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Abstract. Mosquitoes spread disases such as Dengue and Zika that
affect a significant portion of the world population. One approach to
hamper the spread of the disases is to identify the mosquitoes’ breed-
ing places. Recent studies use drones to detect breeding sites, due to
their low cost and flexibility. In this paper, we investigate the appli-
cability of drone-based multi-spectral imagery and mmWave radios to
discover breeding habitats. Our approach is based on the detection of
water bodies. We introduce our Faster R-CNN-MSWD, an extended ver-
sion of the Faster R-CNN object detection network, which can be used
to identify water retention areas in both urban and rural settings us-
ing multi-spectral images. We also show promising results for estimating
extreme shallow water depth using drone-based multi-spectral images.
Further, we present an approach to detect water with mmWave radios
from drones. Finally, we emphasize the importance of fusing the data of
the two sensors and outline future research directions.

Keywords: Multispectral Imagery · mmWave Radar · Aerial Drones ·
Object Detection.

1 Introduction

Dengue and Zika are two arboviral viruses that affect a significant portion of
the world population. Each year, almost 400 million dengue infections happen.
Due to severe dengue fever, around half a million people each year are in need
of hospitalization [39] and about 36.000 people die [23]. The number of dengue
cases varies from year to year. After a reduction in many countries of the world
in 2017, the numbers are increasing again [39]. In Sri Lanka alone, the number of
dengue cases has been substantial in recent years with more than 150.000 cases of
dengue reported in 2017 [1] (see Fig. 1). In 2017, 440 people in Sri Lanka died of
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dengue fever. According to government reports, the dengue patient management
cost has reached 2 million USD in the year 2012 (when the number of cases
was much lower than in 2017 and 2019) only for the Colombo district of Sri
Lanka [24].

While there is no direct correlation between the income level of the people
and the possibility of being infected by the dengue virus, the economic impact
on the poor is much larger. According to Senanayake et al. [29] funds spent
by households below the poverty-line for the treatment of dengue amounted to
93.7% of monthly per capita income. This is despite the fact that free health
care is available in Sri Lanka.

Fig. 1: Dengue Fever Cases in Sri Lanka. Some years more than 100000 cases
with a strong health and economic impact, in particular on the poor part of the
population.

Dengue spreads rapidly in densely populated urban areas. The principle vec-
tor species of both dengue and zika viruses are the mosquitoes Aedes aegypti and
Aedes albopictus [8]. They breed in very slow-flowing or standing water pools.
It is important to reduce and control such potential breeding grounds to contain
the spread of these diseases. The roofs of buildings in urban environments, espe-
cially blocked gutters, provide ideal breeding grounds for Aedes. In Sri Lanka,
there is a National Dengue Control Unit (see http://www.dengue.health.gov.lk/)
to address this problem. Public health officials, police and military personnel vi-
sually inspect lands and buildings to locate potential mosquito breeding sites.
This is difficult for the roofs of tall buildings despite that these may contain
potential water collecting structures.

In this paper, we present our approach to fight dengue fever. In particular,
we propose to use drones equipped with multi-spectral imagery cameras and
mmWave radios to provide aerial inspection capabilities. This paper describes
our system design and presents initial results in two of the projects’ direction.
First, we discuss how we use multi-spectral imagery to detect water from drone
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flights. In particular, we present our experiments to detect water retention areas
from deep learning based object detection utilizing drone-based multi-spectral
images. To the best of our knowledge, this is the first work that introduces a wa-
ter detection method via deep-learning-based object detection and multi-spectral
imagery. Moreover, estimating water depth using the bathymetric log-ratio al-
gorithm [33] with the drone-based multi-spectral images is also not assessed yet.
In summary, the main contributions of this work are as follows: (a) Demon-
strate the applicability of the mmWave radios to detect water. (b) Introduce a
deep-learning-based object detection network to detect water bodies via multi-
spectral images. (c) Use multi-spectral images recorded by a drone to illustrate
how the bathymetric log-ratio approach can be used to assess water depth.

The remainder of this paper is organized as follows: The state-of-the-art
methods for drone-based detection of water using mmWave radios and multi-
spectral images are outlined in Section 2. Section 3 discusses the system that the
authors intend to develop. Section 4 presents our approaches for multi-spectral
images, the related experiments and results to detect water retention areas.
Section 5 discusses our drone-based water detection method using mmWave
radar. Finally, Section 6 summarises our findings and concludes the paper.

2 Related Work

Joshi and Miller review machine learning techniques for mosquito control [17].
Like us, they focus on urban environments due to the high number of cases
of mosquito-borne diseases in such areas. They highlight the challenges and
progress in the area of visual detection for identifying mosquitoes. Vasconcelos
et al. present an IoT-based prototype for counting mosquitoes [37]. In particular,
they detect and classify mosquitoes based on the sound of their wingbeats.

Texas Instruments have presented a demonstration on applying mmWave
radios to classify water and ground in a lab environment [15]. Shui et al. re-
cently presented a system for measuring water depth using mmWave radios as
we do [30]. We are aiming at going one step beyond by trying to measure water
depth from drones which causes additional challenges. Other related applications
of mmWave radios include the 2D rotor orbit of rotating machinery [11] as well
as robust indoor mapping even in harsh environments such as in smoke-filled
conditions [18].

Drones are capable of reaching locations that humans are unable to easily
reach and they enable rapid observation of the ground with low operation cost. In
recent research, drones are being used extensively in mosquito breeding habitat
observation and other control measures such as spraying larvicides [2–5, 7, 9, 27,
36, 38]. In particular, drone-based multi-spectral imagery has also been used in
several studies to determine areas that are likely to be breeding grounds [32,
6, 22, 28]. These studies have focused on locating relatively large water bodies
in rural and peri-urban areas, such as ponds, temporary water pools and road
puddles. However, we are looking for water retention areas in all urban (e.g.
water retention areas on rooftops), peri-urban and rural areas.
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3 System Description

This section briefly describes the system that we are implementing. Our goal
is to detect the breeding places, i.e., still-standing water with mosquito larvae,
in densely populated areas using drones. The detection of the breeding places
happens in two steps: first drones are sent on what we call scanning flights at
high altitude (around 300 meters) to identify areas that need to be more closely
investigated. The scanning flights will be based on digital maps that indicate
potential breeding places, using open formats such as OpenStreetMap Keyhole
Markup Language (KML) that facilitate the exchange of map information among
involved stakeholders.

We construct the initial version of the maps with the help of public health
instructors who currently do this job manually and hence have in-depth knowl-
edge. We then automatically update the maps with data from new flights as well
as weather information, for example, to include the effects of recent rainfalls
that may create new potential breeding places. Based on the updated maps we
construct the paths that consist of the waypoints, i.e., the potential breeding
places for closer inspection flights.

In the second step, drones visit the waypoints. When arriving at a potential
breeding place, the task of the drone is to detect and analyze the water area and
determine whether or not it contains mosquito larvae. We investigate two ap-
proaches to solve this problem: First, we employ mmWave radios to detect water
retention areas as potential mosquito habitats. Second, we use multi-spectral im-
ages to analyze the water area, measure the depth of the water and understand
the larvae density. After that, we fuse the results for the final classification of the
water area. Once we have detected a breeding place with mosquito larvae, the
public health authorities and building owners are informed to ensure removal of
the breeding place. Another option is to use spray larvicides or drop larvicide
tablets into water with larvae.

4 Using Multi-spectral Imagery to Detect Mosquito
Breeding Places

In this section, we discuss the usability of multi-spectral imagery to detect larval
habitats. First, we discuss the drone-based multi-spectral image data that is
available for processing. Then we focus on the detection of water as a potential
breeding place. Here, the urban scenario is of particular interest. Finally, we
emphasize the importance of water depth for larval habitats and its estimation
from multi-spectral drone imagery.

4.1 Drone-based Multi-spectral Image Data

Previous research on mosquito breeding ground detection is based on identifying
near standing water bodies or water retention areas using natural colour (RGB)
aerial imagery [2–4, 27]. However, the information attainable from RGB images
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is limited when compared to that of multi-spectral imagery. For example, multi-
spectral images from drones have successfully been used in combination with
machine learning (ML) techniques to detect larval habitats in rural areas more
accurately [6]. Our focus is on urban areas and the use of deep learning (DL)
techniques to detect actual larval habitats in a challenging urban environment.
Therefore, we collect our data with a MicaSense RedEdge-MX multi-spectral
camera fitted onto a DJI Phantom 4 drone as shown in Fig. 2. The sensor has
five spectral bands: Blue, Green, Red, Red Edge, and Near-Infrared (NIR).

Fig. 2: MicaSense RedEdge-MX camera mounted on a DJI Phantom 4 drone.

4.2 Detecting Water Using Multi-spectral Imagery

Several studies have been done to identify water bodies using multi-spectral
image datasets from satellites such as Landsat1. In recent years, drone-based
multi-spectral images have been widely collected for different purposes. The
applications range from agricultural data analysis to the detection of water areas.
For this purpose, different methods have been developed.

Multi-spectral Indices
The basic methods utilize multi-spectral indices to detect water areas. We

have assessed the applicability of the Normalized Difference Water Index (NDWI)
[21] to classify pixels as water or non-water pixels. We have determined the in-
dex from the source images available for the spectral bands of the MicaSense
RedEdge-MX sensor. The NDWI is defined as

NDWI =
Green−NIR

Green + NIR
. (1)

The index ranges from -1 to 1. Values above zero indicate water features. Values
below or equal to zero suggest non-water features such as soil and vegetation
[21].

1 https://landsat.gsfc.nasa.gov/data/
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An experiment in an environment with water on concrete ground is instruc-
tive. We learn that the NDWI is not able to properly segment the concrete area
retaining water. Further, the definition of the NDWI in Eq. 1 indicates that it is
highly correlated with plant water content by using NIR and Green bands [21].
Hence, using only the NDWI for identifying potential mosquito breeding places
in urban environments such as water retention areas on rooftops is challeng-
ing. Therefore, more advanced methods like ML techniques have to be used for
multi-spectral imagery to identify potential mosquito breeding places in urban
areas.

Deep-learning-based Methods for Detection of Water Areas
Minakshi et al. [22] recently demonstrated the suitability of CNN-based ob-

ject detection for aerial imagery by experimenting with an Inception V2 [35] net-
work for feature extraction and a Faster Region-based CNN (Faster R-CNN) [25]
with a bounding box based method to localize the areas of larval habitats. Since
our primary goal is to identify potential breeding habitats in urban environments,
such an object detection approach appears appealing. Here, the open question
is the adequate size of the utilized bounding box. In urban environments, the
diversity of water retention areas is high. Segmentation methods may become
more challenging and bounding box-based detection may become more efficient
and reliable.

In this study, we extend the CNN-based object detection approach proposed
by Minakshi et al. [22] to process multispectral images. In order to handle 5-
band multi-spectral stacked images, we modify the initial Keras Faster R-CNN
network1 as well as the pre-processing workflow. For feature extraction, we utilize
either ResNet-50 [12] or VGG [31] networks. Fig. 3 depicts the proposed Faster
R-CNN training pipeline with the stacked multi-spectral image. We refer to it
as the Faster R-CNN Multi-Spectral Water Detection (Faster R-CNN-MSWD)
network.

Fig. 3: Faster R-CNN model for multi-spectral images. First, the images from
each band are combined into a single stacked image. A VGG or ResNet50 network
is used to extract feature maps. These feature maps are then used by the Faster
R-CNN to localize water areas.

For the experiments, we gather a multi-spectral image dataset using our cam-
era and drone. First, we create the stacked image of 5 bands and the correspond-
ing RGB images for all images in our dataset. Then, we use the RGB images to

1 https://github.com/you359/Keras-FasterRCNN
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annotate manually the water retention regions via rectangular bounding boxes.
As the size of RGB and stacked images match, we can use the bounding boxes
to train the network with the stacked images. Currently, our dataset includes
112 stacked images that depict water retention areas. Finally, we use 70% of
the stacked images for training and 30% for testing our Faster R-CNN-MSWD
network.

Fig. 4: Total loss of our Faster R-CNN-MSWD network with a VGG backbone.
The x-axis gives the number of epochs. The y-axis shows the loss value.

We train our Faster R-CNN-MSWD with a VGG region proposal network
(RPN). With this VGG backbone network, we have 136,699,171 trainable pa-
rameters. In the training phase, we reduce the total training loss to 0.575. For
our test data, we achieve a mean average precision (mAP) of 0.89 at an IoU
of 0.25 (Intersection over Union). However, due to the lack of training samples,
we observe a relatively high number of false negatives (FN), i.e, not detected
bounding boxes. The training loss curve of our Faster R-CNN-MSWD with a
VGG backbone is shown in Fig. 4. Loss values for RPN and detector networks
are summarized in Table 1.

Table 1: Loss values of RPN and detector networks of the Faster R-CNN-MSWD
with a VGG.
RPN Classification
Loss

RPN Regression
Loss

Detector Classifica-
tion Loss

Detector Regression
Loss

0.379 0.079 0.061 0.054

Faster R-CNN-MSWD and VGG are trained using an Intel(R) Core(TM)
i7-8700K CPU, an NVIDIA GTX 1080 Ti GPU and 32GB RAM. To visualize
the detection results for a multi-spectral stacked image, we add the predicted
bounding boxes to the corresponding RGB image, as shown in Fig. 5.
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(a) Urban Area (b) Rural Area

Fig. 5: Water retention areas as detected by the Faster R-CNN-MSWD with
VGG. The bounding boxes are added to the corresponding RGB image of the
given stacked multi-spectral image. Our network is able to detect water retention
areas in both urban (including rooftops as shown in Fig. 5a) and rural (including
large water bodies as shown in Fig. 5b) areas.

4.3 Water Depth Estimation Using Multi-spectral Imagery

The depth of water has been identified as a vital factor that influences mosquito
larval development [32, 26, 34]. Several studies have been conducted in order
to determine water depth using multi-spectral satellite imagery [33, 19, 10]. Re-
cently, Sarira et al. conducted a study to determine the minimum water depth
such that water areas can be accurately identified by multi-spectral images [28].
As a result, they found that there is a considerable statistical dependency be-
tween NIR reflectance and water depth. In particular, they show that it requires
at least 5-10 cm depth for an accurate identification of inundated areas using
NIR images.

Motivated by this, we have collected a dedicated image dataset of water
buckets with varying water depths, ranging from 2-16 cm in increments of 1 cm.
Our earlier paper [20] discusses our initial approach of using bathymetric models
and band reflectances to estimate water depth from drone-based multi-spectral
images. The log-ratio algorithm [33] in Eq. 2 has initially been introduced for
satellite imagery to analyze shallow water of up to 15 m. We apply this model,
determine the logarithm of the reflectance of the NIR band R(NIR) and nor-
malize it by the logarithm of the reflectance of the Blue band R(Blue). The
model assumes a linear relation between the depth and the log-ratio.

Z = m
logR(λi)

logR(λj)
+ c (2)

Here, Z denotes the water depth. R(λi) and R(λj) are the reflectance values of
the NIR and Blue bands, respectively. m and c are the model parameters that
can be determined by linear regression.

Fig. 6 depicts the regression plot of the initial experiment. The moderate
variance of the data points around the linear regression line demonstrates the
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Fig. 6: Regression plot of water depth vs. log-ratio of the NIR and Blue band re-
flectance values. There is a linear relationship between logR(NIR)/ logR(Blue)
and water depth. This indicates that we can use the bathymetric log-ratio
method to estimate the water depth from drone-based multi-spectral images.

applicability of the bathymetric log-ratio algorithm to determine the depth of
extremely shallow water areas using multi-spectral drone images. Note that some
data points are rather noisy. In the future, we plan to improve the quality of
the data in order to measure the depth of extremely shallow water areas more
accurately.

The depth of water areas is just one feature to detect larval breeding grounds
more reliably. Deep-learning-based approaches are promising when identifying
potential mosquito habitats in urban areas. Spectral indices and water depth will
be valuable features for such learning-based methods. However, a large volume
of annotated images is necessary for well-performing deep-learning networks. In
the future, we will collect an annotated urban image dataset that will allow us to
train a feature-based network for reliable detection of larval breeding grounds.

5 Using mmWave Radios to Detect Mosquito Breeding
Places

In this section, we discuss the usability of mmWave radios to detect water areas.
We start with a brief introduction of the mmWave radio technology. Then we re-
port on our experimental setup, preliminary results gained from the experiments
and identified challenges.

5.1 MmWave Radio Technology

A mmWave radio transmits an electromagnetic signal (a chirp) using its trans-
mission (TX) antennas and captures the reflection of the chirp by its receiving
(RX) antennas [16]. Then the mmWave radio passes the RX signal and TX sig-
nal to the mixer and an intermediate frequency (IF) signal is the output that
contains the frequency difference between the TX and RX signals (Fig. 7a). This
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generated signal contains a single constant frequency and this frequency is pro-
portional to the distance between the target from the mmWave sensor. When
receiving RX signals from multiple objects with different distances, the resulting
signal will be generated as a combination of multiple IF signals (Fig. 7b). By
performing a Fast Fourier transform (FFT) one can compute the frequencies
contained in the IF signal (Fig. 7c). The detected frequencies are then used to
calculate the distance to the target and the receiving power of the signal [16].

(a) 1TX 1RX mmWave
sensor block diagram (b) IF signal (time domain)

(c) Frequencies of the IF signal
(Frequency domain)

Fig. 7: mmWave Sensing

5.2 Detecting Water Using mmWave Radios

For the experiments, we use a Texas Instrument IWR1843boost mmWave
sensor and Texas instrument DCA1000 evaluation module for raw data capturing
(see Fig. 8a). In particular, we conduct several lab experiments to uniquely
differentiate water from other target materials like soil, wood, glass pallet, copper
sheet and cardboard that were placed under the sensor at a distance of 1.5 m
(see Fig. 8b).

(a) IWR1843boost mmWave
sensor with DCA1000evm
data capture card.

(b) Water detection
setup in a Lab environ-
ment.

(c) mmWave sensor
mounted on a DJI Phan-
tom 4 Standard drone.

Fig. 8: Experimental setup for the mmWave sensor.

After obtaining the IF signals for each of these materials, we apply an FFT
to get the corresponding frequencies and receiving power of the IF signal. Fig. 9
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shows that we obtain different power levels for different materials. This follows
from Eq. 3 [13].

Power Captured at RX Antenna =
PtGTXARXσ

(4π)3d4
(3)

In this equation, Pt is the transmitted power, GTX the TX antenna gain, ARX

the effective aperture area of the RX antenna, σ the radar cross-section (RCS)
of the target and d is the distance.

According to Eq. 3, if we keep the target at a fixed distance of 1.5 m and
the other variables are constant, the receiving power of the signal depends only
on the target’s RCS value. In general, the target’s RCS value depends on its
size, reflectivity of its surface, and its shape [14]. As a result, we receive different
power levels for different materials. Hence, it is possible to only use the distance
and receiving power when detecting water via mmWave radios.

Fig. 9: Power levels of the mmWave radios for different materials. The receiving
power is the highest for water but close to that of copper.

Fig. 9 shows that the IF signal’s receiving power for water areas is rela-
tively high compared to other materials assessed except copper. This implies
that mmWave radios are able to detect water areas. However, it also confirms
that we cannot rely solely on the mmWave sensor as some materials such as
copper lead to similar receiving power levels. Therefore, to identify water with
very high accuracy using a second technology such as imagery is required.

5.3 Detecting Water with mmWave Radios from Drones

We integrate the IWR1843boost mmWave sensor to the DJI Phantom 4 Stan-
dard drone as depicted in Fig. 8c. Notably, the TI IWR1843boost mmWave
sensor is capable of working alone without connecting to the DCA1000 evalua-
tion module and it has its own Digital Signal Processing (DSP) chip on it. To
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record data from the mmWave sensor, we develop a python program1 and run it
on a Raspberry Pi Zero W module. Initially, we record two data sets targeting
ground and water by hovering the drone at the same height. As depicted in the
Fig. 10, the receiving power of the water areas are relatively high compared to
the ground areas. This suggests that the mmWave radios can detect water from
drones. The vibration of the drone generates instability in the receiving power
of the signal. Hence, we use the average values for a window to stable the signal.

Fig. 10: Receiving Power for the ground and water

Based on the results we believe that further research on utilizing mmWave
radios for detecting water using drones is essential. Moreover, we expect to verify
that using mmWave radios to estimate water depth [30] is possible also from
drones. Our results also indicate that fusing the results from mmWave radio and
multi-spectral imagery would make the results more reliable.

6 Conclusions and Future Work

In this paper, we have evaluated multi-spectral imagery and mmWave radio
waves to identify possible mosquito breeding areas by detecting water bodies.
In particular, we propose our Faster R-CNN-MSWD network that uses drone-
based multi-spectral images to detect both urban and rural water retention ar-
eas. Moreover, our results show that shallow water depth can be estimated from
drone-based multi-spectral images by using a bathymetric method. Our experi-
mental results further demonstrate that drone-based mmWave radios are capable
of differentiating water areas from other targeted materials. In future work, we
will collect more data and improve the Faster R-CNN-MSWD network.

It is unlikely that only one method will be able to accurately identify poten-
tial mosquito breeding sites. Hence, the fusion of multi-spectral and mmWave
sensor data may lead to more reliable results. A system which incorporates both

1 https://github.com/amweerasekara/mmWave-IWR1843Boost-UART-Data-
Recorder
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approaches may be used for a future commercial drone system that is able to
detect breeding sites and automatically spray larvicides or drop larvicide tablets
into the detected water bodies.
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