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Abstract: Three-dimensional metamaterials endowed with two-dimensional in-plane periodicity
exhibit peculiar thermoelastic behaviour when heated or cooled. By proper design of the unit cell, the
equivalent thermal expansion coefficient can be programmed and can also reach negative values. The
heterogeneity in the third direction of such metamaterials also causes, in general, a thermal-induced
deflection. The prediction of the equivalent thermal properties is important to design the metamaterial
suitable for a specific application. Under the hypothesis of small thickness with respect to the global
in-plane dimensions, we make use of asymptotic homogenization to describe the thermoelastic
behaviour of these metamaterials as that of an equivalent homogenous plate. The method provides
explicit expressions for the effective thermal properties, which allow for a cost-effective prediction of
the thermoelastic response of these metaplates.

Keywords: homogenization; asymptotic homogenization; thermal expansion; thermoelasticity;
metamaterial; metaplate

1. Introduction

Thermoelastic metamaterials are an emerging class of architectured materials, typi-
cally constructed by the periodic repetition of a unit cell, which is designed to combine the
thermal and elastic properties of the constituent materials to obtain peculiar behaviours.
Natural materials usually exhibit a positive coefficient of thermal expansion (CTE) with
few exceptions like, e.g., zirconium tungstate [1] and zirconium pyrovanadate [2] that are
endowed with a negative CTE. However, the use of these latter materials for engineering
applications is limited due to their low mechanical properties [3]. Composite materials
and metamaterials can be designed to have negative or zero CTE [4] and good mechani-
cal performances, thus attracting a lot of interest in the recent literature. Metamaterials
with different cell geometries have been proposed in the literature to obtain isotropic [5],
anisotropic [6] and auxetic [7] metamaterials with negative CTE. The proposed cells can
have a generic three-dimensional geometry and, in that case, the metamaterial is obtained
by their periodic repetition in three dimensions, or the cell can have a heterogeneous in-
plane design, extruded in the third direction. In that case, the metamaterial (or metaplate)
is obtained by two-dimensional repetition of the cell.

These typical geometries employed in the available literature are not suitable to be
fabricated by lithographic processes commonly employed in Micro-Electro-Mechanical
systems (MEMS) [8]. A new metamaterial with programmable CTE (positive, null or
negative), fully compatible with microlithography, has been recently proposed [9]. It
consists of the two-dimensional repetition of a star-shaped unit cell with a first structural
layer made in silicon and a partial metallization, e.g., of nickel, on the top of some portions
of the base silicon structure. The non-symmetrical layered configuration causes, in general,
a thermal-induced deflection upon heated that, with a proper design of the unit cell, can be
tuned (upward, downward or to zero).

Finite element analyses of such three-dimensional metamaterials can have a large
computational burden, especially when the number of cells is huge or the unit cell geometry
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is complex and requires a fine mesh. Asymptotic homogenization is a mathematical
technique that can reduce the computational cost of numerical analyses, see, e.g., the
fundamental books [10,11] on the topic. For linear problems, the method provides an
explicit expression for the effective homogenized properties, allowing for the description
of a complex metamaterial as an equivalent homogenous body. In the literature, such a
technique has been employed for the characterization of periodic solids in elasto-dynamic,
e.g., for composite materials [12], locally resonant materials [13] and at high frequencies [14].
The same approach has been successfully applied to multi-physics problems, such as
in linear [15] and non-standard [16] thermoelasticity, as well as to many other coupled
problems [17].

A three-dimensional periodic medium with a two-dimensional periodicity, e.g., the
one proposed in [9], can be homogenized to obtain an equivalent plate if the transversal
dimension is small with respect to the in-plane dimension of the body. If the unit cell
of the periodic body can be modelled as a plate, the homogenization procedure can be
performed starting from the governing equations of structural plate theories. This has been
carried out in the linear regime for perforated [18], composite [19] and locally resonant [20]
metamaterial plates, as well as for the nonlinear theory proposed by Föppl and von
Kármán [21,22]. When the behaviour of the single unit cell cannot be described by the plate
theory, one must start from the three-dimensional formulation of continua and, fixing the
ratio between the unit cell height h and its in-plane dimension ℓ, perform the asymptotic
study of the problem as ℓ → 0 [23,24]. In [25], the case where ℓ → 0 first and then h → 0,
and vice versa, are also considered showing that different homogenized properties are
obtained in the three limit cases.

In this work, we focus on the thermoelastic homogenization of a three-dimensional
medium endowed with a two-dimensional periodicity. Starting from the method proposed
in [26], where the focus is on the evaluation of the effective plate stiffness only, we extend
the asymptotic study to also account for the thermal behaviour of the constituent materials.
The new homogenization scheme of the thermoelastic metaplate is then implemented and
its effectiveness is shown with some numerical examples.

This work is organized as follows: after the present introduction, the hypotheses and
the governing equation of the problem are stated in Section 2. Then, in Section 3, a two-scale
asymptotic homogenization procedure is developed and the effective properties of the
thermoelastic metaplate are provided. Some remarks on the homogenization technique
are presented in Section 4. Section 5 presents the results that can be obtained by the
new proposed homogenization approach with reference to two metamaterials: one with a
negative equivalent CTE and the other with a positive equivalent CTE. A discussion about
the proposed method is carried out in Section 6 while conclusions are given in Section 7.

Notation: Latin indices (i, j, . . . ) run from 1 to 3 while Greek indices (α, β, . . . ) run
from 1 to 2. Summation over repeated subscript and superscript in a term or a product is
always implicitly assumed. The unit vector of the i−th axis is indicated with ei, while the
components of the second-order identity tensor are indicated with δij. Partial derivates with
respect to the spatial variable xi and the fast spatial variable yi are denoted, respectively,
by a comma and a vertical bar:

(⋄),i =
∂(⋄)
∂xi

and (⋄)|i =
∂(⋄)
∂yi

. (1)

2. Problem Definition

Let us consider a generic three-dimensional solid Ω, referred to a coordinate system
x = xiei as shown by the sketch of Figure 1, which is characterized by a two-dimensional
(x1 − x2) periodicity. Such a metamaterial is obtained by the repetition of a general three-
dimensional unit cell Yϵ (highlighted in blue) that is periodically translated with a transla-
tion vector belonging to the reference plane x3 = 0 (in red). Such a unit cell, which may
have a varying out-of-plane thickness, can be made of one or more component materials
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and can include voids. The intersection of the solid Ω with x3 = 0 is denoted by Ω̂ and
its characteristic length by L. In the x3-direction, the body is bounded by two surfaces Γϵ

+

and Γϵ
− of equations x3 = hϵ

+(x̂) and x3 = hϵ
−(x̂) (respectively), where x̂ = xαeα denotes the

in-plane position vector. Note that, in general, the metamaterial plate is non-symmetric
with respect to its mid-plane.

Γ
ϵ

Y
ϵ

x1

x3

L
ℓ

h
ϵ

Figure 1. Geometry of the three-dimensional solid Ω with a two-dimensional periodicity in the plane
x3 = 0 (in red). The unit cell Yϵ is highlighted in blue.

We assume the following hypotheses:

1. the characteristic in-plane dimension ℓ of the unit cell Yϵ is much smaller than the
characteristic in-plane dimension of the periodic media, i.e., ϵ = ℓ/L ≪ 1;

2. the maximum transversal dimension hϵ of the body is much smaller than its charac-
teristic in-plane dimension, i.e., hϵ = max

x̂∈Ω̂
{hϵ

+(x̂)− hϵ
−(x̂)} ≪ L;

3. external loadings and temperature variations are quasi-statically applied so that
transient effects can be neglected;

4. temperature variations are sufficiently small to assume that all material properties
can be considered temperature independent.

The first two assumptions allow us to perform an asymptotic analysis as ϵ → 0,
for a fixed ratio hϵ/ℓ, of the real three-dimensional metamaterial (endowed with a two-
dimensional periodicity) to describe its thermoelastic behaviour as that of an equivalent
homogenous two-dimensional plate of mid-surface Ω̂.

Neglecting transient effects, as assumed in the third hypothesis, the steady-state
thermoelastic problem for a three-dimensional continuum, see [27,28], is governed by the
equations {

σϵ
ij,j + Fϵ

i = 0 in Ω

qϵ
i,i = rϵ in Ω

, (2)

where σϵ
ij = σϵ

ij(x) is Cauchy’s stress tensor, Fϵ
i = Fϵ

i (x) is the volumetric body force,
qϵ

i = qϵ
i (x) is the heat flux and rϵ = rϵ(x) is the internal heat production. Under the

hypothesis of linear behaviour, the constitutive equation for the stress and the heat flux can
be expressed as

σϵ
ij = Dϵ

ijhk

(
uϵ

h,k − αϵ
hkθϵ

)
and qϵ

i = −kϵ
ijθ

ϵ
,j in Ω, (3)

where uϵ
i = uϵ

i (x) and θϵ = θϵ(x) are the unknown displacement and temperature variation
field (respectively), Dϵ

ijhk = Dϵ
ijhk(x) is the fourth-order elastic stiffness tensor, αϵ

hk = αϵ
hk(x)

is the second-order thermal expansion tensor and kϵ
ij = kϵ

ij(x) is the second-order thermal
conductivity tensor. If the constituent materials exhibit an isotropic behaviour, these latter
properties can be expressed as

Dϵ
ijhk = µϵ

(
δihδjk + δikδjh

)
+ λϵδijδhk, αϵ

hk = αϵδhk and kϵ
ij = kϵδij, (4)
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where λϵ = λϵ(x) and µϵ = µϵ(x) are Lame’s constant, αϵ = αϵ(x) is the coefficient of ther-
mal expansion and kϵ = kϵ(x) is the coefficient of thermal conductivity. The heterogeneity
of the metamaterial can be obtained by periodically combining different materials and
holes. In this latter case, we will consider a void as a material with null properties.

Note that the material properties Dϵ
ijhk, αϵ

hk and kϵ
ij can be periodically heterogenous

but do not depend on temperature, coherently with our fourth hypothesis.
On the top and bottom boundaries of the metamaterial, we prescribe zero normal

traction and heat flux, i.e.,

σϵ
ijnj = 0 and qϵ

i ni = 0 on Γϵ
+ ∪ Γϵ

−, (5)

where ni is the outer unit normal vector on Γϵ
±. The boundary conditions on the lateral

surfaces of the media, i.e., on ∂Ω \ (Γϵ
+ ∪ Γϵ

−), will not affect the asymptotic homogenization
procedure and will be therefore left unspecified. We refer to V(Ω) as a couple of fields
uϵ, θϵ ∈ H1(Ω) satisfying all the prescribed boundary conditions.

The thermoelastic problem (2) can be reformulated as follows: find (uϵ, θϵ) ∈ V(Ω)
such that ∫

Ω

(
σϵ

ijv
ϵ
i,j − Fϵ

i vϵ
i + qiη

ϵ
,i + rϵηϵ

)
dx = 0 ∀vϵ

i , ηϵ ∈ H1
0(Ω). (6)

Remark—Any actual size of the unit cell can be considered, provided that it is small
with respect to the whole system (first hypothesis) and that the constituent material be-
haviour can be described by classical continuum mechanics.

3. Asymptotic Homogenization
3.1. Scaling and Asymptotic Expansion

According to the two-scale homogenization technique, we introduce the fast variable
y = x/ϵ which lives in the re-scaled unit cell Y = Yϵ/ϵ of the periodic media, shown in
Figure 2. The re-scaled unit cell mid-surface (in the red plane of the equation y3 = 0) is
denoted by Ŷ, the lateral surface (in orange) by S, and the top/bottom surface (in blue)
by Γ± = Γϵ

±/ϵ. The latter have the equation y3 = h±(y1, y2) = hϵ
±(ϵy1, ϵy2)/ϵ, while the

maximum thickness of the unit cell is h = hϵ/ϵ.

Y
+

_
SY

^
y =03

y1

y3

Figure 2. Re-scaled unit cell Y and the corresponding mid-surface Ŷ (in red).

The properties of the constituent materials, which vary within Y, are not scaled, i.e.,

Dϵ
ijhk(x) = Dijhk

(x
ϵ

)
, αϵ

hk(x) = αhk

(x
ϵ

)
and kϵ

ij(x) = kij

(x
ϵ

)
, (7)

where Dijhk(y), αhk(y) and kij(y) are defined on Y and are Ŷ−periodic with respect to y1
and y2 only.

As the thickness decreases as ℓ in the asymptotic limit ϵ → 0, we need to scale body
forces and heat production according to

Fϵ
α (x) = ϵFα

(
x̂,

x
ϵ

)
, Fϵ

3 (x) = ϵ2F3

(
x̂,

x
ϵ

)
and rϵ(x) = ϵ r

(
x̂,

x
ϵ

)
, (8)
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with Fi(x̂, y) and r(x̂, y) being defined on Ω̂ × Y and being Ŷ−periodic with respect to the
variables y1 and y2.

With the scaling hypotheses given by Equations (7) and (8), the solution of problem (6)
can be expanded in terms of ϵ. In particular, we assume for the displacement field and the
stress tensor the following ansatzs

uϵ
i (x) = u0

i (x̂) + ϵu1
i

(
x̂,

x
ϵ

)
+ ϵ2u2

i

(
x̂,

x
ϵ

)
+ o(ϵ2),

σϵ
ij(x) = σ0

ij

(
x̂,

x
ϵ

)
+ ϵσ1

ij

(
x̂,

x
ϵ

)
+ ϵ2σ2

ij

(
x̂,

x
ϵ

)
+ o(ϵ2),

(9)

where un
i (x̂, y) and σn

ij(x̂, y), for n ∈ N, are defined on Ω̂ × Y and are Ŷ−periodic with

respect to y1 and y2. Note that, the 0-th order displacement field u0 is assumed to depend
on the in-plane slow variable x̂ only. Asymptotic expansions analogous to (9) hold for the
temperature variation field θϵ(x) and the heat flux qϵ

i (x). For a variational consistency, we
further assume a similar dependence on x̂ and y of the test functions, i.e.,

vϵ
i (x) = v

(
x̂,

x
ϵ

)
and ηϵ(x) = η

(
x̂,

x
ϵ

)
, (10)

with vi(x̂, y) and η(x̂, y) being defined on Ω̂ × Y and being Ŷ−periodic with respect to y1
and y2. Note that, due to the chain rule, the derivatives of the function f ϵ(x) = f (x̂, x/ϵ)
are computed as

f ϵ
,α = f,α + ϵ−1 f|α and f ϵ

,3 = ϵ−1 f|3. (11)

Using the relation between the coordinates x3 = ϵy3, one has

∫
Ω
(⋄) dx =

∫
Ω̂

(∫ hϵ
+(x̂)

hϵ
−(x̂)

(⋄) dx3

)
dx̂ = ϵ

∫
Ω̂

(∫ h+(x̂)

h−(x̂)
(⋄) dy3

)
dx̂. (12)

We also introduce the averaging operator on the re-scaled unit cell

⟨(⋄)⟩ = 1
|Y|

∫
Y
(⋄) dy, (13)

where |Y| is the volume of the re-scaled unit cell.
Using (11), (12) and (13) the weak form of the governing Equation (6) can be expressed as∫

Ω̂

〈
σϵ

ijvi|j + qϵ
i η|i + ϵ

(
σϵ

iβvi,β + qϵ
αη,α

)
+ ϵ2(rη − Fαvα)− ϵ3F3v3

〉
dx̂ = 0, (14)

for each possible vi, η ∈ H1
#(Ω̂ × Y). Here, H1

#(Ω̂ × Y) is the subspace of all the functions
belonging to H1(Ω̂×Y) that vanish on ∂Ω̂∪ Γ+ ∪ Γ− and are Ŷ− periodic on S with respect
to y1 and y2. For functions depending on y only, we denote with H1

#(Y) the analogous
functional space.

Replacing the asymptotic expansions (9) into Equation (14), one obtains a sequence of
problems P(ϵn) for each order n ∈ N of the parameter ϵ. The first four problems read

P(ϵ0) :
∫

Ω̂

〈
σ0

ijvi|j + q0
i η|i

〉
dx̂ = 0,

P(ϵ1) :
∫

Ω̂

〈
σ1

ijvi|j + q1
i η|i + σ0

iβvi,β + q0
αη,α

〉
dx̂ = 0,

P(ϵ2) :
∫

Ω̂

〈
σ2

ijvi|j + q2
i η|i + σ1

iβvi,β + q1
αη,α

〉
dx̂ =

∫
Ω̂
⟨Fαvα − rη⟩ dx̂,

P(ϵ3) :
∫

Ω̂

〈
σ3

ijvi|j + q3
i η|i + σ2

iβvi,β + q2
αη,α

〉
dx̂ =

∫
Ω̂
⟨F3v3⟩ dx̂,

(15)
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for each possible vi, η ∈ H1
#(Ω̂ × Y). Note that, making use of Equations (3) and (11), one

can compute the expansion terms of stress and heat flux as

σn
ij = Dijhδun

h,δ + Dijhk

(
un+1

h|k − αhkθn
)

and qn
i = −

(
kiβθn

,β + kijθ
n+1
|j

)
, (16)

for n ∈ N.

3.2. Thermal-Conductivity Problem

As can be observed from the governing equations, the steady-state thermoelastic
problem is weakly coupled, i.e., the thermal equilibrium configuration does not depend
on the solution of the mechanical problem. Therefore, we can solve first the thermal
conductivity homogenization problem by assuming for all problems (15) that vi = 0.

3.2.1. Problem P(ϵ0)

Choosing η(x̂, y) = φ(x̂)ψ(y) and recalling that q0
i = −(kiβθ0

,β + kijθ
1
|j), one obtains〈(

kiβθ0
,β + kijθ

1
|j

)
ψ|i

〉
= 0 ∀ψ ∈ H1

#(Y), (17)

which implies, by linearity, that the solution is given by

θ1(x̂, y) = θ∗(x̂) + θ0
,β(x̂)Θ

β(y) in Ω̂ × Y. (18)

In Equation (18), θ∗(x̂) is the homogenized temperature variation field dependent only
on the macroscopic in-plane variable, while Θβ(y) is the solution of the thermal conductivity
cell problem 

[
kij

(
δjβ + Θβ

|j

)]
|i
= 0 in Y,

Θβ periodic on S,[
kij

(
δjβ + Θβ

|j

)]
ni anti-periodic on S,[

kij

(
δjβ + Θβ

|j

)]
ni = 0 on Γ+ ∪ Γ−.

(19)

3.2.2. Problem P(ϵ1)

Selecting now η(x̂, y) = φ(x̂), and making use of (18), problem P(ϵ1) reduces to∫
Ω̂

k∗αβθ0
,β φ,α dx̂ = 0 ∀φ ∈ H1

0(Ω̂), (20)

where we have introduced the homogenized in-plane thermal conductivity tensor of the metaplate

k∗αβ =
1
|Y|

∫
Y

kαj

(
δjβ + Θβ

|j

)
dy. (21)

The tensor k∗αβ can be proved to be symmetric and positive definite [10]. Thus,

from Equation (20) one deduces that θ0(x̂) = 0 and therefore, from (18), that θ1(x̂, y) = θ∗(x̂).
Considering now another test function η(x̂, y) = φ(x̂)ψ(y), problem P(ϵ1) allows us

to obtain 〈(
kiβθ∗,β + kijθ

2
|j

)
ψ|i

〉
= 0 ∀ψ ∈ H1

#(Y), (22)

which means, similarly to the previous problem, that

θ2(x̂, y) = θ∗,β(x̂)Θ
β(y) in Ω̂ × Y. (23)
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3.2.3. Problem P(ϵ2)

Selecting η(x̂, y) = φ(x̂) for the problem at the second order, we obtain∫
Ω̂

(
−k∗αβθ∗,β φ,α + ⟨r⟩φ

)
dx̂ = 0 ∀φ ∈ H1

0(Ω̂), (24)

which can be recognized as the weak form of the homogenized thermal conductivity problem(
−k∗αβθ∗,β

)
,α
= r∗ in Ω̂. (25)

In Equation (25), r∗ = ⟨r⟩ is the effective heat production in the homogenized metaplate.

3.3. Mechanical Problem

After the homogenization of the thermal conductivity problem, we can now focus on
the mechanical one by considering the sequence of problems (15) with η = 0.

3.3.1. Problem P(ϵ0)

Starting from the problem at order zero, assuming vi(x̂, y) = φ(x̂)ψi(y), one obtains〈(
Dijhδu0

h,δ + Dijhku1
h|k

)
ψi|j

〉
= 0 ∀ψi ∈ H1

#(Y). (26)

The temperature variation field, which starts its asymptotic expansion at the first order
since θ0 = 0 (see Section 3.2.2), is not involved in the formulation of the problem (26).
Therefore, the solution is exactly coincident with the one obtained in [26] and reads

u1
γ(x̂, y) = U1

γ(x̂) + u0
α,β(x̂)χ

αβ
h (y)− y3u0

3,γ

u1
3(x̂, y) = U1

3(x̂) + u0
α,β(x̂)χ

αβ
3 (y)

in Ω̂ × Y, (27)

where U1
h(x̂) is still undermined and χ

αβ
h (y), for α, β ∈ {1, 2}, is the solution of the membrane

cell problem 

[
Dijhk

(
δhαδkβ + χ

αβ

h|k

)]
|j
= 0 in Y,

χ
αβ
h periodic on S,[
Dijhk

(
δhαδkβ + χ

αβ

h|k

)]
nj anti-periodic on S,[

Dijhk

(
δhαδkβ + χ

αβ

h|k

)]
nj = 0 on Γ+ ∪ Γ−.

(28)

The field χ
αβ
h represents the h−component of the displacement field when a uniform in-

plane eigenstrain eα ⊙ eβ is applied within the unit cell subjected to periodicity conditions
on S and zero-traction on Γ+ ∪ Γ−. The solution of problem (28) is defined up to an arbitrary
constant, which represents a rigid body motion of the unit cell. Only three membrane cell
problems need to be solved since it is possible to show that χ

αβ
h = χ

βα
h .

3.3.2. Problem P(ϵ1)

When considering the next order, following the same developments of [26], it is
possible to show that u0

γ = 0 and thus Equation (27) reduces to

u1
γ(x̂, y) = u∗

γ(x̂)− y3w∗
,γ(x̂) and u1

3(x̂, y) = U1
3(x̂) in Ω̂ × Y, (29)

where we have introduced the homogenized in-plane and out-of-plane displacements
u∗

γ = U1
γ and w∗ = u0

3, respectively.
Assuming vi(x̂, y) = φ(x̂)ψi(y), problem P(ϵ1) gives〈[

Dijhδu∗
h,δ − y3Dijγδw∗

,γδ + Dijhk

(
u2

h|k − αhkθ∗
)]

ψi|j

〉
= 0 ∀ψi ∈ H1

0(Ω̂), (30)
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which now involves the effective temperature variation field θ∗(x̂) solution of the ho-
mogenized thermal conductivity problem (25). The solution of (30) can be expressed by
linearity as

u2
γ(x̂, y) = u∗

α,β(x̂)χ
αβ
γ − w∗

,αβ(x̂)ξ
αβ
γ (y)− θ∗(x̂)ζγ(y)− y3U1

3,γ(x̂)

u2
3(x̂, y) = u∗

α,β(x̂)χ
αβ
3 − w∗

,αβ(x̂)ξ
αβ
3 (y)− θ∗(x̂)ζ3(y)

in Ω̂ × Y, (31)

where ξ
αβ
h (y) solves, for α, β ∈ {1, 2}, the flexural cell problem

[
Dijhk

(
y3δhαδkβ + ξ

αβ

h|k

)]
|j
= 0 in Y

ξ
αβ
h periodic on S[
Dijhk

(
y3δhαδkβ + ξ

αβ

h|k

)]
nj anti-periodic on S[

Dijhk

(
y3δhαδkβ + ξ

αβ

h|k

)]
nj = 0 on Γ+ ∪ Γ−

(32)

while ζh(y) solves the thermoelastic cell problem

[
Dijhk

(
αhk + ζh|k

)]
|j
= 0 in Y

ζh periodic on S[
Dijhk

(
αhk + ζh|k

)]
nj anti-periodic on S[

Dijhk

(
αhk + ζh|k

)]
nj = 0 on Γ+ ∪ Γ−

(33)

The field ξ
αβ
h (y) represents the h−component of the displacement field of the unit

cell, subject to periodic boundary conditions on S and zero traction on Γ+ ∪ Γ−, when
an eigenstrain y3eα ⊙ eβ linearly varying with y3 is applied within Y. The field ζh(y) is
the h−component of the displacement due to a uniform unit temperature variation in the
re-scaled cell by considering analogous boundary conditions. Both the solution of cell
problems (32) and (33) are defined up to a constant term, which represents a rigid body
motion of the unit cell. Note that, due to the fact that ξ

αβ
h = ξ

βα
h , only three flexural cell

problems must be solved numerically.
With the definition of the stress localization tensors

a∗ijγδ(y) = Dijhk(y)
(

δhγδkδ + χ
γδ
h|k(y)

)
b∗ijγδ(y) = Dijhk(y)

(
y3δhγδkδ + ξ

γδ
h|k(y)

)
t∗ij(y) = Dijhk(y)

(
αhk(y) + ζh|k(y)

) in Ω̂ × Y, (34)

the first-order stress tensor can be expressed, making use of (31), as

σ1
ij(x̂, y) = a∗ijγδ(y)u

∗
γ,δ(x̂)− b∗ijγδ(y)w

∗
,γδ(x̂)− t∗ij(y)θ

∗(x̂) in Ω̂ × Y. (35)

3.3.3. Problems P(ϵ2) and P(ϵ3)

Following the same steps as in [26], solving the problems P(ϵ2) and P(ϵ3), one obtains
the effective equilibrium equations of the homogenized plate, which read{

N∗
αβ,β + p∗α = 0

M∗
αβ,αβ + p∗3 = 0

in Ω̂. (36)
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Equation (36) can be recognized as the governing equation of a Kirchhoff–Love plate,
having defined the homogenized plate membrane forces and moments as

N∗
αβ(x̂) = h∗

〈
σ1

αβ(x̂, y)
〉

M∗
αβ(x̂) = h∗

〈
y3σ1

αβ(x̂, y)
〉

in Ω̂, (37)

and the membrane and out-of-plane homogenized load as

p∗α = h∗⟨Fα⟩ and p∗3 = h∗[⟨F3⟩+ ⟨y3Fα,α⟩]. (38)

In Equations (37) and (38), h∗ is the homogenized plate thickness that is defined as the
ratio between the volume of the re-scaled unit cell Y and the area of its mid-surface Ŷ.

3.4. Effective Thermoelastic Properties

The effective stiffnesses of the homogenized metamaterial plate can be retrieved from
the constitutive law of the membrane forces N∗

αβ and plate moments M∗
αβ. Replacing (35)

into the definitions (37), one finally has

N∗
αβ(x̂) = A∗

αβγδu∗
γ,δ(x̂)− C∗

αβγδw∗
,γδ(x̂)− E∗

αβθ∗(x̂)

M∗
αβ(x̂) = C∗

γδαβu∗
γ,δ(x̂)− B∗

αβγδw∗
,γδ(x̂)− F∗

αβθ∗(x̂)
in Ω̂, (39)

where the following homogenized stiffnesses and generalized plate thermal stresses have
been defined:

A∗
αβγδ = h∗

〈
a∗αβγδ(y)

〉
homog. membrane stiffness,

B∗
αβγδ = h∗

〈
y3b∗αβγδ(y)

〉
homog. bending stiffness,

C∗
αβγδ = h∗

〈
b∗αβγδ(y)

〉
= h∗

〈
y3a∗γδαβ(y)

〉
homog. coupling stiffness,

E∗
αβ = h∗

〈
t∗αβ(y)

〉
homog. thermal membrane forces,

F∗
αβ = h∗

〈
y3t∗αβ(y)

〉
homog. thermal plate moments.

(40)

The fourth-order tensors A∗
αβγδ and B∗

αβγδ have minor and major symmetries; thus,
recalling that α, β, γ, δ ∈ {1, 2}, they are characterized by six independent components
each. The tensor C∗

αβγδ has minor symmetries while, in general, it does not have major
symmetries, i.e., C∗

αβγδ ̸= C∗
γδαβ (9 independent components). The second-order tensors

E∗
αβ and F∗

αβ are symmetric and described by three independent components.
Equation (39) describes the thermoelastic behaviour of the homogenized plate: it

links the generalized plate stresses N∗
αβ and M∗

αβ to the in-plane u∗
γ and out-of-plane w∗

displacement components of the homogenized plate mid-surface and to the homogenized
temperature variation θ∗.

The homogenized thermal expansion tensor α∗γδ and the homogenized thermal-induced
curvature κ∗γδ can be implicitly defined by the relations

N∗
αβ(x̂) = A∗

αβγδ

(
u∗

γ,δ(x̂)− α∗γδθ∗(x̂)
)
− C∗

αβγδ

(
w∗

,γδ(x̂) + κ∗γδθ∗(x̂)
)

M∗
αβ(x̂) = C∗

γδαβ

(
u∗

γ,δ(x̂)− α∗γδθ∗(x̂)
)
− B∗

αβγδ

(
w∗

,γδ(x̂) + κ∗γδθ∗(x̂)
) in Ω̂. (41)

A direct comparison of Equations (39) and (41) allows the identification of α∗γδ and κ∗γδ
as the solutions of the linear system{

A∗
αβγδα∗γδ + C∗

αβγδκ∗γδ = E∗
αβ,

C∗
γδαβα∗γδ + B∗

αβγδκ∗γδ = F∗
αβ.

(42)
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4. General Remarks
4.1. Back-Scaling of the Solution

When considering a real metaplate characterized by a finite value of ϵ, ϵ0 > 0, the ho-
mogenized solution needs to be scaled back to the real problem. This can be achieved
by looking at the leading terms in the asymptotic expansion (9). Denoting by (⋄)h the
reconstruction of the field (⋄) through the homogenization procedure, one has for the
temperature variation and displacement fields

θh(x) = ϵ0θ∗(x̂), uh
γ(x) = ϵ0u∗

γ(x̂)− x3w∗
,γ(x̂) and uh

3(x) = w∗(x̂) in Ω. (43)

Note that the periodicity, and hence ϵ0, does not affect the out-of-plane displacement
uh

3. The back-scaling of the local stress tensor, at each point x̂ ∈ Ω̂ within the unit cell
Y, reads

σh
ij(x, y) = ϵ0

(
a∗ijγδ(y)u

∗
γ,δ(x̂)− b∗ijγδ(y)w

∗
,γδ(x̂)− t∗ij(y)θ

∗(x̂)
)

in Ω̂ × Y. (44)

Similar considerations hold for the back-scaling of the effective generalized plate
stresses, i.e., Nh

αβ = ϵ2
0N∗

αβ and Mh
αβ = ϵ3

0 M∗
αβ, and for the plate effective thermal properties,

e.g., αh
γδ = α∗γδ and κh

γδ = ϵ−1
0 k∗γδ.

4.2. Change of the Reference Mid-Plane

The whole homogenization procedure, and thus all the homogenized properties of
the metamaterial, is referred to the chosen mid-surface Ω̂ in the plane x3 = 0. If one wants
to refer to a different plane, e.g., the one of equation x3 = e, with e being the eccentricity,
a simple transformation holds for all the effective properties and loadings.

Denoting by (̃⋄) the quantity (⋄) evaluated with respect to the shifted mid-surface
x̃3 = x3 − e = 0, it can be easily shown from (28), (32) and (33) that

χ̃
αβ
h = χ

αβ
h , ξ̃

αβ
h = ξ

αβ
h − eχ

αβ
h and ζ̃h = ζh in Y. (45)

From Equation (34), one has

ã∗αβγδ = a∗αβγδ b̃∗αβγδ = b∗αβγδ − ea∗αβγδ and t̃∗αβγδ = t∗αβγδ in Y. (46)

The homogenized properties (40) transform accordingly to

Ã∗
αβγδ = A∗

αβγδ,

B̃∗
αβγδ = B∗

αβγδ − e
(

C∗
αβγδ + C∗

γδαβ

)
+ e2 A∗

αβγδ,

C̃∗
αβγδ = C∗

αβγδ − eA∗
αβγδ,

Ẽ∗
αβ = E∗

αβ,

F̃∗
αβ = F∗

αβ − eE∗
αβ.

(47)

Exploiting Equation (47), the effective thermal expansion and curvature, solutions
of (42), now read

α̃∗γδ = α∗γδ + eκ∗γδ and κ̃∗γδ = κ∗γδ. (48)

From Equation (27), the displacements of the mid-surface change accordingly to

ũ∗
γ = ũ∗

γ − ew∗
,γ and w̃∗ = w∗, (49)

and therefore, from (39), the plate internal actions become

Ñ∗
αβ = N∗

αβ and M̃∗
αβ = M∗

αβ − eN∗
αβ. (50)
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Finally, from Equation (38), the homogenized loads transform as

p̃∗α = p∗α and p̃∗3 = p∗3 − ep∗α,α (51)

4.3. The Case of Symmetric Metaplates

When x3 = 0 is a plane of symmetry of the metamaterial plate, several simplifications
arise. From Equations (28), (32) and (33) it is clear that ξ

αβ
h (y) and ζh(y) are even functions

of y3, while ξ
αβ
h (y) is odd in y3. From (34), one has that a∗αβγδ(y) and t∗αβγδ(y) are even in

y3, while b∗αβγδ(y) is odd with respect to y3. Therefore, from (40), one can conclude that

C∗
αβγδ = C∗

γδαβ = F∗
αβ = 0, (52)

which implies, by the second equation of (42), that

κ∗γδ = 0. (53)

As expected, for a metaplate with transverse symmetry, the membrane–bending
coupling vanishes, as well as the effective thermal-induced bending.

4.4. The Case of Homogeneous Thermal Expansion Coefficient

Let us consider the case of a single homogeneous constituent material with periodically
varying thickness and voids, or the case of periodically heterogeneous materials with very
similar thermal expansion coefficients (e.g., concrete and steel). In such a case, denoting
with Ym the portion of Y occupied by the material, the thermal expansion tensor has
the expression

αhk(y) =

{
αhk in Ym,
0 in Y \ Ym.

(54)

Thus, the thermoelastic cell problem (33) admits the following close-form solution

ζh(y) = αγδχ
γδ
h (y)− y3(2α13δ1h + 2α23δ2h + α33δ3h) in Ym. (55)

Replacing (55) into (34), one has

t∗ij(y) = a∗ijγδ(y)αγδ in Ym, (56)

which means, from Equation (40), that the thermal membrane forces and the thermal plate
moments read

E∗
αβ = A∗

αβγδαγδ and F∗
αβ = C∗

γδαβαγδ. (57)

Making use of (57), the solution of the linear system (42) is

α∗γδ = αγδ and κ∗γδ = 0, (58)

which means that the homogenized plate does not exhibit any thermal bending and has
the same thermal expansion tensor as the constituent material. This could be considered
as a proof of the well-known property that at least two materials with different thermal
expansion coefficients are required in order to modify the effective thermal properties of
the metamaterial.

5. Numerical Examples

The numerical examples discussed in this section are referred to MEMS scale ap-
plications, even if the homogenization technique can be employed at higher scales, and
are carried out with the commercial finite element software COMSOL Multiphysics 6.1®.
Properties of the employed materials at 20 ◦C are listed in Table 1. For silicon, these val-
ues characterize the polysilicon obtained by epitaxial growth for MEMS applications [8],
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while for nickel we assume the typical values of the bulk material. For real applications in
MEMS devices, nickel properties could depend on the fabrication techniques and further
characterization would be required.

Table 1. Material properties at 20 ◦C.

Material E [GPa] ν [−] α [ppm/K]

Silicon 160 0.22 2.6
Nickel 200 0.29 12.6

5.1. Parametric Studies

As a first example, we show how the proposed asymptotic homogenization proce-
dure can be effectively employed to perform parametric studies to identify the effective
properties of a periodic thermoelastic plate.

We consider the unit cell shown in Figure 3, similar to the recently proposed one in [9],
which is composed of two layers in the x3-direction. The first one, in grey, constitutes the
base structure of the cell; it has a height h1 and it is made of silicon. The in-plane geometry
of the first layer is characterized by two diagonal elements at ±45◦ of thickness tint and
length d

√
2, an external frame of thickness text, being in general non-convex, and by four

lateral connectors that link the cell with the adjacent ones. The inclinations of the external
frame are measured with respect to the diagonals and are indicated with ϕ (for the left and
right elements) and ψ (for the top and bottom ones). The second layer, of height h2, consists
of a partial metallization made of nickel on the top of the external frame of the silicon base
structure, as shown in Figure 3 in orange.

x1

x3

x2

x1

x2

d

text

h1

h2

t int

ϕ

ψ

d

Y
ϵ

Figure 3. Unit cell employed for parametric studies: three-dimensional view (left) and top two-
dimensional view (right).

For the sake of simplicity, we fix the values h1 = 10h2 = 10 µm, d = 90 µm and
text = tint = 2 µm to perform the parametric studies by varying the inclination angles
ϕ, ψ ∈ [10◦, 90◦] only. For all calculations, we choose as the reference mid-surface the
mid-plane of the silicon layer.

For each couple of values of (ϕ, ψ) we need to compute numerically the solutions χ11
h ,

χ22
h and χ12

h of the membrane cell problems (28), the solutions ξ11
h , ξ22

h and ξ12
h of the flexural

cell problems (32) and the solution ζh of the thermoelastic cell problem (33).
For example, in the case ϕ = ψ = 30◦, Figure 4a and Figure 4b show the contour of

the displacement magnitude for the membrane cell problem χ11
h and χ12

h on the deformed
shapes. Similarly, solutions for the flexural cell problems ξ11

h and ξ12
h are shown in Figure 4c

and Figure 4d (respectively), as well as for the thermoelastic cell problem depicted in
Figure 4e. Black lines identify the undeformed configuration. Note that, in this particular
case, there is no need to solve numerically for χ22

h and ξ22
h since the 90◦ rotational symmetry

of the unit cell can be invoked.
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(a) (b)

(c) (d)

(e)

max

min

|u| 

Figure 4. Contour of displacement magnitude of the solution of cell problems: (a) χ11
h , (b) χ12

h , (c) ξ11
h ,

(d) ξ12
h and (e) ζh in the case h1 = 10h2 = 10 µm, d = 90 µm, text = tint = 2 µm and ϕ = ψ = 30◦.

Once all the cell problems are solved, we can compute the localization tensors a∗αβγδ,
b∗αβγδ and t∗αβγδ given by (34) and thus all the homogenized properties (40). Finally, solving
the linear system (42), we can compute the effective thermal expansion tensor α∗γδ and the
effective thermal-induced curvature tensor κ∗γδ.

Figure 5a shows the contour of the back-scaled homogenized CTE αh
11 = α∗11, nor-

malized with respect to the CTE of silicon αSi, as a function of ϕ and ψ. As is possible to
observe, a proper selection of the inclination angles allows us to obtain a positive equivalent
CTE αh

11 lower or larger than the one of silicon, or even negative. The black continuos line
corresponds to αh

11 = 0, while the dashed one corresponds to αh
11 = αSi.
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(a) (b)

Figure 5. Contours of (a) αh
11/αSi and (b) κh

11 as a function of ϕ and ψ in the case h1 = 10h2 = 10 µm,
d = 90 µm and text = tint = 2 µm.

The back-scaled thermal-induced curvature κh
11 = ϵ−1κ∗11 is shown in Figure 5b as a

function of ϕ and ψ. For high values of the angle ϕ, the cell exhibits a global downward
deflection in the x1-direction (κh

11 > 0) when heated, as one would reasonably expect from
a layered material, with the top layer having a greater CTE than the bottom one. However,
for low values of ϕ, the sign of the effective curvature changes and one obtains a global
upward deflection for a positive temperature variation. The black line corresponds to
κh

11 = 0.
Since a 90◦ rotation of the unit cell coincides with the cell that one obtains by swapping

ϕ and ψ, we obtain αh
22(ϕ, ψ) = αh

11(ψ, ϕ) and κh
22(ϕ, ψ) = κh

11(ψ, ϕ). Therefore, the contours
of αh

22 and κh
22 are coincident with those shown in Figure 5 but mirrored with respect to the

bisector ϕ = ψ.

5.2. Convergence of the Homogenization Method

The purpose of this second example is to verify numerically the convergence of the
homogenization technique, as ϵ → 0, to the solution of the full numerical simulation
on the actual geometry. The complex star-shaped geometry depicted in Figure 3 is not
suitable to perform such a study since a very fine mesh is required to correctly reproduce its
deformation and, thus, the numerical analyses with many cells would be computationally
prohibitive. Therefore, we assess the convergence of the homogenization scheme with
reference to another problem illustrated in Figure 6a. We consider a square plate of side
L = 1000 µm clamped on the left edge, simply supported on the top one and free on the two
remaining sides. On the left and right edges, a temperature variation θ = 1 K and θ = −1 K
(respectively) is prescribed to obtain a non-uniform temperature field in the metaplate.

The plate is the N × N, with N ∈ N, repetition of the unit cell shown in Figure 6b.
The latter has an in-plane dimension ℓ = L/N and is composed of two layers, having
heights h1 = ℓ/5 and h2 = ℓ/10, made, respectively, of silicon (in grey) and nickel
(in orange). The two layers are perforated with square holes of sides b1 = 2ℓ/5 and
b2 = 4ℓ/5. The reference mid-surface, depicted in red in the same figure, coincides with
the mid-surface of the silicon layer. Note that, for this example, the effective CTE of the
metaplate is expected to be positive. However, this is not relevant to the purposes of the
convergence study.

Keeping fixed the global dimension L of the plate and all the boundary conditions, we
compute the metamaterial response by varying the number of cells N on each side. In this way,
for increasing values of N, we are numerically performing the limit ϵ = ℓ/L = 1/N → 0.
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Figure 6. (a) Top view of the metamaterial plate; (b) geometry of the unit cell; (c) mesh employed for
each cell; (d) comparison between DOFs of the real (markers) and homogenized (continuous) model
against the number of cells N.

Figure 6c shows the mesh employed for the finite element discretization of a single unit
cell of the metamaterial plate, which consists of quadratic serendipity hexahedral elements.
Despite the mesh being quite coarse, the number of degrees of freedom (DOFs) for the
whole problem grows rapidly with the number of cells N, as shown in the semilogarithmic
plot in Figure 6d with markers. This shows clearly that it would be computationally
prohibitive to deal with a large number of unit cells with complex geometry that requires
a fine mesh, such as the one considered in Section 5.1. In the same plot, the continuous
line indicates the number of DOFs employed to solve the homogenized problem, which is
independent of N, and assesses the advantage of asymptotic homogenization in terms of
computational cost.

A first comparison between the real metamaterial and the homogenized plate can be
performed on the displacement field. Figure 7 compares the out-of-plane displacement
obtained by solving the real three-dimensional problem (left) and the equivalent plate
(right) with eighteen cells per side, showing a good agreement between the two solutions.
Black lines identify the undeformed reference mid-surface.

760

u  [nm] 

cell B
cell A

3

Figure 7. Contour on the deformed shape of the out-of-plane displacement component for the real
metamaterial (left) and the homogenized plate (right) for N = 18.
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We also compute the in-plane displacement components u1, u2 and the out-of-plane
component u3 of the plate mid-surface in point P, indicated in Figure 6a with a blue
circle, for different values of N. Figure 8a, Figure 8b and Figure 8c compare the mid-plane
displacement obtained from the solution of the real three-dimensional problem (dashed
lines with markers) with that obtained from the homogenized plate (continuous line)
through (43). The corresponding relative errors, shown in Figure 8d, tend to zero as N
increases, showing the convergence of the real solution towards the homogenized one.
The convergence is faster for u1 (in blue) than u2 (in red) and u3 (in green). In particular,
the displacement field is evaluated with an error already lower than 2% for N = 7 cells
(light orange region) and less than 1% for N ≥ 16 (dark orange region), assessing, therefore,
the accuracy of the method even with a limited number of cells.

0 5 10 15
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(c) (d)

Figure 8. Comparison between real (dashed with markers) and homogenized (continuous) mid-
surface displacement in point P against N: (a) u1; (b) u2; and (c) u3. (d) Relative error between real
and homogenized displacement components.

Asymptotic homogenization also allows for the computation of the state of stress
within the periodic media. The solution of the homogenized problem provides the back-
scaled effective plate membrane forces Nh

αβ and moments Mh
αβ. The latter are shown in the

contours of Figure 9 in the case N = 18. However, these generalized plate stresses do not
allow the direct identification of the stress distribution within the unit cells, since they are
the resultant forces and moments of such stresses.
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12
h

Figure 9. Contours of the back-scaled homogenized plate moments for N = 18 (a) Mh
11; (b) Mh

22; and
(c) Mh

12.

The reconstruction of the local stress state σh
ij within each unit cell can be performed

exploiting Equation (44). For example, we consider the unit cell A, located in the point of
maximum deflection of the metaplate, which is indicated with a black arrow in Figure 7.
The stress components σ11, σ22 and σ33 obtained through the numerical solution of the
real three-dimensional problem, shown in the top row of Figure 10, are compared with
those reconstructed through homogenization (bottom row). A satisfactory agreement can
be observed.

It should be noted that the local stress fields reconstructed through homogenization
are reliable only for unit cells sufficiently far away from the boundaries of the metamaterial.
In fact, the stress concentration tensors (34) are Ŷ−periodic with respect y1 and y2 in the
unit cell and, thus, cannot account for boundary effects. This can be clearly observed if
one considers the cell B located at the top-left corner of the metamaterial plate, indicated
in Figure 7 with a black arrow, where the left edge is clamped while the top one is simply
supported. The real stress components, shown in the first row of Figure 11, exhibit a
concentration on their boundaries that is not captured by the reconstructed stress through
homogenization (same figure, bottom row).

2.411.04

    [MPa]
22

1.911.78

    [MPa]
11

0.470.53

    [MPa]
33

Figure 10. Contours of the stresses σ11, σ22 and σ33 obtained from the real problem (top row) and
those reconstructed through homogenization (bottom row) for the cell A.
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1.094.77

    [MPa]
22

1.055.15

    [MPa]
11

0.871.07

    [MPa]
33

Figure 11. Contours of the stresses σ11, σ22 and σ33 obtained from the real problem (top row) and
those reconstructed through homogenization (bottom row) for the cell B.

6. Discussion

Standard asymptotic methods for the homogenization of thermoelastic solid metama-
terials, as in [15], require that the dimension of the problem and of the periodicity match.
If not, as in the case considered in this work of a three-dimensional body characterized
by the two-dimensional repetition of a unit cell, only an in-plane characterization of the
homogenized properties can be pursued. Under all the hypotheses assumed in Section 2,
we extend the approach proposed in [26] and include thermal effects for the homogeniza-
tion of a three-dimensional metamaterial endowed with a two-dimensional periodicity into
an equivalent homogenous plate. The equivalent properties are defined on the mesoscale,
in the sense of classical Cauchy continuum mechanics. The actual microstructure of the
material, i.e., the dimensions of the unit cell, can be scaled down to tenths of a micrometre,
but is still in the domain of validity of continuum mechanics. The effects arising at the
nanoscale [29] are outside the aim of the present work.

The main finding of the proposed techniques is the numerical evaluation, through the
solution of cell problems, of the homogenized properties of the equivalent plate. In par-
ticular, it is possible to characterize the effective (i) membrane, bending and coupling
stiffnesses, (ii) thermal membrane forces and moments, (iii) thermal expansion tensor,
(iv) thermal-induced curvature tensor and (v) thermal conductivity tensor. As shown with
the numerical example of Section 5.1, this makes the homogenization method suitable to
perform parametric studies useful for the design of metamaterials with programmable
thermal properties including negative CTE.

When the unit cell geometry is different in the two in-plane directions, the equivalent
thermal conductivity is anisotropic and other unusual properties could be obtained. Even
if this possibility is not explored in the present work, anisotropic thermal properties could
allow obtaining thermal cloaking, heat concentration or deviation [30].

Secondly, as discussed in Section 5.2, homogenization could be effectively employed
to reduce the computational burden of numerical analyses, especially for metaplates with a
large number of cells or complex microstructure. The homogenized displacement field is
in good agreement with those computed by solving the real three-dimensional problem.
A satisfactory agreement can also be observed in the local stress reconstruction, except for
the unit cells close to the boundary, where the lack of periodicity does not allow predicting
the real stress distribution [31]. This is a common feature of homogenization methods and
it is still an open problem in the literature.

Regarding the limitations of the proposed homogenization technique, in this work
we do not consider the transient effect of metamaterial plates. This limitation could be
overcome by performing the asymptotic study starting from the fully coupled dynamic
equation of thermoelasticity. This extension will be pursued elsewhere.
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The most critical hypothesis of the developed homogenization procedure is the as-
sumption of temperature-independent material parameters. For some applications, like in
the MEMS field, the dependence of stiffness and the CTE on temperature becomes relevant
and cannot be neglected. In such a case, the asymptotic expansion of the temperature
field will enter into the material properties which need to be developed, as well, in series
with respect to the small parameter ϵ, and the homogenization procedure will become
more involved.

7. Conclusions

In this work, we study the steady-state thermoelastic problem for a three-dimensional
periodic medium that is endowed with an in-plane two-dimensional periodicity. In the
hypothesis of small transverse thickness hϵ and in-plane dimension ℓ of the single unit cell
with respect to the global size L of the metamaterial, we fixed the ratio hϵ/ℓ and performed
an asymptotic analysis as ℓ/L → 0.

We extended an already existing approach in the literature, which accounts only for a
purely elastic problem, by introducing in the model the temperature field, which can be
macroscopically varying.

The asymptotic homogenization technique thus obtained allows for the description
of the three-dimensional metamaterial as that of an equivalent homogenous plate. In par-
ticular, the method provides the plate effective thermal expansion tensor and the thermal-
induced curvature tensor, which, in general, are non-zero due to the transverse heterogene-
ity of the unit cell.

With reference to a complex star-shaped unit cell geometry, we show how homog-
enization can be exploited to perform parametric studies and that it can capture exotic
behaviour such as negative thermal expansion and tunable thermal-induced curvature.

Finally, with reference to a square plate with inhomogeneous kinematic boundary
conditions and a non-uniform temperature field, we discuss numerically the convergence
of the real solution, as the number of cells increases, towards the homogenized one. The re-
sults obtained confirm the good accuracy of the homogenized solution, both in terms of
displacement and stress, with a strong reduction in the computational cost.
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