
SPARSITY-BASED SOUND FIELD SEPARATION IN THE SPHERICAL HARMONICS
DOMAIN

Mirco Pezzoli, Maximo Cobos†∗, Fabio Antonacci, Augusto Sarti

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
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ABSTRACT

Sound field analysis and reconstruction has been a topic of in-
tense research in the last decades for its multiple applications
in spatial audio processing tasks. In this context, the identifi-
cation of the direct and reverberant sound field components is
a problem of great interest, where several solutions exploiting
spherical harmonics representations have already been pro-
posed. However, the available techniques demand a large
number of high-order microphones (HOMs) and high com-
putational power in order to fulfill the necessary spatial sam-
pling requirements, which can only be reduced by prior in-
formation obtained through acoustic measurements. Inspired
by compressed sensing approaches, this paper proposes an al-
ternative sparse formulation for estimating the exterior and
interior sound field components in the spherical harmonics
domain that allows to reduce hardware requirements without
the need for additional acoustic measurements. The results
show that a considerable reduction in the number of HOMs
can be achieved while improving the estimation of the sound
field components.

Index Terms— sound field separation, spherical harmon-
ics, sparse representations, sound field reconstruction, com-
pressed sensing

1. INTRODUCTION
In the sound field processing literature, the identification
of the direct sound emitted by target acoustic sources and
the reverberation or interferences is a well-known challeng-
ing problem. This operation has inherent application in
different tasks such as dereverberation [1], source separa-
tion [2], sound field reconstruction and navigation [3] for
augmented/extended reality applications. The available so-
lutions typically rely on multichannel recordings acquired
by distributed microphones, possibly organized in arrays.
In general, different classes of solutions can be identified
for the estimation of the direct and reverberant sound field
components. The so-called parametric approaches [3–7] de-
scribe the acoustic field through a compact signal model. In
fact, the goal of these techniques is to provide a flexible and
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parsimonious system, at the cost of introducing some approx-
imation in the estimated sound field components. A second
class of solutions, known as non-parametric [1, 8–11] rely
on the solutions of the wave equation to accurately describe
the acoustic field captured by the sensors. Recently, a third
class emerged with deep learning approaches to sound field
analysis [12–16].

Among non-parametric solutions, spherical-harmonics-
based techniques [1, 10, 11, 17] provide a convenient repre-
sentation of the acoustic field. As a matter of fact, when
all the target sources are enclosed in a region, the emitted
direct sound is represented as an exterior field. Conversely,
reverberation and interferences originating outside the source
region can be expressed as an interior field, by suitably choos-
ing the reference origin [18]. Therefore, the two sound field
components can be compactly represented though the spher-
ical harmonics coefficients associated to the exterior and the
interior fields. In [1], the authors adopted a set of distributed
higher order microphone arrays (HOMs) for the separation of
the sound field into its exterior and interior components. The
exterior and interior coefficients are estimated exploiting the
spherical harmonics addition theorem [17, 19], which links
the “local” spherical harmonics coefficients of the HOMs
with the “global” coefficients of the sound field (exterior and
interior coefficients). The main limitation of the technique
in [1] concerns the spatial sampling required in order to ac-
curately estimate the sound field components of a region e.g.,
676 sensors for a region of radius 1m at 1 kHz. In order to
reduce the huge hardware and computational requirements
of [1], in [11] the authors propose to exploit a set of measured
room impulse responses (RIRs) to describe the interior field
produced by the reverberation as a function of the exterior
sound field. Although effective, the technique in [11] requires
the acquisition of a large number of RIRs, therefore, in [10]
the authors propose to augment the available measurements
with synthetic free field impulse responses.

A different class of non-parametric methods adopts com-
pressed sensing principles [8, 9] in order to represent the
sound field by means of sparse components. In [9], the au-
thors exploit the spatial sparsity of the sources in order to
represent the direct sound field through a sparse dictionary of
Green’s functions that constitutes a grid of sources generat-
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Fig. 1. Reference setup for the proposed method.

ing the sound field. Conversely, the reverberant component is
modelled as a sparse distribution of plane waves with an addi-
tional low-rank term. Recently, in [8], this sound field model
has been extended by including near-field early reflections. In
particular, the authors in [8] model the early reflections in the
reverberant component through image sources that augment
the sparse dictionary of Green’s functions. The computation
of the image source terms requires prior information on the
room geometry, in fact, they are modelled reflecting the grid
of sources on the walls of the room.

In this paper, we propose a solution for the estimation
of the exterior (direct sound) and interior (reverberation and
interferences) sound field components. In particular, we ex-
ploit a sparse representation of the sound field in order to es-
timate the spherical harmonics sound field coefficients. In-
spired by [9], we redefine the exterior sound field coefficients
as a sparse dictionary of translated monopoles in the spherical
harmonics domain. At the same time, the interior field is mod-
elled through the spherical harmonics expansion of sparse
plane waves. The use of sparse representations allows us
to reduce the hardware requirements with respect to typical
spherical-harmonics-based sound field decomposition tech-
niques [1, 17]. In addition, differently from previous solu-
tions [10,11], the proposed approach does not require any ad-
ditional information for the estimation of the sound field co-
efficients. The results show that the proposed solution is able
to estimate the sound field coefficients using a reduced num-
ber of HOMs while providing more accuracy with respect to
previous approaches.

2. DATA MODEL AND PROBLEM FORMULATION
Let us consider a set of Q distributed V th order HOMs defin-
ing a region of interest ROI of radius R as depicted in Fig. 1.
The HOMs surround J acoustic sources located inside a
spherical region with radius Rs. Each qth HOM is composed
of Q′ sensors whose signals can be encoded in the spherical
domain as

a(q)ν,µ =
1

bν(krM )

Q′∑
q′=1

P (k,xq′)Y
∗
νµ(θq′ , φq′) (1)

where k = 2πf/c is the wave number at frequency f and
speed of sound c, P (k,xq′) is the sound pressure at the sensor
located in xq′ = [rM , θq′ , φq′ ]

T (expressed with respect to
the local origin of the HOM) and Yνµ(·) defines the spherical
harmonic of order ν and degree µ with ν = 0, . . . , V and
µ = −ν, . . . , ν. The term bν(·) in (1) is defined accordingly
to the array type as [18]

bv (krHOM) =

{
jv (krM ) for open array

jv (krM )− j′v(krM )

h′
v(krM )

hv (krM ) for rigid array,
(2)

where hν(·) and jν(·) are the νth order spherical Hankel and
Bessel functions of the first kind, respectively.

The sound pressure at the HOM sensors and, in general,
at any point x = [r, θ, φ]T inside the ROI can be expressed as
the superposition of the exterior and interior field

P (x, k) = PE(x, k) + PI(x, k), (3)

where PE(x, k) is the exterior field generated from the source
region and PI(x, k) is the interior field entering the ROI and
produced by reflections or other interfering sources outside
the ROI. The two sound field components in (3) can be ex-
pressed through their spherical harmonics expansion as [18]

PE(x, k) =

NE∑
n=0

n∑
m=−n

βnm(k)hn(kr)Ynm(θ, φ), (4)

PI(x, k) =

NI∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (5)

where βnm(k) and αnm(k) are the exterior and interior sound
field coefficients, respectively. The order of the spherical har-
monics expansion is given by the limits NE = dkeRs/2e and
NI = dkeR/2e [20]. The coefficients β in (4) and α in (5)
are known as “global”, in fact, by knowing their value we can
completely characterize the sound field inside the ROI.

Let us collect the “local” spherical harmonics coefficients
(1) of the Q HOMs in the vector a ∈ CQ(V+1)2×1. We ex-
press the local coefficients as the superposition of the exterior
and interior fields

a = EPEβ +EPIα, (6)

where β ∈ C(NE+1)2×1 and α ∈ C(NI+1)2×1 represent
the vector containing the exterior and interior coefficients, re-
spectively, PE ∈ CQ(V+1)2×(NE+1)2 is the matrix defining
the propagation of the exterior coefficients to the sensors (4),
while PI ∈ CQ(V+1)2×(NI+1)2 defines the propagation of
the interior coefficients (5). The term E in (6) defines a com-
plexQ(V + 1)2 ×Q(V + 1)2 block matrix that performs the
local spherical harmonics encoding of the HOMs signals ac-
cordingly to (1). Note that dependency on the wave number
k in (6) is omitted for simplicity. Our goal is the estimation
of the global coefficients β and α from the HOMs in order to
perform the separation of the sound field.
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3. PROPOSED SPARSITY-BASED SPHERICAL
HARMONICS MODEL (S-SH)

In this section, we formulate the estimation of the global
sound field coefficients as the solution of a sparse optimiza-
tion problem. We express the local spherical harmonics
coefficients as the sum of the exterior and interior coefficients
that are modelled through a sparse set of monopoles and plane
waves in the spherical harmonics domain.

Following the approach in [9], we discretize the source
region in a set of G points that constitute a grid of omnidirec-
tional sources (monopoles). It follows that the exterior field
coefficients βnm in β (6) are approximated as a superposition
of translated monopoles [21]

βnm(k) ≈
G∑
g=1

c0,0(k)
√
4πjn(kr

′
g)Y

∗
nm(θ′g, φ

′
g), (7)

where c0,0(k) = −ik is the zeroth order coefficient of a
unitary amplitude monopole, while jn(krg)Y ∗nm(θg, φg) ex-
presses the translation [21] of the gth source from x′g =

[r′g, θ
′
g, φ
′
g]
T to the reference origin.

As far as the interior field is concerned, we assume that
the sound field entering the ROI can be modelled as a linear
combination of L plane wave components expanded with re-
spect to the reference origin, leading to the expression of the
interior coefficients αnm in α (6) as

αnm ≈
L∑
l=1

√
4π(−i)nY ∗nm(θl, φl), (8)

where the inclination θl and the azimuth φl defines the direc-
tion of the lth plane wave.

Let us introduce the dictionary of monopoles derived from
theG grid points translated in the origin as B ∈ C(NE+1)2×G

whose elements are

[B]ι,g = c0,0(k)
√
4πjn(kr

′
g)Y

∗
nm(θ′g, φ

′
g), (9)

where ι = 1, . . . , (NE +1)2 is the row index for each nth or-
der and mth degree. In practice, each column of (9) provides
the expression of the exterior coefficients generated by the gth
monopole. Similarly, we introduce the dictionary of the plane
wave components with their spherical harmonics expansion
W ∈ C(NI+1)2×L with elements

[W]ι,l =
√
4π(−i)nY ∗nm(θl, φl), (10)

where ι = 1, . . . , (NI + 1)2 is the row index for each nth
order and mth degree.

Given the signal model in (6) and the models of the ex-
terior (7) and interior (8) coefficients, we rewrite the local
coefficients as

a = EPEBy +EPIWu (11)

where y ∈ CG×1 and u ∈ CL×1 are the weight vectors of
the translated monopoles and plane waves, respectively. Sim-
ilarly to [9], the solution of the undetermined system in (11)
is found through sparse optimization

argmin
y,u

‖y‖1 + γ‖u‖1

s.t. a = EPEBy +EPIWu,
(12)

where γ is a regularization term. The solution to the opti-
mization problem in (12) can be found using ADMM [22]
as shown in [9]. In practice, the optimal weights y? and u?

found solving (12) identify a limited “sparse” set of translated
monopoles and plane wave components in (11) characterizing
the sound field. Therefore, an estimate of the global sound
field coefficients can be obtained as

β̂ = By?, α̂ = Wu?, (13)

for the exterior and interior coefficients, respectively. The es-
timated coefficients can then be employed for reproducing the
sound field at a target point inside the ROI using (4) and (5).

4. SIMULATION RESULTS

We evaluate the proposed technique (S-SH) through a simula-
tion campaign in order to show the effectiveness of the sound
field components estimation in different scenarios. We simu-
lated a shoe-box room of dimensions 5m × 8m × 3m with
a variable number of 1st order HOMs (V = 1). The HOMs
are placed around a ROI of R = 1m following the spiral
sampling [23]. We consider J = 2 sources randomly placed
inside a source region of radius Rs = 0.1m. The grid of
monopoles (9) is defined with G = 300 points placed in-
side the source region, while L = 360 directions sampled
using [23] are employed for the plane wave components (10).
The impulse responses between each source and sensor of the
HOMs is computed using the RIR generator toolbox [24] with
reflection order 10 and sampling frequency 8 kHz. Gaussian
white noise has been added to model a signal-to-noise ratio
equal to 60 dB.

We compare the estimation of the exterior field obtained
by the proposed approach with the solution in [10], here re-
ferred to as VL. In particular, since S-SH does not require any
prior measurement, we adopted [10] considering only ideal
virtual loudspeakers (Green’s functions) corresponding to the
grid of G monopoles. As stated by the authors in [10], when
no RIRs are availble VL performs comparably to [1]. It is
worth noting that for the adopted ROI and frequency range
(up to 4 kHz), the techinque in [1] would require Q > 2000
HOMs. In addition, we compare the estimation of the sound
field components provided by the sparsity-based technique
in [9], referred to as SS, that differently from the optimization
problem of (12) does not consider the spherical harmonics
representation of the sound field. The estimated sound field is
evaluated for a set of M = 25 test points randomly selected
inside the ROI.
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Fig. 2. Average values of NMSE at the test points as a func-
tion of the T60 for the exterior field only (a) and the full sound
field (exterior and interior) (b).
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Fig. 3. Average values of NMSE at the test points as a func-
tion of the HOM number Q for the exterior field only (a) and
the full sound field (exterior and interior) (b).

4.1. Metrics
In order to determine the performance of the sound field re-
construction at the test points, we adopt the NMSE defined
as

NMSE(xt) = 10 log10

(
1

T

∑T
τ=1 (p̂ (xt, τ)− p (xt, τ))

2∑T
τ=1 p (xt, τ)

2

)
,

(14)
where T is the signal duration time, p (xt, τ) is the actual
sound field at point xt in time domain (discrete-time τ ) and
p̂ (xt, τ) represents its estimate.

As far as the sound field separation is concerned, we
evaluate the amount of energy associated to the reverberation
leaking in the exteior field estimation using the direct-to-
reverberant ratio

DRR(xt) = 10 log10

(
1

T

∑τ0+C
τ=τ0−C p̂E (xt, τ)

2∑T
τ=τ0+C

p̂E (xt, τ)
2

)
, (15)

where τ0 is the time of arrival of the direct signal, and C =
2.5ms [10, 25]. Note that a higher value of DRR relates to a
better exterior field estimate.

4.2. Discussion
As a first evaluation, we varied the T60 of the simulated room
in the range from 0.5 s to 1.2 s. We considered a fixed num-
ber of HOMsQ = 16 that corresponds to a total number of 64
channels. The main objective is to test the robustness of the
sound field components estimation at different levels of rever-
beration. In Fig. 2, NMSE averaged for all the test points is
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Fig. 4. Average values of DRR at the test points as a function
of the T60 (a) and number of HOMs Q (b).

reported for both the exterior field estimation and the com-
plete field (exterior + interior components). Inspecting Fig. 2,
we can observe that S-SH outperformed the estimation of VL.
In addition, the proposed S-SH consistently provides more
accurate results with respect to SS (see Fig. 2(b)). The sound
field separation performance is evaluated through the DRR in
Fig. 4(a). Similarly to the NMSE results, the proposed S-SH
provides the highest average DRR. As expected, the DRR
decreases at high T60, in fact, for higher reverberation times,
the energy of the interior field component increases making
the separation more challenging.

As a second evaluation, we analyze the sound field vary-
ing the number of HOMs from Q = 8 (32 capsules) up to
Q = 256 (512 capsules), while the T60 is fixed at 0.6 s. In
Fig. 3, NMSE averaged for all the M test points is reported
for both the exterior field (Fig. 3(a)) and the full sound field
(Fig. 3(b)). Inspecting Fig. 3, we can note that the proposed
technique consistently provides a more accurate estimation
with respect to both SS and VL. In particular, S-SH shows
an accurate estimation of the interior field, leading to lower
NMSE in Fig. 3(b). This result can be also noted inspecting
the DRR in Fig. 4(b) in which for Q = [128, 256] SS per-
forms comparably to VL. However, when more HOMs are
available, the accuracy of exterior field estimation increases
leading to higher DRR. Hence, for example, we can improve
the separation in highly reverberant environments increasing
the number of HOMs.

5. CONCLUSION

In this paper we presented a sparsity-based sound field model
in the spherical harmonics domain that targets the separation
of the acoustic field. Differently from previous approaches to
sound field separation and reconstruction in the spherical har-
monics domain, the proposed technique is able to work with
a reduced number of HOMs without the need for prior mea-
surement, showing, in addition, a greater accuracy. Moreover,
the results suggest that working in the spherical harmonics
domain increases the performance of the sparse model with
respect to its counterpart that directly work on sensor signals.
In the future, we foresee the extension of the proposed ap-
proach considering real measurements and different applica-
tions such as the separation of acoustic sources.
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