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Abstract

In this paper we consider strong Nash equilibria, in mixed strategies, for finite games.
Any strong Nash equilibrium outcome is Pareto efficient for each coalition. First, we
analyze the two–player setting. Our main result, in its simplest form, states that if a
game has a strong Nash equilibrium with full support (that is, both players randomize
among all pure strategies), then the game is strictly competitive. This means that all
the outcomes of the game are Pareto efficient and lie on a straight line with negative
slope. In order to get our result we use the indifference principle fulfilled by any Nash
equilibrium, and the classical KKT conditions (in the vector setting), that are necessary
conditions for Pareto efficiency. Our characterization enables us to design a strong–Nash–
equilibrium–finding algorithm with complexity in Smoothed–P. So, this problem—that
Conitzer and Sandholm [Conitzer, V., Sandholm, T., 2008. New complexity results about
Nash equilibria. Games Econ. Behav. 63, 621–641] proved to be computationally hard in
the worst case—is generically easy. Hence, although the worst case complexity of finding
a strong Nash equilibrium is harder than that of finding a Nash equilibrium, once small
perturbations are applied, finding a strong Nash is easier than finding a Nash equilibrium.
Next we switch to the setting with more than two players. We demonstrate that a strong
Nash equilibrium can exist in which an outcome that is strictly Pareto dominated by a
Nash equilibrium occurs with positive probability. Finally, we prove that games that have
a strong Nash equilibrium where at least one player puts positive probability on at least
two pure strategies are extremely rare: they are of zero measure.

Keywords: Non-cooperative games, strong Nash equilibrium, Nash equilibrium,
Karusch-Kuhn-Tucker conditions, negligible set, semialgebraic map.

1. Introduction

It is well known that in non–cooperative game theory [14], rationality implies that the
players can be worse off than they could be by collaborating. The most celebrated example
is the prisoners’ dilemma, where strictly dominant strategies for the players lead to a bad
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outcome for both. Aumann’s strong Nash equilibrium [3] gets around this paradox and
also provides a solution concept that is robust against coalitional deviations. A strategy
profile is a Nash equilibrium [17] if no player has unilateral incentive to deviate, while a
strategy profile is a strong Nash equilibrium if no coalition has incentive to deviate. It
follows immediately that any strong Nash equilibrium outcome is weakly Pareto efficient
for each coalition [19].

A simple refinement is super strong Nash equilibrium [21], which requires strict Pareto
efficiency for each coalition. There are classes of games that have a strong Nash equilib-
rium, but not a super strong Nash equilibrium [12], so the distinction between the two
solution concepts is meaningful.

The strong Nash equilibrium concept is commonly criticized as too demanding because
it allows for unlimited private communication among the players, and in many games a
strong Nash equilibrium does not exist. For these reasons among others, relaxations have
been proposed. A relaxation that we use in this paper is the concept of k–strong Nash
equilibrium. It is a Nash equilibrium where no coalition of k or fewer agents has incentive
to deviate [2]. The rationale is that in many practical situations only small coalitions can
form. Another relaxation is coalition–proof Nash equilibrium, which is a Nash equilibrium
that is resilient against those coalitional deviations that are self–enforcing [4]. Coalition–
proof Nash equilibria are sometimes not Pareto efficient.

The property of having a strong Nash equilibrium is important for a game, but not
“usual”. In this paper we consider the class of all games with a fixed number of players,
each of them having a fixed, finite, number of strategies, and study “how many of the
games” have strong Nash equilibria and “what is their geometry”. In the mathematical
literature, “how many of the games” can be given various meanings [13]: there is the
notion of “zero measure” set, or meager in the Baire sense, and also other, perhaps less
known, ones: σ–porosity, sparseness and so on. Here we shall use the term “negligible”,
since, as we shall see, all these notions coincide in this setting. The reason for this is
that the set of games that have a strong Nash equilibrium (in mixed strategies) can be
characterized as a subset of a semialgebraic set, and for these sets all the above conditions
to be “small” coincide. Dubey shows that strong Nash equilibria are generically in pure
strategies in finite games [10]. In the case of continuous convex games, existence conditions
have been provided [18]. In our paper, we extend the results provided by Dubey along
several dimensions.1

We take a different approach than Dubey did. Ours is based on the application of the
indifference principle and the Karush–Kuhn–Tucker conditions [16] that are necessary for
weak Pareto efficiency. In terms of existence of strong Nash equilibrium, we provide an
alternative proof to that of Dubey for the case with two players and we provide a stronger
result than that provided by Dubey for the case with three or more players. Specifically,

1However, Dubey considers more general utility functions than we consider here.
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we show that even 2–strong Nash equilibria are generically in pure strategies and therefore
k–strong Nash equilibria are generically pure for any k ≥ 2. Our approach enables also
the derivation of a number of new results.

Our main result is the precise description of the geometry of games that admit strong
and super strong Nash equilibria, in the following sense. When there are two players, the
various outcomes of the games can be geometrically represented as points in the plane. We
show that a strong Nash equilibrium in mixed strategies may exist only if all the outcomes
of the game, restricted to the support of the equilibrium, lie on a straight line with non–
strictly negative slope and therefore the game restricted to the support of the equilibrium
must be either strictly competitive or have all the outcomes lying in a vertical or horizontal
straight line.2 This also implies that in games admitting a strong Nash equilibrium all
the outcomes of the game, restricted to the support of the equilibrium, are weakly Pareto
efficient. Similar results hold for super strong Nash equilibrium. More precisely, a super
strong Nash equilibrium in mixed strategies may exist only if all the outcomes of the game,
restricted to the support of the equilibrium, lie on a straight line with strictly negative
slope and therefore the game restricted to the support of the equilibrium must be strictly
competitive. Furthermore, in games admitting a super strong Nash equilibrium all the
outcomes of the game, restricted to the support of the equilibrium, are strictly Pareto
efficient. We show instead that games with three or more players have different properties.
Indeed, these games can have strong and super strong Nash equilibria in which the game
restricted to the support of the equilibrium may contain outcomes that are strictly Pareto
dominated.

We also provide results about the computational complexity of deciding whether a
strong Nash equilibrium exists. Our geometric characterization of two–player games that
admit strong and super strong Nash equilibria can be exploited to design an algorithm
whose expected compute time, once a uniform perturbation [−σ, σ] with σ > 0 is applied
independently to each entry of the bimatrix, is polynomial in the size of the game. Such
an algorithm puts the problem of deciding whether a strong Nash equilibrium exists—and
the problem of finding it—in Smoothed–P (the class of problems solvable in smoothed
polynomial time), showing that these two problems are generically easy. A simple varia-
tion, omitted in this paper, applies to super strong Nash equilibrium showing that also the
problems of deciding whether a super strong Nash equilibrium exists and of finding it are
in Smoothed–P. We recall that deciding whether there exists a strong Nash equilibrium
is NP–complete [7, 11] (NP is the class of non–deterministic polynomial time problems)
and therefore no polynomial–time algorithm exists unless NP = P (P is the class of poly-
nomial time problems). Furthermore, finding a strong Nash equilibrium is harder than
finding a Nash equilibrium. Indeed, finding a Nash equilibrium is PPAD–complete [6, 9]

2Games in which all the outcomes lie in a vertical or horizontal straight line are degenerate games in
which one player is indifferent over all the actions. That is, the player can be safely removed from the
game.
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and PPAD ⊂ NP unless NP = co–NP [15] (co–NP is the class of complementary
non–deterministic polynomial time), but it is commonly believed that P ⊂ PPAD and
therefore that no polynomial–time algorithm exists for finding a Nash equilibrium. In-
terestingly, finding a Nash equilibrium is not in Smoothed–P unless PPAD ⊆ RP [6]
(RP is the class of randomized polynomial time problems) and therefore it is commonly
conjectured that finding a Nash equilibrium remains hard even as small perturbations are
applied. Hence, although the worst case complexity of finding a strong Nash equilibrium
is harder than that of finding a Nash equilibrium, once small perturbations are applied,
finding a strong Nash is easier than finding a Nash equilibrium!

2. Preliminaries

First, we provide required notation on semialgebraic sets/functions that will be used
in the rest of the paper.

Definition 2.1. A subset A of an Euclidean space is called algebraic if it can be de-
scribed as a finite number of polynomial equalities. It is called semialgebraic if it can be
described as a finite number of polynomial equalities and inequalities. A multivalued map
between Euclidean spaces is called algebraic (semialgebraic) if its graph is an algebraic
(semialgebraic) set.

For example, a circle in R
2 is an algebraic set, an interval in R is a semialgebraic set.

We shall use the idea of dimension of a set, and this should be defined in general, but
since here it is used for simplexes and/or affine spaces, it is enough to keep in mind that
this coincides with the usual idea of dimension in linear analysis.

Here we need only two facts about semialgebraic maps:

• Given an algebraic set A onX×Y , its projection on each spaceX , Y is semialgebraic
(see [8], Section 1.3.1, the Tarski Seidenbreg theorem).

• For any semialgebraic set–valued mapping Φ between two Euclidean spaces Φ : E ⇒

Y , if dimΦ (x) ≤ k for every x ∈ E, then dimΦ (E) ≤ dim(E) + k, where dimA

denotes the dimension of a given set A (see [8], Theorem 3.18).

We now introduce additional notation and definitions that we will use. For vectors
x, y in some Euclidean space, we use the notations x ≥ y, x > y and x >> y to say that
xi ≥ yi for all i, xi ≥ yi for all i and x 6= y, and xi > yi for all i, respectively. We will use
Pareto domination in the following setting. We consider a function F : Rk → R

n, and a
set U ⊂ R

k.

Definition 2.2. A vector x̄ = (x̄1, . . . , x̄k) ∈ U is weakly Pareto dominated for the
problem (F, U) if there exists a vector x ∈ U such that

F (x) > F (x̄)
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while x̄ is said to be strictly Pareto dominated for the problem (F, U) if there exists x ∈ U

such that
F (x) >> F (x̄).

On the basis of the concept of Pareto dominance, Pareto efficiency can be defined.

Definition 2.3. A vector x̄ is strictly Pareto efficient for the problem (F, U) if there is
no x that weakly Pareto dominates x̄, while it is weakly Pareto efficient for the problem
(F, U) if there is no x that strictly Pareto dominates x̄.

We will be interested in the case where U can be described in terms of affine inequal-
ities. Thus, let us consider G : Rk → R

l, H : Rk → R
j, G,H linear, b, c vectors of the

right dimensions, and define U to be

U = {x ∈ R
k : G(x) ≥ b,H(x) = c}.

In such a case, if x̄ ∈ U is weakly Pareto efficient, then the Karush–Kuhn–Tucker (KKT)
conditions [16] state that there are vectors λ, µ, ν that satisfy the following system:

λt∇F (x) + µt∇G(x) + νt∇H(x) = 0n, (1a)

µtG(x) = 0, (1b)

µ ≥ 0l, (1c)

λ > 0j . (1d)

Now we introduce the standard concepts from non-cooperative game theory that we
will use in the paper.

Definition 2.4. (Strategic–form game) A finite strategic–form game [14] is a tuple (N,A, U)
where:

• N = {1, . . . , n} is the set of players,

• A = A1 ×A2 × . . .×An is the (finite) set of aggregate agents’ actions: Ai is the set
of actions available to agent i,

• U = {U1, . . . , Un} is the set of agents’ utility tensors, where Ui : A → R is the utility
function of agent i.

We shall denote by mi ≥ 1 the number of actions in Ai, and by aij , j ∈ {1, ..., mi}, a
generic action; U is a n × m1 × m2 × ... × mn tensor. A generic element of Ui will be
denoted by Ui(i1, . . . , in).

We denote by ∆i the simplex of the mixed strategies over Ai, and by xi a generic
mixed strategy of agent i: xi = (xi1, ..., ximi

). Given xi ∈ ∆i we denote by Si(xi) its
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support, that is the set of actions played with strictly positive probability, and, given a
strategy profile x, by S(x) the support profile (S1(x1), . . . , Sn(xn)).

Given a strategy profile x, the utility of agent i is

vi(x) =
∑

i1,...,in

Ui(i1, . . . , in) · xi1 · · · · · xin := xt
iUi

∏

j 6=i

xj .

Given a strategy profile x, we shall use x−i to denote the vector, with n−1 components,
x−i = (x1, . . . , xi−1, xi+1, . . . , xn) and we shall also write x = (xi, x−i).

Definition 2.5. A strategy profile x̄ = (x̄1, . . . , x̄n) is a Nash equilibrium if, for each
i ∈ N , vi (x̄) ≥ vi (xi, x̄−i) for every xi ∈∆i.

More explicitly, x̄ is a Nash equilibrium if x̄t
iUi

∏

j 6=i x̄j ≥ xt
iUi

∏

j 6=i x̄j for every i ∈ N ,
for every xi ∈ ∆i.

Given a mixed strategy profile x, and denoting by Ui|Si
the matrix containing only

the rows in Si, and by Ui|Sc
i
its complement, the problem of finding a Nash equilibrium

can be expressed as the problem of finding a profile strategy x and, for all i ∈ N , a real
number v∗i such that:

Ui|Si

∏

j 6=i

xj = v∗i · 1mi
∀i ∈ N (2a)

Ui|Sc
i

∏

j 6=i

xj ≤ v∗i · 1mi
∀i ∈ N (2b)

xij ≥ 0 ∀i ∈ N, ∀j ∈ {1, .., mi} (2c)

xt
i · 1mi

= 1 ∀i ∈ N (2d)

where 1mi
is a column vector of mi positions with value 1 in every position. As is

customary, we shall refer to the conditions in (2a) as the indifference principle.

Finally, we are ready to define the key objects of study in this paper: Nash equilibria
that are efficient for each coalition of players.

Definition 2.6. A strategy profile x̄ = (x̄1, . . . , x̄n) is a super strong Nash equilibrium if
it is a Nash equilibrium and it is strictly Pareto efficient for every coalition of players.

Definition 2.7. A strategy profile x̄ = (x̄1, . . . , x̄n) is a strong Nash equilibrium if it is
a Nash equilibrium and it is weakly Pareto efficient for every coalition of players.

We consider also relaxations of strong and super strong Nash equilibria in which we
require the resilience against coalitions of size k or less only, see [2].

Definition 2.8. A strategy profile x̄ = (x̄1, . . . , x̄n) is a k–super strong Nash equilibrium
if it is a Nash equilibrium and it is strictly Pareto efficient for every coalition of k or
fewer players, and it is a k–strong Nash equilibrium if it is a Nash equilibrium and it is
weakly Pareto efficient for every coalition of k or fewer players.
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3. Mixed strong Nash equilibria in two-player games

In this section we consider the two–player setting. Later in the multi-player setting we
will leverage some of these results. This is quite natural: since strong Nash equilibrium
requires efficiency for all coalitions, we will use the results obtained in this section to the
coalitions made by two players within the multi-player games.

We start the analysis focusing on a fully mixed strong Nash equilibrium. The game
can be described by a bimatrix (U1, U

t
2) where U1 = (uij

1 ) and U2 = (uij
2 ).

3.1. Mixed strong Nash equilibria with full support

Obviously, adding a constant to the payoffs of all players, and/or multiplying them
by a positive constant, does not change the set of the strong Nash equilibria of the game.
Thus, we shall assume without loss of generality that at a given equilibrium x = (x1, x2)
both players get zero: xt

1U1x2 = 0 and xt
2U2x1 = 0. In other words, we are assuming that

v∗i = 0 in (2a) and (2b) for i = 1, 2.

Proposition 3.1. Let x be a fully mixed strong Nash equilibrium. Then it must fulfill the
following system of linear equalities/inequalities, for some λ = (λ1, λ2) and ν = (ν1, ν2):

λ2x
t
2U2 + ν11m1

= 0m1
(3a)

λ1x
t
1U1 + ν21m2

= 0m2
(3b)

λ > 0 (3c)

Proof The proof follows from the application of the KKT conditions and the indifference
principle. The elements used in the KKT conditions are

F (x) =
(

f1(x) f2(x)
)

=
(

xt
1U1x2 xt

2U2x1

)

G(x) =
(

xt
1 xt

2

)

H(x) =
(

xt
11m1

− 1 xt
21m2

− 1
)

λ =
(

λ1 λ2

)

µ =
(

µ1 . . . µm1
µm1+1 . . . µm1+m2

)

ν =
(

ν1 ν2

)

and therefore

∇F (x) =

(

U1x2 xt
1U1

xt
2U2 U2x1

)

∇G(x) = Im1+m2

∇H(x) =

(

1t
m1

0t
m2

0t
m1

1t
m2

)
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where Im1+m2
is the identity matrix with m1 +m2 rows and columns.

From (1a) and from the fact that x is fully mixed, we have µ = 0m1+m2
. From the fact

that x is a Nash equilibrium and that, by assumption, v∗1 = v∗2 = 0, we have U1x2 = 0m1

and U2x1 = 0m2
. The claim follows straightforwardly.

Lemma 3.1. Let Γ := (U1, U
t
2) be a bimatrix game with max{m1, m2} ≥ 2.

Let x be a fully mixed super strong Nash equilibrium of Γ satisfying the system (3a),
(3b), (3c). Then it satisfies the further conditions

U t
1x1 = 0m2

, U t
2x2 = 0m1

also with strictly positive λ1, λ2.
Let x be a fully mixed strong Nash equilibrium of Γ satisfying the system (3a), (3b),

(3c). Then either it satisfies the further conditions

U t
1x1 = 0m2

, U t
2x2 = 0m1

or all entries of the bimatrix (U1, U
t
2) lie either on a vertical or on a horizontal line

through the origin. So, other than in the case where the entries of the bimatrix lie on a
horizontal or vertical line, a fully mixed strong Nash equilibrium satisfies the equations
(3a), (3b),(3c) also with strictly positive λ1, λ2.

Proof We first prove the claim about super strong Nash equilibrium and then the claim
about strong Nash equilibrium.

Super strong Nash equilibrium. Suppose, without loss of generality, λ1 > 0. We have
the following steps.

Step 1. We show xt
1U1 = 0t

m2
. From (3b) we know that xt

1U1 =
ν2
λ1

·1t
m2

. By assumption,

we have xt
1U1x2 = 0 and therefore ν2

λ1

1t
m2

x2 = 0. Given that 1t
m2

x2 = 1, it follows that

ν2 = 0 and thus xt
1U1 = 0t

m2
.

Step 2. We show xt
2U2 = 0t

m1
. Initially, we show xt

2U2 ≤ 0t
m1

. Suppose for contradic-

tion that there is a column j such that xt
2U

j
2 > 0. Then, the strategy profile y = (x̄1, x2),

where x̄1 is the pure j–th strategy of player 1, weakly Pareto dominates x. Indeed,
xt
1U1x2 = xt

2U2x1 = 0 by assumption, whereas x̄t
1U1x2 = 0 and xt

2U2x̄1 > 0. As a result,
we have a contradiction, x being a super strong Nash equilibrium and therefore it cannot
be weakly Pareto dominated. Thus, xt

2U2 ≤ 0t
m1

. Finally, given that xt
2U2x1 = 0 and

x1 ≥ 0m1
, we have that xt

2U2 ≤ 0t
m1

implies xt
2U2 = 0t

m1
.

Step 3. Given that xt
2U2 = 0t

m1
, (3a) is satisfied for ν1 = 0 and any λ2, strictly positive

values included. In other words, if x a super strong Nash equilibrium, the system (3a),
(3b),(3c) admits a solution with strictly positive λ1, λ2.

Strong Nash equilibrium. The above proof does not apply here. This is due to Step 2.
It requires x not to be weakly Pareto dominated, but a strong Nash equilibrium may be
weakly Pareto dominated. We observe in addition that, if the system (3a), (3b), (3c) is
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satisfied at x when λ1 and λ2 are strictly positive, the proof easily follows from Steps 1–3.
Indeed, Step 1 directly applies and we have xt

1U1 = 0t
m2

. In addition, by a simple variation
of Step 1 when λ2 > 0 (instead of λ1 > 0), we have xt

2U2 = 0t
m1

. Therefore, we need to
complete the proof for the case in which the system (3a), (3b), (3c) is satisfied at x only
when one of the two components of λ, say λ2, is vanishing, given that KKT conditions
exclude the case in which both λ1 and λ2 are equal to zero. By applying Step 1, we already
know that xt

1U1 = 0t
m2

, but, since λ2 must be 0, there must be j such that xt
2U

j
2 > 0. We

have the following steps.
Step 4. We show u

ji
1 = 0 for all i. Suppose for contradiction that there is i such

that u
ji
1 6= 0. Then, since xt

1U1 = 0t
m2

and x1 ≥ 0, there are k, l such that u
jk
1 > 0

and u
jl
1 < 0. Since xt

2U
j
2 > 0, there is a neighborhood B of x2 (in the simplex) such

that for all y ∈ B it is ytU
j
2 > 0. Then it is possible to choose ǫ > 0 so small that

x̄2 = (x21, . . . , x2k + ǫ, . . . , x2l − ǫ, . . . ) is in B, but this is a contradiction, since x is
strictly Pareto dominated by y = (x̄1, x̄2), where x̄1 is the pure j–th strategy of player 1.
Indeed, x̄t

2U2x̄1 > 0 = xt
2U2x1 and x̄t

1U1x̄2 > 0 = xt
1U1x2. Therefore, it must be that

u
ji
1 = 0 for all i, and this means that all entries of row j of the bimatrix (U1, U

t
2) lie on a

vertical line through the origin.
Step 5. We show uil

1 = 0 for all i and l. Suppose for contradiction that uil
1 > 0

(observe, i 6= j). Then consider the following strategy x̄1 for player 1:











x̄1k = 0 if k 6= i, j

x̄1i = σ > 0

x̄1j = 1− σ

with σ so small that (1− σ)
∑

k x2ku
kj
2 + σ

∑

k x2ku
ki
2 > 0. Consider also the strategy x̄2

for player 2:










x̄2k = x2k if k 6= l, m

x̄2l = x2l + ǫ

x̄2m = x2m − ǫ

form such that uim
1 < 0 3 and ǫ so small that x̄2 ∈ B and (1−σ)

∑

k x̄2ku
kj
2 +σ

∑

k x̄2ku
ki
2 >

0. By construction, we have x̄t
2U2x̄1 > 0. In addition, we have x̄t

1U1x̄2 = x̄t
1U1x2 +

(1 − σ)(ǫujl
1 − ǫu

jm
1 ) + σ(ǫuil

1 − ǫuim
1 ) = (1 − σ)(ǫujl

1 − ǫu
jm
1 ) + σ(ǫuil

1 − ǫuim
1 ), but, since

u
jl
1 = u

jm
1 = 0 as showed in Step 4 and uil

1 > 0 and uim
1 < 0 by assumption, x̄t

1U1x̄2 > 0 and
therefore we have a contradiction, given that strategy profile x̄ strictly Pareto dominates x.
Thus player one gets zero at every outcome. This means that all the outcomes of the
bimatrix lie on the vertical axis.

We can now prove the main theorem of this section.

3Remember: xt
2
U i
1
= 0 and thus, since uil

1
> 0 there must be also a negative entry in the row i.
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Theorem 3.1. Let Γ := (U1, U
t
2) be a bimatrix game with max{m1, m2} ≥ 2.

Let x be a fully mixed super strong Nash equilibrium of Γ, providing zero utility to both
players. Then all the entries uij := (uij

1 , u
ji
2 ) of the bimatrix lie on the same straight line

with strictly negative slope, passing through the origin.
Let x be a fully mixed strong Nash equilibrium of Γ, providing zero utility to both

players. Then all the entries uij := (uij
1 , u

ji
2 ) of the bimatrix lie on the same straight line

with non–strictly positive slope, passing through the origin.

Proof We first prove the claim about super strong Nash equilibrium and then the claim
about strong Nash equilibrium.

Super strong Nash equilibrium. We have the following steps.
Step 1. We show that all the entries uij on a fixed row i lie on the same straight

line through the origin and the same holds for a fixed column j and these straight lines
cannot be vertical or horizontal. Let us focus on the rows, the same reasoning can be
applied to the columns. Suppose for contradiction that for a given row i the entries uij

do not lie on the same straight line. Consider the convex hull of the entries uij in the
space of the players’ expected utilities. This is a polygon whose vertices are a subset of
the entries uij. For each point (v1, v2) of the polygon, there is a strategy x̄2 such that
x̄t
1U1x̄2 = v1 and x̄t

2U2x̄1 = v2, where x̄1 is the i–th pure strategy of player 1. In addition,
by Lemma 3.1, we know U1x2 = U t

2x2 = 0m1
and therefore the point (0, 0), corresponding

to the players’ expected utilities given by strategy profile x = (x1, x2), is in the interior
of the polygon given that x2 is fully mixed. Thus, we have a contradiction since there
must be a strategy profile x̄ = (x̄1, x̄2) such that x̄t

1U1x̄2 = ǫ1 > 0 and x̄t
2U2x̄1 = ǫ2 > 0

for some small ǫ1, ǫ2, where (ǫ1, ǫ2) is on the boundary of the polygon, and therefore x is
strictly Pareto dominated by x̄. This shows that all the entries uij for a given row i lie on
the same straight line passing through the origin. In a similar way, we obtain that all the
entries uij for a given column j lie on the same straight line passing through the origin

Finally, each straight line has strictly negative slopes or collapses to a single point.
Otherwise, if there is at least a straight line with strictly positive slope, there must be a
strategy profile x̄ = (x̄1, x̄2), as defined above, that weakly Pareto dominates x.

Step 2. We show that all the entries uij lie on the same straight line. Suppose for
contradiction, without loss of generality, that the entries of two rows i, j belong to different
lines passing through the origin. Then, there must be two columns h, k with h 6= k such
that the points uih and ujk do not belong to the same straight line passing trough the
origin. Note that h must be different than k due to Step 1 that forces all the entries of
the same column to be on the same straight line passing through the origin. Let us now
consider the sub–bimatrix

(

uih uik

ujh ujk

)

.

We assume that the segment joining uih and ujk intersects the first orthant. This as-
sumption is without loss of generality, because, for each pair of uih and ujk such that the
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segment joining them does intersect the third orthant there is a pair uih′

and ujk′ such
that the segment joining them does intersect the first orthant.

We must have uik = (0, 0). If uik 6= (0, 0), then uih and ujk would be on the same
straight line passing trough uih and (0, 0); this contradicts the assumption that uih and ujk

do not belong to the same straight line passing through the origin. The same reasoning
applies to ujh, and therefore ujh = (0, 0). Thus, what remains to be done is to consider
the case

(

uih (0, 0)
(0, 0) ujk

)

.

What we need to prove is that this configuration leads to a contradiction. Since we
assumed that the segment joining uih and ujk intersects the first orthant, there is t > 0
such that

tuih + (1− t)ujk = (2ǫ, 2ǫ)

for some ǫ > 0. Consider the strategy profile x̄ = (x̄1, x̄2) = [(t, 1 − t), (1
2
, 1
2
)]. Then

x̄t
1Ūix̄1 = ǫ > 0 for i = 1, 2, contradicting the fact that x is a super strong Nash equilib-

rium.
Strong Nash equilibrium. In this case, the above Step 1 applies with the exception

that the straight lines can be vertical or horizontal as stated by Lemma 3.1, while Step 2
applies here without exception. This concludes the proof.

Corollary 3.1. Let Γ := (U1, U
t
2) be a bimatrix game with max{m1, m2} ≥ 2.

Suppose Γ has a super strong Nash equilibrium with fully mixed strategies, then it is a
strictly competitive game.

Suppose Γ has a strong Nash equilibrium with fully mixed strategies, then either it is
a strictly competitive game or all entries of the bimatrix (U1, U

t
2) lie either on a vertical

or on a horizontal line through the origin.

A strictly competitive game is a game such that, up to a suitable rescaling of the
utility of one player, the game is zero sum [1]. An example of strictly competitive game
is depicted in Fig. 1. Corollary 3.1 implies that a necessary condition for the existence
of a super strong Nash equilibrium in fully mixed strategies is that all the outcomes are
strictly Pareto efficient and that a necessary condition for the existence of a strong Nash
equilibrium in fully mixed strategies is that all the outcomes are weakly Pareto efficient.
Furthermore, Corollary 3.1 requires also that all the outcomes lie on the same straight
line. This is the simplest case in which all the outcomes are Pareto efficient and, in this
case, any Nash equilibrium is also strong.

3.2. Mixed strong Nash equilibria without full support

The results obtained above can be rephrased also in the case of Nash equilibria with
no full support. This is quite simple to do, for the following reason. Given the game
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player 2
a4 a5 a6

p
la
ye
r
1

a1 −0,−0− −1,−2− −2,−4−
a2 −1,−2− −0,−0− −3,−6−
a3 −2,−4− −3,−6− −0,−0−

1

2

3

4

−1

−2

−3

−4

−5

1 2 3 4 5 6−1−2−3−4−5−6−7

b

b

b

b

b

b

b
SNE

E[U1]

E
[U

2
]

I orthantII orthant

III orthant IV orthant

Figure 1: Example of a 2–player strictly competitive game (left) and its Pareto curve (right) in which
the expected utilities of the players at the SNE are (0, 0).

Γ := (U1, U
t
2), if we consider a mixed strategy (super) strong Nash equilibrium profile

x, then it is clear that its restriction on the support S(x) must necessarily be a (super)
strong Nash equilibrium for the game Γr whose bimatrix is the restriction of (U1, U

t
2) to

S(x). Thus the above result applies, and all the outcomes of the restricted game must
lie on straight line with strictly negative slope, in the case of super strong Nash, or on
a straight line with non–strictly positive slope, in the case of strong Nash. Observe also
that the games having a Nash equilibrium with one player using a pure strategy and
the other one a mixed, non pure, strategy, is itself zero measure, without requiring any
form of efficiency of the Nash equilibrium. In particular, this easily implies the following
existence result.

Theorem 3.2. In the space of all the bimatrix games of fixed dimension, the set of games
having a strong Nash equilibrium in which at least one player plays a mixed strategy has
zero measure.

More precisely, we have shown that this set of games with strong Nash equilibria where
at least one player uses a mixed strategy is contained in a subspace of dimension strictly
less than the whole space. The above theorem obviously implies the same result also for
super strong Nash equilibrium, given that super strong Nash equilibrium is a refinement
of strong Nash equilibrium. We recall that the set of games with at least one strong Nash
equilibrium contains an open set and therefore games lying in the interior of such set do
necessarily possess a strong Nash equilibrium in pure strategies.

3.3. Smoothed–P complexity and strong Nash equilibrium

The characterization provided by Theorem 3.1 suggests a simple algorithm to find an
SNE in bimatrix games. Initially, we introduce two conditions the algorithm exploits:
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Condition 1 := “there is 2x2 sub bimatrix of (U1, U
t
2) in which all the entries lie on a

line”;

Condition 2 := “there is 2x1 sub bimatrix of (U1, U
t
2) in which all the entries lie on a

vertical line or there is 1x2 sub bimatrix of (U1, U
t
2) in which all the entries lie on a

horizontal line”.

Algorithm 1 SNE–finding(U1, U
t
2)

1: for all pure–strategy profiles x do

2: if x is a Nash equilibrium then

3: if x is Pareto efficient then
4: return x

5: end if

6: end if

7: end for

8: if Condition 1 holds or Condition 2 holds then
9: for all support profiles S̄ do

10: if there is a Nash equilibrium x∗ with S(x) = S̄ (in case of multiple equilibria
take x∗ as the equilibrium maximizing the social welfare) then

11: if x∗ is Pareto efficient then
12: return x∗

13: end if

14: end if

15: end for

16: end if

17: return NonExistence

We recall that, given a strategy profile x, it can be verified whether x is weak Pareto
efficient (Steps 3 and 11) by means of the algorithm described in [11], while, given a
support profile S̄, it can be verified whether there is a Nash equilibrium x∗ with S(x) = S̄

(Step 10) by means of linear programming as shown in [20].

Theorem 3.3. Let Γ := (U1, U
t
2) be a bimatrix game. The problem of finding a strong

Nash equilibrium of Γ is in Smoothed–P.

Proof In order to show that the problem of finding a strong Nash equilibrium of Γ is in
Smoothed–P, we need to show that the expected time of Algorithm 1 once a perturbation
[−σ,+σ], where σ > 0, with uniform probability is applied to each entry of the bimatrix
independently is polynomial in the size of the game (i.e., m1 and m2) [5].

We initially observe that Steps 1–7 of Algorithm 1 have complexity polynomial in
the size of the game, the number of pure–strategy profiles being m1 · m2 and Steps 2–3
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requiring polynomial time in m1 and m2. Then, we observe that, once a perturbation
[−σ,+σ] with uniform probability is applied to each entry of the bimatrix independently,
Condition 1 and Condition 2 are verified with zero probability. Then, Steps 9–15, that
require exponential time in m1 and m2 in the worst case, are executed with zero proba-
bility. This proves that the expected time of Algorithm 1 is polynomial in m1 and m2.

This shows that the problems of deciding whether a strong Nash equilibrium exists
and of finding it are generically easy. A simple variation of Algorithm 1 can be designed
to show that also the problems of deciding whether a super strong Nash equilibrium exists
and of finding it are generically easy.

4. Setting with more than two players

In this section, we extend our analysis to a generic n–player game, in order to see what
conditions concerning the existence of a mixed–strategy strong Nash we can obtain. The
application of the indifference principle and of the KKT conditions leads to an equation
system that, differently from the two–player case, is not linear. For this reason, we resort
to semi–algebraic set–valued mappings. Here the result.

Theorem 4.1. In the space of all n–player games of fixed dimension, the set of games
having a 2–strong Nash equilibrium in which at least one player plays a mixed strategy
has zero measure.

Proof We initially prove the theorem for super strong Nash equilibrium and subsequently
for strong Nash equilibrium.

Super strong Nash equilibrium. Consider a generic support profile in which at least one
player randomizes over at least two actions. Let si the number of actions in the support
of player i and, without loss of generality, let sn = max

i∈N
{si} ≥ 2.

By applying the IP, we derive the following equations:

Ui

∏

j 6=i

xj = v∗i 1si ∀i ∈ N (4)

By applying the KKT conditions to all the coalitions of two players of the form (i, n)
for all i ≤ n− 1, we derive the following equations:

λi,(i,n)v
∗
i 1si + λn,(i,n)Un

∏

j 6=i

xj = νi,(i,n)1si ∀i ∈ N \ {n} (5)

λi,(i,n)Ui

∏

j 6=n

xj + λn,(i,n)v
∗
n1sn = νn,(i,n)1sn ∀i ∈ N \ {n} (6)

From equations (6), we derive the following equations, for some v∗i :

Ui

∏

j 6=n

xj = v∗i 1sn ∀i ∈ N \ {n} (7)



15

From the sets of Equations (4) (used for i = n) and (7) (used for all i 6= n), we extract
the following subset of equations:

U1

∏

j 6=n

xj = v∗11sn

U2

∏

j 6=n

xj = v∗21sn

...
...

...
Un

∏

j 6=n

xj = v∗n1sn

(8)

The above set is composed of nsn equations. Call k the row describing the k–th linear
equation (k = 1, . . . , nsn), where U1, U2, . . . , Un are unknown, while xi and v∗i are fixed
for every i ∈ N .

We denote the space of the s1 × s2 × . . . sn−1 tensors by Ms1×s2×...×sn−1 . Consider the
algebraic set–valued mapping

Φ : ∆s1 ×∆s2 × . . .×∆sn−1 × R
n
⇒ (Ms1×s2×...×sn−1)nsn

defined as

Φ(x1, x2, . . . , xn, v
∗
1, v

∗
2, . . . , v

∗
n) =

{

(B1, B2, . . . , Bnsn) : Bk

∏

j 6=n

xj − v∗⌈ k
sn
⌉ = 0, ∀k ≤ nsn

}

.

We want to show that Φ(∆s1 ×∆s2 × . . .×∆s−1 × R
n) is negligible.

Observe that, for non null (x1, x2, . . . , xn−1) to ensure

(B1, B2, . . . , Bnsn) ∈ Φ (x1, x2, . . . , xn, v
∗
1, v

∗
2, . . . , v

∗
n)

simply requires each tensor Bi, independently, to lie in some hyperplane in a space of
ns1s2 . . . sn dimensions, and hence

dimΦ(x1, x2, . . . , xn, v
∗
1, v

∗
2, . . . , v

∗
n) = ns1s2 . . . sn − nsn.

From this we get that

dimΦ(∆s1 × . . .×∆sn−1 × R
n) =

= ns1 . . . sn − nsn + (s1 − 1) + . . .+ (sn−1 − 1) + n

≤ ns1 . . . sn − nsn + (s1 + . . . sn−1) + 1

≤ ns1 . . . sn − nsn + (n− 1)sn + 1

< ns1 . . . sn

since sn ≥ 2. Therefore the set of tensors satisfying the conditions is negligible with
respect to the space of all the utility tensors. Given that the above property holds for
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every (non–pure) support profile and given that the support profiles are finite, the thesis
of the theorem follows straightforwardly.

Strong Nash equilibrium. The above proof for super strong Nash equilibrium applies
directly also for strong Nash equilibrium whenever multipliers λi,(i,n) for every i are strictly
positive. Indeed, in this case, for each coalition (i, n) we have Ui

∏

j 6=n

xj = v∗i 1sn and

therefore we can derive entirely the equation system (8). However, we know that a strong
Nash equilibrium may satisfy KKT conditions even when some multiplier is zero and such
a null multiplier may be, in principle, λi,(i,n) for some coalition (i, n). In this case, the
above proof for super strong Nash equilibrium does not apply directly for strong Nash
equilibrium. We show below how the proof can be modified to capture this case.

Initially, consider a generic support profile in which all the players randomize over at
least two actions. Let si the number of actions in the support of player i and, without loss
of generality, let sn = max

i∈N
{si} ≥ 2. We consider all the coalitions of two players in which

one player is n. Suppose that, for at least one coalition (i, n), KKT conditions are satisfied
only for λi,(i,n) = 0. The proof of Lemma 3.1 shows that in this case Un

∏

j 6=i,n

xj = v∗nM
si×sn
1

where Msi×sn
1 is a si × sn matrix of ones. Indeed, fixed xj for every j 6= i, n, the game

reduces to a bimatrix game (U ′
i , U

′
n) between players i and n where U ′

i = Ui

∏

j 6=i,n

xj and

U ′
n = Un

∏

j 6=i,n

xj and Lemma 3.1 shows that all the entries of U ′
n are equal to v∗n when

λi = 0. We use these conditions together with the equations due to the indifference
principle for all the players j 6= n, obtaining:

Uj

∏

k 6=j

xk = v∗j1sj ∀j ∈ N \ {n} (9)

Un

∏

k 6=i,n

xk = v∗nM
si×sn
1 (10)

As in the proof for the super strong Nash equilibrium, call Φ the algebraic set–valued
mapping that, given (x1, x2, . . . , xn, v

∗
1, v

∗
2, . . . , v

∗
n) returns the set of tensors U1, . . . , Un

(each of size
∏

j sj) satisfying the above set of equations (9)–(10). It can be seen that
dimΦ(∆s1 × ∆s2 × . . . × ∆sn × R

n) = n
∏

j sj + sn(1 − si) < n
∏

j sj and therefore Φ is
negligible.

Finally, consider a generic support profile in which at least one player randomizes over
at least two actions. Extract the reduced game containing only the actions belonging
to the supports of the players and in which all the non–randomizing players have been
discarded. Then, apply the above arguments to the reduced game in which all the players
randomize. We obtain that the reduced game cannot be generic and therefore the original
game cannot be generic.

Given that the above property holds for every (non–pure) support profile and given
that the support profiles are finite, the thesis of the theorem follows straightforwardly.
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Let us note that Dubey shows in [10] that, generically, in a Pareto efficient Nash
equilibrium at least one player plays a pure strategy and that in a strong Nash equilibrium
all the players play pure strategies. The above result shows that generically pure–strategy
equilibria are the only possible ones even when the resilience to multilateral deviations is
required only for coalitions of two or less players.

To conclude, let us make the following observation. In the two–player case, our result
shows that existence of a mixed strong Nash equilibrium requires that all the outcomes
restricted to the support of the equilibrium are weakly Pareto efficient. Interestingly, this
is no longer true with three players.

Proposition 4.1. Mixed strong Nash equilibria of three–player games may have outcomes
that are strictly Pareto dominated. The same holds for super strong Nash equilibrium.

Proof sketch We consider the following game with three players, in which every player
has two available actions:

M1 =

(

(2, 0, 0) (0, 2, 0)
(0, 0, 2) (0, 0, 0)

)

,M2 =

(

(0, 0, 0) (0, 0, 2)
(0, 2, 0) (2, 0, 0)

)

.

The profile strategy
((

1
2
, 1
2

)

,
(

1
2
, 1
2

)

,
(

1
2
, 1
2

))

is a super strong Nash equilibrium. For,
it is easy to see that

((

1
2
, 1
2

)

,
(

1
2
, 1
2

)

,
(

1
2
, 1
2

))

is a Nash equilibrium, with value v∗ =
(

1
2
, 1
2
, 1
2

)

. Then, it is possible to prove that neither the coalitions made by two players
nor the grand coalition have incentive to deviate from the Nash equilibrium. Calcula-
tions are straightforward, but long, and thus we report them in Appendix A. Therefore,
((

1
2
, 1
2

)

,
(

1
2
, 1
2

)

,
(

1
2
, 1
2

))

is a super strong Nash equilibrium.
Finally, it is easy to see that the strong Nash equilibrium strictly Pareto dominates

outcome (0, 0, 0). This concludes the proof.

Observe that in the example above there are repeated entries in the matrices, but
small perturbations of the two matrices provide the same results, having all triples of the
two matrices different each other. Thus the above example is generic. Proposition 4.1
shows that the geometric characterization in terms of alignment of the bimatrix entries
of two–player games admitting (super) strong Nash equilibria cannot be extended to the
case of three or more players. Furthermore, it is not clear whether there is a simple
geometric characterization in the case of three or more players. This leaves the question
of setting the problem of deciding whether there is a (super) strong Nash equilibrium in
Smoothed–P open.

5. Concluding remarks

In this paper we analyzed the problem of characterizing the set of finite games having
strong Nash equilibria, extending the results provided by Dubey in [10]. Our main result
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concerns the characterization of two–player games admitting strong and super strong
Nash equilibria. We showed that the game restricted to the support of the equilibrium
must be strictly competitive in the case of super strong Nash equilibrium and must be
either strictly competitive or with all the outcomes that lie on a horizontal or vertical
line in the case of strong Nash equilibria. This implies that all the outcomes of the game
restricted to the support of the equilibrium must be Pareto efficient. This is no longer
true in the case of three or more players, where instead the support of even super strong
Nash equilibria may contain strictly Pareto dominated outcomes. For these games, we
show that even 2–strong Nash equilibria are generically in pure strategies. Our geometric
characterization of two–player games admitting a strong Nash equilibrium leads to the
design of a simple algorithm that puts the problems of deciding whether there is a strong
Nash equilibrium and of finding it in Smoothed–P. This shows that such problems are
generically easy.

The main question we leave open concerns the characterization of the geometry of
games with three or more players admitting strong Nash equilibrium. It is not clear
whether or not their geometry can lead to the design of a Smoothed–P algorithm.

Acknowledgements. The authors gratefully acknowledge Prof. A. Lewis for bring-
ing our attention to the semialgebraic maps and for his decisive contribution in proving
Theorem 4.1, and Prof. S. Sorin for bringing our attention to the paper [10].
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Appendix A. Proof of Proposition 4.1

We need to prove that neither the coalitions made by two players nor the grand
coalition have incentive to deviate from the Nash equilibrium. First of, the coalitions
made by two players. We fix the strategy of player 3, but since the game is completely
symmetric, the same argument holds for every player. We calculate the expected utility
of player 1 and player 2 and we force them to be strictly greater than 1

2
.

2 ·
1

2
x11x21 + 2 ·

1

2
x12x22 >

1

2

2 ·
1

2
x11x22 + 2 ·

1

2
x12x21 >

1

2

Since xi1 + xi2 = 1 we can write:

x11x21 + (1− x11) (1− x21) >
1

2

x11 (1− x21) + (1− x11) x21 >
1

2

and we obtain:

2x11x21 − x11 − x21 + 1 >
1

2

x11 + x21 − 2x11x21 >
1

2

By summing the two constraints we obtain 1 > 1 and therefore the system is unfeasible.
We do now the calculations for the grand coalition.

2x11x21x31 + 2x12x22x32 >
1

2

2x11x22x31 + 2x12x21x32 >
1

2

2x11x22x32 + 2x12x21x31 >
1

2

By replacing xi2 by 1− xi1 we can write:

2x11x21x31 + 2 (1− x11) (1− x21) (1− x31) >
1

2

2x11 (1− x21) x31 + 2 (1− x11) x21 (1− x31) >
1

2

2x11 (1− x21) (1− x31) + 2 (1− x11) x21x31 >
1

2
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and we obtain:

2− 2x21 − 2x31 + 2x21x31 − 2x11 + 2x11x21 + 2x11x31 >
1

2

2x11x31 + 2x21 − 2x11x21 − 2x21x31 >
1

2

2x11 − 2x11x21 − 2x11x31 + 2x21x31 >
1

2

By isolating x11, we can write the following system of inequalities:

x11(x31 + x21 − 1) >
1

4
− (1− x21)(1− x31) (A.1)

x11(x31 − x21) >
1

4
− x21(1− x31) (A.2)

x11(1− x31 − x21) >
1

4
− x21x31 (A.3)

x11, x21, x31 ≥ 0

x11, x21, x31 ≤ 1

We show that this inequality system is never satisfied. To do this, we consider all the
possible cases characterized by the sign (=, <,> 0) of x31 + x21 − 1 and x31 − x21.

The case in which x31 + x21 − 1 = 0, independently of the value of x31 − x21, inequal-
ity (A.3) can be written as 1

4
− x21(1 − x21) > 0 that is never satisfied given that the

maximum of 1
4
− x21(1− x21) is 0 for x21 =

1
2
. The case in which x31 − x21 = 0, indepen-

dently of the value of 1−x31−x21, inequality (A.2) can be written as 1
4
−x21(1−x21) > 0

that, as proved before, is never satisfied.
The case in which (x31 +x21− 1 > 0 ∧ x31 −x21 > 0) we can write inequalities (A.1),

(A.2), (A.3) as

x11 >
1
4
− (1− x21)(1− x31)

x31 + x21 − 1
(A.4)

x11 >
1
4
− x21(1− x31)

x31 − x21
(A.5)

x11 <
x2,1x31 −

1
4

x31 + x21 − 1
(A.6)

By combining inequalities (A.4) and (A.6) we obtain:

1
4
− (1− x21)(1− x31)

x31 + x21 − 1
−

x21x31 −
1
4

x31 + x21 − 1
< 0

x21 + x31 − 2x21x31 −
1

2
< 0 (A.7)
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By combining inequalities (A.5) and (A.6) we obtain:

1
4
− x21(1− x31)

x31 − x21

−
x21x31 −

1
4

x31 + x21 − 1
< 0

x21 6=
1

2

x31 <
1

2
(A.8)

From x31 − x21 > 0 and inequality (A.8), it follows that x21x31 < 1
4
. From this last

inequality and inequality (A.7), it follows that x21 + x31 − 1 < 0. Given that we are
assuming x31 + x21 − 1 > 0, the inequality system cannot be satisfied.

The cases in which (x31+x21−1 > 0 ∧ x31−x21 < 0), (x31+x21−1 < 0 ∧ x31−x21 > 0),
and (x31 + x21 − 1 > 0 ∧ x31 − x21 < 0) lead to calculations similar to the case in which
(x31 + x21 − 1 > 0 ∧ x31 − x21 > 0). This completes the proof.
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