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Abstract
The growth of both operational satellites and orbital debris is creating the requirement for more robust Space Surveillance 
and Tracking (SST)-related applications. These systems necessarily must leverage ground-based sensors (optical and radar) 
to realise higher performance solutions. In this context, the European Union Space Surveillance and Tracking (EUSST) 
consortium groups European national agencies and institutions, and is in charge of carrying out the following services: 
conjunction analysis, fragmentation analysis and re-entry prediction, and the Italian Air Force is in charge of the latter two. 
In this framework, the Italian SST Operational Centre (ISOC) has recently upgraded its system to the ISOC Suite, an inte-
grated platform providing multiple functions and services in the SST domain. This paper presents the orbit determination 
functions provided by the novel ISOC Suite. First, a statistical index is computed to assess the measurements correlation to a 
catalogued object. If it is successful, the object predicted orbit is refined through measurements according either to batch or 
sequential filters; otherwise these are used to refine a first estimate of the target orbital state computed according to dedicated 
methodologies. After the presentation of the prototypal software architecture, the ISOC Suite performance are assessed and 
discussed both in terms of synthetic and real data.

Keywords Space situational awareness · Space surveillance and tracking · Space debris · Orbit determination · Resident 
space objects · Sensors

1 Introduction

In the last decades, in orbit population has become one of the 
main concerns for space agencies and institutions worldwide, 
and this problem mostly affects two regions: Low Earth 
Orbit (LEO) and Geostationary Orbit (GEO). Among orbit-
ing objects, just a small fraction is represented by co-oper-
ative satellites, while the main part by space debris, which 
include inactive satellites, rocket bodies, and fragments of 
all sizes [1]. Space debris represent a threat to space activi-
ties, moreover for what concerns in orbit collision risk, and 
so different strategies have been implemented to guarantee 
safe operations. To this end, an international effort is cur-
rently taking place in the Space Surveillance and Tracking 
(SST) field, and Europe deals with this topic through two 
programmes: the European Space Agency (ESA) Space Situ-
ational Awareness (SSA) programme [2] and the European 
Union Space Surveillance and Tracking (EUSST) frame-
work [3]. Nowadays, the latter groups national agencies and 
institutions from 15 European countries, and is in charge of 
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guaranteeing the following services: conjunction analysis 
[4–8], fragmentation analysis [9, 10] and re-entry predic-
tion [11]. These services exploit measurements obtained 
through ground-based sensors, which are optical telescopes 
(they provide highly accurate angular track) [12], radars (in 
addition to angles, they provide either slant range, SR, or 
Doppler shift, DS, measurements, or both) [13] and lasers 
(they provide extremely precise range measurements) [14]. 
Besides these services, maneuver detection [15] and proxim-
ity operations monitoring [16, 17] are also fundamental in 
space traffic management activities. The latter is expected to 
play a crucial role in the future for the active debris removal 
programmes.

Italy is involved in the EUSST programme through the 
Italian Space Agency (ASI), the Astrophysics National 
Institute (INAF) and the Italian Ministry of Defence, 
with the Italian Air Force (AM) largely involved, and 
it is in charge of re-entry and fragmentation services, 
managed by the AM Space Situational Awareness Cen-
tre (C-SSA). For this reason, efficient and reliable tools 
shall be designed to process observation data. Within this 
framework, the Italian SST Operational Centre (ISOC) 
has recently upgraded its system to the ISOC Suite 2.0 
(simply indicated in the work as ISOC Suite from now 
on), which provides multiple functions and services in 
the SST domain. Compared to the first version of the 
software (ISOC Suite 1.0), more functionalities are pre-
sent, which are offered through an integrated web-based 
platform, granting easier accessibility. The present work 
describes the orbit determination module developed for 
the ISOC Suite in partnership with industry and aca-
demia, thanks to a collaboration involving AM, Leonardo 
Company and Politecnico di Milano. The prototypal ver-
sion here described has been then translated to C++ lan-
guage to be used in the operational environment, granting 
higher performance in terms of computational times.

Generally, as soon as the measurements are provided 
by a sensor belonging to the consortium network in the 
form of Tracking Data Message (TDM) files [18], their 
correlation to a catalogued object must be first verified, 
to then proceed performing Orbit Determination (OD). 
To determine the orbital state of an observed object, sen-
sor measurements can be processed in two ways, depend-
ing on whether the data refer to a catalogued object or 
not.

In the catalogued case, the orbital state predictions 
are refined using the measurements and this process 
is known as Refined Orbit Determination (ROD). The 
algorithms used can be distinguished between sequential 
methods (they need the predicted state uncertainty) and 
batch methods (they do not). The former processes the 
measurement information in chronological order (either 
forward or backward, depending on the application), the 

latter, instead, leverages a complete data set acquired 
over a certain time horizon to find a solution. Both 
sequential and batch methods are iterative and require 
sufficiently good initial guesses. Besides the position 
and the velocity, these algorithms can also estimate the 
target physical parameters (such as the ballistic coeffi-
cient), which can be then refined considering additional 
ephemerides of the object [19].

For uncatalogued objects instead, no prediction is 
available and only measurements can be exploited. In 
this case, an Initial Orbit Determination (IOD) is per-
formed to compute a first guess of the target orbital 
state, through dedicated methodologies. In this context, 
the most reliable methodologies usually estimate orbital 
position and velocity only.

In an operational scenario, once a sequence of meas-
urements is acquired, a correlation procedure is per-
formed to link the measurements to a catalogued object, 
via propagation to observation epochs and projection 
onto the measurement space. This operation is possibly 
conducted concurrently with a track to track association, 
most often for the optical case, to link measurements to 
a same target [20]. By this way, a statistically meaning-
ful distance can be computed, even in terms of control 
expense to support maneuvering objects observation 
[21]. In this latter case, the catalogued targets pattern of 
life is usually considered as additional source of informa-
tion [22]. Then, if the correlation is successful, ROD is 
run, otherwise, an IOD procedure is performed. Finally, 
the compatibility of the OD result with respect to the 
input measurements can be verified with a process simi-
lar to the correlation one, as reported in Sect. 3.

The work illustrates the prototypal version of the orbit 
determination module embedded in ISOC, whose per-
formance are discussed through results obtained both 
from synthetic and real observational data. The paper is 
organized as follows. First, an overview of ISOC suite 
is provided, as well as the process mathematical theory 
and pipelines. Then, a numerical analysis is carried out 
to validate the tool. Finally, the algorithm performance is 
assessed through operational real case scenarios.

2  Italian SST operations centre

ISOC was originally established in 2014 and operated 
by the military personnel of the Flight Test Department 
of the AM. Currently, the operational activities are led 
by the the Air and Space Operations Command, whereas 
the Flight Test Department is responsible for Research 
and Development tasks. The ISOC Suite is a complex 
system that was developed to support SST tasks, but it 
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is currently evolving towards a broader awareness of the 
space scenario, to enhance national security of both civil 
and military applications. ISOC is also included in the 
EUSST framework, leading and supporting the services 
listed, as follows:

• Re-entry (RE): prime responsible for the analysis of 
uncontrolled re-entry in low atmosphere for large and 
dangerous objects.

• Fragmentation (FG): prime responsible for the analysis of 
in-orbit fragmentation as consequence of satellite break-
ups or collisions.

• Collision avoidance (CA): cold redundant operational 
centre for the analysis of the collision probability and 
geometry for conjunction events.

The ISOC Suite supports the above-mentioned ser-
vices, whose high-level architecture is represented in 
Fig.  1. The main inputs of the suite are provided by 
national sensors, partner sensors, consortium observa-
tions available through the European observation cata-
logue along with available public sources. The core is 
based on commercial off-the-shelf (COTS) and propri-
etary software and algorithms. The system services (i.e. 
outputs) are shown in the top part of Fig. 1. ISOC Suite 
is designed to manage data coming from Space-Track 
website [23] and to task sensors. Then, the interaction of 
ISOC Suite with EUSST portal regards the provision of 
the Re-entry and Fragmentation services reports, while 
the one with EUSST database consists in the upload/
download of the measurements acquired by the national 
sensors. Concerning the latter, the AM upload observa-
tion data acquired by Italian sensors and download those 
produced by other countries belonging to EUSST con-
sortium. Finally, interfaces are designed to allow data 
exchange with spacecraft operators (the S/C OPRS block 
in Fig. 1).

A functional part of the entire system is the correla-
tion and the orbit determination process, which could be 
assured by the suite described in this paper.

3  Correlation process

To correlate measurements to a catalogued object, a sta-
tistical correlation index is computed using the concept of 
squared Mahalanobis distance, combined with the �2 test, 
as follows.

Assuming a normal distribution, the acquired measure-
ments, at each observation epoch tk , can be expressed as 
Y(tk) ∼ N

(
�y(tk),Py

)
 , where Py is constant and is defined 

based on the sensor accuracy. The dimension Ny of Y 
depends on the acquired measurements. In order to verify 
the correlation status of a generic catalogued orbital state 
X ∼ N

(
�x, Px

)
 , this can be propagated up to the observation 

epochs either by a Keplerian propagator, or a numerical 
high-fidelity propagator [11], or SGP4 [24], and then pro-
jected in the measurements space, according to an Unscented 
Transformation (UT). This operation results in the synthetic 
measurements set Ỹ(tk) ∼ N

(
�̃�y(tk), P̃y(tk)

)
 , where, differ-

ently from Py , P̃y depends on the observation epoch tk con-
sidered. For each observation epoch tk , the Mahalanobis 
distance is computed as:

To assess the �2 test, the Mahalanobis distance �(tk) is 
divided by the inverse of the �2 cumulative distribution 
function, which depends on the uncertainty level (usually 
addressed to as � level), and to the Ny number of degrees 
of freedom:

(1)
�(t

k
) =

{
�̃�y(tk) − 𝝁y(tk)

}T
{
Py + P̃y(tk)

}−1

{
�̃�y(tk) − 𝝁y(tk)

}

Fig. 1  ISOC architecture
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In this work, the quantity �̄�2 is set compatible with the 3-� 
level, which corresponds to a probability of 99.8%.

To pass the �2 test described above, the threshold � shall 
be theoretically set equal to 1. However, for noisy and not 
accurate measurements (such as in real case scenario), it may 
occur that such a threshold is not respected even for correct 
correlations, and � shall be relaxed accordingly. This takes 
place, for instance, when the measurement noise exceeds the 
declared accuracy (information included in the covariance 
matrix Py ), or when the Gaussian assumption does not hold. 
This matter is further discussed in Sect. 7.

Given a catalogue and a TDM containing observables, 
the ISOC Suite correlation process is performed as follows: 

1. Propagate all the catalogued objects up to the TDM 
observation epochs, and project the orbital states in the 
measurements space, obtaining, at each time tk , the pre-
dicted measurements �̃�y(tk).

2. Filter out objects with an angular distance at initial and 
final TDM observation epochs greater than a threshold 
(set by the user). This operation is conducted to exclude 
candidates which cannot be detected by the sensor 
(either optical, radar or laser), as their positions at the 
initial and final observation epochs are out of its field of 
regard.

3. For the remaining objects, at each observation epoch tk 
compute Eqs. 1 and 2, and then the correlation index � .

4. The process correlates the measurements to the object 
featuring the smallest correlation index.

An analogous procedure defines an index for the compatibil-
ity of the OD results with the measurements adopted in the 
estimation process. From the resulting mean �x and covari-
ance Px at the OD reference epoch, the related synthetic 
measurements Ỹ(tk) are computed at each tk . Then, Eqs. 1 
and 2 are evaluated, and the mean correlation index 𝜁 is 
computed. Finally, OD is considered satisfactory if 𝜁 < 𝜏 , 
where the same above-mentioned considerations apply to �.

4  Refined orbit determination

In ROD processes, an orbital state prediction 
X0 ∼ N

(
�x0, Px0

)
 is refined based on the acquired meas-

urements Y ∼ N
(
�y,Py

)
 . Generally, either batch filters like 

the Non-linear Least Squares, or sequential filters like the 
Kalman Filters are used [25]. The former can refine the 
orbital state prediction also when the covariance Px0 is not 
known, while the latter cannot. Furthermore, the batch filters 

(2)𝜁(tk) =
𝜉(tk)

�̄�2

allow greater flexibility in the choice of the epoch at which 
the orbital state has to be refined, as it can either belong to 
the observation window or not. On the contrary, even if also 
sequential filters can theoretically refine orbital states which 
are outside of the observation time window, by properly set-
ting the transformation function, this choice is usually not 
taken, because of the increasing transformation non-linearity 
(leading to performance deterioration) and longer compu-
tational time. Also, it is worth to remark that the sequen-
tial filters by definition can return the orbital state at any 
observation epoch, but this would imply not to have used all 
the available measurements. Thus, they usually provide the 
estimate only at the final-step observation epoch, which can 
be the first in time (for backward ROD), or the last one (for 
forward ROD). However they are generally more stable and, 
consequently, more reliable.

ISOC Suite exploits Non-linear Least Squares (as batch 
filter) and Unscented Kalman Filters (as sequential filter). 
The latter is used when a covariance is associated to the 
prediction, the former is applied otherwise, and the software 
is designed to automatically select the correct routine based 
on the input data. In addition, the user can select the desired 
model to perform orbital propagation in the transformation 
functions, by exploiting either a Keplerian propagator, or a 
numerical high-fidelity propagator [11], or SGP4 [24]. In the 
last case, a fixed-point iteration loop based on a Non-linear 
Least Squares is used to convert the orbital state from carte-
sian coordinates, expressed in Earth Centered Inertial (ECI) 
reference frame, to SGP4 elements and back. It is worth to 
point out that ISOC Suite allows to conduct ROD combin-
ing measurements related to a same target and acquired by 
different sensors.

4.1  Non‑linear least squares

Generally speaking, the Non-linear Least Squares methods 
[25] seek to refine an orbital state �x0 (of dimension Nx ), 
defined at time t̂ and considered as process first guess, by 
iteratively searching for the mean orbital state �x as that 
value that minimises the sum of the squares of the calculated 
observation residuals.

Let the residual vector be:

whose dimension is N� = Nobs × Ny , where Nobs is the obser-
vation epochs number and Ny is the dimension of the meas-
urement state. Then, �y is the set of the observation data 
(mapped in the measurements space) and �̃�y is the synthetic 
measurements set, retrieved from �x0 as described in Sect. 3. 
The process searches for the value of �x which minimises 
the following performance index:

(3)𝜺
(
𝝁x

)
=
(
𝝁y − �̃�y

(
𝝁x

))
,
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Note that Eq. 4 is a quadratic function of �x , and, as a conse-
quence, the expression has a unique minimum when:

for ��x ≠ 0 . The second condition of Eq. 5 means that 
�2 h∕��x

2 is positive defined.
The non-linear transformation from �x0 to �̃�y can have 

several shapes, depending on the epoch t̂ (either related to 
observation window or not) and on the propagation model 
adopted, but all propagate the orbital state �x0 along the 
observation epochs and then project the computed states 
on the measurements space, according to the available data 
contained in �y . If the process converges, the orbital state X 
is found, both in terms of the estimated �x and covariance, 
which is computed as:

where J
(
�x

)
 is the Jacobian of �

(
�x

)
 at the solution �x.

There are different variations to this scheme, the most 
remarkable being the weighted Non-linear Least Squares 
and the a-priori Non-linear Least Squares.

In the weighted Non-linear Least Squares, Eq. 4 is modi-
fied as:

where Wy is the matrix weighting the observation errors and 
usually results from an initial judgement on the accuracy of 
the observations (the sensor accuracy, for instance), followed 
by a normalisation procedure to scale the weights to values 
between zero and one.

The a-priori Non-linear Least Squares also considers the 
predicted orbital state �̄�x0 as a further data to fit, together 
with an associated weighting matrix Wx0 , and Eq. 4 is modi-
fied as:

Usually, Wx0 is derived from the covariance Px0 associated 
to �x0.

It is worth to remark that, in operations, the orbital propa-
gation model used in the filter shall be as matching as pos-
sible the actual trajectory of the target, as further commented 
in Sect. 6.2. In any case, weighting the residuals with the 
uncertainty associated to the acquired measurements and 

(4)h
(
�x

)
=

1

2
�
(
�x

)T
�
(
�x

)

(5)
𝜕h

𝜕�x

= 0 and 𝛿�x
T 𝜕2h

𝜕�x
2
𝛿�x > 0

(6)Px =
�
(
�x

)T
�
(
�x

)
N� − Nx

(
J
(
�x

)T
J
(
�x

))−1

,

(7)h
(
�x

)
=

1

2
�
(
�x

)T
Wy �

(
�x

)
,

(8)
h
(
�x

)
=
1

2
�
(
�x

)T
Wy �

(
�x

)

+
1

2

(
�x − �x0

)T
Wx0

(
�x − �x0

)

determined through past calibration campaign, as done in 
Eq. 7 and in Eq. 9, increases the robustness of the process.

Even if the Non-linear Least Squares approaches are the-
oretically exploitable for IOD (starting from a circular first 
guess, for instance), they are operationally considered just for 
ROD applications, as an accurate �x0 is fundamental to get 
convergence, except for particular procedures in which they are 
combined with other algorithms to provide an IOD result, such 
as described in Sect. 5.1 if angles and Doppler shift measure-
ments are provided.

4.2  Unscented Kalman Filter

An efficient way to perform ROD with a sequential filter is 
represented by the Unscented Kalman Filter. It is a technique 
based on the Unscented Transformation without any lineariza-
tion, and thus provides superior performance with respect to 
the EKF in nonlinear problems [26, 27].

In a ROD operation, let us consider a prediction state 
X0 ∼ N

(
�x0, Px0

)
 defined at reference time t0 . Its dimension 

N x depends on the parameters to be refined: Nx = 6 to refine 
just the orbital state, Nx = 7 if an additional physical parameter 
(such as the ballistic coefficient) is considered, and so on. Let 
the ROD measurements set be Y(tk) ∼ N

(
�y(tk), Py

)
 , where 

�y(tk) represents the acquired measurements at each observa-
tion epoch tk and Py the constant covariance defined up to the 
sensor accuracy.

From X , sigma points are created: �̄�x

(
t0
)
 . These are propa-

gated up to the first-step observation epoch t1 , resulting in the 
propagated Nx-dimensional sigma points: �̄�i

x

(
t1|t0

)
 (for the ith 

sigma point). Given the non-linear function g which projects 
an orbital state onto the measurements space, the predicted 
measurements sigma points can be computed at the first-step 
observation epoch t1 , whose dimension Ny corresponds to the 
n u m b e r  o f  c o n s i d e r e d  m e a s u r e m e n t s : 
�̄�i
y

(
t1|t0

)
= g

(
�̄�i
x

(
t1|t0

))
 . Then, the augmented sigma point 

�̄�i

𝝃

(
t1|t0

)
 is created, chaining �̄�i

x
 and �̄�i

y
:

And its dimension N� turns out to be equal to Nx + Ny.
At this point, the state is retrieved from the sigma points 

�̄�i

𝝃

(
t1|t0

)
 and N�-dimensional state is returned, both in terms 

of mean �̂�𝝃

(
t1|t0

)
 (dimension N�× 1) and covariance P̂𝝃

(
t1|t0

)
 

(dimension N� × N� ). It is now possible to split �̂�𝝃

(
t1|t0

)
 in:

And P̂𝝃

(
t1|t0

)
 in:

(9)�̄�i

𝝃

(
t1|t0

)
=

[
�̄�i
x

(
t1|t0

)
�̄�i
y

(
t1|t0

)
]

(10)�̂�𝝃

(
t1|t0

)
=

[
�̂�x

(
t1|t0

)
�̂�y

(
t1|t0

)
]
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Such that the dimensions are Nx × 1 for �̂�x

(
t1|t0

)
 , Ny × 1 

for �̂�y

(
t1|t0

)
 , Nx × Nx for P̂x

(
t1|t0

)
 , Ny × Ny for P̂y

(
t1|t0

)
 , 

Nx × Ny for P̂xy

(
t1|t0

)
 . By defining:

The covariance gain as:

The orbital state is updated as:

By repeating this procedure for all the conditional esti-
mations 

(
tk+1|tk

)
 sequentially, up to the final-step obser-

vation epoch tf  , the orbital state is refined through the 
measurements. It is important to stress that the sequential 
filter procedure is possible only if a covariance is asso-
ciated to the orbital state prediction. Then, as remarked 
above, the procedure can be performed either forward or 
backward with respect to the observation timeline (being 
sequential), but the result is always associated to the 
final-step observation epoch considered. It is also worth 
to stress that UKF grants a stable estimation if a correct 
measurements noise is considered, which, in ISOC Suite, 
is derived from the sensor accuracy. Thus, precise and 
correct information about sensor characteristics shall be 
known to have a stable solution.

5  Initial orbit determination

As illustrated above, no orbital predictions are available 
for the observed object in the IOD context. As explained 
earlier, in this situation the Non-linear Least Squares 
approaches, theoretically, could still be applied (and would 
allow to estimate other parameters in addition to position 
and velocity), but they turn out to be quite unstable, mainly 
due to the lack of a sufficiently accurate first guess. Thus, 
alternative methodologies have been developed by the 
scientific community, applied according to the available 
measurements.

The IOD pipeline workflow of the ISOC Suite is rep-
resented in Fig. 2. First, the input data are automatically 
recognized and the IOD is run, depending on whether the 
input TDM is optical or radar (laser data are processed in 
the latter manner). To this end, dedicated algorithms are 
exploited, as described in Sects. 5.1 and 5.2. The resulting 

(11)P̂𝝃

(
t1|t0

)
=

[
P̂x

(
t1|t0

)
P̂xy

(
t1|t0

)
P̂xy

T(
t1|t0

)
P̂y

(
t1|t0

)
]

(12)P̂e

(
t1|t0

)
= P̂y

(
t1|t0

)
+ Py

(13)K
(
t1|t0

)
= P̂xy

(
t1|t0

)
P̂e

(
t1|t0

)−1

(14)
𝝁x

(
t1|t0

)
=�̂�x

(
t1|t0

)
+ K

(
t1|t0

){
𝝁y

(
t1
)
− �̂�y

(
t1|t0

)}

Px

(
t1|t0

)
=P̂𝝁

(
t1|t0

)
− K

(
t1|t0

)
P̂e

(
t1|t0

)
KT

(
t1|t0

)

orbital state, defined at the first observation epoch, is further 
refined through the filters described in Sect. 4. By default, 
UKF is used if a compliant covariance is associated to the 
result obtained at the previous step, an a-priori weighted 
Non-linear Least Squares otherwise. While the algorithms 
exploited to compute the IOD first guess are based on a 
Keplerian model, the perturbations effects can be included 
in the refinement phase, by selecting either SGP4 [24], or 
a numerical high-fidelity propagator [11]. At the end, the 
orbital state is returned, in terms of mean and covariance, 
at the final observation epoch.

5.1  Radar IOD

Let us consider a set of radar sensor observations 
Y(tk) ∼ N

(
�y(tk),Py

)
 , where tk are the N obs observation 

epochs, �y(tk) the measurements acquired at tk and Py the 
covariance associated to the measurements and which is 
derived from the sensor accuracy. The acquired measurements 
are assumed to be angular coordinates (azimuth and elevation, 
or right ascension and declination) and SR, such that �y and 
Py result to have dimension 3 × Nobs and 3 × 3 , respectively. 
These information, together with the time-dependent inertial 
sensor position s(tk) , can be processed to estimate the object 
orbital position r(tk) , whose uncertainty is described in terms 
of a multivariate normal distribution. In particular, the covari-
ance Pr(tk) can be derived from Y(tk) with an UT, by projecting 
the sigma points from the measurements to the inertial space.

Several methods exist to obtain a preliminary orbit from 
two or three geocentric positions, such as Lambert’s problem 
solver or the Herrick-Gibbs approach as provided in [28]. 
Then, the GTDS range and angles method from [29] provides 
a stable fixed-point iteration scheme using the full acquired 
measurements, that is all the Nobs available observations. These 
methods are adapted in [30], which gives the definition of the 
Keplerian and analytical process applied in the present work 
for the radar IOD, and which is described as follows.

The r(tk) vectors can be grouped in a unique matrix: 
Z =

(
rT(t1), r

T(t2),… , rT(tNobs
)
)
 . From Z , the algorithm pro-

ceeds iteratively by modifying the orbital mean state with a 

Measurements

Radar/Optical
IOD

{µx(t0),Px(t0)}

µx(t0)

UKF

A-priori
Weighted
Non-linear

Least Squares

{µx(tf ),Px(tf )}

Fig. 2  Flow diagram of the IOD workflow
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fixed-point update process, starting from a first guess �0 (e.g. 
obtained with a Keplerian circular orbit assumption):

By defining the jth residual as Rj = max(|xj − xj−1|) , the 
loop goes on as long as 

(
Rj − Rj−1

)
∕Rj is larger than a toler-

ance � or the current number of iterations � is lower than a 
predefined threshold.

At any iteration j, the matrix H(�x
j−1) is defined accord-

ing to f (�x
j−1) and g(�x

j−1) , which are vectors grouping the 
Lagrangian coefficients, whose derivations are provided in 
e.g. [31]:

where the denominator is:

while the auxiliary matrix F (and equivalently G ) is defined 
as:

where fk is the Lagrangian coefficient f relative to kth epoch.
The method converges towards the solution �x . The 

orbital state covariance is finally determined through the 
linear approximation:

where Pr = diag
(
Pr(t1),… ,Pr(tNobs

)
)
 , and the orbital state 

X(t̂) ∼ N
(
�x(t̂),Px(t̂)

)
 is determined. In this work, the epoch 

t̂ is set equal to the first observation epoch t0.
It is worth observing that, if an orbital prediction with no 

uncertainty associated (retrieved, for example, from Two-
Line Elements, TLEs [32]) is exploited as the first guess, this 
procedure can work as a ROD process as well.

Slant range as derived measurement
The method described above determines the orbital mean 

state and covariance from radar measurements including angles 
and SR, regardless the availability of DS. However, in surveil-
lance radar acquisitions, SR is not always included in the set of 
available measurements and this may represent a major limita-
tion. To alleviate this issue and enhance the versatility of the 
method proposed, when the SR is not measured, its values are 
derived from DS measurements. To this end, the approach pro-
posed in [33] is applied and summarised below.

From DS measurements, it is possible to derive the 
SR time derivative dSR∕dt by knowing the transmitted 

(15)�x
j = H(�x

j−1)Z

(16)H
(
�x

j−1
)
=

1

�

(
gTg F − fTgG

fTfG − fTgF

)

(17)� =
(
fTf

) (
gTg

)
− (fTg)2

(18)F =

⎛⎜⎜⎝

f1 0 0 ... fNobs
0 0

0 f1 0 ... 0 fNobs
0

0 0 f1 ... 0 0 fNobs

⎞⎟⎟⎠

(19)Px = H
(
�x

)
Pr H

T
(
�x

)

frequency. Therefore, if the SR initial value SR0 is known, 
the SR can be computed at any epoch as:

Assuming that d SR∕dt is known from DS measurements, 
together with t, t0 and dt (from the observation epochs), the 
problem reduces to the estimation of the SR initial value SR0 
associated to the first observation epoch t0 . The procedure 
for its determination, described hereafter, is based on the 
conservation of the total orbital energy.

Let ri = r(ti, SRi) r̂i and rj = r(ti, SRj) r̂j be the inertial 
position vectors at the ith and jth observation epochs, and 
Δt = tj − ti > 0 the corresponding flight time. SRi  and SR j 
are related to SR0 through Eq. 20. It is possible to solve the 
Lambert’s problem for ri and rj to get the specific orbital 
energy of the connecting arc:

Being � the Earth gravitational parameter and a the orbit 
semi-major axis. An ideal two-body system is conservative, 
that is the total energy of the problem is conserved. There-
fore, after �i,j

(
SR0

)
 has been computed for any combination 

of two observations (i, j) , it is possible to identify the value 
of SR0 that yields the minimum standard deviation �� in 
the distribution of energies. This SR0 represents the optimal 
solution, and the standard deviation of the energy distribu-
tion is a univariate function that only depends on the scalar 
integration constant SR0.

In this work, the approach is included in a process which 
first searches for the optimal solution on a coarse grid, by 
using a golden section search and parabolic interpolation. 
The resulting SR0 is the first guess entering a Non-linear 
Least Squares process, that refines the estimate by itera-
tively performing IOD (according to the procedure described 
above) and minimising the difference (weighted with the 
sensor accuracy Py ) between the real measurements �y and 
the predicted ones �̃�y (computed from IOD result).

The final estimate SR0 is used to derive the SR profile at 
all the observation epochs, according to Eq. 20 and the radar 
IOD process can be finally run based on angles and on the 
derived SR. The resulting orbital state is then refined either 
according to UKF or Non-linear Least Squares on the actual 
observation data, that is without considering the derived SR.

5.2  Optical IOD

The optical IOD process is structured as a combination of a 
Gauss method with iterative improvement used to give a first 
guess (if not otherwise provided by the user), and a Gooding 
n-measurements version [34] to exploit every intermediate 

(20)SR(t) = SR0 + ∫
t

t0

d SR

dt
dt

(21)�i,j
(
SR0

)
= −�∕2a
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measurements of the observation arc, for the actual orbit 
estimate. Angular measurement uncertainty is taken into 
account through UT [26], considering the estimated orbital 
state as multivariate normal distribution.

Given a set of optical measurements consisting in a 
sequence of angular coordinates (�, �) denoting right 
ascension and declination of the target, they can be 
described as a normal distribution Y(tk) ∼ N

(
�y(tk),Py

)
 

with k = 1,… ,Nobs , where Nobs represents the number of 
observation epochs, �y(tk) is the measurement mean values 
acquired at tk , Py the associated covariance, derived from the 
declared sensor accuracy. This information can be combined 
with range and inertial station position (which varies across 
the observation) to retrieve the target position using:

where r denotes the target position, � represents the range 
while s is defined as:

The core of the pipeline is represented by the Gooding algo-
rithm. It leverages a first guess on the ranges at the bounda-
ries of the observation to build the corresponding position 
vectors by means of Eq. 22. They are linked through the 
solution of a Lambert problem so that initial velocity and, 
consequently, the complete initial state are obtained. The 
latter is then propagated through unperturbed Keplerian 
dynamics, deemed admissible for this first estimate, across 
every measurement epoch in between the initial and the final 
ones. The computed intermediate states are then projected 
onto the angular measurement space to compare them with 
the actual ones and build Nobs − 2 residuals. This entire pro-
cess is wrapped up as a cost function C to minimize the 
mentioned residuals squared sum by tuning the boundary 
ranges values:

Providing this algorithm with a suitable first guess is crucial 
to grant convergence to a meaningful solution, so a stand-
ard Gauss method-based process has been developed, as 
described in [35], to cope with this aspect if a first guess 
is not given as input to the pipeline. Due to Gauss method 
limitations in angular span [29], according to the involved 
observation width different options are provided:

• With arc span higher than ub , where ub can be set by 
the user as upper bound, two distinct arcs are used to 
give the corresponding two range guesses. They are built 
by selecting the portion of the original arc within the 
selected limit, starting respectively from the first and the 

(22)r = R + � s

(23)s =
(
cos � cos �, sin � cos �, sin �

)

(24)min
�0,�Nobs

C(�0, �Nobs
)

last epochs measurements. So two ub-wide arcs are used 
to perform Gauss.

• With arc span lower than ub the entire arc is used to 
obtain a first guess used as both initial and final range.

• With arc span lower than lb , where lb can be set by the 
user as lower bound, an alert is shown to warn the user 
of possible inaccurate results

The same method is applied to obtain a backup orbit esti-
mate in case the Gooding method fails in reaching meaning-
ful results. In this instance, a covariance is associated to the 
computed state by a first-order projection of the input sensor 
covariance �� by means of the transformation Jacobian J 
linking measurements to the entire state:

6  Numerical analysis

The current section is devoted to numerically validate the 
OD determination module of the ISOC Suite. To reproduce 
a scenario as realistic as possible in terms of observation 
geometry and track duration and accuracy, the measurements 
are simulated considering Cassini and the Bistatic Radar for 
LEO Survey (BIRALES) as baselines. Cassini is an Italian 
telescope belonging to the EUSST consortium, capable of 
tracking sources in Medium Earth Orbits (MEO) and GEO 
by mechanically steering its Field of View (FoV), resulting 
in a very large Field of Regard (FoR) [36]. BIRALES is a 
bistatic radar sensor devoted to LEO survey operations [13, 
37–39].

The simulated optical data cover a time window of 1 h 
(from 11 p.m. to 12:00 p.m.) on April 29, 2022, whilst the 
radar data spans an entire day. This choice links to the target 
visibility in the optical case (only at night). Furthermore, the 
noise was attributed to the sensors:

• BIRALES: 1e−02 deg on the angular track, 10 Hz on the 
Doppler shift and 100 m on the slant range.

• Cassini: 6e−04 deg on the angular track.

Three orbital regimes are included to compute the satellite 
transits intersecting the FoV and the FoR of the two sta-
tions, and the target trajectory is derived through an SGP4 
propagation [24]:

• Low Earth Orbit: 100 radar passes.
• Medium Earth Orbit: 100 optical passes.
• Geostationary Orbit: 100 optical passes.

(25)�� = J�� J
T
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Figure  3 represents the Cumulative Distribution Func-
tions (CDFs) describing the orbits of the objects used in 
the numerical analysis, both for LEO, MEO and GEO. The 
orbits are represented in terms of semi-major axis, eccentric-
ity, inclination and right ascension of the ascending node. 
In addition, the CDFs of the track duration and number of 
measurements per track are reported for the LEO (Fig. 4), 
MEO (Fig. 5) and GEO (Fig. 6). It is possible to notice that, 
to reproduce realistic scenarios, in the first case the meas-
urements tracks last some tens of seconds, with a sampling 
time set equal to 0.5 s, which are typical values for the radar 
observations of LEO objects. In the optical MEO case, the 
tracks duration ranges from about 1 min to 1 h, and the sam-
pling time from about 6 s to 60 s, such that the analysed 
tracks always contain 10 measurements at least. It is worth 
to remark that, even if one single optical sensor is used as 
reference in the simulations and so the variation of the sam-
pling time should be kept fixed, having different sampling 

time allows to test the general applicability of the developed 
software. Analogously, the optical GEO cases present tracks 
with a duration from few minutes to 1 h, and a sampling time 
ranging from 25 s to 60 s to always guarantee 10 measure-
ments per track at least.

Adopting this data set, the software performance is evalu-
ated for the correlation (in Sect. 6.1), the ROD (Sect. 6.2), 
and the IOD processes (Sect. 6.3) as follows.

6.1  Correlation process

Regarding the correlation process, a synthetic TDM is 
generated for each transit. Alongside the aforementioned 
sensor noise, observation data are produced by perturbing 
the initial trajectory of the observed object based on the 
uncertainty detailed in [40].
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Fig. 3  Cumulative distribution functions describing the orbits of the objects used in the numerical analysis, both for LEO, MEO and GEO. The 
orbits are represented in terms of semi-major axis, eccentricity, inclination and right ascension of the ascending node
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The correlation process described in Sect. 3 is carried 
out with a catalogue of 3348 objects, and the main results 
are reported in Table 1, in terms of correlation rate and 
median correlation index. In the process, a 10◦ angular 
filter is used.

As Table 1 shows, the process always correlates the 
measurements to the correct object, with a median cor-
relation index in the order of 1e−01.

6.2  Refined orbit determination

To assess the software within the ROD procedure, the same 
data set as in Sect. 6.1 is processed considering two scenar-
ios: one without associating covariance with the catalogued 
object information and another where it is considered. In 

both cases, the initial estimation is obtained by perturbing 
the TLE corresponding to the pass through the covariance 
provided by [40], which is also used to associate the uncer-
tainty to the transit prediction in the covariance case. This 
estimation is then propagated to the observation epochs 
employing an Unscented Transform [26].

In the no-covariance case, the weighted Non-linear Least 
Squares procedure described in Sect. 4 is used. To assess 
the robustness of the developed algorithms to the propaga-
tion model mismatching, a mismatch between the satellite 
trajectory and the method exploited in the tool is reproduced, 
by applying a Keplerian propagator to the batch filter cost 
function in place of SGP4 [24] (which was used to simulate 
measurements).
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Fig. 4  Cumulative distribution functions of the radar measurements used in the numerical analysis regarding LEO objects, both in terms of track 
duration and number of measurements per track
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Fig. 5  Cumulative distribution functions of the optical measurements used in the numerical analysis regarding MEO objects, both in terms of 
track duration and number of measurements per track
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Table 2 presents the ROD results without considering 
covariance, in terms of median errors and median correla-
tion index. In the radar case (LEO scenario), the position 
error remains under 1 km, whereas the velocity error is in 
the order of 1e−02 km/s, which represents a noticeable 
deviation. This divergence can be attributed to the disparity 
between the real target trajectory and the analytical propa-
gation within the filter. Nevertheless, the correlation index 
is below 1, underscoring the consistency between the ROD 
procedure outcome and the measurements.

In the optical case, the error in position increases, while 
the velocity one decreases. On one hand, the former aspect 
is due to the absence of the slant range measurement, 
which does not compensate for the noisy angular track. 
However, it is important to highlight that considering the 
scale of MEO and GEO regimes, a position error in the 
order of 1 km translates to a maximum of 0.01% of the 
orbit radius. Conversely, the reduction in velocity error can 
be attributed to the comparatively lower speeds of GEO 
and MEO satellites, as well as the comparatively dimin-
ished impact of perturbations on their trajectories. This 
latter factor decreases the mismatch between the actual 
trajectory and the one reconstructed through the analytical 
propagator, and it implies an error decrease in velocity.

In the covariance case, UKF [27] updates the state 
sequentially, according to the procedure described in 
Sect. 4. Analogously to the no-covariance case, a Kep-
lerian propagator is used in the filter, whereas the actual 
target trajectory is computed through SGP4 [24].

From Table 3, the errors are much smaller than the 
ones of Table 2. This is attributed to the UKF, exhibit-
ing greater robustness than the batch filter in situations 
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Fig. 6  Cumulative distribution functions of the optical measurements used in the numerical analysis regarding GEO objects, both in terms of 
track duration and number of measurements per track

Table 1  Correlation process: synthetic data results in terms of corre-
lation rate and median correlation index

Orbital regime Correlation rate [%] Correlation index

Radar
LEO 100 2.2e−01
Optical
MEO 100 1.1e−01
GEO 100 8.2e−02

Table 2  ROD without covariance: synthetic data results in terms of 
median errors and median correlation index

Orbital regime Pos. error [km] Vel. error [km/s] Correlation index

Radar
LEO 2.2e−01 1.5e−02 1.2e−01
Optical
MEO 1.9e+00 4.0e−04 1.6e−01
GEO 4.8e+00 4.2e−04 1.5e−01

Table 3  ROD with covariance: synthetic data results in terms of 
median errors and median correlation index

Orbital regime Pos. error [km] Vel. error [km/s] Correlation index

Radar
LEO 7.9e−02 3.6e−04 4.8e−04
Optical
MEO 3.1e−01 1.5e−04 1.9e−01
GEO 3.5e−01 1.1e−04 1.6e−01
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where covariance is not considered. More in detail, the 
LEO position error is smaller than the GEO and MEO 
ones, while the situation is reversed for what concerns the 
velocity error. The underlying reasons for this phenom-
enon remain consistent with the scenario lacking covari-
ance consideration. These factors encompass the use in the 
radar LEO case of slant range measurements, the disparity 
between the SGP4 model and the analytical propagator, as 
well as the diminished impact of perturbations in the GEO 
and MEO orbital environments. Overall, the correlation 
index proves the compliance of the ROD results with the 
measurements.

6.3  Initial orbit determination

The IOD procedure is then tested, according to the algorithm 
presented in Sect. 5 and considering the same data set as in 
Sects. 6.1 and 6.2.

First, Table 4 shows radar IOD results in position and in 
velocity, depending on whether the slant range measurement 
is available, or not. In the former case, it can be noticed that 
the position error is comparable with the ROD case one when 
the covariance is available; however, the velocity error is worse 
than the ROD procedure with covariance. Instead, when the 
slant range is not available, the orbit determination result pre-
sents larger errors, due to the range estimation step which is 
quite sensitive on the noise affecting both DS and angular 
measurements.

Concerning the optical IOD, Table 5 shows results which 
are coarser than the radar ones and comparable to those of 
the no-covariance ROD (Table 2). This is mostly attribut-
able to range estimation, being the first step of the employed 
methods, and that a Lambert problem maps initial and final 
positions as part of the Gooding estimation process, sim-
plifying the underlying dynamics with respect to the one 
actually linking measurements across the observation arc. 

In addition, it can be observed that the position error is com-
parable with the one resulting from the radar IOD when 
no SR is available and must be estimated from the other 
measurements, analogously with what done in the optical 
IOD. Nevertheless, the error is small compared to the MEO 
and GEO scales, as observed above about the no-covariance 
ROD performance in the optical case.

7  Real data analysis

In this section, the performance of the tool is assessed 
based on real data, which are represented by radar and opti-
cal observations of targets whose precise orbital ephemeris 
are available: the Sentinel-3B (LEO) and the Galileo 17c 
(MEO), whose orbital parameters are reported in Table 6. 
The observations considered are provided by MFDR [41] 
for the LEO radar case, with an acquisition carried out on 
November 24, 2021 which provided angular track, SR and 
DS, and by MITE [42] for the MEO optical case, with an 
acquisition conducted on February 22, 2022 which provided 
angular track. It is noteworthy to highlight that, although 
MFDR is a tracking radar, its measurements are also lever-
aged to evaluate the outcomes of radar IOD processes.

As in Sect. 6, the figure of merits investigated are: median 
position error, median velocity error and correlation index. It 
is worth to stress that the performance here reported include 
also the effects of the measurement quality.

First, the correlation process is run considering a 12,000 
objects catalogue (represented by TLEs taken from Space-
Track website [23]). In both cases, the measurements result 
correlated to the correct object, and the correlation indexes 
are reported in Table 7. It is possible to notice that the 

Table 4  Radar IOD: synthetic data results in terms of median errors 
and median correlation index

Orbital regime SR Pos. error [km] Vel. error 
[km/s]

Correlation 
index

LEO Yes 4.7e−02 5.6e−03 2.1e−01
LEO No 3.7e+00 2.5e−02 1.3e−01

Table 5  Optical IOD: synthetic data results in terms of median errors 
and median correlation index

Orbital regime Pos. error [km] Vel. error [km/s] Correlation index

MEO 3.4e+00 6.9e−04 1.6e+00
GEO 7.1e+00 7.5e−04 8.7e−01

Table 6  Real data: targets orbital parameters

a [km] e i [deg] Ω [deg] � [deg]

Sentinel-3B 7178.0 0.0012 98.7 33.3 56.8
Galileo 17 29,601.9 0.00017 54.9 144.4 266.0

Table 7  Real data: correlation Correlation index

Radar 1.8e−01
Optical 3.6e−02

Table 8  Real data: ROD without covariance

Pos. error [km] Vel. error [km/s] Correlation index

Radar 1.5e−01 2.5e−03 3.8e+00
Optical 2.3e+00 1.1e−03 4.1e−01
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correlation index for the radar observation is one order of 
magnitude larger than the optical case one, and this is linked 
to the measurement quality, as further discussed below.

Then, the ROD procedure without covariance is tested, 
starting from the TLE (available on Space-Track website 
[23]) which is closest to the observation epochs and using 
SGP4 [24] in the batch filter. The results are reported in 
Table 8, where the radar position error is much smaller than 
the optical one; instead, velocity errors present a reversed 
behaviour. The radar correlation index is larger than 1, and 
this relates to the real measurement quality (as mentioned 
in Sect. 3), in particular to the non-zero mean noise. On the 
whole, the discrepancies closely align with those exhibited 
in the synthetic data (Table 2). Notably, the velocity error 
in the radar case demonstrates improvement over the syn-
thetic simulation, whereas the optical observation presents 
the converse trend.

The ROD procedure with covariance is also tested, by 
considering, as prediction, the result of an UT transforma-
tion [26] of the TLE with a covariance associated according 
to [40], as well as by using SGP4 [24] in the sequential filter. 
Table 9 reports the results of this analysis, and, comparing 
it to Table 3, it is possible to observe a decline in perfor-
mance attributable to the actual data quality. Additionally, 
the radar shows larger errors than in the no-covariance case, 
in contrast with what was observed in synthetic data. This 
is likely due to the algorithm sensitivity to data quality or 
to a correspondingly reliable uncertainty. Nevertheless, the 
results are deemed sufficiently accurate and support what 
has been achieved in the synthetic scenarios.

Finally, Table 10 shows the results of the IOD process. In 
this case, a highly fidelity numerical propagator is used in 
the refinement phase, considering the gravitational harmon-
ics only, as the target physical parameters are theoretically 
unknown, being an IOD process. Analogously to the syn-
thetic case, the optical IOD presents larger errors in position 
and smaller in velocity.

Overall, the analysis reveals that the developed algo-
rithms work efficiently even in real case scenarios, guaran-
teeing accurate and robust results. In particular, it is worth to 
highlight the IOD estimations quality, which is comparable 
to the ROD one (sometimes even better).

8  Conclusions

The work presented the prototypal version of the orbit deter-
mination module embedded in the ISOC Suite, an integrated 
web-based platform providing multiple space surveillance-
related functions and services. This Suite has been devel-
oped thanks to a collaboration involving the Italian Air 
Force, Leonardo Company and Politecnico di Milano.

The module takes, as input, an orbiting objects catalogue 
and the measurements in the TDM format, and automatically 
processes them depending on the observation data reported, 
which can be either optical, or radar, or laser (the latter two 
are processed in the same way). The method execution var-
ies based on whether the observation data correlates with a 
catalogued object, or does not. In the former case, the orbital 
state prediction is refined through measurements either 
according to sequential (if a covariance is associated to the 
prediction) or batch filters (if it is not present). The user 
can select the desired model to perform orbital propagation 
in the transformation functions of the filter, by exploiting 
either a Keplerian propagator, or a numerical high-fidelity 
propagator, or SGP4. In the last case, a fixed-point iteration 
loop based on a Non-linear Least Squares is used to convert 
the orbital state from inertial cartesian coordinates to SGP4 
elements and back. Instead, in cases where there is no cor-
relation, these filters are applied starting from an orbital state 
first guess computed through dedicated methodologies.

The performance of the software module has been 
assessed based on an extensive numerical validation, and 
real data applications are also provided. Overall, the imple-
mented orbit determination procedures guarantee an accu-
rate estimation, which is robust to measurements noise and 
which do not deteriorate in real case scenario.

In the future, alternative correlation metrics will be 
investigated which allow to relax the normal distribution 
assumption of the measurements. In this context, particular 
attention will be devoted to the clusters of satellites, which 
could deteriorate the correlation performance in terms of 
false positives or ambiguous correlation outcome, given the 
spatial proximity of the objects involved. More generally, 
ISOC Suite will be enriched with additional functionalities 
linked to Space Surveillance and Tracking applications.
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Table 9  Real data: ROD with covariance

Pos. error [km] Vel. error [km/s] Correlation index

Radar 4.0e−01 2.9e−03 3.6e+00
Optical 1.9e+00 7.5e−04 1.6e−01

Table 10  Real data: IOD

SR Pos. error [km] Vel. error [km/s] Correlation index

Radar Yes 5.9e−01 5.0e−03 1.2e−01
Radar No 6.7e−01 5.7e−03 4.5e−02
Optical – 3.0e+00 3.4e−04 1.3e−01
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