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Abstract

In this work, the problem of online energy management of hybrid electric vehicles is addressed. A least costly objective function
accounting for battery energy consumption and aging, and for the auxiliary power unit fuel consumption and noise emissions is
considered. In this scenario, all the cost terms are expressed as monetary variables. This allows to assess the economic effectiveness
of the proposed hybrid powertrain solution. Therefore, the online energy management policy is computed relying on the economic
model predictive control framework. Some dissipativity properties for steady-state and periodic operation of the system under
investigation are proved. Therefore, some results for close to optimum convergence of the economic model predictive control are
provided. An electric bus case-study is illustrated in detail to show the performance of the proposed online management strategy.
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1. Introduction

In the last years, the quest for vehicular emissions reduc-
tion, fuel economy improvement, and energy efficiency have
led automotive industries to devote time, effort, and money for
the development of new powertrain solutions for the next gener-
ation of vehicles. In this scenario, Electric Vehicles (EVs) have
become effective means for urban mobility thanks to the high
efficiency, the absence of local emissions (Helmers and Marx
(2012)), and the low price of the electrical energy. One of the
obstacles limiting the spread of this technology is the low en-
ergy density of batteries if compared to carbon fuels (Warner
(2015)), which leads to reduced all electric ranges. Thus, a
common pathway to resolve this issue is the introduction of an
auxiliary power unit called Range EXtender (REX). This de-
vice is composed of a diesel Internal Combustion Engine (ICE)
coupled with an Electric Generator (EG). The internal combus-
tion engine delivers mechanical power, which is converted into
electrical power by the electric machine and then used for the
vehicle motion. In this scenario, the architecture composed of
the REX and the EV is a series hybrid electric powertrain (also
known as Extended Range Electric Vehicle (EREV)) where two
movers are available: the REX and the Li-ion battery.

It is widely recognized that, to evolve the standard ICE tech-
nology, hybrid electric vehicles come to hand. As a matter
of fact, the introduction of multiple power sources allows for
the improvement of the fuel economy and for the reduction of
pollutants emissions (Sciarretta and Guzzella (2007)). How-
ever, to benefit from hybrid architectures it is of paramount im-
portance to introduce effective Energy Management Strategies

(EMSs) aiming at optimizing the power split between the avail-
able movers. In accordance with Onori et al. (2016), the EMS
development may follow two principal routes: the rule-based
one or the model-based optimization one. Rule-based strate-
gies have been widely used for real-time implementation. In
this scenario, heuristics are employed to choose the best con-
trol action at each time instant. The computational effort is re-
duced to its minimum, however, no optimality of the solution is
guaranteed (see, e.g., Jalil et al. (1997); Lin et al. (2001); Ban-
vait et al. (2009)). In model-based optimization methods the
EMS problem is recast as an optimal control problem. There-
fore, the optimal energy management policy is retrieved min-
imizing a suitable objective function. To this end, different
optimization methodologies can be adopted. Solutions based
on dynamic programming are proposed by Pérez et al. (2006)
and Sundstrom and Guzzella (2009). Moreover, in Murgov-
ski et al. (2011, 2012b), and Elbert et al. (2014) solutions to
the EMS problem based on convex programming tools are dis-
cussed. These policies are computed in a non-causal fashion
and the optimization over the entire driving cycle is carried out
offline. Eventually, real-time approximations of the non-causal
optimal policies are obtained relying, e.g., on the equivalent
consumption minimization strategy, a Pontryagin’s minimum
principle-based heuristic (Musardo et al. (2005); Pisu and Riz-
zoni (2007)). The general drawback of model-based optimiza-
tion approaches is the necessity to design a proper cost function
with appropriate weights to balance the different cost terms.

In this work, the problem of online EMS development for
hybrid electric vehicles is addressed. According to Pozzato
et al. (2018, 2019, 2020), a least costly objective function is in-
troduced. This formulation allows to express all the cost terms
as monetary variables. Therefore, the solution of the EMS opti-∗Corresponding author.



mal control problem returns the overall vehicle operating cost,
which is useful to assess the economic effectiveness of the pro-
posed mobility solution. In this scenario, a control-oriented
model for the EREV is first described. The REX provides power
continuously and its usage is function of some idling heuristics.
Then, the REX is characterized in terms of noise emissions,
allowing for high penalization of unpleasant operating condi-
tions. Thus, the EMS problem is formalized as a mixed-integer
convex program with the battery modeled as a convex differ-
ence inclusion. The EMS problem is then solved online using
an Economic Model Predictive Control (EMPC) framework.
EMPC is a particular case of model predictive control where
general, possibly economically motivated, performance criteria
are considered (Faulwasser et al. (2018)). As usual in Model
Predictive Control (MPC), the control input at each time step is
computed by solving a finite-horizon optimal control problem
and then applying the first component of the computed optimal
predicted input sequence. In the context of economic MPC,
dissipativity properties have turned out to play a crucial role1.
Namely, dissipativity allows to characterize the optimal oper-
ating behavior of a system (with respect to the given perfor-
mance criterion) and to analyze closed-loop convergence, com-
pare Faulwasser et al. (2018); Müller et al. (2015). Available
results in the literature establish dissipativity properties for cer-
tain types of difference equations (see, e.g., Damm et al. (2014);
Berberich et al. (2020)).

Against this background, the paper is not only focused on
providing an EMPC solution for the EMS problem of EREVs,
but also to derive dissipativity properties that allow to conclude
closed-loop performance and convergence results of EMPC
schemes for more general system classes. Therefore, the main
innovative contributions of the paper are summarized as fol-
lows:

• On the one hand, considering generic dynamical systems
described by convex difference inclusions (which include
also the battery energy model (23) of the EMS problem),
dissipativity is proven for both cases of optimal steady-
state and periodic operation. Proving this property allows
to retrieve important information on the performance of
a generic EMPC for such systems;

• On the other hand, the implications of the aforementioned
dissipativity results for the EMS problem at hand are as-
sessed. Moreover, for the first time the online least costly
solution is computed rewriting the EMS problem in the
EMPC framework. This allows to obtain an online en-
ergy management strategy with convergence guarantees
given by dissipativity.

The remainder of the paper is organized as follows. First, in
Section 2 a backward powertrain model is introduced. There-
fore, Section 3 describes the energy management strategy prob-
lem for the EREV. Then, theoretical results on dissipativity for

1Providing a high-level physical interpretation, a system is dissipative if its
increase in energy storage is no more than the supplied energy from outside to
the system (Brogliato et al. (2007)).
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Figure 1: EREV powertrain configuration.

steady-state and periodic operation of systems modeled by con-
vex difference inclusions are discussed in Section 4. In Section
5, the validity of such dissipativity conditions and of their im-
plications is shown, in a simulation environment, for the partic-
ular case of an extended range electric bus. Finally, in Section
6 some final remarks are carried out.

2. Powertrain Modeling

In this section, a convex control-oriented model for the pow-
ertrain components is described in detail (Figure 1). Relying
on a pure backward paradigm, the behavior of the vehicle is
simulated from driving cycle speed (v) and slope (θ ) profiles,
computing the upstream power flows. This modeling strategy
is well established in the literature and provides a robust and
reliable tool to analyze the power split in hybrid powertrains
(Onori et al. (2016)). For clarity, the modeling is proposed in
continuous time and time dependencies are neglected till the
end of the section.

Vehicle dynamics. The vehicle motion is described consider-
ing only the longitudinal dynamics. The equilibrium of forces
and moments leads to the following balance equation (Onori
et al. (2016)):

Tw = Rw(Mv̇+Fb +Ff), ωw =
v

Rw
(1)

where M is the vehicle mass, Tw and ωw respectively the wheel
torque and rotational speed, and Rw the wheel radius. The dot
operator denotes the first order derivative with respect to time.
Fb is the mechanical braking force. The friction force Ff takes
the following expression (Rajamani (2011)):

Ff = Mgsin(θ)+CrMgcos(θ)+
1
2

ρaACxv2 (2)

with g the gravitational acceleration, ρa the air density, and A
the vehicle reference area. Cr and Cx are the roll and drag coef-
ficients, respectively.

Gearbox. Traction motor and wheels are connected by means
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of a constant ratio transmission (Onori et al. (2016)):

Tm =

{
1

rtηt
Tw, if Tw ≥ 0 (traction)

ηt
rt

Tw, if Tw < 0 (braking)

ωm = rtωw

(3)

where Tm is the motor torque, ωm the motor rotational speed, rt
the gear ratio, and ηt the transmission efficiency.

Traction motor. The torque is provided by the traction mo-
tor, which is modeled as an efficiency map (Murgovski et al.
(2012a)). Thus, the electric power Pm in motor and generator
modes takes the following expression:

Pm =

{ Tm,iωm
ηm(Tm,i,ωm) , if Tm,i ≥ 0 (motor)

Tm,iωmηm(Tm,i,ωm), if Tm,i < 0 (generator)

Tm,i = Tm + Jmω̇m

(4)

where Jm is the motor inertia and ηm the efficiency.

Electric converter. The power electronics in between the bat-
tery, the REX, and the traction motor is modeled as an average
efficiency ηec (Hu et al. (2013)):

Pec =

{
Pm
ηec

, if Pm ≥ 0
Pmηec, if Pm < 0

(5)

where Pec is the power requested by the driving cycle.

Power link. The electric power is supplied by two competing
power sources: the battery and the REX. Thus, the total power
required by the drivetrain must satisfy the following balance
equation (see Onori et al. (2016)): Pec = Pb +Pg. Pg is the REX
generated power and Pb the absorbed/supplied battery power.

Battery. Depending on the specifications for the nominal volt-
age and capacity (Warner (2015)), a battery pack is composed
of cells disposed in a series/parallel configuration. Neglecting
the voltage dynamics, the battery power takes the following ex-
pression:

Pb = vbib = (voc−Rbib)ib (6)

where ib is the battery current and Rb the battery pack internal
resistance. voc is the open circuit voltage which is approximated
as an affine function of the State of Charge (SoC) (Guzzella
et al. (2007)):

voc = AbSoC+Bb. (7)

Ab and Bb are obtained experimentally, fitting a real-world open
circuit voltage, more specifically the Li-ion cell A123 ANR266
50M1-B. Therefore, solving (6) for the battery current leads to:

ib =
voc−

√
v2

oc−4RbPb

2Rb
. (8)

According to Guzzella et al. (2007), the battery SoC takes the
following expression:

˙SoC =− ib
Qb

(9)

where Qb is the battery capacity. During their lifetime, batteries
experience aging, which leads to a capacity degradation. Thus,
to account for the aging phenomena, the following simplified
model is introduced:

˙SoH =
σb

NbQbVb
|Pb|. (10)

SoH denotes the battery State of Health; growing from 0 to
1 proportionally to the kWh−throughput (i.e., SoH = 0 and
SoH = 1 denote the healthy and dead battery, respectively). Nb
is the battery life cycle (defined as the number of charges plus
the number of discharges), and Vb the battery nominal voltage.
The severity factor σb is modeling the battery usage away from
nominal conditions. In accordance with Serrao et al. (2011),
this factor is a function of C-rate and temperature. Assuming
to work around nominal conditions and between 20-35 (◦C), a
constant severity factor is considered (Guanetti et al. (2016)).

Battery convex model. In this paper, the EMS problem is solved
relying on convex programming tools, which requires the model
of the system to be defined as a set of convex constraints. The
aforementioned battery model is non-convex. Thus, a reformu-
lation with respect to the battery energy E is introduced (Elbert
et al. (2014)):

Ė = φ(E,Pb,Pec) =−
Ab

RbQb
(E +E0)

+
Ab

RbQb

√
(E +E0)

2− 2RbQb

Ab
Pb(E +E0)

(11)

where E0 = Qb
2Ab

B2
b. Equation (11) is still non-convex. Given

the concavity of the term on the right hand side of (11), the
battery internal energy dynamic model is relaxed introducing
the following differential inclusion:

Ė ∈Φ(E,Pb,Pec) = {y ∈ R|y≤ φ(E,Pb,Pec)} (12)

where Φ is the hypograph of φ : a convex set due to the con-
cavity of φ (Boyd and Vandenberghe (2004)). To ensure the
non-negativity of the term inside the square root, the following
inequality must be satisfied:

Pb ≤ (E +E0)
Ab

2QbRb
. (13)

Given an objective function accounting for battery energy us-
age (as in this work), the relaxation (12) does not prejudice the
accuracy of the solution. As a matter of fact, in case of optimal
solution, (12) holds with equality (Elbert et al. (2014)). This is
reasonable because any solution holding with strict inequality
would be associated to a waste of battery energy and therefore
to a suboptimal usage of the power split.

Range extender. The limited all electric range of electric vehi-
cles is a major concern in the automotive industry. Therefore, to
extend the vehicle driving range a possible solution is the intro-
duction of REXs. In this paper, the REX is a device composed
of a diesel ICE coupled with an EG. Hence, the mechanical
power generated by the ICE is converted into electrical power
and used to provide energy to the electric drivetrain.
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Figure 2: Combined ICE+EG efficiency map as function of ICE rotational
speed and torque. The maximum efficiency path is shown. Due to confiden-
tiality reasons, figure axes labels are removed.

Power generation. According to Pozzato et al. (2020), the REX
is modeled as a quasi-static device in which the relationship
between fuel and generated power is given by a combined effi-
ciency map of ICE and EG (Figure 2). The electric generated
power takes values in the following range:

2≤ Pg ≤ 35 ∪ 0 (kW). (14)

If the REX is idling, Pg is equal to 0 (kW). Clearly, a power re-
quest can be actuated at different REX (torque,speed) operating
points. Therefore, the REX is assumed to work at the max-
imum possible efficiency, i.e., given a certain power request,
among all the possible (torque,speed) actuation scenarios the
highest efficiency point is chosen. This leads to the maximum
efficiency path shown in Figure 2. Denoting by ηg(Pg) the REX
maximum efficiency, fuel thermal power (Pf) and rate (ṁf) are
modeled as follows:

Pf =
Pg

ηg(Pg)
, ṁf =

Pf

λf
(15)

where λf is the fuel lower heating value. The fuel thermal power
is approximated by a second order polynomial function (Mur-
govski et al. (2012b)):

Pf = AgP2
g +BgPg +Cg (16)

in which Ag, Bg, and Cg are identified parameters. If the power
request is higher than Pthr, the REX provides power to the trac-
tion motor. Conversely, if the power request is smaller than Pthr,
the REX idles. This behavior is modeled as follows:

q(Pec) =

{
1, Pec > Pthr

0, otherwise.
(17)

Moreover, the maximum power Pg(ϑ) = 35 (kW) is provided
only if the REX is warmed-up. As a matter of fact, because
of sub-optimal lubricant and component temperatures, the ICE
thermal efficiency is significantly lower at cold-start if com-
pared to when the vehicle reaches steady-state conditions (Roberts
et al. (2014)). Therefore, once the vehicle is turned on, for the
first 6 (min) of operation, i.e., the time needed to warm-up the

Figure 3: REX sound pressure levels. ICE+EG noise emissions data are shown
together with the SPL first order approximation. Critical frequencies are high-
lighted by the rectangle. Due to confidentiality reasons, y-axis label is removed.

engine, the maximum power is limited to Pg(ϑ) = 27 (kW).
Eventually, the possible REX operating conditions are summa-
rized as follows:{

q(Pec)Pg ≤ Pg ≤ q(Pec)Pg(ϑ), warm-up phase

q(Pec)Pg ≤ Pg ≤ q(Pec)Pg(ϑ), warmed-up engine
(18)

where Pg is the minimum electric power which can be generated
by the REX.
Noise modeling. According to Pozzato et al. (2020), noise emis-
sions are characterized by Sound Pressure Levels (SPLs) mea-
sured at 1 (m) distance from the source. Thus, sound levels
are then A-weighted and expressed in dB(A) in order to ac-
count for the varying human’s ear sensitivity in the audible fre-
quency range (Cory (2010)). As shown by Figure 3, noise emis-
sion measurements for the combined scenario (ICE+EG) are
available and mapped as function of the REX generated power.
Therefore, the following simplified model is created fitting the
acquired data with a first order polynomial function:

Lp = ASPLPg +BSPL (19)

where ASPL and BSPL are identified parameters, and BSPL mod-
els the noise emitted while the REX is idling. The approxima-
tion leads to a Root Mean Square Error (RMSE) of 0.9 (dB(A)).
Unfortunately, the noise emitted by the EG becomes annoy-
ing, in terms of psychoacoustics (Zwicker and Fastl (2013)),
between 20 and 25 (kW). Consequently, in the next section a
noise emissions weighting factor, varying with the REX gener-
ated power, is proposed.

3. Energy Management Problem Formulation

The goal of the EMS is to optimally split the power re-
quest between the available movers, i.e., the battery pack and
the REX, minimizing a suitable objective function. First the
battery model (11) is discretized, then, the EMS problem is for-
malized as a discrete time optimal control problem over a finite
time horizon N.
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3.1. Discretized Battery Energy Model
The battery internal energy is chosen as the state variable.

Thus, forward Euler differentiation is employed to obtain the
discretized model from (11):

E(k+1) = E(k)−Ts
Ab

QbRb
(E(k)+E0)+

Ts
Ab

QbRb

√
(E(k)+E0)2− 2RbQb

Ab
(Pb(k)+Pcool)(E(k)+E0)

(20)
where the constant Pcool is explicitly modeling the power sup-
plied by the battery to keep its own temperature to an opti-
mal reference (according to Corno and Pozzato (2019), usually
around 30-35 (◦C)) and Ts is the sampling time. Far from the
SoC upper and lower bounds, (20) is well approximated by a
model expressed in terms of the battery energy difference ∆E:

∆E(k+1) = f (∆E(k),Pb(k),Pec(k)) =−Ts
Ab

RbQb
(∆E(k)+E0)+

Ts
Ab

RbQb

√
(∆E(k)+E0)

2− 2RbQb

Ab
(Pb(k)+Pcool)(∆E(k)+E0).

(21)
Therefore, at each time instant k, the battery energy is computed
with the following cumulative sum:

E(k) = E(0)+
k

∑
ι=0

∆E(ι) (22)

where E(0) is the battery internal energy initial condition. The
model introduced by (21) and (22) is not equivalent to (20). As
a matter of fact, in the general case, (21) is also a function of
the battery energy state E. However, E is at least one order of
magnitude smaller than E0 in all its feasible domain (i.e., for
SoC∈

[
SoC,SoC

]
). Thus, the error introduced by the approxi-

mation (21) is negligible. For instance, let us consider any SoC
initial condition in the range [25,75]% (for which a SoC > 0
is guaranteed over the considered time horizon of 200 seconds)
and a constant battery power request of 220 (kW). In this sce-
nario, the average error between the two modeling strategies, in
terms of final state of charge, is 0.015%. Since the right hand
side of (21) is still concave, the convex model is obtained in-
troducing the hypograph reformulation (analogously to (12)),
leading to the following difference inclusion:

∆E(k+1) ∈ F(∆E,Pb,Pec) =

= {y ∈ R|y≤ f (∆E(k),Pb(k),Pec(k))}.
(23)

Eventually, (21) fits well with the proposed EMS formulation.
As a matter of fact, the optimal battery operation is a function
of ∆E and not of E. This is reasonable since, far away from the
SoC bounds, the power supplied/absorbed by the battery pack
is always bounded between

[
Pb,Pb

]
, independent of the actual

SoC state. Moreover, (23) shows to be a smart reformulation
which allows to assess the dissipativity properties of the system
(as shown in Section 5).

3.2. Optimal Control Problem
The REX generated power Pg and the battery power Pb are

the control variables satisfying the following condition Pec(k)≤

Pb(k)+Pg(k). The inequality models the possibility to dissipate
electric energy in a braking resistor (which is however not an
optimal policy). Pec and q(Pec) (computed as in (17)) are ex-
ogenous inputs. Thus, the mixed-integer convex program reads
as follows:

minimize
∆E,Pg,Pb

− αBC
ηgrid

∆E(N) +
}

Vf

Ts

N−1

∑
k=0

αBC
ηgrid

−∆E(k)
Ts

+

}
l1

Ts

N−1

∑
k=0

βBC
σb
Nb
| Pb(k)+Pcool | +

Ts

N−1

∑
k=0

γBC(AgPg(k)2 +BgPg(k)+Cg) +

Ts

N−1

∑
k=0

δBC,0SF(v)
[
(ASPLP(1)

g (k)+BSPL) +

(2ASPLP(2)
g (k)+q(1)SPL(k)BSPL) +

(ASPLP(3)
g (k)−q(2)SPL(k)BSPL)

]



l2

(24)
subject to

∆E(k+1) ∈ F(∆E,Pb,Pec) =

= {y ∈ R|y≤ f (∆E(k),Pb(k),Pec(k))}

Pec(k)≤ Pb(k)+Pg(k)

∆E ≤ ∆E(k)≤ ∆E

Pb ≤ Pb(k)≤ Pb

Pb(k)≤ (∆E(k)+E0)
Ab

2QbRb
−Pcool{

q(Pec)Pg ≤ Pg(k)≤ q(Pec)Pg(ϑ), warm-up phase

q(Pec)Pg ≤ Pg(k)≤ q(Pec)Pg(ϑ), warmed-up engine

p(1)g q(1)SPL(k)≤ P(1)
g (k)≤ p(1)g

(p(2)g − p(1)g )q(2)SPL(k)≤ P(2)
g (k)≤ q(1)SPL(k)(p(2)g − p(1)g )

0≤ P(3)
g (k)≤ q(2)SPL(k)(Pg(ϑ)− p(2)g )

(25)
Thus, the following initial condition is introduced:

∆E(0) = 0 (kJ).

The cost function (24) is composed of four different terms.
First, the electrical energy needed to replace the battery charge
depleted during the driving cycle is modeled by:

Je =−
αBC

ηgrid
∆E(N)+Ts

N−1

∑
k=0

αBC

ηgrid

−∆E(k)
Ts

(26)

where αBC is the cost of 1 (kWh) of grid energy and ∆E(N) is the
terminal condition. The minus sign in front of ∆E is introduced
because, in correspondence of a negative variation of the battery
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Figure 4: SF as function of vehicle speed. High vehicle speeds lead to lower
noise penalization.

internal energy (i.e., while the SoC is decreasing), the monetary
cost must increase because more energy is needed to recharge
the battery. Then, the portion of battery life cycle throughput
depleted along the driving cycle is described as:

Ja = Ts

N−1

∑
k=0

βBC
σb

Nb
| Pb(k)+Pcool | (27)

with βBC the purchase cost of 1 (kWh) of battery capacity. Thus,
the REX fuel consumption is modeled as follows:

Jf = Ts

N−1

∑
k=0

γBC(AgPg(k)2 +BgPg(k)+Cg) (28)

where γBC is the price for 1 (kWh) of fuel energy. The noise cost
is expressed by the following term:

Jn = Ts

N−1

∑
k=0

δBC,0SF(v) SPL(Pg) =

= Ts

N−1

∑
k=0

δBC,0SF(v)
[
(ASPLP(1)

g (k)+BSPL) +

(2ASPLP(2)
g (k)+q(1)SPL(k)BSPL) +

(ASPLP(3)
g (k)−q(2)SPL(k)BSPL)

]
(29)

with δBC,0 the baseline cost for the REX noise emissions and
SF(v) a scaling factor function of the vehicle speed v (Figure 4).
SF(v) is introduced in order to increase the noise penalization
for low vehicle speeds, where the background noise is absent.
Therefore, the noise cost is modeled by the piecewise affine
function within square brackets of (29) (pictorially represented
by Figure 5) and the following set of inequalities:

p(1)g q(1)SPL(k)≤P(1)
g (k)≤ p(1)g

(p(2)g − p(1)g )q(2)SPL(k)≤P(2)
g (k)≤ q(1)SPL(k)(p(2)g − p(1)g )

0≤P(3)
g (k)≤ q(2)SPL(k)(Pg(ϑ)− p(2)g )

(30)
with q(1)SPL,q

(2)
SPL and P(1)

g ,P(2)
g ,P(3)

g binary and real variables, re-
spectively. The introduction of integer variables allows to select

Figure 5: Noise cost, piecewise affine model. Due to confidentiality reasons,
y-axis labels are removed.

in which of three regions, highlighted in Figure 5, the range ex-
tender is working. Therefore, Pg takes the following expression:

Pg(k) = P(1)
g (k)+P(2)

g (k)+P(3)
g (k). (31)

To simplify the notation, in (24) and (25), Pg is used when possi-
ble. As already mentioned, a higher cost is applied to generated
powers between p(1)g = 20 and p(2)g = 25 (kW), which are crit-
ical from a psychoacoustics viewpoint. The selection of δBC,0 is
arbitrary and should be carefully made in order to account for
the negative impact of loud and long-lasting noises on people’s
health and productivity, and on the natural environment. Ac-
cording to Pozzato et al. (2020), a value of 0.018 (BCdB(A)−1h−1)
is a reasonable choice.

The presence of both integer and real valued variables leads
to mixed-integer convex problem which can be solved relying
on mixed integer convex programming tools2. The application
parameters are listed in Table 1.

4. Economic MPC and Dissipativity for Convex Difference
Inclusions

As was shown recently, (strict) dissipativity can be employed
to characterize the optimal operating conditions of a given sys-
tem. In particular, this is possible for the cases of optimal
steady-state and optimal periodic operation (Müller et al. (2015);
Zanon et al. (2017); Faulwasser et al. (2018)). Furthermore,
the same (strict) dissipativity conditions can in turn be em-
ployed to establish convergence to the optimal operating behav-
ior of the closed-loop system resulting from application of eco-
nomic MPC schemes (Müller and Grüne (2016); Zanon et al.
(2017); Faulwasser et al. (2018)). Given this crucial role for ob-
taining closed-loop performance and convergence guarantees,
proving dissipativity is of importance also beyond the context
of the energy management, which is why the following results
are proved for general nonlinear, convex, difference inclusions
(which include as a special case the considered battery energy

2The solver Gurobi (version 8) is employed (http://www.gurobi.com).
Solutions of the optimal control problem were computed on a Intel Core i7-
7700HQ processor with 16.0 (GB) of RAM.
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Table 1: Application parameters.

Variable Description Unit Value
Vehicle

g Gravitational acceleration (m/s2) 9.81
M Vehicle mass (with battery

pack)
(kg) 12635

Rw Wheel radius (Hu et al. (2013)) (m) 0.509
Cr Rolling coefficient (Hu et al.

(2013))
(−) 0.007

Cx Drag coefficient (Hu et al.
(2013))

(−) 0.7

A Vehicle reference area (Hu
et al. (2013))

(m2) 7.540

ηt Transmission efficiency (Hu
et al. (2013))

(−) 0.97

rt Gear ratio (Hu et al. (2013)) (−) 4.7
Jm Electric motor inertia (Hu et al.

(2015))
(kg m2) 2.3

ηec Electric converter efficiency
(Hu et al. (2013))

(−) 0.98

ρa Air density (Hu et al. (2013)) (kg/m3) 1.184
Battery

Ab Voltage parameter (V) 27.10
Bb Voltage parameter (V) 585.951
Vb Nominal voltage (V) 600
Qb Nominal capacity (Ah) 107
Nb Nominal life cycle (−) 4000
σb Severity factor (20-35 (◦C))

(Suri and Onori (2016))
(−) 0.95

ηgrid Charging efficiency (Xiong
et al. (2009))

(−) 0.92

Pcool Cooling power (Corno and
Pozzato (2019))

(kW) 0.6

Pb Maximum power (Hu et al.
(2013))

(kW) 220

Pb Minimum power (Hu et al.
(2013))

(kW) −220

SoC Maximum SoC (%) 80
SoC Minimum SoC (%) 20
∆E Maximum ∆E (kJ) 216.8
∆E Minimum ∆E (kJ) 223.6

REX
ASPL Noise parameter (dB(A)/kW) Confidential
BSPL Noise parameter (dB(A)) Confidential
Ag Generated power parameter (1/kW) Confidential
Bg Generated power parameter (−) Confidential
Cg Generated power parameter (kW) Confidential
p(1)g Generated power breakpoint (kW) 20
p(2)g Generated power breakpoint (kW) 25
λf Diesel lower heating value (MJ/kg) 42.5
ϑ Coolant warmed-up tempera-

ture
(◦C) 60

ϑ Room temperature (◦C) 20
Pthr Idling power threshold (kW) 2

Pg(ϑ) Maximum power (warmed-up) (kW) 35
Pg(ϑ) Maximum power (cold) (kW) 27

Pg Minimum power (kW) 2
Price Price (kBC) 10

Cost Function
Ts Sampling time (s) 1
αBC Grid energy cost (BC kW−1 h−1) 0.125
βBC Battery cost (BC kW−1 h−1) 400
γBC REX fuel cost (BC kW−1 h−1) 0.104

δBC,0 REX noise cost (baseline) (BC dB(A)−1 h−1) 0.018

model of (23)). This extends available results in the literature
for linear difference equations (Damm et al. (2014)), and allows
to employ the closed-loop performance and convergence results
from Müller and Grüne (2016); Zanon et al. (2017); Faulwasser

et al. (2018) also to systems described by nonlinear, convex dif-
ference inclusions.

In this work, the difference inclusions are formalized as fol-
lows:

x(k+1) ∈ F(x(k),u(k),r(k)) =

= {y ∈ Rn|y≤ f (x(k),u(k),r(k))},
(32)

where f is a concave and continuous function. Moreover, x ∈
Rn denotes the state variables, u ∈ Rm the control variables,
and r ∈ Rw the reference signals. Therefore, the feasible tuples
(x,u,r) are collected in the following set, which is assumed to
be compact:

Y := {(x,u,r) ∈ Rn×Rm×Rw|gi(x,u,r)≤ 0 for all gi ∈ G }
(33)

with G the set of in total I constraints, and gi : Rn×Rm×Rw→
R convex for all i = 1, . . . , I. Hence, the following sets are de-
fined:

X := {x ∈ Rn|∃ u ∈ Rm and r ∈ Rw with (x,u,r) ∈ Y}, (34)

U := {u ∈ Rm|∃ x ∈ Rn and r ∈ Rw with (x,u,r) ∈ Y}. (35)

Ultimately, the general convex optimal control problem reads
as follows:

minimize
x(0),u(0),...,x(N)

N−1

∑
k=0

l(x(k),u(k),r(k))+Vf(x(N))

subject to x(k+1) ∈ F(x(k),u(k),r(k)) =

= {y ∈ Rn|y≤ f (x(k),u(k),r(k))}
gi(x(k),u(k),r(k))≤ 0, ∀gi ∈ G

(36)

with l being the continuous and convex stage cost and Vf a suit-
able convex and continuous terminal cost.

4.1. Steady-state analysis

Let us introduce (x?,u?, r̄), the optimal steady-state (or equi-
librium point) retrieved from the solution of the following con-
vex program:

minimize
x,u

l(x,u, r̄)

subject to x≤ f (x,u, r̄)

gi(x,u, r̄)≤ 0, ∀gi ∈ G

(37)

where r̄ is a constant reference signal and gi (a generic convex
constraint in G ) and x− f (x,u, r̄) are convex in (x,u, r̄). The
equilibrium tuple (x?,u?, r̄), solution of (37), satisfies l(x?,u?, r̄)≤
l(x̃?, ũ?, r̄) for all other equilibrium tuples (x̃?, ũ?, r̄) ∈ Y.

Definition 4.1. Let (x?,u?, r̄) ∈ Y be an equilibrium point of
(32), with r̄ a constant reference signal. The system (32) is
dissipative with respect to the supply rate s(x,u, r̄) = l(x,u, r̄)−
l(x?,u?, r̄) if there exists a storage function λ : X→R bounded
from below such that the inequality:

λ (x+)−λ (x)≤ s(x,u, r̄) (38)
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holds for all (x,u, r̄) ∈ Y and all x+ ∈ F(x,u, r̄) (with x+ de-
noting the time difference). The system is strictly dissipative
if there exists α ∈ K∞

3 such that the following holds for all
(x,u, r̄) ∈ Y and all x+ ∈ F(x,u, r̄):

λ (x+)−λ (x)+α(‖ (x− x?,u−u?) ‖)≤ s(x,u, r̄). (39)

Proposition 4.1. Consider the optimal control problem (36)
with dynamics (32), strictly convex l, a constraint set defined
as in (33) with gi convex, and a constant reference signal r̄. As-
sume (37) to satisfy Slater’s condition, i.e., there exists (x̂, û, r̄)∈
Y such that:

x̂− f (x̂, û, r̄)< 0,
gi(x̂, û, r̄)< 0, ∀gi ∈ G .

(40)

Then, there exists a vector νf ∈ Rn
+ such that the system is

strictly dissipative with respect to the supply rate s(x,u, r̄) =
l(x,u, r̄)− l(x?,u?, r̄) and with λ (x) = νT

f x.

The proof of Proposition 4.1 follows the lines of Damm et al.
(2014), where the same result was shown for linear discrete-
time systems (difference equations). Here, the results are ex-
tended to the case of nonlinear convex difference inclusions.

Proof. The strict convexity of l, together with the convexity
and compactness of the constraints, ensures that the optimiza-
tion problem (37) has a global and unique optimum (x?,u?, r̄).
Therefore, the Lagrangian for program (37) is introduced:

L (x,u, r̄) := l(x,u, r̄)+(νT
g ,ν

T
f )


g1(x,u, r̄)...
gI(x,u, r̄)

x− f (x,u, r̄)

 . (41)

The validity of the Slater’s condition implies strong duality4

(Boyd and Vandenberghe (2004)), i.e., the existence of Lagrange
multipliers νg and νf such that:

νg ≥ 0, νf ≥ 0 and
νg = 0, if gi(x?,u?, r̄)< 0

νf = 0, if x?− f (x?,u?, r̄)< 0,
(42)

and such that the following inequality holds:

L ?(x?,u?, r̄)≤L (x,u, r̄), ∀ (x,u, r̄) 6= (x?,u?, r̄). (43)

Moreover, (43) is satisfied with strict inequality for strictly con-
vex functions (Boyd and Vandenberghe (2004)). Let us define
L̂ as follows:

L̂(x,u, r̄) := l(x,u, r̄)− l(x?,u?, r̄)+(νT
g ,ν

T
f )


g1(x,u, r̄)...
gI(x,u, r̄)

x− f (x,u, r̄)

 .

(44)

3K∞ := {α ∈K |α is unbounded} and
K := {α : R+→ R+|α continuous, strictly increasing, α(0) = 0}.

4Strong duality means that the optimal solutions to the primal and dual prob-
lem are the same (Boyd and Vandenberghe (2004)).

Therefore, from (43) and (44):

L̂(x,u, r̄)> (νT
g ,ν

T
f )


g1(x?,u?, r̄)...
gI(x?,u?, r̄)

x?− f (x?,u?, r̄)

= 0 (45)

for all (x,u, r̄) 6= (x?,u?, r̄), due to the complementary slackness
condition (42). Given that νT

g [g1(x,u, r̄) . . .gI(x,u, r̄)]T ≤ 0 for
all (x,u, r̄) ∈ Y, L̂ is bounded from above on Y as follows:

L(x,u, r̄) := l(x,u, r̄)− l(x?,u?, r̄)+νT
f (x− f (x,u, r̄))≥ L̂(x,u, r̄).

(46)
Now consider any tuple (x,u, r̄)∈Y together with x+ satisfying
the difference inclusion (32), i.e.,

x+ ≤ f (x,u, r̄). (47)

Since νf ≥ 0, for any such points the following inequality must
hold:

L′(x,u, r̄,x+) := l(x,u, r̄)− l(x?,u?, r̄)+ν
T
f (x− x+)≥

≥ L(x,u, r̄)≥ L̂(x,u, r̄).
(48)

That is, if (47) holds with strict inequality, L̂ is strictly bounded
from above by L′. Choosing the storage function λ (x) = νT

f x,
from (48) the desired strict dissipativity result follows if there
exists some α ∈K∞, such that the following inequality holds
for all (x,u, r̄) ∈ Y and for all x+ satisfying (47):

L′(x,u, r̄,x+)≥ α(‖ (x− x?,u−u?) ‖). (49)

Since L′(x,u, r̄,x+) > 0 for all (x,u, r̄) ∈ Y and x+ satisfying
(47) with (x,u, r̄,x+) 6= (x?,u?, r̄,x?) and L′(x?,u?, r̄,x?) = 0,
Lemma A.1 of Berberich et al. (2020) can be applied to prove
the validity of (49), thus ensuring strict dissipativity.

4.2. P-periodic orbit

Dissipativity is now proven for a periodic reference signal r
obtained concatenating multiple times the reference signal r =
[r̄(1) . . . r̄(k) . . . r̄(P− 1)]. Given the compactness of Y, a P-
periodic solution P = {(x(0),u(0), r̄(0)), . . . ,(x(P−1),u(P−
1), r̄(P− 1))}, obtained solving the following optimal control
problem over r, exists:

minimize
x(0),u(0),

...
x(P−1),u(P−1)

P−1

∑
k=0

l(x(k),u(k), r̄(k))

subject to x(k+1) ∈ F(x(k),u(k), r̄(k)) =

= {y ∈ Rn|y≤ f (x(k),u(k), r̄(k))},
k = 0, . . . ,P−2
x(0) ∈ F(x(P−1),u(P−1), r̄(P−1)) =

= {y ∈ Rn|y≤ f (x(P−1),u(P−1), r̄(P−1))},
gi(x(k),u(k),r(k))≤ 0, for k = 0, . . . ,P−1 and ∀gi ∈ G

(50)

8



Definition 4.2. Let P? ⊂ Y be a periodic orbit, solution of
the problem (50), with r the reference signal. The system (32)
is said to be P-periodic dissipative with respect to the sup-
ply rate s(x,u, r̄(k)) = l(x,u, r̄(k))− l(x?(k),u?(k), r̄(k)) if there
exist storage functions λk : X→ R bounded from below (for
k = 0, . . . ,P−1) such that the inequality:

λk+1
(
x+
)
−λk (x)≤ s(x,u, r̄(k)) (51)

holds for all (x,u, r̄(k))∈Y and all x+ ∈ F(x,u, r̄(k)), with k =
0, . . . ,P−1. The system is P-periodic strictly dissipative if there
exists α ∈K∞ such that the following holds for all (x,u, r̄(k))∈
Y and all x+ ∈ F(x,u, r̄(k)):

λk+1
(
x+
)
−λk (x)+α(‖ (x,u) ‖Π)≤ s(x,u, r̄(k)) (52)

with k = 0, . . . ,P− 1 and Π = {(x?(0),u?(0)), ...,(x?(P− 1),
u?(P−1))} containing the elements of P?.

According to Köhler et al. (2018), in (52) the term ‖ (x,u) ‖Π

denotes the distance to the orbit, i.e.,

‖ (x,u) ‖Π = min
k∈{0,...,P−1}

‖ x− x?(k) ‖+ ‖ u−u?(k) ‖ .

(53)

Proposition 4.2. Consider the periodic optimal control prob-
lem (50) with dynamics (32), strictly convex l, a constraint set
defined as in (33) with gi convex, and a periodic reference sig-
nal r. Assuming Slater’s condition to be satisfied, there ex-
ist storage functions λk(x) such that system (32) is P-periodic
strictly dissipative with respect to the supply rate s(x,u, r̄(k)) =
l(x,u, r̄(k))− l(x?(k),u?(k), r̄(k)).

Most of the concepts introduced in the proof of Proposition 4.1
apply also for Proposition 4.2.

Proof. The strict convexity of l, together with convexity and
compactness of the constraints, ensures that the optimization
problem (50) has a global and unique optimal periodic orbit
P?. Therefore, the Lagrangian for program (50) reads as fol-
lows:

L (P) :=
P−1

∑
k=0

l
(
x(k),u(k), r̄(k)

)
+

P−2

∑
k=0

ν
T
f,k+1

(
x(k+1)− f (x(k),u(k), r̄(k))

)
+

ν
T
f,0
(
x(0)− f (x(P−1),u(P−1), r̄(P−1))

)
+

P−1

∑
k=0

ν
T
g,kg
(
x(k),u(k), r̄(k)

)
.

(54)

To improve readability, it is assumed that g = [g1 . . .gI]
T. Thus,

the validity of the Slater’s condition implies strong duality (Boyd
and Vandenberghe (2004)), i.e., the existence of Lagrange mul-
tipliers νg,k and νf,k such that:

νg,k ≥ 0, νf,k ≥ 0 and
νg,k = 0, if gi(x?(k),u?(k), r̄(k))< 0

νf,k = 0, if x?(k)− f (x?(k−1),u?(k−1), r̄(k−1))< 0,
(55)

and such that the following inequality holds:

L ?(P?)≤L (P) (56)

for all trajectories P of length P (not necessary periodic). More-
over, for all such P with P 6= P?, (56) is satisfied with strict
inequality for strictly convex functions. Let us define the L̂ as
follows:

L̂(P) :=
P−1

∑
k=0

[
l
(
x(k),u(k), r̄(k)

)
− l
(
x?(k),u?(k), r̄(k)

)]
+

P−2

∑
k=0

ν
T
f,k+1

(
x(k+1)− f (x(k),u(k), r̄(k))

)
+

ν
T
f,0
(
x(0)− f (x(P−1),u(P−1), r̄(P−1))

)
+

P−1

∑
k=0

ν
T
g,kg
(
x(k),u(k), r̄(k)

)
.

(57)

Therefore, from (56) and (57):

L̂(P)>
P−2

∑
k=0

ν
T
f,k+1

(
x?(k+1)− f (x?(k),u?(k), r̄(k))

)
+

ν
T
f,0
(
x?(0)− f (x?(P−1),u?(P−1), r̄(P−1))

)
+

P−1

∑
k=0

ν
T
g,kg
(
x?(k),u?(k), r̄(k)

)
= 0

(58)

for all P 6=P?, due to the complementary slackness condition

(55). Given that
P−1

∑
k=0

νT
g,kg
(
x(k),u(k), r̄(k)

)
≤ 0, L̂ is bounded

from above on Y as follows:

L(P) :=
P−1

∑
k=0

[
l
(
x(k),u(k), r̄(k)

)
− l
(
x?(k),u?(k), r̄(k)

)]
+

P−2

∑
k=0

ν
T
f,k+1

(
x(k+1)− f (x(k),u(k), r̄(k))

)
+

ν
T
f,0
(
x(0)− f (x(P−1),u(P−1), r̄(P−1))

)
≥ L̂(P).

(59)
Since νf,k ≥ 0, for all the feasible trajectories P of the differ-
ence inclusion, such that P is not equal to P?, the following
holds:

L′(P) :=
P−1

∑
k=0

[
l(x(k),u(k), r̄(k))− l(x?(k),u?(k), r̄(k))

]
+

ν
T
f,0
(
x(0)− f (x(P−1),u(P−1), r̄(P−1))

)
≥ L(P)> 0

(60)

with L′(P)= 0 only along the optimal periodic orbit P?. There-
fore, relying on Lemma A.1 of Berberich et al. (2020) allows to
conclude that the left hand side of (60) is greater than or equal
to a function α , i.e.,

L′(P)≥ α

(
P−1

∑
k=0
‖ (x(k),u(k)) ‖Π

)
≥ 1

P

P−1

∑
k=0

α(||(x(k),u(k))||Π).

(61)
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Considering a storage function λ (x) = νT
f,0x and an average cost

lp = 1
P

P−1

∑
k=0

l(x?(k),u?(k), r̄(k)), (61) is equivalent to Assumption

2 of Köhler et al. (2018). Eventually, Proposition 1 of Köhler
et al. (2018) can be used to conclude that (61) is equivalent to
the existence of storage functions λk(x) such that (52) holds.

4.3. EMPC formulation

Starting from (36), the convex MPC problem is formulated
as follows:

minimize
x(0),u(0),...,x(Np)

Np−1

∑
τ=0

l (x(k+ τ|k),u(k+ τ|k),r(k+ τ|k))+Vf(x(Np|k))

subject to x(k+ τ +1|k) ∈ F (x(k+ τ|k),u(k+ τ|k),r(k+ τ|k)) =
= {y ∈ Rn|y≤ f (x(k+ τ|k),u(k+ τ|k),r(k+ τ|k))}

gi(x(k+ τ|k),u(k+ τ|k),r(k+ τ|k))≤ 0, ∀gi ∈ G
(62)

for τ = 0, . . . ,Np−1 and Np ≤N the prediction horizon. There-
fore, at each time instant k, the optimal control problem is solved
on the horizon Np. Then, the receding horizon principle is ap-
plied and only the first control variable is applied for a duration
equal to Ts.

5. Results for the Energy Management Problem

In this section, the validity of the dissipativity conditions
(proved in Section 4) and their implications are shown for the
EMS problem at hand. To establish a direct correspondence
with the previous section, the following definitions are intro-
duced:

• x := ∆E is the state variable;

• u := [P(1)
g P(2)

g P(3)
g Pb]

T are the control inputs;

• r := Pec is the reference signal.

In this scenario, the stage cost l : Y→R is characterized by the
following structure:

l(x(k),u(k),r(k)) = l1(x(k))+ l2(u(k),r(k)) =

=−ξ x(k)+ l2(u(k),r(k))
(63)

with l1 and l2 defined as in (24) and ξ = αBC
ηgrid
∈ R+\{0} a user

defined parameter. Given (63), the minimum cost is always
obtained when the following condition is met:

x(k+1) ∈ F(x,u,r) = {y ∈ R|y = f (x(k),u(k),r(k))} (64)

i.e., along the boundary of the hypograph. As a matter of fact, if
f (x(k),u(k),r(k)) is positive, l1(x(k+1))< 0 and its minimum
is obtained when x(k + 1) = f (x(k),u(k),r(k)). Similarly, if
f (x(k),u(k),r(k)) is negative, l1(x(k+1))> 0 and its minimum
is obtained again for x(k+1) = f (x(k),u(k),r(k)).

Therefore, the MPC is formalized as in (62). As shown by
(18), the REX delivered power is limited to Pg(ϑ) just during

Figure 6: Solution of the MPC problem (62) for different values of the pre-
diction horizon Np, considering a constant vehicle speed of 30 (km/h) and a
SoC initial condition of 50%. Clearly, increasing Np, the MPC solution ap-
proaches the optimal steady-state. To ease readers’ comprehension, solutions
are zoomed between 0 and 500 (m). The MPC prediction is obtained assuming
perfect knowledge of the future driving cycle.

the first 6 (min) of operation, i.e., the time needed to warm-up
the ICE. In the MPC framework, this behavior is ensured re-
lying on two complementary formulations of (62). In practice,
the former is embedding the constraint with Pg(ϑ), useful for
the warming-up transient. Conversely, the latter is describing
the normal REX operation, i.e., the warmed-up scenario with a
maximum delivered power Pg(ϑ).

In the remainder of the section, the MPC problem (62) is
solved. The convergence of the online solutions to the opti-
mal steady-state and to the optimal P-periodic solution is ana-
lyzed. Finally, some results on a real world driving condition
are shown.

5.1. Steady-state

Assuming the REX to be warmed-up and considering a con-
stant speed profile at 30 (km/h) (and thus a constant power re-
quest of r̄ = 11.23 (kW) – the vehicle is assumed to be already
at the target speed and the acceleration transient is neglected –),
the optimal steady-state is computed solving (37), leading to:

P?
b = 8.03 (kW), P?

g = 3.20 (kW) 5, ∆E? =−8.03 (kJ). (65)

Therefore, the system (23) is proven to be dissipative with re-
spect to the optimal steady-state (65) checking whether (38) is

5P?
g is given by (31).
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Offline MPC

Np (s) NA 2 50 100
SoC (%) 45.8269 45.9113 45.8192 45.8226
J (BC) 1.7589 1.7600 1.7599 1.7599
Je (BC) 0.3634 0.3560 0.3640 0.3637
Ja (BC) 0.2539 0.2488 0.2544 0.2542
Jf (BC) 0.5337 0.5464 0.5331 0.5336
Jn (BC) 0.6079 0.6087 0.6084 0.6084
Opt. time 71.6 (s) 0.008 (s/step) 0.036 (s/step) 0.098 (s/step)

∗ NA: Not Applicable

Table 2: Sensitivity analysis with respect to the prediction horizon Np for the
steady-state scenario. With increasing Np, the average computation time to
solve the optimization problem increases (but is always below the sampling
time of Ts = 1 (s)). MPC results are compared to the optimal steady-state solu-
tion applied over a traveled distance of 10 (km). Moreover, the MPC prediction
is obtained assuming perfect knowledge of the future driving cycle.

Figure 7: Trapezoidal driving cycle. The area plot denotes the traveled distance.

satisfied for each tuple (x,u, r̄) ∈ Y. In practice, for the EMS
problem at hand, (38) is rewritten as follows:

νf( f (x,u, r̄)− x)≤ l(x,u, r̄)− l(x?,u?, r̄). (66)

For νf = 0.038 (BC/MJ) (retrieved from the solution of the dual
problem of (37)), the dissipativity condition holds true. Thus,
for a long enough prediction horizon, the solution of the EMPC
without terminal constraints defined as in (62) is expected to
converge to a neighborhood of the optimal steady-state (65)
(Faulwasser et al. (2018)). This is numerically proved solv-
ing (62) over a traveled distance of 10 (km) while assuming
a constant vehicle speed of 30 (km/h). As shown by Figure
6, while increasing Np the MPC approaches the optimal steady-
state at the cost of increasing the average optimization step time
(as shown by the last row of Table 2). In this scenario, the MPC
prediction is obtained assuming perfect knowledge of the future
driving cycle.

5.2. P-periodic solution
Analogously to the steady-state scenario, the REX is as-

sumed to be warmed-up. Thus, the optimal P-periodic orbit
is obtained solving (50) offline6 with a periodic reference r.

6Offline solution: computed from (24) over the horizon N assuming a per-
fect knowledge of the driving cycle.

Offline MPC

Np (s) NA 2 50 100
SoC (%) 44.7373 44.9212 44.7667 44.7792
J (BC) 8.014 8.020 8.019 8.019
Je (BC) 0.4581 0.4421 0.4556 0.4545
Ja (BC) 1.1690 1.1578 1.1672 1.1664
Jf (BC) 0.8283 0.8551 0.8327 0.8345
Jn (BC) 5.5586 5.5646 5.5636 5.5637
Opt. time 101.5 (s) 0.007 (s/step) 0.030 (s/step) 0.060 (s/step)

∗ NA: Not Applicable

Table 3: Sensitivity analysis with respect to the prediction horizon Np for the
P-periodic scenario. With increasing Np, the average computation time to solve
the optimization problem increases (but is always below the sampling time of
Ts = 1 (s)). MPC results are compared to the optimal P-periodic solution ob-
tained considering a traveled distance of 10 (km) (obtained concatenating the
driving cycle of Figure 7). Moreover, the MPC prediction is obtained assuming
perfect knowledge of the future driving cycle.

To this end, the trapezoidal speed profile of Figure 7 is con-
sidered and concatenated multiple times till a traveled distance
of 10 (km) is reached. The concatenations lead to a periodic
power request. Therefore, dissipativity is proven considering
the solution over one period (as highlighted in Figure 8). Re-
calling Definition 4.2 and considering the special case of linear
storage functions, for each k, the following condition must be
satisfied:

νf,k+1 f (x,u, r̄(k))−νf,kx≤ l(x,u, r̄(k))− l(x?(k),u?(k), r̄(k)).
(67)

Using the Lagrange multiplier trajectory of Figure 9, one can
conclude from Proposition 4.2 that there exist storage func-
tions λk such that periodic dissipativity as specified in Defini-
tion 4.2 holds. Numerical simulations over a traveled distance
of 10 (km) (considering several concatenations of the speed
profile in Figure 7) show the convergence of the EMPC scheme
to a neighborhood of the optimal periodic orbit. Since peri-
odic dissipativity holds, this means that the closed-loop sys-
tem exhibits approximately optimal performance (converges to
a neighborhood of the optimal periodic orbit, which by dissi-
pativity is the optimal system behavior). Note that for imple-
menting the EMPC scheme, the optimal P-periodic orbit does
not have to be known, but just for verifying periodic dissipa-
tivity. As shown by Figure 8, while increasing Np the MPC
approaches the optimal periodic solution at the cost of increas-
ing the average optimization step time (as shown by Table 3).

5.3. Real-world driving cycle

The real-world driving cycle is generated according to Ap-
pendix A over a traveled distance of 20 (km). The MPC solu-
tions are computed considering different prediction horizons Np
and assuming a perfect knowledge of the driving cycle. Even
in this complex scenario, numerical simulations show the MPC
scheme to converge to the optimal offline benchmark, computed
solving (24) (see Figure 10). As shown by Table 4, even the
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Figure 8: Solution of the MPC problem (62) for different values of the pre-
diction horizon Np, considering several concatenations of the driving cycle of
Figure 7 and a SoC initial condition equal to 50%. Clearly, increasing Np, the
MPC solution converges to the optimal P-periodic solution. To ease readers’
comprehension, solutions are zoomed between 0 and 450 (m).

shortest prediction window allows for a satisfactory approxi-
mation of the offline solution, leading to a final cost differ-
ence of 0.01 (BC). Eventually, Figure 11 shows the validity
of the EMPC convergence results even for a parameters setup
favoring the REX usage, i.e., for Nb = 3000 (−) and γBC =
0.074 (BCkW−1h−1) 7. In this scenario, the EMPC solution and
the optimal benchmark are close for both cold and warmed-up
engine operation. It is worth to mention that also other cost con-
figurations can be used within the EMPC setup. For example,
a lower baseline noise cost δBC,0 will generally result in a higher
usage of the REX and vice versa.

In this work, a perfect knowledge of the driving style is as-
sumed. Clearly, since the driving cycle is usually not known a
priori, other prediction strategies can be adopted. For instance,
the driving cycle can be assumed constant over the prediction
horizon or, as shown by Corno and Pozzato (2019), a Markov
chain based driver’s behavior learning mechanism in connec-
tion with robust/stochastic MPC schemes (Bayer et al. (2016))
may be introduced (in order to ensure robustness with respect to
modifications of the driving style). Since this is out of the scope
of this work, the introduction of different prediction strategies,
together with the analysis of the effectiveness of the proposed
MPC on a (more realistic) forward powertrain modeling, is left
for future developments.

7Typical U.S.A. diesel price.

Figure 9: Trajectory of the Lagrange multiplier over one period. The trajectory
is the one satisfying (67) while minimizing the following `2 norm:

√
∑k |νf,k|2.

Figure 10: Real-world scenario. The optimal control problem is solved over
a traveled distance of 20 (km) for different prediction horizons Np. Exception
given for the battery state of charge, the solutions are zoomed between 0 and
2.5 (km).

6. Conclusions

In this paper, the problem of online energy management for
hybrid electric vehicles is addressed. Defining a least costly ob-
jective function, the online solution is obtained relying on the
EMPC framework. Dissipativity properties for steady-state and
periodic operation of the system at hand are proved. Therefore,
some guarantees for the convergence of the economic model
predictive control to the optimum are provided. Given the close
to optimum performance of the proposed EMPC, the strategy
outlined in the paper is useful not only for on board energy
management but also for powertrain sizing issues or sensitivity
analysis. As a matter of fact, it allows to solve the energy man-
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Figure 11: Real-world scenario for Nb = 3000 (−) and γBC =
0.074 (BCkW−1h−1). The optimal control problem is solved over a trav-
eled distance of 20 (km) for Np = 50 (s). The behavior for cold and
warmed-up engine is shown. Exception given for the battery state of charge,
the solutions are zoomed between 0 and 2.5 (km).

Offline MPC

Np (s) NA 2 25 50
SoC (%) 59.8913 60.7559 60.0751 59.9730
J (BC) 17.8830 17.8863 17.8835 17.8832
Je (BC) 1.3272 1.2515 1.3111 1.3200
Ja (BC) 3.9395 3.887 3.9283 3.9345
Jf (BC) 1.5416 1.6683 1.5682 1.5533
Jn (BC) 11.0747 11.0795 11.0759 11.0753
Opt. time 330.0 (s) 0.008 (s/step) 0.022 (s/step) 0.040 (s/step)

∗ NA: Not Applicable

Table 4: Sensitivity analysis with respect to the prediction horizon Np for the
real-world scenario. With increasing Np, the average computation time to solve
the optimization problem increases (but is always below the sampling time of
Ts = 1 (s)). MPC solutions are compared to the offline benchmark policy com-
puted over a traveled distance of 20 (km). Moreover, the MPC prediction is
obtained assuming perfect knowledge of the future driving cycle.

agement problem with a reasonable computational effort even
over long horizons. This is usually a hard task if the solution
of (24) is carried out in a non-causal fashion over the complete
horizon N. As a matter of fact, mixed integer convex problems,
even though with a convex feasible set (when integrality con-
straints are relaxed), are NP-hard (Bonami et al. (2012)). In
this work, a simple idling heuristic based on a power threshold
Pthr is also defined. Nothing prevents from defining more com-
plex rules to manage the engine idling behavior. As a matter of
fact, convergence results would still apply.

Future works will investigate the possibility of introducing
complex models, i.e., without approximations and relaxations,
to describe more accurately the powertrain behavior in the sim-
ulations. Moreover, on board implementation of the proposed
EMPC solution of the EMS problem will be analyzed. Results
will be compared to state of the art online strategies such as
rule-based controllers (Jalil et al. (1997); Lin et al. (2001); Ban-
vait et al. (2009)) and the equivalent consumption minimization
strategy (Musardo et al. (2005); Pisu and Rizzoni (2007)).
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Appendix A. Driving cycle generation

This section aims to harmonize the driving cycle generation
mechanism for public buses. Conversely to automobiles, buses
are characterized by the presence of stops along the trip and by
the loading/unloading of passengers, which considerably varies
the mass of the vehicle. Therefore, being able to generate in-
formative driving cycles is of paramount importance in order
to characterize the energy behavior of the vehicle in different
scenarios.

To this aim, the driving cycle is generated considering cir-
cular routes, i.e., bus routes with coincident starting point and
end of line. A generic route is denoted by ρ and it is character-
ized by a traveled distance of d kilometers. Stops are randomly
chosen along the trip (on a distance base) in order to satisfy the
following properties:

• A stop is characterized by at least 15 (s) of zero vehicle
speed;

• Stops are separated at least by 2 (km).

Passengers’ loading/unloading may occur only during bus stops,
with the average passenger’s weight mpsg being 70 (kg) (Walpole
et al. (2012)). The speed profile between two stops is randomly
generated relying on a Markov chain stochastic process with
states W = {w1,w2, . . . ,ws} ⊆ R2, where s is the number of
states. According to Lee et al. (2011), each state wm̂, for all
m̂ ∈ {1,2, . . . ,s}, is defined as a couple (vm̂,am̂) with the scalar
quantities vm̂ and am̂ denoting speed and acceleration, respec-
tively. Therefore, the driving cycle is parametrized as tran-
sitions from a (velocity,acceleration) pair to another. All the
probabilities of transitioning, in one time step, from any state
to any other state are summarized in the transition probability
matrix T ∈ Rs×s:

Tm̂n̂ = Pr
(
w(k+1) = wn̂|w(k) = wm̂

)
= pm̂n̂ (A.1)

for all n̂, m̂ ∈ {1,2, . . . ,s}. Therefore, starting from the known
driving cycle of Figure A.12, the transition probability matrix
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Figure A.12: Driving cycle used to train the transition probability matrix for the
Markov chain model. Shades of gray from dark to light denote the bus driving
cycles in Manhattan (Kelly et al. (2016)), Orange County (Kelly et al. (2016)),
and Graz (Austria), respectively. Road slope is zero over the whole driving
cycle.

Figure A.13: Generated driving cycle over a traveled horizon of d = 20 (km).
Stops are modeled as binary variables equal to one when a stop occurs.

is built computing the probability to move from a certain (ve-
locity,acceleration) state m̂ to another one n̂ according to the
following formula:

pm̂n̂ =
Nm̂n̂

∑
j∈J

Nm̂j
(A.2)

where Nm̂j is the number of times a transition occurs from state
m̂ to state j, and J is the set of reachable states from state
m̂. Figure A.13 shows an illustrative driving cycle generated
with the aforementioned strategy. Considering a traveled dis-
tance of d = 20 (km), five stops are randomly located along

the trip. Then, the speed profile between the stops is generated.
Moreover, the number of passengers #psg is varied in corre-
spondence of each bus stop. The overall mass variation due
to loading and unloading of passengers is given by the product
between #psg and mpsg. Clearly, the proposed approach can be
used to generate driving cycles with higher traveled distances
and different number of bus stops.
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Damm, T., Gruüne, L., Stieler, M., Worthmann, K., 2014. An exponential turn-
pike theorem for dissipative discrete time optimal control problems. SIAM
Journal on Control and Optimization 52, 1935–1957.
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Convex optimization of charging infrastructure design and component sizing
of a plug-in series HEV powertrain. IFAC Proceedings Volumes 44, 13052–
13057.
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