
Model-Free Non-Stationarity Detection and Adaptation
in Reinforcement Learning

Giuseppe Canonaco and Marcello Restelli and Manuel Roveri1

Abstract. In most Reinforcement Learning (RL) studies, the con-
sidered task is assumed to be stationary, i.e., it does not change its
behavior or its characteristics over time, as this allows to generate
all the convergence properties of RL techniques. Unfortunately, this
assumption does not hold in real-world scenarios where systems and
environments typically evolve over time. For instance, in robotic ap-
plications, sensor or actuator faults would induce a sudden change
in the RL settings, while in financial applications the evolution of
the market can cause a more gradual variation over time. In this pa-
per, we present an adaptive RL algorithm able to detect changes in
the environment or in the reward function and react to these changes
by adapting to the new conditions of the task. At first, we develop
a figure of merit onto which a hypothesis test can be applied to de-
tect changes between two different learning iterations. Then, we ex-
tended this test to sequentially operate over time by means of the CU-
mulative SUM (CUSUM) approach. Finally, the proposed change-
detection mechanism is combined (following an adaptive-active ap-
proach) with a well known RL algorithm to make it able to deal with
non-stationary tasks. We tested the proposed algorithm on two well-
known continuous-control tasks to check its effectiveness in terms
of non-stationarity detection and adaptation over a vanilla RL algo-
rithm.

1 Introduction

Continuously learning and adapting to the changes we face in ev-
eryday life is one of the huge differences between humans and ma-
chines. For example, a non-stationary behavior could be induced in
a robotic system by a fault affecting sensors/electronics/actuators, by
aging effects/thermal drift in the sensors or by seasonality/periodicity
effects in the environment in which the robotic system operates. Un-
fortunately, non-stationarity is one of the most complex issues to
deal with when attempting to solve a Reinforcement Learning (RL)
problem, but, it is also one of the characteristics that, once properly
addressed, will make an RL agent a step closer to a human being.
Therefore, tackling and solving general non-stationary problems cor-
rectly would allow RL to reach an important milestone in the journey
towards general artificial intelligence.

In recent years, a range of solutions designed to deal with non-
stationarity in RL have been proposed. An extension of the Markov
Decision Process (MDP) model [20], called Hidden Mode MDP
(HMMDP), where non-stationarity is modeled through a Hidden
Markov Chain is proposed in [6]. The HMMDP is learned through
a variant of the Baum-Welch algorithm. In such a scenario, once a
model of the environment, including the non-stationary dynamics,

1 Politecnico di Milano, Italy, emails: {giuseppe.canonaco, marcello.restelli,
manuel.roveri}@polimi.it

is learned, traditional model-based RL techniques could be consid-
ered. Unfortunately, the number of working modes or, equivalently,
the number of changes in the environment must be known a-priori.
This assumption rarely holds in the real world. In order to overcome
the assumption of having a fixed and a-priori known number of envi-
ronment changes, a solution based on the estimation of both the re-
ward function and the environment transition-function was proposed
in [7]. The main drawback of this solution lies in the way it per-
forms the change detection, which is not theoretically-grounded (i.e.,
a heuristic is proposed) and based on several problem-dependent pa-
rameters. The previously mentioned solution was extended by using
a CUmulative SUM (CUSUM) [2] sequential statistical test to per-
form the change detection in the environment [12]. Unfortunately,
this solution still needs to estimate both the reward function and the
state transition function of the various regimes it encounters. More-
over, this solution is meant to operate on finite MDPs. In order to
deal with non-stationarity in RL, tracking is proposed in [25]. This
technique is based on customizing the policy to the current situation
via an adaptive learning rate. In other words, this solution can meta-
learn the step-size to adequately adapt to the scenario it is facing.
This technique does not detect the environment change, but simply
mitigates the potentially catastrophic effect of non-stationarity on the
algorithm performance.

A different line of research has been recently pursued in [11, 17].
These solutions are based on a passive adaptation to the changing
environment through a sliding window. However, a fixed number of
changes is assumed in [11], whereas an upper-bound on the amount
of variation the reward function (or the state-transition function) can
undergo is assumed to be known in [17], which is still not assumed
by our approach. Moreover, both solutions [11, 17] deal with finite-
state MDPs.

Finally, the solution proposed in this paper shows some affinities
with fast-adaptation algorithms based on meta-learning [1, 16]. Any-
how, these algorithms assume to have access to the distribution over
the tasks to face (through which they construct a meta-model able
to nearly immediately adapt to new tasks coming from this distri-
bution). Differently, we assume our learner has to deal with a non-
stationary environment without any knowledge about the distribution
over the possible tasks to face.

In this paper, we introduce a theoretically-grounded change-
detection mechanism to detect non-stationarities related to perfor-
mance degradation during the learning process of any RL algorithm.
This tool, called Non-Stationarity Detector for Reinforcement Learn-
ing (NSD-RL), is able to detect changes in both the reward func-
tion and in the state transition function of the task the RL algo-
rithm is learning, as long as the non-stationarity implies a variation

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200200

1047

in the agent performance2. More specifically, NSD-RL is hierarchi-
cally composed of two main modules. The lower module is a statis-
tical hypothesis test coupled with an Importance Sampling (IS) [13]
strategy, where the IS strategy will be used to transform two inde-
pendent batches of data to allow the change detection. The upper
module sequentially analyses the outcome of the low-level module
by means of a CUSUM approach to detect non-stationarities in the
RL problem. The proposed NSD-RL allows to trigger, following the
active-adaptive approach introduced in [8], the reaction to the de-
tected change and the adaptation of the RL algorithm by resetting
the first and second moments of the Adam [14] optimizer. The ef-
fectiveness of the proposed NSD-RL is tested in two well-known
continuous control RL tasks under the effect of different kinds of
non-stationarities.

This paper is organized as follows. In Section 2, we describe the
preliminaries and formulate the RL problem in non-stationary envi-
ronments. In Section 3, we introduce the policy selection to support
non-stationarity detection, while Section 4 details the optimization
of the Reny divergence for policy selection. The change-detection
and adaptation mechanism for RL is introduced in Section 5. Exper-
imental results are given in Section 6 and conclusions are drawn in
Section 7.

2 Preliminaries and Problem Formulation

In this section we initially introduce the RL framework; we then pro-
vide the theoretical background of the IS technique and we conclude
by providing a formulation of the problem of RL in non-stationary
environments.

2.1 Reinforcement Learning Background

A discrete-time continuous MDP M = {S,A,P, r, γ, ρ} can be
used to model a Reinforcement Learning task [24]. S and A rep-
resent the state space and the action space, respectively, either con-
tinuous or discrete. P represents the Markovian transition function,
whereP(s′|s, a) is the transition density from state s to state s′ given
that the action a is executed. r with r(s, a) ∈ [−R,R] represents the
expected reward for the pair (s, a). γ ∈ [0, 1) and ρ are the discount
factor and the initial state distribution, respectively.

The agent’s behavior is modeled through a policy π, where π(·|s)
describes a probability density function over the action space A
given the state being currently visited. We are considering episodic
MDPs with effective horizon H , hence a trajectory τ can be a finite
sequence of states and actions (s0, a0, s1, a1, . . . , sH−1, aH−1),
where s0 ∼ ρ. Following a given policy, we can sample a trajectory
from the environment. We denote by p(τ |π) the density distribution
induced by policy π on the set T of all the possible trajectories de-
fined as:

p(τ |π) = ρ(s0)π(a0|s0)
H∏
t=1

P(st|st−1, at−1)π(at|st).

R(τ) =
∑H−1

t=0 γtr(st, at) is the total discounted reward associ-
ated with trajectory τ . All policies can be ranked based on their
expected total discounted reward: J(π) = Eτ∼p(·|π) [R(τ)]. Solv-
ing an RL task modeled through an MDP M means finding π∗ ∈
argmaxπ{J(π)}.

2 We are not interested in non-stationarities not affecting the agent’s perfor-
mance since they are not so crucial in a real world scenario.

The most interesting application of NSD-RL refers to the contin-
ual learning setting. In this setting, Policy Gradient (PG) [26] tech-
niques offer general and flexible solutions to RL problems and, for
this reason, we will rely on this family of algorithms to present the
proposed solution.

Policy gradient methods focus on searching for the best-
performing policy over a set of parametrized policies Πθ = {πθ :
θ ∈ R

d}, with πθ differentiable w.r.t. θ. For brevity, the performance
of a parametric policy will be denoted by J(θ) or equivalently by
Jθ . Furthermore, the probability of a trajectory τ will be denoted by
p(τ |θ) or equivalently by pθ(τ) (on some occasions, pθ(τ) will be
replaced by pθ omitting the dependence on τ for the sake of read-
ability). Gradient ascent is used to find a locally optimal policy. The
policy gradient is defined as [26, 18]:

∇J(θ) = E
τ∼p(·|θ)

[∇ log pθ(τ)R(τ)] . (1)

At each iteration i > 0, a batch DN
i = {τj}Nj=0 of N > 0 trajec-

tories is collected using policy πθi . The policy is then updated as
θi+1 = θi + α∇̂NJ(θi), where α is a step size and ∇̂NJ(θ) is an
estimate of Eq. (1) on DN

i , i.e.,

∇̂NJ(θ) =
1

N

N∑
j=1

g(τj |θ), τj ∈ DN
i , (2)

where g(τj |θ) is an estimate of ∇ log pθ(τj)R(τj). Depending on
how we define the policy gradient estimator, we obtain different RL
algorithms.

2.2 Importance Sampling

The idea behind the proposed NSD-RL is to evaluate the perfor-
mance of a fixed policy using a pair of estimators fed with data com-
ing from two different iterations of the RL algorithm. Therefore, we
need a mechanism to take into account the fact that the data were
sampled with different policies.

Let us assume that we want to find Ex∼P [f(x)] =∫
D f(x)p(x)dx where p is a probability density function onD ⊆ R

d

with p(x) = 0, ∀x /∈ D, then:∫
D
f(x)p(x)dx =

∫
D

f(x)p(x)

q(x)
q(x)dx =

= Ex∼Q

[
f(x)p(x)

q(x)

]
, (3)

where q is a positive probability density function on R
d such that

supp(q) ⊃ supp(p) and Ex∼Q [·] denotes expectation for x ∼ Q.
The IS technique introduces a multiplicative correction coefficient
that compensates the fact that we are sampling from Q instead of
sampling directly from P .

Importance sampling allows off-policy evaluation in RL [28, 27].
In the off-policy evaluation settings two policies, called behavioral
πB and target πT , are involved. In this context, we aim at estimating
the performance of the target policy πT on samples collected using
the policy πB . We use IS to correct the fact that we sampled the
trajectories using πB and obtain an unbiased estimate of J(πT):

J(πT) = E
τ∼p(·|πT)

[R(τ)] = E
τ∼p(·|πB)

[
ωT/B(τ)R(τ)

]
, (4)

where ωT/B(τ) = p(τ |πT)

p(τ |πB)
=

∏H
t=0 ωT/B(st, at) and

ωT/B(st, at) = πT (at|st)
πB(at|st) . In the context of our NSD-RL, we will

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning1048

use the per-decision version of the above IS estimator that exploits
the fact that a given reward should not be weighted according to the
future of that trajectory, but only w.r.t. the likelihood of the trajectory
up to that point [19].

2.3 Non-Stationarity in Reinforcement Learning:
Problem Formulation

We can model non-stationarity in any RL task through a change in
the Markovian state transition function P or in the reward function
r. In the most general scenario, P and r may be both affected by
non-stationarity (possibly at the same time). Therefore, there exists
an iteration i∗ of the RL algorithm after which the trajectories sam-
pled from the environment will be, partially or totally, associated to
a new task. All the trajectories in i∗ are associated with the new
task if the transition to this new task takes place at the beginning
of the sampling procedure performed at step i∗ of the RL algorithm
itself, otherwise, just a subset of them will be associated to the new
task. Since NSD-RL is not influenced by the latter situation we have
just described, we will formulate non-stationarity in RL by assum-
ing that the change in either P or r (or both) occurs at the beginning
of the sampling process of a given optimization step of the algo-
rithm. In other words, we can formalize non-stationarity in RL tasks
as follows: for any i < i∗ we have M1 = {S,A,P1, r1, γ, ρ},
whereas for i ≥ i∗ we have M2 = {S,A,P2, r2, γ, ρ}, where
P1 	= P2 ∨ r1 	= r2. We are assuming that ρ is not affected by the
non-stationarity.

The goal of the proposed NSD-RL is to promptly detect changes
inM without introducing false positive or negative detections. Such
a change-detection represents also a crucial information to support
the next adaptation and learning phase of the RL algorithm.

3 Policy Selection to support Non-Stationarity
Detection

As mentioned in Section 2.3, if the task we are trying to solve is non-
stationary, then it may happen that, between steps i and i − 1, P or
r (or both) may change. The first question we have to address is how
to detect a change that can occur at any time during the execution
of our RL algorithm? Answering this question is crucial to support
an effective reaction and adaptation of the policy in a non-stationary
environment. In order to reach our goal, we first need to be able to de-
tect a change between two arbitrary fixed steps of the RL algorithm.
Therefore, given data collected through policy πθi at step i and data
collected through policy πθi−k at step i − k, we need to test H0:
there is no change in M between i and i − k against H1: there is a
change in M between i and i − k. Before resorting to a statistical
test, we need to spot the figure of merit on which to apply the test.
This figure of merit is meant to operate on two independent datasets
available in the two different steps of the RL algorithm. Therefore,
by using the IS technique described in Section 2.2, we can write:

J̄(πμ) =E
τ∼p(·|πμ)

[
R̄(τ)

]
= E

τ∼p(·|πθi
)

[
ωpμ/pθi

(τ)R̄(τ)
]

(5)

J̄(πμ) =E
τ∼p(·|πμ)

[
R̄(τ)

]
=E

τ∼p(·|πθi−k
)

[
ωpμ/pθi−k

(τ)R̄(τ)
]
, (6)

where R̄(τ) =
∑H−1

t=0 r(st, at) is the expected total undiscounted
reward. If there are no changes inM between iteration i and i−k, the
two expected values are equal, otherwise they are different3. Since
3 Notice that if the transition between the tasks happens in the middle of the

sampling procedure at step i, the two expected values will still be different.

Table 1. Estimated type I error of the bootstrap test [10, chap. 16] under
H0 w.r.t. different choices of πμ. The two sampling policies, πθi−k

and
πθi

, are N (10,13) and N (-1,4), respectively. First row is associated with
policy πμ chosen optimizing Equation (9).

πμ Mean Type I error Std. Dev. Obj. Fun. (9)

N (-0.3487, 4.846) 0.0462 0.0206 3.95
N (4, 4.5) 0.0578 0.0206 9.21
N (8, 2) 0.109 0.0315 31.96
N (8, 5) 0.1687 0.0333 128237.5

we cannot exactly compute the expected values in Eq. (5) and (6),
we resort to the associated estimators:

ˆ̄Jμ/θ =
1

N

N∑
j=0

ωμ/θ(τj)R̄(τj), (7)

where N is the number of trajectories sampled using πθ . Then, our
goal is to properly choose the policy πμ in order to have an effective
hypothesis test able to detect changes in M between iteration i and
i− k. From [15] we know that:

Var
[
ˆ̄Jμ/θ

]
≤ 1

N
||r||2∞d2(pμ||pθ), (8)

where d2(pμ||pθ) is the exponetiated Renyi divergence [21] of the
distribution induced by policy πμ from the distribution induced by
policy πθ . Therefore, choosing the policy πμ such that:

π∗μ ∈ argmin
πμ

d2(pμ||pθi) + d2(pμ||pθi−k) (9)

will allow us to minimize the upper bound on the variance of the
estimators of Eq. (5) and (6), hence increasing the power of our hy-
pothesis test.

The optimization task in Eq. (9) aims at picking a policy πμ such
that we do not have unbounded weights when using IS, which means
that the estimators of Eq. (5) and (6) converge smoothly in the num-
ber of samples. Note that having unboundend weights might induce
the estimators of Eq. (5) and (6) to abruptly change as we increase
the number of samples [22, chap. 3]. In this case, we cannot rely on
the smooth convergence properties of the estimators. In other words,
we will likely end up with an estimate very far from the real value,
which in turn severely affects the ability of the hypothesis test to
keep the type I error under control (see Table 1). We should also ob-
serve that if the two sampling policies, πθi and πθi−k , are very far
from each other (in terms of Renyi divergence) there will be no pol-
icy πμ able to induce good behavior in the IS procedure (an example
of this behavior is experimentally given in Table 2). Observe that,
in order to produce both Table 1 and 2, we have used the ”Guess
a Number” task. This is a single state task where the reward func-

tion is r(a) = 1

σ
√

2π
e−

(a−μ)2

2σ for a fixed μ and σ which define the
task. The agent will get higher rewards executing actions which are
as close as possible to μ. Therefore, the optimal policy consists in
always playing a = μ. As an example, in the context of the above

described experiments, we have r(a) = 1

10
√

2π
e−

(a+4)2

20 . This set-
ting, while being rather simple, already confirms the complexity of
selecting an evaluation policy without side effects on the type I error.

We emphasize that the estimators for Eq. (5) and (6) share the
expected value but they are characterized by different and unknown
probability distributions. In fact, we do not have any a-priori infor-
mation about the family of probability distributions the estimators for
Eq. (5) and (6) belong to, e.g., we cannot assume they are Gaussian.

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning 1049

Table 2. Estimated type I error of the bootstrap test [10, chap. 16] under
H0 increasing the distance of policy πθi−k

from πθi
which instead remains

fixed to N (-1,4). The mean policy πμ is always chosen optimizing Equation
(9).

πθi
Mean Type I error Std. Dev. Obj. Fun. (9)

N (1, 13) 0.0478 0.0231 3.12
N (10, 13) 0.0462 0.0206 3.95
N (35, 13) 0.0334 0.017 47.23
N (50, 13) 0.0087 0.009 586.86
N (100, 13) 0 0 7931313070349.74

Hence, in order to support our analysis, we need a statistical hypoth-
esis test able to detect variations in the expected value without mak-
ing any assumption about the underlying probability distributions.
We emphasize that not satisfying the assumptions of the statistical
hypothesis test would induce critical issues in controlling the type I
error. In our specific case, such a problem would severely affect the
sequential analysis characterizing NDS-RL that will be described in
Section 5. For these reasons, we resort to a bootstrap hypothesis test
proposed by [10, chap. 16] which, being a test for detecting varia-
tions in the mean of two arbitrary distributions, perfectly fits into the
context we are working with. Hence, in the scenario of RL in non-
stationary environments, we define the hypothesis test as a function

Te(DN
μ/θi

,DN
μ/θi−k

, α) =

{
+1, if we rejectH0

−1, otherwise
(10)

where DN
μ/θi

and DN
μ/θi−k

are the datasets sampled at iterations i
and i− k, respectively, after applying IS, andH0 represents the null
hypothesis, i.e., the two expected values are equal. If the output of
this function is +1, then a change is detected between iterations i
and i − k of the RL algorithm given a confidence level α otherwise
no change occured. We would like to stress the fact that NSD-RL is
able to detect only changes affecting the performance of the agent,
here represented by the expected total undiscounted reward. How-
ever, changes not affecting the performance are less relevant to be
detected in a real world scenario.

4 Renyi Divergence Optimization

In the previous section, we defined an objective function aiming at
selecting the policy πμ to be used in the hypothesis test defined in Eq.
(10). In this section, we propose a way to optimize such an objective
function. Notice that computing the Renyi divergence between two
distributions over trajectories is, of course, intractable also given the
transition density of the task we are currently solving. For this reason
the following estimator was introduced in [15]:

d̂2(pμ||pθ) =
1

N

N∑
j=1

H−1∏
t=0

d2(πμ(·|sτj ,t)||πθ(·|sτj ,t)). (11)

If we plug Eq. (11) into the optimization problem stated in Eq. (9)
we get:

π∗μ ∈ argmin
πμ

d̂2(pμ||pθi) + d̂2(pμ||pθi−k) =

= argmin
πμ

1

N

N∑
j=1

(H−1∏
t=0

d2(πμ(·|sτj ,t)||πθi−k (·|sτj ,t))+

H−1∏
t=0

d2(πμ(·|sτj ,t)||πθi−k (·|sτj ,t))
)
. (12)

Now we can solve a separate optimization problem for each trajec-
tory since we have independent variables for each sτj ,t:

argmin
πμ

(H−1∏
t=0

d2(πμ(·|sτ,t)||πθi−k (·|sτ,t))+

H−1∏
t=0

d2(πμ(·|sτ,t)||πθi−k (·|sτ,t))
)
,

∀τ ∈ DN
i ∪ DN

i−k. (13)

We reformulated the problem in the following way to allow indepen-
dent optimization over all the states sτ,t:

argmin
πμ

(
d2(πμ(·|sτ,t)||πθi−k (·|sτ,t))+

d2(πμ(·|sτ,t)||πθi−k (·|sτ,t))
)
,

∀τ ∈ DN
i ∪ DN

i−k∀t = 0 · · ·H − 1. (14)

We emphasize that in RL with PG we have two popular choices for
the set of smoothly parametrized policies Πθ: Gibbs policies and
Gaussian policies. The first one is generally used when we have a
finite number of actions executable on the environment by the agent,
while the second one is employed whenever the set of executable
actions is infinite. Since we are dealing with finite-horizon MDPs,
each trajectory τ , sampled from the environment, will have a max-
imum number H of visited states. For what concern Gaussian (or
Gibbs) policies, we have a parametrized Gaussian (or Gibbs) distri-
bution for which the Renyi divergence can be computed analytically
in each state. Since we have a per-state analytical form of the Renyi
divergence, we will find the πμ only for those states stored in DN

i

and DN
i−k. It is worth noting that we do not have the parametrized

Gaussians (or Gibbs) generated by policy πθi−k in the context of
the states in DN

i and the same holds for πθi in the states in DN
i−k.

However, the missing parametrizations can be computed straightfor-
wardly without any interactions with the environment. Notice that
πμ is only used for non-stationarity detection, and not to perform ac-
tions on the environment. In Section 4.1, we will focus on Gaussian
policies, whereas, in Section 4.2, we provide an optimal solution to
the problem described in Eq. (14) in the context of Gibbs policies.

4.1 Optimization for Gaussian Policies

Once we fix a state s, we have an analytical expression for the two
terms of the objective function in Eq. (14) [5]:

d2(N (μ,Σ)||N (μθi ,Σθi)) =

|Σθi |√
|Σ||Σ∗θi

|
e
(μ−μθi

)TΣ∗−1
θi

(μ−μθi
)

d2(N (μ,Σ)||N (μθi−k ,Σθi−k)) =

|Σθi−k |√
|Σ||Σ∗θi−k

|
e
(μ−μθi−k

)TΣ∗−1
θi−k

(μ−μθi−k
)
,

where | · | denotes the determinant of a matrix, Σ∗θi
= 2Σθi − Σ

and Σ∗θi−k
= 2Σθi−k − Σ assuming that both Σ∗θi

and Σ∗θi−k
are

positive-definite. In order to match this assumption, we restrict the

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning1050

optimization procedure over all the possible solutions having a diag-
onal Σ. In this way, we only need to satisfy the constraints on the
diagonal elements of Σ:

σjj < min(
√
2σjj

θi
,
√
2σjj

θi−k
) ∧ σjj > 0

∀j = 1 . . . dim(A), (15)

where dim(A) denotes the action space dimension4. Now we can
resort to any optimization procedure present in the literature provided
that it supports bounds on the objective function domain.

4.2 Optimization for Gibbs Policies

Following the rationale of the previous section, we will show how
to optimize the Renyi divergence with Gibbs policies on a per state
basis. Given a state s, we have a parametrized categorical distri-
bution assigning a certain probability to each action available in s.
Therefore, denoting with Pθi = (pθi,1, . . . , pθi,n) and Pθi−k =
(pθi−k,1, . . . , pθi−k,n) the categorical distributions parametrized by
θi and θi−k, respectively, in state s we can write Equation (14) as
follows:

argmin
Pμ

n∑
h=0

p2μ,h

pθi,h
+

n∑
h=0

p2μ,h

pθi−k,h
(16)

subject to :
n∑

h=0

pμ,h = 1, (17)

pμ,h ≥ 0 ∀ h. (18)

If we do not take into account the constraint (18), we have a re-
laxed problem which can be solved by using Lagrangian multipliers:

L =

n∑
h=0

p2μ,h

pθi,h
+

n∑
h=0

p2μ,h

pθi−k,h
+ λ

(
n∑

h=0

pμ,h − 1

)
, (19)

taking derivatives we have:

∂L

∂pμ,h
= 2

(
1

pθi,h
+

1

pθi−k,h

)
pμ,h + λ = 0 ∀ h (20)

∂L

∂λ
=

n∑
h=0

pμ,h − 1 = 0, (21)

and now solving:

pμ,h =
1(

pθi,h
+pθi−k,h

pθi,h
pθi−k,h

)
C

(22)

λ = − 2

C
, (23)

where

C =

n∑
h=0

pθi,hpθi−k,h

pθi,h + pθi−k,h
. (24)

Since the objective function in Eq. (16) is convex and the solution
we have just found also satisfies the constraint in Eq. (18), then the
solution we found is also optimal and unique for the non-relaxed
problem.

4 Notice that in a monodimensional action space the restricted optimization
problem is equivalent to the not restricted one.

5 Change-Detection and Adaptation Mechanism
for Reinforcement Learning

The hypothesis test aiming at detecting a non-stationarity between
step i and i − k defined in Eq. (10) is here extended to operate
sequentially by introducing a sequential change-detection mecha-
nism based on the well-known and theoretically-grounded CUSUM
[2, 23]. More specifically, the proposed CUSUM-based NSD-RL
mechanism operates as follows. Let ī be the reference iteration ini-
tially set to a point where the agent has reached convergence. ī rep-
resents the iteration at which we activate the NSD-RL change de-
tection mechanism. The sequential analysis ofM is performed over
windows of length 2k (being k ∈ N

+) and relies on the computa-
tion of a figure of merit mi able to take into account the outcome of
the hypothesis test Te(DN

μ/θi
,DN

μ/θi−k
, α) applied sequentially to

detect a non-stationarity, i.e.,

mi = max
(
0,mi−1 + Te(DN

μ/θi
,DN

μ/θi−k
, α)

)
, (25)

with i = ī+ k, . . . , ī+ 2k − 1 and being mī+k−1 = 0. This allows
us to take into account the first window ranging from ī to ī+2k− 1.
Once we have analysied the first window, the algorithm switches to
the next window and mi−1 withhold the last value of the figure of
merit on the previous window. Notice that this window-based ap-
proach allows us to keep independent all the different tests we per-
form in the sequential analysis.

A change is detected at the i-th iteration when,

mi ≥ K, (26)

being K ∈ N
+ a change-detection threshold, which is set at design

time. The choice of K is crucial to trade-off false positive detections
(i.e., detections of changes before i∗) and false negative detections
(i.e., changes are not detected by the change-detection mechanism).
In our analysis, such a choice is supported by the theoretical analysis
of the mean time to a false positive detection, i.e., the Average Run
Length (ARL0), provided in [23] stating that

ARL0(α) = u(I − Pα)
−11 (27)

where I is the (K + 1) × (K + 1) identity matrix, Pα is the (K +
1)× (K + 1) matrix defined as follows

Pα =

⎡⎢⎢⎢⎣
1− α α 0 . . . 0
1− α 0 α . . . 0

...
...

...
0 0 0 . . . 0

⎤⎥⎥⎥⎦ ,

1 is the (K + 1)-dimensional vector of ones, and u is the (K + 1)-
dimensional vector defined as u = [1, 0, . . . , 0], being α the confi-
dence level of the hypothesis test stated in Eq. (10). In our scenario
ARL0(α) refers to the mean number of executions of the hypothesis
test before the NSD-RL raises a false positive detection. Setting the
expected ARL0 (that is application-specific) allows to identify the
corresponding value of the threshold K.

The proposed NSD-RL change-detection mechanism operating on
a generic PG algorithm is shown in Algorithm 1. More specifically,
Lines 4 and 21 refer to the PG implementation. Lines 5 - 20 im-
plement the computation of the figure of merit mi as described
above. More precisely, in Line 6 we store the data in order to per-
form the hypothesis tests, in Line 9 we compute πμ solving the
optimization problem stated in Eq. (14), in Line 10 the hypothesis

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning 1051

Algorithm 1 PG-NSD-RL
1: Input: change-detection threshold K, confidence level α, step

size η, policy initialization θ0, batch size N, number of epochs
I , reference epoch ī, distance between epochs k

2: B = {φ}
3: for i = 0 to I − 1 do

4: sample N trajectories DN
i = {τj}Nj=1 from p(·|θi)

5: if i >= ī and i < ī+ k then

6: B = B ∪ (DN
i ,θi)

7: end if

8: if (i >= ī+ k) then

9: compute πμ according to Eq. (14) and apply IS on bothDN
i

and DN
i−k

10: mi = max
(
0,mi−1 + Te(DN

μ/θi
,DN

μ/θi−k
, α)

)
, see

Eq. (25)
11: if i− ī == 2k − 1 then

12: ī+ = 2k
13: B = {φ}
14: end if

15: if mi > K then

16: Change detected
17: Reset configuration for the next detection
18: Resetting Adam
19: end if

20: end if

21: θi = θi + η∇̂NJ(θ)
22: end for

23: return πθ∗

test Te(DN
μ/θi

,DN
μ/θi−k

, α) is evaluated and mi is computed as de-
scribed in Eq. (25), in Line 12 we move to the next window and
in Line 13 we reset the buffer. Finally, in Line 15, the value of mi

is tested w.r.t. K to detect a change. Once the change has been de-
tected, in Line 17 we reset all the configurations for the next change-
detection phase and in Line 18 we react to the change to compensate
as fast as possible the loss in performance. In the context of this work,
we adopted a straightforward adaptation technique that consists in
resetting the Adam [14] optimizer by erasing its history related to
the first and second moments, allowing it to forget what it currently
knows about the behavior of the gradients in the previous task, which
in turn implies a greater reactivity of the optimizer in the new task.

6 Experiments

In this section, we evaluate the improvement in performance of NSD-
RL over G(PO)MDP [3], which is a traditional non-adaptive RL
algorithm. More precisely, G(PO)MDP is a refinement of REIN-
FORCE [29] exploiting the fact that the current reward does not
depend on future actions. In other words the gradient estimator of
G(PO)MDP performs a proper credit assignment, which may imply
a variance reduction on the gradient estimate itself. G(PO)MDP is
coupled with the average discounted reward baseline to further re-
duce the gradient estimator variance. In order to make a fair compar-
ison the learning algorithm used in PG-NSD-RL is also G(PO)MDP.
Both PG-NSD-RL and G(PO)MDP use Adam [14] as optimizer en-
dowing them with an adaptive learning rate. The considered RL tasks
are Pendulum-v0 [4] and Mountain Car [9] that are widely used
RL tasks in the related literature. Pendulum-v0 consists of a classi-
cal pendulum swing-up problem. The goal of the agent is to keep
the pendulum in an upright position via the application of forces

to the pendulum. The observation space is a 3-dimensional vector
composed of cos θ, sin θ, and the pole velocity θ̇. The monodimen-
sional action is the force applied to the pendulum by the agent. The
reward r(s, a) = −(θ2 + 0.1θ̇2 + 0.001a2). Mountain Car, in-
stead, consists in escaping a valley via the application of limited
tangetial forces. Due to this limitation, the car has to alternately
drive up along the two slopes of the valley in order to gain suffi-
cient momentum to overcome gravity. The observation space is made
of a 2-dimensional vector composed of the horizontal position, x,
and the horizontal velocity, ẋ, of the car. The reward function is
r(s, a) = −1 + height, where height is the car’s vertical offset.
The G(PO)MDP parametrization is shown in Table 3. Notice that

Table 3. G(PO)MDP experimental configuration

Parameter Pendulum-v0 Mountain Car

Neural Network hidden weights (32,32) (32,32)
Neural Network activation function tanh tanh
Batch size N 100 100
Task horizon 200 500
Discount factor γ 0.99 0.99
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Adam α 0.005 0.005

this configuration is shared by the baseline (i.e., vanilla G(PO)MDP)
and by our proposed algorithm (PG-NSD-RL). Moreover, while our
algorithm is at regime, Adam’s learning rate is fixed to 10−5 in order
to prevent the policies from different iteration to be too far from each
others, whereas, when our algorithm detects a change, Adam is reset
to the initial conditions stated in Table 3.

The experiments have been organized as follows. Each run com-
prises at most I = 500 learning iterations for Pendulum-v0 and
I = 300 for Mountain Car. The learning process begins at itera-
tion i = 0. The algorithm NSD-RL is activated at iteration ī. A
change in the state transition function P is introduced at iteration
i∗ = ī+50. Let î be the iteration at which NSD-RL detects a change,
we define a false positive detection when î < i∗ and a false negative
detection when î > I − 1. A correct detection is considered when
i∗ ≤ î ≤ I − 1 and, in this case, we compute the detection delay as
î− i∗.

Let s = [cos θ, sin θ, θ̇] be the vector representing the state in the
pendulum-v0 task, to model non-stationarity we have considered an
additive clamped-ramp perturbation affecting θ̇ after i∗ defined as
follows:

s =

{
[cos θ, sin θ, θ̇] if i < i∗

[cos θ, sin θ, θ̇ + ν] otherwise ,
(28)

where

ν =

{
e(i− i∗), if i− i∗ <= c

e · c otherwise,
(29)

being e the speed of the anomaly and c the duration of its tran-
sient component. In particular, we considered three different con-
figurations of ν, i.e., (e = 0.2, c = 20), (e = 0.2, c = 10) and
(e = 0.15, c = 30). Moreover, we have considered two different
onset points of the anomaly i∗ = 200 and i∗ = 300. In the context
of Mountain Car, the perturbation is still an additive clamped-ramp
similarly to what defined above, but it affects ẋ. For this task we have
considered one configuration of ν, i.e., (e = 0.09, c = 15). Further-
more, for this experiment the onset point of the anomaly is i∗ = 100.

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning1052

G(PO)MDP PG-NSD-RL

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(a) PG-NSD-RL vs G(PO)MDP on Pendulum-v0 with c = 20 and e = 0.2.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(b) PG-NSD-RL vs G(PO)MDP on Pendulum-v0 with c = 10 and e = 0.2.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(c) PG-NSD-RL vs G(PO)MDP on Pendulum-v0 with c = 30 and e =
0.15.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(d) PG-NSD-RL vs G(PO)MDP on Pendulum-v0 with c = 20 and e = 0.2.

0 60 120 180 240 300

−450

−375

−300

−225

−150

−75

0

Iterations

A
ve

ra
ge

R
et

ur
n

(e) PG-NSD-RL vs G(PO)MDP on Mountain Car with c = 15 and e =
0.09.

Figure 1. Comparison of on-line performance over the iterations of the optimization algorithm, with 90% t-student confidence intervals. The first vertical line
(dashed) highlight the injection point, whereas the second vertical line (dotted-dashed) highlight the end of the transient part of the anomaly.

The parameter K of NSD-RL has been set to 3, while α = 0.05 and
k = 10 in all the experiments. For all the configurations, we con-
sidered 50 runs with different seeds and average results are shown in
Figure 1.

Two main comments arise. In Figures 1(a), 1(c), 1(d) and 1(e),
we can see how PG-NSD-RL shows a better behavior in terms of
average undiscounted return after i∗. This is due to a prompt detec-
tion combined with the adaptation guaranteeing a higher plasticity
of PG-NSD-RL. Interestingly, in Figure 1(b) we show that PG-NSD-
RL and G(PO)MDP have similar performances. This is due to the
the fact that the anomaly does not induce a relevant change on the
environment. Furthermore, in Figures 1(a) and 1(d), we can see how
changing the onset point of the anomaly has a huge impact on perfor-
mance. Indeed, in the first case the neural network parametrizing the

policy reaches a worse configuration of the weights w.r.t. the second
case due to a greater number of regime updates, which in some sense
could be thought as overfitting the environmental noise in the task.

In Table 4, we show some indicators assessing the quality of the
detection phase of the proposed change detection algorithm. As we
can see, FPRs are equal for all the configurations. This is reasonable
since false positive detections do not depend on the type of change.
Moreover, we can see how the detection delay increases from (e =
0.2, c = 20, i∗ = 300) to (e = 0.15, c = 30, i∗ = 300). This is
due to the fact that e is smaller in the second configuaration (i.e., e =
0.15, c = 30) inducing a more gradual drift which is, of course, more
subtle to be detected. Notice that in Table 4 we have not reported the
results relative to the configuration (e = 0.2, c = 10, i∗ = 300)
since they are equivalent to those of (e = 0.2, c = 20, i∗ = 300).

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning 1053

This is reasonable since we have only decreased the duration of the
transient part and the maximum detection delay in the configuration
(e = 0.2, c = 20, i∗ = 300) is 7. Finally, as expected, the two
configurations, (e = 0.2, c = 20, i∗ = 200) and (e = 0.2, c =
20, i∗ = 300), have very similar average and standard deviation for
the detection delay. In the last row of Table 4 we show how our NSD-
RL algorithm is able to properly detect non-stationarities in another
task.

Table 4. NSD-RL performance in terms of False Positive Rate (FPR),
False Negative Rate (FNR) and Detection Delay (DD) in different scenarios.

ν i∗ Task FPR FNR DD DD std.

e = 0.2, c = 20 300 Pendulum-v0 0 0 4.26 0.955
e = 0.15, c = 30 300 Pendulum-v0 0 0 4.76 1.141
e = 0.2, c = 20 200 Pendulum-v0 0 0 3.74 0.743
e = 0.09, c = 15 100 Mountain Car 0 0 4.66 0.839

7 Conclusions

The aim of this paper was to introduce a change-detection mecha-
nism to detect changes in a RL problem and integrate it into a RL
algorithm to deal with non-stationary tasks. The proposed change-
detection mechanism relies on the joint use of a statistical hypothesis
test (aiming at comparing the expected value of the reward at two dif-
ferent iterations) and a CUSUM-based sequential mechanism to de-
tect changes in the MDP. Whereas the adaptation phase relies on re-
setting the history associated to the moments of the Adam optimizer
in order to increase the plasticity of the algorithm. The proposed so-
lution is theoretically-grounded and has been successfully tested in
two well-known RL tasks showing performance improvements over
G(PO)MDP.

The next steps of this work will encompass the design of a trans-
fer learning algorithm to be included into the adaptation phase of the
current proposed solution. Furthermore, we will extend the detec-
tion mechanism endowing it with a diagnostic part able to identify
and characterize the type, temporal evolution and magnitude of the
change. This latter diagnostic tool will represent a valuable informa-
tion for the adaptation phase.

REFERENCES

[1] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor
Mordatch, and Pieter Abbeel, ‘Continuous adaptation via meta-learning
in nonstationary and competitive environments’, arXiv preprint
arXiv:1710.03641, (2017).

[2] Michèle Basseville, Igor V Nikiforov, et al., Detection of abrupt
changes: theory and application, volume 104, Prentice Hall Englewood
Cliffs, 1993.

[3] Jonathan Baxter and Peter L Bartlett, ‘Infinite-horizon policy-gradient
estimation’, Journal of Artificial Intelligence Research, 15, 319–350,
(2001).

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba, ‘Openai gym’, arXiv
preprint arXiv:1606.01540, (2016).

[5] Jacob Burbea, ‘The convexity with respect to gaussian distributions of
divergences of order α’, Utilitas Mathematica, 26, 171–192, (1984).

[6] Samuel PM Choi, Dit-Yan Yeung, and Nevin Lianwen Zhang, ‘An envi-
ronment model for nonstationary reinforcement learning’, in Advances
in neural information processing systems, pp. 987–993, (2000).

[7] Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan, and Paulo M
Engel, ‘Dealing with non-stationary environments using context detec-
tion’, in Proceedings of the 23rd international conference on Machine
learning, pp. 217–224. ACM, (2006).

[8] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar,
‘Learning in nonstationary environments: A survey’, IEEE Computa-
tional Intelligence Magazine, 10(4), 12–25, (2015).

[9] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter
Abbeel, ‘Benchmarking deep reinforcement learning for continuous
control’, in International Conference on Machine Learning, pp. 1329–
1338, (2016).

[10] Bradley Efron and Robert J Tibshirani, ‘An introduction to the boot-
strap, volume 57 of’, Monographs on Statistics and applied probability,
17, (1993).

[11] Pratik Gajane, Ronald Ortner, and Peter Auer, ‘A sliding-window algo-
rithm for markov decision processes with arbitrarily changing rewards
and transitions’, arXiv preprint arXiv:1805.10066, (2018).

[12] Emmanuel Hadoux, Aurélie Beynier, and Paul Weng, ‘Sequential
decision-making under non-stationary environments via sequential
change-point detection’, in Learning over Multiple Contexts (LMCE),
(2014).

[13] Timothy Classen Hesterberg, Advances in importance sampling, Ph.D.
dissertation, Stanford University, 1988.

[14] Diederik P Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, arXiv preprint arXiv:1412.6980, (2014).

[15] Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello
Restelli, ‘Policy optimization via importance sampling’, in Advances in
Neural Information Processing Systems, pp. 5442–5454, (2018).

[16] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter
Abbeel, Sergey Levine, and Chelsea Finn, ‘Learning to adapt in dy-
namic, real-world environments through meta-reinforcement learning’,
arXiv preprint arXiv:1803.11347, (2018).

[17] Ronald Ortner, Pratik Gajane, and Peter Auer, ‘Variational regret
bounds for reinforcement learning’, in Proceedings of the 35th Con-
ference on Uncertainty in Artificial Intelligence, (2019).

[18] Jan Peters and Stefan Schaal, ‘Reinforcement learning of motor skills
with policy gradients’, Neural networks, 21(4), 682–697, (2008).

[19] Doina Precup, Richard S. Sutton, and Satinder P. Singh, ‘Eligibility
traces for off-policy policy evaluation’, in ICML, (2000).

[20] Martin L Puterman, Markov decision processes: discrete stochastic dy-
namic programming, John Wiley & Sons, 2014.

[21] Alfréd Rényi, ‘On measures of information and entropy’, in Proceed-
ings of the 4th Berkeley symposium on mathematics, statistics and prob-
ability, volume 1, (1961).

[22] Christian Robert and George Casella, Monte Carlo statistical methods,
Springer Science & Business Media, 2013.

[23] Manuel Roveri, ‘Learning discrete-time markov chains under concept
drift’, IEEE transactions on neural networks and learning systems,
(2019).

[24] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, volume 1, MIT press Cambridge, 1998.

[25] Richard S Sutton, Anna Koop, and David Silver, ‘On the role of track-
ing in stationary environments’, in Proceedings of the 24th interna-
tional conference on Machine learning, pp. 871–878. ACM, (2007).

[26] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay
Mansour, ‘Policy gradient methods for reinforcement learning with
function approximation’, in Advances in neural information process-
ing systems, pp. 1057–1063, (2000).

[27] Philip Thomas and Emma Brunskill, ‘Data-efficient off-policy policy
evaluation for reinforcement learning’, in International Conference on
Machine Learning, pp. 2139–2148, (2016).

[28] Philip S Thomas, Georgios Theocharous, and Mohammad
Ghavamzadeh, ‘High-confidence off-policy evaluation’, in Twenty-
Ninth AAAI Conference on Artificial Intelligence, (2015).

[29] Ronald J Williams, ‘Simple statistical gradient-following algorithms
for connectionist reinforcement learning’, Machine learning, 8(3-4),
229–256, (1992).

G. Canonaco et al. / Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning1054

