microcracks (Fig. 25a—f). As the number
of microcracks increased, the amorphous melt pene-
trated into them, leading to the creation of more inter-
faces between the tungsten particles and the amorphous
matrix. This, in turn, resulted in a stronger mechanical
self-locking effect between the tungsten particles and the
amorphous matrix [176].

shows the diffraction pattern from Area C3. Inverse FFT from Area
S4 show the lattice structure of the nanocrystals in the interlayer. The
panels at the bottom are the inverse FFT from corresponding areas
[174] (reprinted with permission from Taylor & Francis, Copyright
© 2020)
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Fig. 25 Morphologies of interfacial reaction in tungsten particles reinforced Zr-based BMG composites with different infiltrating times: (a, b)
1 min; (¢, d) 5 min; (e, f) 10 min [176] (reprinted with permission from Springer Nature, Copyright © 2020)

3 Fabrication methods
3.1 Solid state methods
3.1.1 Powder metallurgy and sintering

Powder metallurgy is a typical solid-state production method
for MMCs in which metal powders are usually first blended
in a ball milling machine (Fig. 26a), then compacted as a
green body. A subsequent heat treatment at elevated tempera-
tures (0.6-0.9 matrix melting temperature) known as sintering
is necessary to achieve a dense specimen. Simple CP, cold
isostatic pressing, and/or double-pressing double-sintering
are all viable methods of powder compaction [200-202].
Additionally, a post-processing step, often hot extrusion, is
often required to reduce porosity, refine microstructure, and
improve mechanical performance. It would be relatively con-
venient to regulate the chemical composition, microstructure,
porosity level, and distribution of reinforcements in the matrix
by optimizing the initial powder size and morphology, applied
pressure in compaction, as well as the sintering time and tem-
perature [203, 204]. The process is mostly carried out under a
vacuum or an inert atmosphere to prevent oxidation. Addition-
ally, the fabrication of very large parts is not feasible using
this method, and impurities can be introduced during both the
ball-milling and pressing steps. Moreover, this procedure is

@ Springer

time and energy intensive, and the prolonged sintering time (a
few hours) may result in abnormal grain growth and deteriora-
tion of mechanical properties.

3.1.2 Microwave sintering

Microwave sintering is a relatively new method of fab-
ricating MMCs in which the blended raw materials are
shaped into a green compact, then the compound is sub-
jected to uniform fast heating that warms the compacted
powders volumetrically [213, 214]. Intriguingly, the high
power of the microwave field can significantly increase
the surface ionization of the particles, resulting in rapid
ionic diffusion, particularly at grain boundaries [16]. Con-
sequently, highly compact samples will be prepared with
a uniform distribution of grain size just in a few minutes.
Yet, ultrahigh local heat generation due to the high micro-
wave absorption capacity of certain materials may give
rise to the creation of undesirable phases and/or partial
melting of the composite, hence limiting the applicability
of microwave sintering [215]. It is also essential to note
that microwaves can be exploited for MMCs only when
the size of the particles is comparable to the penetration
depth of the incident wave, which is on a scale of a few
microns. Otherwise, metallic powders will reflect rather
than absorb the wave [214].
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Fig.26 Schematic of (a) planetary ball mill [205] (reprinted with
permission from Elsevier B.V., Copyright © 2022), (b) HP [206]
(reprinted with permission from MDPI, Copyright © 2021), (c)
SPS [207] (reprinted with permission from Elsevier B.V., Copyright
© 2017), (d) LBPF [208] (reprinted with permission from Elsevier
B.V., Copyright © 2023), (e) ECAP [209] (reprinted with permission

3.1.3 Hot pressing

HP process is capable of producing MMCs with a uniform
distribution of the reinforcement phase, high density, and

Compressed
Sample
- Transformer'J
-rectifier Water cooled copp‘e;

electrode

from Elsevier B.V., Copyright © 2022), (f) FSP [210] (reprinted with
permission from Elsevier B.V., Copyright © 2015), (g) cold spray
[211] (reprinted with permission from Elsevier B.V., Copyright ©
2021), (h) RROLM [55] (reprinted with permission from WILEY—
VCH, Copyright © 2018) and (i) electric arc melting systems [212]
(reprinted with permission from MDPI, Copyright © 2020)

improved mechanical properties. Powders firstly are blended
to ensure that a homogeneous distribution of the reinforce-
ment phase is obtained. The prepared powders are shaped
into a green body that may be pre-sintered to a certain extent

@ Springer
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to increase its strength and stability. Then, the green body is
simultaneously compacted and sintered to the final product
(Fig. 26b). Despite the process occurring at a lower tempera-
ture and in less time than conventional sintering, the micro-
structure and characteristics of the samples are boosted.
However, expensive equipment is required, and undesirable
reactions between the typically used graphite mold and the
sample can also be limiting [27, 216].

3.1.4 Spark plasma sintering

SPS is capturing considerable attention for processing high-
performance MMC:s. In this technique, as a result of pulsed
DC voltage in the die assembly and uniaxial pressure in an
inert atmosphere or vacuum, the sample undergoes electri-
cal resistance—induced heating (Fig. 26c) [217, 218]. The
electrical discharge between particles under applied pres-
sure caused by sparking promotes powder densification.
High heating rates (up to 600 K/min) and rapid cooling rate
(up to 300 K/min) are the most prominent features of this
technology, owing to the non-insulating characteristics of
graphite mold, significant radiative loss, and high incoming
power. These exceptional characteristics enable the sinter-
ing of nanostructured materials with superior mechanical
properties. On the other hand, SPS is a binderless technique
and does not require a pre-compaction phase. However, the
required apparatus is complex and costly, and undesirable
reactions may occur between the die and the sample [207].

3.1.5 Severe plastic deformation

SPD is one of the most established techniques, which are
capable of generating ultra-fine-grained structures within
the bulk of metallic composites [219]. There are several
commonly used methods of SPD, including equal channel
angular pressing (ECAP) [220], accumulative roll bonding
[221], HPT [222], and FSP.

In ECAP, a plunger provides a lubricated case with a
sufficient driving force to pass through two equal channels
intersecting at an oblique angle in the die (Fig. 26e). During
the process, the intense shear strain is applied to the sample
at the intersection point without changing the dimension of
the final sample. Accumulative roll bonding is composed of
different steps, including stacking two rolled sheets, heating
under the recrystallization temperature, and rolling toward
forming a new strengthened single sheet. Then, the samples
are halved, and the process is repeated multiple times.

In HPT, there are two anvils with a cavity where a disc-
like sample is embedded. In this case, a huge torsional stress
is imposed on the sample under high hydrostatic pressure
via rotation of the top anvil. FSP is an effective surface
modification process for the reinforced MMCs, which will
be discussed in the next section in more detail. During
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the mentioned processes, a significant amount of strain is
imposed on the bulk structure through extensive hydrostatic
pressure, leading to significant refinement of the microstruc-
ture [223]. The reduction in grain size enhances the hardness
and strength of the composite through the Hall-Petch law.
With this increased hardness, the ultra-fine-grained metallic
composites exhibits enhanced wear resistance [224].

Unlike hot extrusion and hot press that require elevated
temperatures for the integration of powder-based samples,
which mostly damages the secondary phase, some of these
techniques such as ECAP and HPT have the great capabil-
ity to consolidate metallic powders at low temperatures by
introducing ultra-high plastic strain into the bulk metallic
composite [220]. Another impressive output of ultra-fine-
grained composites is promoting the passive film formation
on the surface of the sample, which can increase the cor-
rosion resistance in various acidic solutions [225]. Despite
many advantages of this process in fabricating highly tough
composites, many SPD processes fail to impose uniform
strain distribution throughout the specimen [226]. To over-
come this problem, multiple passes are required to increase
the uniformity through the bulk, which makes the process
complicated and inefficient. Besides considerably limiting
the geometry of the part to be treated, this process becomes
ineffective for refining some brittle metallic alloys with low
ductility.

3.1.6 Friction stir processing

FSP is a fast, green, and energy-efficient solid-state mate-
rial processing technique [227-229]. FSP's basic principle
is very simple: a rotating tool with a pin and shoulder is
placed in a single piece of material, using a sufficiently
high pressure to insure contact between the tool and the
work piece; the FSP tool is traversed along a pre-defined
path to cover the region of interest (Fig. 26f) [230]. Local-
ized heating results from the friction between the tool and
the workpiece, causing the latter to soften. The material
undergoes significant plastic deformation during FSP,
which results in considerable grain refinement [230]. Thus,
this method has been successfully employed for micro-
structural modification of metallic materials [231-233]
and fabrication of in situ [154, 234, 235] and ex situ com-
posites [236-238] under severe thermo-mechanical effects.
In case of composites manufacturing, the reinforcement
powder and the matrix should be put together, for instance,
by drilling small holes and filling them with powders of
reinforcement material [147]. Besides, by tuning the tool
design, FSP parameters, and active cooling/heating, the
microstructure and mechanical properties of the processed
zone may be precisely controlled. Another advantage
offered by this technique is the possibility of controlling
the depth of the processed zone by adjusting the length of
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the tool pin, with the depth ranging from a few hundred
micrometers to tens of millimeters [239]. Furthermore,
flash flaws and welding thinning can be minimized in this
method to retain the integrity of the material [240].
There is an alternative FSP-based method called cool-
ing-assisted FSP that can shorten the peak- and high-tem-
perature residence periods, slowing the movement and
migration of grain boundaries in the stir zone and resulting
in fine grain structures [241, 242]. Moreover, this updated
technique can reduce the risk of the formation of brittle
intermetallic compounds at the interfacial area between
the reinforcement and the matrix. The process can be per-
formed in a pool of water where the work piece is con-
tinuously cooled. However, FSP method has several draw-
backs, including limited processing speed, restrictions on
the size and shape of the processed material, and high
equipment costs, which make it challenging to employ this
technique for large-scale industrial applications.

3.1.7 Friction deposition

This is a relatively simple solid-state additive manufactur-
ing technique facilitated using a simple friction welding
machine [243]. The basis of this technique is similar to
friction stir welding, with a difference that a solid tool is
used and friction deposition is realized by means of a hol-
low shoulder in which the feedstock material is inserted.
Heat is generated by friction at the interface of the shoul-
der, the feedstock material, and the work piece, as the
shoulder continues to rotate at a high speed. Consumable
material is fed through the shoulder and gets deposited on
the work pieces, leading to the generation of layers of the
deposited material. As the feedstock material is pushed out
of the shoulder, heat is transferred through it by conduc-
tion causing the feed material to be softened. One distin-
guishing aspect of this new technique is the thickness of
individual deposited layer, which is significantly higher
than any other additive manufacturing method [244].
Karthik et al. [161] used this technique for additive manu-
facturing of Al-matrix reinforced composites with HEAs
for the first time.

3.1.8 Cold spray deposition

Cold spray deposition is an effective solid-state process com-
monly used also for the fabrication of MMC coatings. In this
technique, powders of the metal matrix and the reinforce-
ment material (metal or ceramic) are accelerated to super-
sonic velocities using a pre-heated gas (commonly nitrogen
or helium) passing through a de-Laval nozzle to impact a
substrate [211]. If the impact velocity is high enough, the
particles bond to the substrate, avoiding the need to melt

the materials (Fig. 26g). Therefore, high-temperature conse-
quences like phase transformation, tensile residual stresses,
and oxidation can be prevented [245, 246]. The deposition in
cold spray is achieved through a combination of mechanical
interlocking, deformation, and metallurgical bonding mecha-
nisms. The cold spray process is advantageous for MMC
fabrication since it is not based on melting and solidifica-
tion and thus is not fully bound to the thermal compatibil-
ity of the mixed materials. Once the spray parameters are
well optimized, low porosity deposits with high cohesive
strength can be obtained. The cold spray process can be used
to fabricate MMCs with a variety of reinforcements; how-
ever, it has not been vastly used and much research is still
required to discover the full potential of this technique for
next-generation MMCs. How much each phase contributes
to the material's overall load-bearing capacity is arguably the
most important question regarding the mechanical properties
of cold sprayed MMCs. Despite the fact that the collective
response to external load has been extensively investigated
in the field, the phase-specific response of cold spray MMCs
is much less understood.

3.1.9 Rolling of randomly oriented layer-wise materials

RROLM is a unique manufacturing technology, which ena-
bles the formation of a layer-wise aligned distribution of
micro-scale intermetallic particles in the matrix (Fig. 26h).
This method can be used to obtain an AMC with both high
strength and toughness. The process consists of combining
foil from materials with nanoparticles to form in situ layered,
discontinuous reinforcements within a bulk, ductile material.
Under heating through solid state diffusion, nanoparticles
permeate into the foil layers causing the formation of high
strength intermetallics and production of a hierarchical,
layer-wise structured metal matrix composite [55].

3.2 Liquid state methods
3.2.1 Laser powder bed fusion

MMCs can be created using the advanced additive manufac-
turing technique known as SLM or laser powder bed fusion
(LPBF). By layer-by-layer melting and fusing metallic powder
particles, a high-powered laser beam is used in the SLM pro-
cess to create three-dimensional objects (Fig. 26d). Complex
forms and geometries can be produced by accurately control-
ling the laser to melt only the appropriate areas of the powder
bed. A mixture of metal powder and reinforcing phase must
first be made in order to produce MMC:s using this technique.
The mixture is then loaded in the system, spread on the sub-
strate bed, and then the laser is utilized to selectively melt and
fuse the metal powder, fusing the reinforcing phase into the
metal matrix [247]. The ability to exert strict control over the
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distribution and orientation of the reinforcing phase inside the
metal matrix is the fundamental benefit of employing SLM for
MMC manufacturing. This can result in improved mechani-
cal properties, such as increased strength, stiffness, and wear
resistance. Additionally, the SLM process makes it possible to
create MMCs with complicated internal structures and geom-
etries, which would be challenging or impossible to do with
conventional production techniques [248, 249].

3.2.2 Electric arc melting

In arc melting, the alloys are melted under vacuum or inert
atmosphere employing an electric arc between an electrode
and a water-cooled ground plate (hearth, also called a cru-
cible, usually made of copper) (Fig. 26i). The electrode may
be either non-consumable (water cooled and conventionally
made of tungsten) or consumable, made of Ti or Ti alloys.
The arc melting process is able to produce the highest purity
ingots; however, it faces major challenges for upscaling, thus
it is commonly used in laboratories to prepare reference
samples of the alloys. Another disadvantage of this technol-
ogy is the non-homogeneity of the obtained ingot, which
requires several remelting procedures and, in many cases,
long annealing times [250].

3.2.3 Induction melting

Induction melting is an effective method for melting high-
purity metals such as Ti, Nb, and Mo [1-7]. The energy for
melting is transferred via the electromagnetic field gener-
ated by an induction working coil. This electromagnetic field
induces an eddy current, which results in Joule heating in
charged metals. Generally, a water-cooled metallic crucible,
i.e., a cold crucible, is used to prevent contamination. When
molten metal contacts the inner wall of the cold crucible,
the melt is solidified immediately and a solid crust, the so-
called skull, is formed between the melt and the wall. This
skull prevents contamination from the crucible and protects
the crucible against the hot melt [251]. However, this pro-
cess shows poor energy efficiency since a large portion of
the input energy is lost to the water-cooled crucible [252].
Thus, in an attempt to minimize the loss, a metallic crucible
has been slitted and several segments are isolated electrically
from each other to improve the energy efficiency by provid-
ing sufficient electromagnetic transparency of the crucible
[252]. This is a promising method for medium- to large-scale
manufacturing of castings with the advantages of being sim-
ple, allowing for homogeneous stirring of the melt and the
ability to maintain a high superheat to enable quality castings
to be obtained at large scale and reduced costs [250]. A sum-
mary of all these fabrication methods is provided in Table 5.
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4 Potential applications

The applications are normally defined based on the matrix
of a composite. Therefore, potential applications include
all known fields of applications for metallic alloys,
remarking that the performance of MMCs reinforced
with metal particles may be better than conventional
ones. Generally, this class of MMCs have been introduced
to a range of prospective structural applications due to
their unique mechanical, physical, and chemical proper-
ties. However, these new generations of MMCs also have
great potential for functional applications that require
further research. By exploring the potential applications
of MMCs, we can develop new materials with fascinating
properties, leading to a wide range of interesting research
opportunities.

4.1 Structural applications
4.1.1 Aerospace

When it comes to building aircraft, selecting the right
material is crucial. Metals like Al, Ti, and steel are com-
monly used due to their lightweight nature, high strength,
and resistance to corrosion, fatigue, heat, and cracks [253].
However, these metals need to be strengthened to ensure
safety during flight. Alloying and employing special fab-
rication techniques or post-treatments are normally uti-
lized to meet the requirements. The new generation of
MMC:s, reinforced by metal particles, have the potential to
be used in the production of structural components provid-
ing greater durability, high resistance to wear and corro-
sion, and lower weight, which may contribute to improved
fuel efficiency and reduced maintenance costs in aerospace
applications. In addition to structural components for air-
craft, these MMCs can also be used in satellite compo-
nents such as antenna and reflectors that require high stiff-
ness and thermal stability [254-257]. Furthermore, there
are a variety of specific applications for SMA composites
including actuators to control various components of an
aircraft or spacecraft, morphing wings that can change
their shape in-flight, allowing for higher aerodynamic
efficiency and improved fuel economy, and active vibra-
tion control systems to reduce vibrations in aircraft and
spacecraft, improving ride comfort and reducing compo-
nent wear [258-260]. While the use of MMCs in aero-
space applications exhibits a high potential to improve the
performance and sustainability of aircraft, producing the
next generation of MMCs for the aerospace industry can
be complex and expensive, requiring specialized manu-
facturing techniques.
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Table 5 (continued)

18

— Limited by material compatibility with laser

Disadvantages

— Precision in reinforcement distribution

— Complex internal geometries
— High mechanical properties

Advantages

Description

Laser powder bed fusion (LPBF) Metal powders melted layer-by-layer using a high-

Fabrication method

Springer

melting
— High equipment and operating costs

— Post-processing challenges

powered laser beam to create complex structures

— Challenges in scaling up

— High-purity ingots

Alloys melted under vacuum or inert atmosphere

Electric arc melting

— Non-homogeneous ingots may require multiple

— Effective in laboratories for alloy preparation

using an electric arc

remelting
— Long annealing times

— Poor energy efficiency due to crucible losses

— Homogeneous stirring of the melt

— High superheat capabilities

Electromagnetic field induction melts metals in a

Induction melting

— Initial investment in energy-efficient crucibles

cold crucible for high-purity casting

— Suitable for medium- to large-scale manufactur-

ing

4.1.2 Automotive

Metal materials have been a staple in the automotive indus-
try for their strength, durability, and affordability. However,
as the industry shifts toward more sustainable practices,
there is a growing demand for lighter and more fuel-efficient
vehicles. This has led to the development of high-strength
lightweight metals such as aluminum and magnesium, which
are increasingly being used in the production of car parts. To
further reduce weight while maintaining strength, composite
materials have become a popular choice in the automotive
industry. These materials offer unique advantages over tra-
ditional metals, such as improved corrosion resistance and
greater design flexibility. Composite materials can be used
to produce engine components, brake systems, suspension,
body and chassis components, and other critical parts that
require both lightweight and high-strength properties. In
addition to improving fuel economy and reducing emissions,
the use of composite materials in cars also offers better crash
resistance, longer service lifetime, and higher reliability.
Furthermore, the use of metal particles as reinforcement in
composite materials can enhance the corrosion resistance
of car parts that are exposed to harsh environments. These
benefits make composite materials an attractive choice for
car manufacturers aiming to produce more sustainable and
efficient vehicles [261-263].

4.1.3 Sports and recreation

Metallic materials and composites, including magnesium,
titanium, and aluminum, are commonly used in the produc-
tion of high-performance sporting goods due to their high
strength-to-weight ratio, impact resistance, and stiffness.
However, magnesium is susceptible to corrosion, which can
be addressed by coatings or incorporating novel metallic
particles. Titanium is an excellent choice for golf clubs due
to its vibration characteristics and stiffness, but the addi-
tion of BMG particles can improve energy absorption and
transfer of impact to the ball. Aluminum's soft nature can
also be improved by reinforcing it with metal particles for
enhanced performance in various sports equipment. The use
of MMC:s in manufacturing sports equipment such as bicy-
cles, golf clubs, and tennis rackets offers improved strength,
reduced weight, better shock resistance, and improved safety
for athletes [264, 265].

4.2 Functional applications
4.2.1 Electronics

In recent years, the electronics industry has made remarka-
ble progress, and this can be attributed to the advancement
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in materials used in their construction. These materials
have contributed to the miniaturization, enhanced speed,
and improved reliability of electronic components. High-
quality electronic metals have become a popular choice in
the manufacturing of various electronic appliances, as they
offer exceptional conductivity and corrosion resistance.
Additionally, the materials used in electronics must be
flexible, versatile, and precisely manipulated to meet the
demands of modern technology. One of the biggest chal-
lenges facing electronic equipment is heat generation. The
materials used must be able to withstand high tempera-
tures and resist the effects of the harsh environment. New-
generation MMCs can be a part of advanced materials for
next-generation electronics with higher performance. They
could be particularly useful in the manufacturing of heat
sinks due to their high thermal conductivity. Moreover,
substrates with high dimensional stability can be machined
to tight tolerances, which makes them perfect for use in
electronics. These materials can be designed to provide
low CTE, which means that they can maintain their shape
even when exposed to high temperatures. In addition to
managing heat, the electronics industry also faces the chal-
lenge of electromagnetic interference (EMI), which can
disrupt the normal functioning of electronic devices and
cause significant damage [266]. To mitigate EMI, elec-
tromagnetic shielding materials can be used to absorb
or reflect electromagnetic radiation, reducing the risk
of interference [267, 268]. While copper and aluminum
are effective shielding materials, their susceptibility to
corrosion limits their usage. Embedding metal particles
into these materials can partially address this concern.
Although components such as copper and aluminum pro-
vide adequate shielding against EMI, their susceptibil-
ity to corrosion limits their usage [266]. Incorporating
metal particles into these metals may mitigate this issue
to some extent [269]. Although there is ample space to
utilize MMCs in electronic industry, extended research
is needed to better explore the behavior of metal particle
reinforced MMC:s in electronic devices.

4.2.2 Energy conversion

With the increasing industrialization of the world, the
importance of energy conversion is becoming more evi-
dent as it enables the transformation of energy from forms
provided by nature into usable forms of energy [270, 271].
The potential of novel materials in advancing energy con-
version applications promises a cleaner and more efficient
energy future [272, 273]. Metallic materials play vital roles
as catalysts, electrode materials, conductors, and structural
components in this process. Notably, by leveraging MMCs,
such as embedding Ag nanoparticles in AggSnS, we can
fabricate metal-semiconductor heterodimers, catalyzing

redox reactions in dye-sensitized solar cells [274]. This
approach is capable of improving the efficiency and stabil-
ity of the solar cells, giving rise to more powerful cells with
longer lifespan (Fig. 27a, b). In another attempt, a Pt-based
MG was used as the catalytic electrode layer in a proton
exchange membrane, and its performance was compared
to that of a 20% Pt/C electrode [275]. The results showed
that the BMG electrode was highly active and durable, indi-
cating its potential as a viable alternative to conventional
Pt/C electrodes (Fig. 27c, d) [275]. In addition, promising
results were obtained from testing Pt- and Pd-based BMGs
as electrocatalysts for various types of fuel cells, including
alkaline fuel cells, direct methanol fuel cells, and direct
ethanol fuel cells [276, 277]. These studies have shown that
BMGs can act as effective catalysts for fuel cell applica-
tions due to their high surface area, good catalytic activity,
and stability under harsh operating conditions. Therefore,
in fuel cells, costly noble-metal catalysts could be substi-
tuted with BMGs to not only reduce costs but also improve
performance [276].

Due to the high electrochemical activity of BMGs in the
hydrogen evolution reaction (HER), there is a great opportu-
nity to benefit from BMGs in hydrogen gas production tech-
nologies. Moreover, their high electronic conductivity and
corrosion resistance, stemming from the absence of crystal-
line defects, make them an excellent candidate for this appli-
cation [281]. Several studies have explored the use of BMGs
in this context, including Pd-Ni—Cu-P, which displayed
outstanding self-stabilizing behavior and outperformed
commercial Pt/C catalysts (Fig. 27e) [278]. This improved
performance is attributed to the inherent structural heteroge-
neity on the amorphous surface, improved electron transport,
and selective dealloying during the chemical reaction [278].
To replace noble metals, such as Pt, Ir, and Ru, a conductive
medium not prone to degradation is required in the oxygen
evolution reaction (OER), which is the anodic reaction in
the hydrogen gas production process. NiFeP metallic glass
samples with various Ni/Fe ratios have exhibited excellent
OER activity due to their high electronic conductivity and
abundant active sites provided by the coordinated Ni and Fe
(Fig. 271) [279].

Moreover, developing self-healing MMCs could posi-
tively impact the wind turbine industry by reducing main-
tenance expenses, extending service lifetime, and prevent-
ing catastrophic failures. With self-healing properties, the
MMCs could repair themselves in case of damage, thus
increasing their durability and reliability. This could result
in lower operating costs and improved safety for wind tur-
bines, which are critical components of renewable energy
systems [282]. Engaging these metallic materials in energy
applications has relatively emerged in the recent years,
and ongoing research is crucial to fully explore their vast
potential.
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Fig. 27 (a) A Mott—Schottky-
type Ag—AggSnSy heterodimer
as counter electrode in a DSSC
[274] (reprinted with permis-
sion from WILEY-VCH,
Copyright © 2015). (b) Current
density—voltage characteristics
of DSSCs with Ag-AggSnSg,
AgeSnSg, and Pt counter
electrodes [274] (reprinted with
permission from WILEY-VCH,
Copyright © 2015). (¢) SEM
images of Pt-BMG nanowire
used as the electrode of a micro
fuel cell [275] (reprinted with
permission from WILEY-VCH,
Copyright © 2013). (d) Loss of
the electrochemical surface area
after accelerated durability test
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4.2.3 Energy storage

Energy storage, along the energy conversion, stands as a
pivotal field driving innovation in renewable energy utiliza-
tion [283-285]. By leveraging principles of electrochem-
istry and advanced materials science, researchers aim to
develop efficient, scalable, and environmentally sustainable
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energy storage solutions [286, 287]. Recent advancements
in metallic components hold significant promise for enhanc-
ing energy storage technologies, particularly batteries and
supercapacitors [288-291]. For instance, the utilization of
HEAs in battery electrodes has demonstrated notable elec-
trochemical activity attributed to lattice distortions, render-
ing them well suited for next-generation batteries (Fig. 27g,
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h) [280]. A strategic approach to further enhancing electro-
chemical activity could involve incorporating metal parti-
cles into the porous structure of HEAs, potentially yielding
composite materials with improved conductivity, stability,
and enhanced ion/electron transport [292]. This approach
also facilitates increased accessibility of electrolyte ions to
internal active sites, offering a promising avenue for future
research in battery and supercapacitor technologies.

4.2.4 Electromagnetic interface shielding

Electromagnetic interference (EMI) shielding refers to the
process of reducing the EMI emitted by electronic devices
or systems, thereby preventing them from interfering with
nearby electronic equipment or communication systems
[293, 294]. Metallic components can serve as effective EMI
shielding materials due to their ability to provide reflection,
arising from mobile charge carriers, and absorption, aris-
ing from electric and/or magnetic dipoles, thus safeguard-
ing electronic systems from external electromagnetic dis-
turbances [295-298]. Hence, ferromagnetic alloys, such as
Fe-, Co-, and Ni-based BMG or HEA, could exhibit superior
performance for EMI applications [299, 300]. In one study,
Co-based BMG showed promising potential as thin and flex-
ible materials capable of efficient EMI shielding, offering
excellent soft magnetic properties, satisfactory shielding
capabilities, and mechanical robustness [300]. Integration
of metal particles into MMCs may further enhance their
electromagnetic properties, thereby bolstering their utility
in EMI shielding applications across various industries,
including electronics, telecommunications, and aerospace.

4.2.5 Medical

High performance MMCs have a wide range of potential
applications in the biomedical industry. The most promis-
ing applications are orthopedic and dental implants as high
strength and stiffness of MMCs can help in reducing the risk
of implant failure, while their resistance to wear and corro-
sion can improve the longevity of the implant [301-303].
Moreover, integrating silver nanoparticles into metal matri-
ces can confer antibacterial, antimicrobial, and antifungal
properties [304-306]. They interact with pathogens by
disrupting cell membranes, inhibiting cellular processes,
and inducing oxidative stress, effectively preventing micro-
bial growth and proliferation. Another important potential
application is related to the use of SMA composites in the
production of stents that can expand and contract to adapt
to the shape of the artery. This can improve the long-term
effectiveness of the stent and reduce the risk of complica-
tions. SMA composites can also be used in the production
of surgical instruments and tools. These materials can pro-
vide improved performance due to their super-elasticity and

SME, allowing the instruments to adapt to the shape of the
tissue or organ being operated on. This option can open new
doors to improve the precision and effectiveness of surgical
procedures [307-309].

5 Challenges and prospects

MMC:s reinforced by metal particles have been popular since
the early 2000s, with Ti, Cu, and some intermetallic com-
pounds being the preferred reinforcement choices. Later,
with the significant progress in the field of amorphous met-
als, they became the favored reinforcement phase for soft
metal matrices, yielding excellent mechanical performance.
By the mid-2010s, scientists began exploring the potential
of using HEA particles as reinforcement for metal matrices
due to their excellent mechanical properties and stability in
monolithic form.

Reviewing the state of the art in this area, it is noted that
while using metal particles as the reinforcement phase in
MMCs can offer several advantages, there are still signifi-
cant challenges that must be tackled before we can take full
benefit of their potentials. For instance, the proper selec-
tion of elements and optimization of their composition are
critical factors for complex alloys such as BMGs and HEAs.
In this regard, the utilization of thermodynamic modeling
and computational simulations such as molecular dynamics,
Monte Carlo simulations, and neural network modeling can
significantly enhance the quality of material design. Another
significant challenge is to achieve strong bonding between
the reinforcing metal particles and the metal matrix, as it
can promote effective load transfer and thus improve the
composite's strength. Typically employed strategies include
(i) surface modification of the reinforcing particles through
chemical treatments, oxidation, and coating; (ii) alloying the
metal matrix with elements that have better affinity to the
reinforcing particles; (iii) in situ formation of the reinforce-
ment; and (iv) mechanical interlocking through ball milling
or compaction through shot peening.

On the other hand, producing high-performance MMCs
requires cutting-edge technologies. Fabrication methods
pose several challenges, including difficulties in achieving
consistent mixing, maintaining uniform temperature distri-
bution during processing, and controlling the cooling rate
of the composite. These aspects are of utmost importance,
for instance, in case of advanced techniques such as SPS,
LPBF, and FSP in which any slight change in the influen-
tial factors can significantly impact the interface thickness,
formed phases, and the final performance. The currently
used techniques are of high cost and encounter multiple
technological limitations regarding the possible material
combinations, and the sample size that limit the advance-
ment of this field.
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Another important challenge that should be tackled to
facilitate the diffusion of MMCs in demanding fields like
automotive, aerospace, and electronics is the ambiguity
around their corrosion behavior, considering the complexity
of deconvoluting the individual roles of various influencing
parameters including the type of matrix and reinforcement
materials, processing methods, bonding state, grain size
range and homogeneity, and the environmental conditions.

Despite these scientific and technological gaps, the high
technological and environmental impact of this area of
research has attracted considerable attention. Researchers
from various disciplines, such as chemistry, physics, elec-
tronics, and engineering, have taken an interest in MMCs
trying to explore their performance in novel applications
such as solar cells, batteries, and water splitting, expand-
ing the applications of this field through a multidisciplinary
approach. Further investigations are necessary to examine
various properties of these materials, such as their electronic
and heat conductivity, which are essential for new applica-
tions in the energy field. Theoretical research and density
functional theory (DFT) studies are also critical to under-
stand the electronic structure and the movement of charge
carriers in these materials, especially at the interfaces; the
acting mechanisms of interaction with other substances in
catalytic applications is also another open area of research.

Except for DFT and computational methods, there are
two main remedies that have assisted other fields of science
and engineering but have not received much attention in the
field of composites. One missing approach is the category
of in situ and operando techniques, which have become
increasingly popular for evaluating materials intended for
advanced applications, such as energy devices. These tech-
niques can provide valuable insights into the behavior and
performance of MMCs. For example, in situ XRD can be
used to study the crystal structure and phase evolution of
the reinforcement phase in an MMC during manufactur-
ing. This technique can provide real-time information on
the formation of intermetallic compounds and the growth of
the reinforcement phase, which can inform the design and
processing of the composite. They can be also used to ana-
lyze the load-bearing share and interaction of various phases
under loading. In situ TEM is another technique that can
be used to assess the microstructure and mechanical behav-
ior of MMCs under various conditions, such as high tem-
perature or mechanical loading. This technique can provide
insights into the deformation mechanisms of the composite,
the evolution of defects and dislocations, and the role of the
reinforcement phase in strengthening the composite. In situ
thermo-mechanical analysis can be used to study the thermal
and mechanical behavior of MMCs under heating, cooling,
or mechanical loading. This technique can provide informa-
tion on the CTE, elastic modulus, and thermal stability of
the composite, which can inform and level up the design and
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processing of the composite. Lastly, in situ electrochemi-
cal impedance spectroscopy can be used to study the corro-
sion behavior of MMCs under various conditions, such as
exposure to corrosive environments or mechanical loading.
This technique can provide valuable information on corro-
sion rate, corrosion products, and corrosion mechanisms
of the composite, and thus can shed light on the currently
ambiguous aspects of the electrochemical performance of
these composites.

In addition, machine learning is a powerful tool that can
contribute significantly to the development of MMCs rein-
forced by metal particles through various material design
approaches. By analyzing large datasets of material proper-
ties, machine learning algorithms can be used to identify
the optimal combination of different materials for both the
matrix and reinforcement phases in a composite. This has a
high potential to facilitate predicting the desired mechanical
and physical properties of the final composite as a function
of various process and material parameters (e.g., chemi-
cal composition, morphological aspects, distribution and
volume fractions) and thus not only accelerate the design
process, but also enhance its fidelity. In addition to mate-
rial design, machine learning algorithms can also offer a
significant boost in optimizing the MMCs’ manufacturing
processes. By analyzing data from various manufacturing
steps, such as mixing, shaping, and sintering, these algo-
rithms can identify the optimal parameters that will result
in high-quality composites. These algorithms can be shaped
to guarantee the desired performance indexes for specific
applications.

With the advancement of modelling and analysis tools
and by developing a multidisciplinary approach, these chal-
lenges are expected to be tackled, empowering MMCs rein-
forced by metal particles as high-performance materials with
significant properties and unprecedented performance, cre-
ating great opportunities for demanding industries. A sum-
mary of these observations and challenges is provided in
Table 6.

6 Conclusions

In this paper, the next generation of MMCs that are rein-
forced by metal particles instead of conventional ceramics
are reviewed and analyzed. The four major categories of
metallic reinforcement materials, including intermetallics,
BMGs, HEAs, SMA, and other metals, have been intro-
duced as the main reinforcement options demonstrating
excellent physico-mechanical properties that surpass con-
ventional MMCs. The specific features, advantages, and
complications have been extensively discussed for each
category and their current and future range of applications
are described.
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Table 6 Main observations and challenges in MMCs reinforced with metal particles

Category Main observations

Challenges

Reinforcement evolution
were popular

— Early 2000s: Ti, Cu, and intermetallic compounds

— Lower performance of metal particles in comparison to
ceramic reinforcements

— Then, amorphous metals utilized for soft matrices
—2010s: HEA particles explored for superior properties

Material design
sitions

— In situ formation of metal reinforcements improved

interface properties

Fabrication methods
allowed for high-performance MMCs

Characterization

the matrix and reinforcement

Multidisciplinary approach — Growing interest from fields such as chemistry, phys-
ics, electronics, energy conversion and storage, and

biomedical engineering

— BMGs and HEAs synthesized in hundreds of compo-

— Advanced methods such as SPS, LPBF, and FSP

— Employing advanced techniques enabled better
understanding of the interface phenomena between

— Difficulty in selecting the optimal elements and compo-
sitions for complex alloys
— Tailoring the interface bonding

— Inconsistent mixing, temperature control, and cooling
rate challenges

— High cost of current technologies

— Limitations on material combinations and sample size

— In-depth knowledge of the behavior of novel synthe-
sized components

— Lack of numerical models predicting properties of
complex MMCs

— Limited knowledge on electronic and thermal proper-
ties, as well as biocompatibility of novel MMCs

The main advantage of metal reinforced MMC:s is that
the higher affinity of the matrix and the reinforcing particles
thanks to their metallic nature leads to more uniform and
coherent matrix/reinforcement interfaces, reducing the risk
of debonding upon loading.

There are still numerous gaps regarding MMCs' mate-
rial design and characterization as well as their fabrication
that should be bridged to facilitate the application of these
advanced materials. Nevertheless, the recent advance-
ments in MMCs' technology open up unique opportuni-
ties for developing new metallic components that meet the
requirements of various high-tech industries, including
automotive, aerospace, sporting goods, electronics, energy
devices, and biomedical sectors. The promising outcomes
obtained from these MMCs are paving a new path toward
next-generation high-performance MMCs indicating that
a revolution in materials science and engineering in the
near future.
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