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Abstract 

Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure 
to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying 
surface decay is a research topic of considerable interest at present. This study presents two approaches: ChatGPT and an object 
detection architecture (YOLOv5). Specifically, this investigation sought to evaluate the ChatGPT’s ability to identify and describe 
surface degradation pathologies by exploiting its pre-trained models for image analysis. The ICOMOS-ISCS: Illustrated Glossary on 
Stone Deterioration Patterns (2008) was provided as a reference to guide the use of specific terminology. In the first test phase, to 
verify the accuracy of the ChatGPT results, benchmark images (depicting different types of damage) extracted from the UNI 11182 
(2006) standard referring to the definition of degradation types were used. Only later were images from literature studies and other 
photographic datasets also used. In general, the results of the analysis were validated with the conclusions of professionals and with 
the conclusions of other AI techniques, as well as with the descriptions provided by reference manuals in the literature. In particular, 
the decay annotations predicted by the pre-trained object detection model were compared with those made by human experts. The 
capabilities and limitations of both approaches as tools for identifying deterioration pathologies are illustrated.

1. Introduction

1.1 Overview 

Cultural heritage (CH) structures are typically prone to 
degradation because of their age and exposure to various 
external factors. Detecting and identifying surface-related 
damages to CH structures can enable the timely monitoring of 
their progression and the implementation of appropriate 
monitoring strategies and interventions if required. 
In general, professionals in the field of conservation and 
restoration rely on visual inspections. Although these manual 
inspections have been proven to be reliable and can be 
performed by “eyes,” eliminating the need for sophisticated 
equipment, they could be supported by automatic procedures. 
Indeed, several recent studies have focused on augmenting 
manual visual inspections with computer vision (CV) 
techniques that rely on object detection algorithms to identify 
and locate elements in CH images, such as “surface 
deterioration patterns” (e.g., cracks, mortar removal, joint 
damages), “surface damages in façades,” and “missing 
components.” 
An artificial intelligence (AI)-assisted visual inspection system 
based on “object detection” models could be used to detect and 
identify damages in the images of CH buildings. Object 
detection models are trained by an expert using supervised 
learning in order to identify decay on a new dataset of photos. 
These models, once trained, have demonstrated good 
performance in detecting damage in CH structures. Mishra et al. 
(2024) deployed deep learning (DL) you only look once 
(YOLO) framework as an object detection model for their Dadi 
Poti case study in New Delhi, India; they were able to identify 
four types of defects— cracks, exposed bricks, discoloration, 

and spalling—with a maximum average precision (mAP) of 
approximately 93.7%. Numerous applications exist where DL 
models have been deployed for damage detection in CH sites, 
such as damage to Portuguese tiles azulejos (Karimi et al., 
2024), three types of defects from English and Dutch cemeteries 
in Surat (Mansuri and Patel, 2022), efflorescence and spalling 
damages in historic masonry structures (Wang et al., 2019), four 
types of damages to CH facades (sabotage, erosion, change of 
color, material loss) in the city of “Al-Salt” in Jordan (Samhouri 
et al., 2022), cracks in timber elements of CH structures (Ma et 
al., 2022), detecting deterioration patterns following ICOMOS 
glossary for CH fields (Zhang et al., 2024), and weathering in 
stone CHs (Hatir et al., 2020).  
Mishra and Lourenco (2024) summarized various applications 
of DL models to ease the inspection process of CH buildings 
and help inspection professionals in their fieldwork via 
automatic identification of damage types for implementing 
suitable measures. Thus, AI-assisted visual inspection systems 
have found various applications in the inspection of CH 
structures. However, CV models are not sufficiently mature for 
professional use in field activities. The CV approach requires an 
important level of expert training and familiarity, as well as 
considerable time and money, to be effectively implemented. 

1.2 Related work based on ChatGPT 

ChatGPT has been used in several civil engineering applications 
(Kim et al., 2024). Hostetter et al. (2024) evaluated the 
performance of ChatGPT for handling questions related to fire 
safety and obtained an accuracy of 88%. In addition to 
applications in CV, GPT models have been deployed in the 
construction industry for material selection and optimization 
(Saka et al., 2024).  
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ChatGPT-assisted programming has been used to solve 
problems in geotechnical engineering such as stability of slopes, 
seepage, and X-ray image processing (Kim et al., 2024); safety 
management in construction through proper hazard recognition 
(Uddin et al., 2023); scheduling for simple construction projects 
(Prieto et al., 2023); risk management in construction projects 
(Aladağ, 2023); and seismic engineering by communicating 
complex concepts in simple terms (Ray 2024).  
Some ChatGPT applications are also suitable for image-
processing tasks. Cai et al. (2024) assessed the performance of 
ChatGPT in cementitious composites by asking forty-five 
questions related to the cementitious composites sector; the 
module could identify cracks and successfully render the 
distribution chart of their widths. However, to draw rendered 
images of cracks using ChatGPT, an example image having 
cracks that were drawn manually by red lines by authors was 
given as input to  ChatGPT 4.0, and then the following question 
was asked: “How many cracks are there similar” to the image 
inputted now? “Is it possible to create a distribution chart of 
crack widths based on the scale?”. Osco et al. (2024) utilized 
Visual ChatGPT, which combines ChatGPT’s large language 
model (LLM) capabilities with visual computation, for image 
processing related to the remote sensing domain. The model 
performed various image processing tasks, such as edge/straight 
line detection, scene classification, and image segmentation, and 
it could be incorporated into CH images. In a recent study by 
Ciccone (2024), ChatGPT was used as an information 
technology assistant to analyze aerial and satellite images, 
mainly multispectral orthophotos from drone surveys, to detect 
vegetation and anthropogenic anomalies.  
 

2. The Proposed Method  

This study evaluated the ability of ChatGPT to identify decay in 
CH structures, leveraging its pre-trained models to process and 
describe images. The ICOMOS (ICOMOS-ISCS: Illustrated 
Glossary on Stone Deterioration Patterns, 2008) glossary was 
provided as a reference to guide the use of specific terminology. 
The model was implemented to limit results to a description of 
damage without suggesting possible interventions.  
Benchmark images depicting several types of damages sourced 
from manuals, images analyzed using CV reported in the 
literature (e.g., Mishra et al. 2024) and other photographic 
datasets were all used to assess the accuracy of ChatGPT in this 
context. Some sample pictures used for testing ChatGPT were 
taken from the UNI 11182 standard, referring to the definition 
of decay types (UNI – Ente Italiano Di Normazione, 2006). The 
analysis result was validated with the conclusions of 
professional experts and conclusions from other AI techniques, 
apart from descriptions provided by benchmark manuals in the 
literature. 
The results, summarized in Table 1, include damage pathology 
descriptions generated by ChatGPT. The results of the 
benchmark images (Figure 1) and their descriptions can be 
compared by the reader with benchmarked descriptions, like 
those available in the UNI 11182 standard. The model was 
evaluated in various scenarios to estimate its ability to describe 
damages to different CH structures.  
The ChatGPT potential for practitioners lies mainly in the 
absence of the necessity to build custom models. Overall, 
ChatGPT was able to describe the deterioration patterns (Table 
1 and Figure 1) and locate them on the image, providing a 
description of the position and some information about the 
extension. On the other hand, the description appears to follow a 
predefined checklist rather than addressing the specific problem 
in detail. This approach could be useful, but it should be 
regarded as a supporting tool rather than a definitive solution. 

 
Figure 1. Test images for ChatGPT chosen from UNI 11182 

(2006) showing various types of damages: a) biological 
colonization, b) crust deposit, c) deformation, d) superficial 

deposits, e) disintegration, f) efflorescence, g) graffiti, h) 
biological colonization, i) presence of vegetation, j) detachment, 

and k) pitting. 

 

Image 
(Figure 1) 

Description of damages by ChatGPT 
 

a Biological Colonization 
- **Moss**: Extensive growth of moss is visible on 
the stone surfaces, particularly on the lower sections 
and near the ground. The moss covers large areas and 
is likely contributing to moisture retention and 
further stone deterioration. 
- **Algae**: The greenish tint on the stone surfaces 
indicates the presence of algae, which thrives in 
moist environments. 
- **Plant**: Small plants and possibly lichens are 
growing in crevices and on the surface of the stone, 
contributing to biological colonization and potential 
further deterioration of the stone material. 

b Discoloration and Deposit 
- **Black Crust**: Significant black crust deposits 
are visible, particularly on the upper sections of the 
capital and along the archway. This crust is a result 
of atmospheric pollution and the accumulation of 
particulate matter. 

c Crack and Deformation 
- **Deformation**: The plaque shows noticeable 
deformation, evident in its warped and bent shape. 
This deformation suggests physical stress or thermal 
expansion and contraction over time. 

d Discoloration and Deposit 
- **Black Crust**: A noticeable black crust has 
formed on the helmet and other parts of the sculpture, 
indicative of atmospheric pollution and the 
accumulation of particulate matter. 
- **Staining**: Dark staining is visible on the lower 
sections of the helmet and on the face, likely caused 
by water runoff and the deposition of pollutants. 

e Features Induced by Material Loss 
- **Erosion**: The column exhibits significant 
erosion, particularly on the lower part. The stone 
surface is heavily worn and pitted, indicating the 
gradual removal of material due to weathering and 
possibly human interaction. 
- **Mechanical Damage**: There are areas of 
mechanical damage, particularly around the base of 
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the column, where pieces of stone appear to have 
been chipped or knocked off. 

f Discoloration and Deposit 
- **Efflorescence**: White efflorescence is 
prominently visible in the recessed areas and on the 
surface of the decorative elements. This indicates the 
presence of soluble salts that have migrated to the 
surface and crystallized, likely due to moisture 
issues. 

g Discoloration and Deposit 
- **Graffiti**: The surface of the stone wall has been 
vandalized with graffiti, with both white and purple 
spray paint applied to the surface. This graffiti 
represents a form of discoloration and visual 
pollution, detracting from the aesthetic and 
potentially causing chemical damage to the stone. 

h Biological Colonization 
- **Algae and Moss**: The statue is extensively 
covered with green algae and moss, particularly on 
the head and upper sections. This biological 
colonization is dense and widespread, leading to 
significant discoloration and potential damage to the 
stone surface by retaining moisture and promoting 
further deterioration. 

i Biological Colonization 
- **Plants**: There is significant biological 
colonization by plants, particularly ferns and other 
small vegetation, growing within the cracks and 
mortar joints. This growth is likely contributing to 
further deterioration by retaining moisture and 
exerting physical pressure on the stone and mortar. 
- **Algae and Moss**: In addition to the plants, 
there is evidence of algae and moss on the stone 
surface, especially in the areas around the cracks and 
where the stones meet. These biological elements 
thrive in the moist conditions provided by the cracks 
and contribute to the staining and further breakdown 
of the material. 

j Detachment 
- **Scaling**: Scaling is evident on the stone 
surfaces, where thin layers of material have detached, 
particularly around the cracks and along the 
horizontal joints. 
- **Exfoliation**: Some areas exhibit exfoliation, 
where multiple thin layers of stone have peeled away 
from the underlying material. This is especially 
noticeable near the cracks. 

k Features Induced by Material Loss 
- **Pitting**: The stone surface exhibits significant 
pitting, with numerous small, shallow depressions 
scattered across the area. This pitting indicates 
localized material loss, likely due to chemical or 
physical weathering processes. 

Table 1: Response of ChatGPT in determining the damages in 
the test images of Figure 1 (some responses are shortened due to 
space requirements and damage descriptions pertaining to that 

damage typology). 

 
Additional images (captured by the authors) were used to test 
ChatGPT (Figure 2). In many instances, the ChatGPT model 
provided additional interesting information. For example, it 
counted the number of visible birds (Figure 2a), unlike the 
model presented by Mishra et al. (2022), as it was not trained 
for identifying birds and other objects such as vegetation and 
missing components.  

 
Figure 2. Additional images chosen from a) Mishra et al. 
(2024), b) Photo by L. Barazzetti, c) Limonaia case study 

(equirectangular image by F. Fassi and K. Zhang) for ChatGPT 
showing various types of damages. 

 
In fact, Figure 2a from Mishra et al. (2024) was assessed using a 
YOLOv5 defect detection model, which could detect spalling 
and cracks at two locations. The ChatGPT model still correctly 
predicted that the structure is a dome, identifying cracks and 
vegetation as surface degradation. However, the ChatGPT 
model lacked precision in pinpointing the damaged locations, so 
generic responses were provided instead. As shown in Figure 
2b, the ChatGPT model described the exact location of cracks 
and provided some additional information. The response was 
exact, “The crack starts at the top left corner of the archway, 
just below the edge of the wall. It extends downward, following 
a roughly vertical path, slightly curving to the right. The crack 
passes through the painted area with the decorative elements 
and the two crests. It continues downward until it reaches the 
white stone frame of the archway, where it passes through the 
corner of the stone”. This description was accurate, as 
confirmed through a naked-eye inspection.  
For Figure 2c, the ChatGPT model pinpointed various 
deterioration patterns, such as material loss, discoloration and 
deposit, and biological colonization. It also described the 
presence of potted plants along the right side of a corridor; this, 
however, is not a form of deterioration but human activity. 
However, when the exact locations were pointed out by drawing 
bounding boxes (object detection phase) over the deteriorations, 
the ChatGPT model failed. This result can be expected because 
ChatGPT is primarily an AI language processing model rather 
than an image processing model, typically using CV algorithms 
for object detection. 
We prompted a related query, and ChatGPT clarified that it 
lacks direct integration with specific machine learning 
frameworks for object detection tasks, such as YOLO or region-
based convolutional neural networks (R-CNNs), which are 
already used for damage detection in CH structures (Mansuri 
and Patel, 2022M; Zhang et al. 2024; Mishra and Lourenco, 
2024).  
ChatGPT’s limitations became evident when asked to precisely 
pinpoint damage locations, as shown in test images (Figure 3 a). 
Even after the query prompts were modified, only slight 
improvement was observed in crack locations (Figure 3 b), but 
it was still not sufficiently accurate to match the standards of 
CV-identified images. Similarly, for Figures 3c and 3d the 
damage was described correctly by the ChatGPT tool, but when 
asked to pinpoint the location of crack (Figure 3c) and peelings 
(Figure 3d), it failed.  
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Furthermore, when the images of random CH monuments were 
used with the implemented GPT, it was able to recognize the 
architectural style and elements (Llamas et al., 2017; Siountri 
and Anagnostopoulos, 2023) quite accurately, which has been 
the subject of research in many papers related to CH and object 
detection area. Additionally, when compared to the images from 
previous research papers on tile-related damages (Karimi et al. 
2024), the GPT model was able to correctly describe visible 
deterioration patterns, with details such as the noticeable 
fracture runs across the yellow tile pattern (please refer to 
research paper of Karimi et al. 2024, Figure 2b where a yellow 
tile has a crack as a damage typology). The GPT model 
describes the crack location by following the description “The 
crack appears to be a large fracture cutting through several 
tiles”. Also, in the case of another image (i.e. Figure 2a) in 
Karimi et al. (2024), the GPT model description category was 
“detachment”, and the description as follows “we observe 
peeling or scaling in the lower portion of the blue and white 
tiles. The ceramic glaze or outer layer of the tiles seems to be 
detaching, leaving a rough, exposed underlying surface”, which 
is quite accurate. 
 

a                                                       b 

 
c                                                     d 

Figure 3: Limitations in identifying damages using ChatGPT 
(bounding boxes are not at exact locations). 

 
 

ChatGPT model was tested to describe damages, but it 
occasionally suggested possible causes and intervention 
remedies for repair. Interventions are not considered here in the 
comparison. Moreover, the GPT model used was instructed not 
to propose interventions. 
Tailored applications can be developed specifically to detect 
damage pathologies. For example, Spennemann (2023) 
developed a smart anomaly detection assistant (S.A.D.A version 
0.9) for detecting archaeological anomalies. This is a step ahead 
of using object detection models, which only pinpoint the 
damage locations; in some cases, this model could also segment 
damages. Inspection professionals can decide what to do with 
the damage and suggest remedies. Another aspect brought forth 
by the tests suggests that, in many instances, the description and 
the causes of damages were too generic, with multiple damage 
descriptions likely to be inaccurate. Therefore, ChatGPT may 

not be completely reliable in some cases and cannot replace a 
human specialist; however, it can be considered a useful aid. 
The nature of ChatGPT as a language model rather than an 
image-processing model is the main limitation analyzed in this 
paragraph. The tests emphasized that custom CV models better 
perform drawing bounding boxes over decay on architectural 
surfaces. After acknowledging this gap, the next chapter 
(Chapter 3) shows how a CV algorithm for object detection 
operates, allowing readers to compare the two approaches.  
 
 

3. Comparison with Object Detection Experiences 

In previous chapters, we evaluated ChatGPT’s ability to identify 
and describe decay. In the following one, we compare the 
annotations made by an object detection architecture, YOLOv5, 
with those made by human experts. 
 
3.1 Existing Object Detection Models for Architectural 
Pathology 

A lot of efforts have been made recently to develop a robust 
object detection model for architectural pathology. For example, 
Chen et al. (2019) used a convolutional neural network to train 
an image dataset of 40,000 images of cracked and uncracked 
concrete spaces. The model achieved an accuracy of 99.71%. 
Also, Deng et al. (2020) used a YOLOv2 network to detect 
concrete cracks with complex backgrounds, achieving a 
maximum mAP of 77%, while the Faster RCNN model 
achieved 76%. Even if complete and with quite high accuracy in 
detecting cracks, these works struggle under conditions where 
cracks and background are not easily distinguishable. 
Moreover, they focus on one material and one decay type. For 
existing models, it is difficult to distinguish decay when trained 
over a various set of photographs with different kinds of 
pathologies. Indeed, all show different exterior appearances, 
varying depending on the material, color, lighting, etc.  
Set against this complex background, the experience of the 
authors (Mishra et al., 2024a; Zhang et al., 2024) led to 
acquiring new considerations in relation to how superficial CV 
architectures identify pathology.  
 
3.2 Challenging outcomes 

Unlike the off-the-shelf ChatGPT approach, using the object 
detection model requires datasets expressly and consciously 
annotated for the application scene. It used predefined 
categories extracted from the ICOMOS glossary of stone 
pathology (see Table 2). Some decays included in the ICOMOS 
were excluded from this work (too difficult to detect by visual 
analysis alone, i.e. deformation, blistering, scaling, 
fragmentation, bursting, perforation, pitting, mechanical 
damage, missing parts, microkarst, encrustation, patina, soiling, 
film, glossy aspect, algae, mould, lichen). In certain instances, 
two decay types have been amalgamated for visual coherence, 
with both names kept, to allow the experts to deepen their 
analysis. Table 2 shows the categories that serve as the 
foundation for our classification and labeling. 
 

Used categories 
for detection 

Definition 

Crack 

Crack 
- Individual fissure, clearly visible by the 
naked eye, resulting from the separation of one 
part from another. 
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Peeling 
Delamination 
Disintegration 

 Detachment 
- Peeling: Shedding, coming off, or partial 
detachment of a superficial layer (thickness: 
sub-millimetric to millimetric) having the 
aspect of a film or coating which has been 
applied on the stone surface. 
- Delamination: (…) It corresponds to a 
physical separation into one or several layers 
following the stone laminae. The thickness and 
the shape of the layers are variable. (…) 
-Disintegration: Detachment of single grains 
or aggregates of grains. 

Alveolization 
Erosion 

Features induced by material loss 
- Alveolization: Formation, on the stone 
surface, of cavities (alveoli), which may be 
interconnected and may have variable shapes 
and sizes (generally centimetric, sometimes 
metric). 
- Erosion: Loss of original surface, leading to 
smoothed shapes. 

Discoloration 
Crust and Deposit 

Subflorescence 
and Efflorescence 

Graffiti 

Discoloration and Deposit 
- Discoloration: Change of the stone colour in 
one to three of the colour parameters: hue, 
value and chroma. (…) 
-Crust: Generally coherent accumulation of 
materials on the surface. A crust may include 
exogenic deposits in combination with 
materials derived from the stone. (…) 
-Deposit: Accumulation of exogenic material 
of variable thickness. (…) 

Biological 
Colonization 

Plant 

Biological Colonization 
-Biological Colonization: Colonization of the 
stone by plants and micro-organisms such as 
bacteria, cyanobacteria, algae, fungi, and 
lichen (symbioses of the latter three). (…) 
-Plant: Vegetal living being, having, when 
complete, root, stem, and leaves, though 
sometimes consisting only of a single leafy 
expansion (e.g., Tree, fern, herb). 

Table 2: Predefined categories used for training the object 
detection model (description by ICOMOS-ISCS, 2008). 

 
The Yolov5 model was trained on a dataset of 1,600 images 
collected and annotated manually, representing 21,000 instances 
(decays) labelled across five different materials (stone, cement, 
plaster, wood, and ceramic). Each image contains an average of 
13 instances. Furthermore, the architecture employs data 
augmentation techniques to prepare the neural network for 
robust training. Unfortunately, in this case, as in many 
examples, a balance problem exists in sample distribution 
across categories. The categories that show the highest number 
of instances (over 3,000) are biological colonization, peeling, 
and chromatic alteration. Other categories, like graffiti, are 
instead underrepresented. Examples of the predicted decays are 
reported in Figures 4 and 5. 
Little and adjacent boxes were used to manually mark the 
pathology, rather than a single box labelling the whole damaged 
area at once. The annotation boxes mainly cover under 10% of 
the entire image area.  
The model performance was evaluated using a t-SNE (T-
distributed Stochastic Neighbour Embedding) graph (please 
refer to Zhang et al., 2024), a visualization that analyses the 
confusion between each category within the provided images. It 
points out visual clusters of related classes that are easily 
mistaken for each other, indicating that the dataset annotation is 
under criticism. The more isolated clusters are those that are 

best defined by the machine without many misclassification 
issues. For example, biological colonization, crust & deposit are 
in this work the most differentiable from the other categories, 
while the areas related to plants, discoloration, disintegration, 
and crack show overlapped features. This behaviour reflects 
shared visual characteristics of categories, particularly if 
examining the pathologies of the same material (Figure 6).  
 

 
Figure 4. YOLOv5 model prediction (Zhang et al. 2024) on an 
image of Casa Parrocchiale in Civate (photo by F. Fassi): green 
squares correctly detecte plants, purple ones detecte black crust. 

 
Figure 5. YOLOv5 model (Zhang et al. 2024) prediction 

performed on an image of Casa Parrocchiale in Civate (photo by 
F.Fassi). The model also identifies plants far away or not 

damaging the building in the outer courtyard (green squares). 

 
Figure 6. Every column represents a category used to train the 

model, from the left: Biological Colonization, Plant, Crack, 
Delamination, Disintegration, Peeling, Discoloration, Crust and 

Deposit, Graffiti, Subflorescence and Efflorescence, 
Alveolization. The first 5 rows are sample images, the light blue 

row is an Average Image, and the last one is the Strengthened 
Pattern Image derived from it. (Adapted and modified from 

Zhang., et al., 2024) 
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Taking plaster as an example (Figure 6), its pathologies (cracks, 
peeling, etc.) might share similar visual features in images. 
Average images were generated by averaging pixel values from 
all the example images provided. A strengthened pattern, 
instead, is an image that shows a modified or enhanced version 
of the average image, where certain patterns or features are 
accentuated or intensified. 
However, there are instances where understanding how 
computers distinguish between similar types of decay can be 
enlightening. For example, in distinguishing between cracks and 
detachment (Figure 7), the trained model discerned subtle 
differences, such as the presence of shadows around detached 
areas. By digging into various aspects of model performance, 
the reader can better understand how far the machine can go in 
detecting surface anomalies and, eventually, pave the way for 
bridging the gap between AI expertise and human specialists in 
architectural heritage analysis.  
 

 
Figure 7. Object Detection Model Visualization with Eigen-

CAM (Muhammad and Yeasin, 2020). Left to right: Test image 
with peeling pathology; Eigen CAM extracted from the 7th 

layer; Scaled CAM within the bounding boxes. 

 

3.3 Discussion: Human and Machine Annotation 

Architectural pathology is indeed a difficult and multi-faceted 
subject to be analyzed with the aid of visual data. So, to prove 
the behaviour of the model trained by Zhang et al. (2024), the 
authors enlisted the expertise of Prof. Sonia Pistidda, a seasoned 
professional working with architectural preservation in 
Politecnico di Milano. The model (as described in previous 
Chapter 3.2) comes from research focusing on practical tests on 
architectural pathological issues using image classification and 
object detection methods. Prof. Pistidda performed an image 
annotation on cube face images with a pixel size of 640*640. 
This data was labelled using ICOMOS categories, just like the 
training set of the model. We then used a YOLO v5 model, 
trained on 1,621 samples containing 21,008 instances of 
pathology, to make predictions on images of the same size and 
compare annotations. The comparison (Figures 8 and 9) reveals 
clear distinctions between human and machine annotation 
approaches.  
Figures 8 and 9 allow us to compare the annotation done by 
Prof. Pistidda and the YOLOv5 framework used by Zhang et al. 
(2024). Note that labelling is associated with a three-letter code. 
“DEL” stands for delamination, “COL” for biological 
colonization, “PLT” for the presence of vegetation, “CHR” for 
discoloration, “ERO” for erosion, “CRU” for crust and deposit.  
In Figure 8, human annotations focus on biological colonization 
in the main area of the picture, and plants and vegetation are 
totally ignored. Instead, the YOLO model annotates also plants 
in vases at the bottom, even if they do not pose any threat to the 
state of the building. 
In the second image (Figure 9), an opposite result is visible: the 
model didn’t detect most of the decay phenomena that the 
human annotator identified. This result probably depends on the 
fact that pathologies like erosion, crust, and deposit coexist in 
the pavement represented in the picture. There is no way to map 
properly this surface using a bounding box. Maybe a 

segmentation model could behave better in a nuanced and 
complex task like this one.  
Some considerations must be made if the aim is to integrate this 
automatic, fast and low-cost technology into future professional 
life. 
Concerning the subjectivity of human decision-making, several 
conclusions can be drawn:  
- First, machines excel at making exhaustive predictions 

across the entire image compared to humans (obviously 
when the degradation analysis is done on a fate and not on 
site). Human attention is mostly focused on the central, 
clear parts of the image, considering difficulties in 
recognizing objects in blurry, dusky, distant areas. On the 
contrary, machine learning detection systems, though 
limited by the receptive field affected by the kernel size, 
dilation, and pooling operations, still the model prediction 
is always exhaustive and analyses the full image. 

- Second, human predictions are more context-dependent, 
both an advantage and a disadvantage. In the tested cases, 
expert annotations focused on pathological objects on 
architectural surfaces, ignoring ‘irrelevant’ elements (such 
as the plant pots in Figure 8). However, the machine made 
a more accurate and timely identification of the plants 
among the pavement tiles (Figure 9). Instead, a human 
analysis could overlook the annotation of some of these. 

- Third and last, deep learning-based networks for detecting 
decays in photographs can offer a solution to overcome 
physical limitations, aid experts in their work, and offer the 
prospect of a non-destructive testing technique. This 
approach can provide information about the health 
condition of a structure without compromising its integrity. 

Instead, concerning the (sometimes problematic) objectivity of 
machine decision-making, other conclusions can be drawn: 
- First, the accuracy of the trained model is not comparable 

to the human decision-making process, as experts draw on 
extensive prior experience and factors such as materiality, 
estimated geometric shape, lighting conditions, and tactile 
perception.  

- Second, architectural pathology detection is more complex 
than identifying objects like traffic lights or people due to 
the absence of neat boundaries. Decay phenomena blend 
one into the other, and their appearance depends also on 
their interaction. This complicates labelling. In this work, 
both the human expert and machine used a rectangular 
bounding box to delimit the pathology, but a single box 
can have difficulty embracing the full decay without 
including other unaffected areas of the wall. Continuous 
and adjacent boxes are used to mark the pathology in the 
YOLOv5 training, while the human expert used a single 
rectangular box including the whole damaged area. A more 
“natural” way to annotate.  

- Third, the evident advantage of using CV architectures for 
object detection is its ability to learn what an image of a 
pathology entails—through an internal representation— 
enabling it to correctly predict and classify a crack, for 
example, in new images. Thus, creating a good set of 
training data with a good definition of categories is 
essential. In the work with ICOMOS, for example, a stage 
of selecting detectable patterns and categorizing them was 
inserted (Table 2). This is a step that has been revealed to 
be less time-expensive for tools like ChatGPT, for 
example. This makes it faster but potentially less accurate. 
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Figure 8. YOLOv5 object detection (cyan-labeled little boxes) 
vs. human annotation (red-labeled bigger boxes). Limonaia, 

Lainate (photo by F. Fassi). 

 

 

 
Figure 9. YOLOv5 object detection (cyan-labeled little boxes) 

vs human annotation (red-labeled bigger boxes). Casa 
Parrocchiale, Civate (photo by F. Fassi). 

4. Conclusion 

Based on the literature review and analysis, we concluded that 
most ChatGPT applications are currently focused on language 
processing tasks (answering queries, as reported by Hostetter et 
al., 2024 and Cai et al., 2024) rather than CV tasks.  
Various technologies associated with AI can be broadly 
categorized into three primary domains: Sense, Comprehend, 
and Act (Prasad and Choudhary, 2021). Sensing involves the 
perception of surroundings, including acquiring and processing 
sounds, images, and speech. Comprehending entails analyzing 
the collected information while acting, representing the physical 
execution of computer language instructions. AI technologies 
align with corresponding human capabilities, connecting CV 
and sensing, machine learning and action and natural language 
processing and comprehension. 
However, when the AI is used for architectural pathology 
detection (requiring a deeper understanding of the matter), there 
could be ambiguous, incorrect, or inaccurate statements, mostly 
when asking it to point out the decay phenomena in the picture. 
This is because ChatGPT has a better grasp of text-based 
conclusions (Cai et al., 2024). Professionals can deploy 
ChatGPT to detect damage; however, the accuracy of the 
description would depend on the accuracy of the prompt. Also, 
they should be aware that all information given by ChatGPT 
must be double-checked. We do not advocate the replacement 
of inspection professionals by generative AI, but as suggested 
by Spennemann (2023), “AI will not replace workers, but it is 
the people who work with AI who will replace the people who 
do not use it”.  
In general, minor training is required to develop a model 
capable of analyzing similar case studies. In many instances, the 
ChatGPT model performed better if we provided some clues, 
such as what to look for in the images (such as cracks and 
missing components); thus, in some cases, a pre-trained model 
could recognize similar damages via supervision. 
An important aspect of ChatGPT is that it does not require 
training to yield results and can be used instantly by inspection 
professionals on-site because it only requires the images to be 
inputted along with the appropriate prompts. It is already 
integrated with mobile phones, delivering real-time results. 
Finally, in many cases where it was tested, the description of 
damage was quite good, and it also suggested the possible 
causes and interventions (which were not evaluated in this work 
and were excluded from the implemented GPT). This feature 
provides additional information compared to the object 
detection models, which allows the damage locations instead. 
Overall, the GPT description can be seen as a supplementary aid 
for the specialist, without substituting their expertise.  
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