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Abstract
We provide new direct methods to establish symmetrization results in the form

of mass concentration (i.e. integral) comparison for fractional elliptic equations of
the type (−∆)su = f (0 < s < 1) in a bounded domain Ω, equipped with homoge-
neous Dirichlet boundary conditions. The classical pointwise Talenti rearrangement
inequality in [47] is recovered in the limit s → 1. Finally, explicit counterexamples
constructed for all s ∈ (0; 1) highlight that the same pointwise estimate cannot hold
in a nonlocal setting, thus showing the optimality of our results.

1 Introduction

The aim of this note is to develop some new techniques regarding the application of
symmetrization methods to Dirichlet fractional elliptic problems of the type

(1.1)

8
<

:

(−∆)s u = f in Ω;

u = 0 on RN \ Ω;

where Ω ⊂ RN (N ≥ 1) is a smooth bounded open set, the source term f = f (x) is assumed
to belong to L p(Ω) for suitable p ≥ 1 and s ∈ (0; 1). In the case of local equations, it is
well known that under Schwarz symmetrization the solution to the homogeneous Dirichlet
problem for an elliptic equation increases in terms of rearrangements. Namely, consider
the Dirichlet problem

(1.2)

8
<

:

−
�
aij zx i

�
x j

= f in Ω;

z = 0 on @Ω;
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where the measurable coefficients aij = aij (x) satisfy the ellipticity condition

aij (x)� i � j ≥ |� |2; ∀� ∈ RN ; a.e. x ∈ Ω:

A nowadays classical result (see, for instance, [57], [39], [47]) states that if z ∈ H 1
0 (Ω)

is the weak solution to (1.2) and w ∈ H 1
0 (Ω

#) is the weak solution to the “symmetrized
problem” 8

<

:

−∆w = f # in Ω#;

w = 0 on @Ω#;

then

(1.3) z#(x) ≤ w(x); x ∈ Ω#:

Here Ω# is the ball centered at the origin such that |Ω#| = |Ω| and z# denotes the Schwarz
symmetrization of z (see Section 2 for further details):

z#(x) = sup{t ≥ 0 : |{x : |z(x)| > t }| > ! N |x|N };

where ! N is the measure of the unit ball in RN . An immediate consequence of inequality
(1.3) is, for example, that any norm of z increases under Schwarz symmetrization.

The approach used in most of the papers concerning symmetrization techniques is based
on the fact that the use of a suitable test function allows to obtain, for a.e. t ∈ (0; sup u),
the inequality

(1.4) − d
dt

Z

|z|>t
|Dz |2dx ≤

Z

z#>t
f #(x) dx:

Schwarz inequality, Fleming-Rishel formula and isoperimetric inequality are then used in
order to obtain a first order differential inequality involving z# and its radial derivative.
Finally, a comparison principle gives (1.3). A slightly different approach has been used in
[37], where the author observes that in inequality (1.4) one can use the so-called Pólya-
Szegö principle which states that, if u ∈ H 1

0 (Ω), then

(1.5)
Z

Ω
|Du |2dx ≥

Z

Ω
|Du#|2dx:

Actually, the differential quotient used to compute the derivative in (1.4) can be written
in terms of the Dirichlet integral of a suitable truncation of z, which is a Sobolev function,
so (1.5) applies to give

(1.6) − d
dt

Z

z#>t
|Dz#|2dx ≤

Z

z#>t
f #(x) dx:

At this point the integral on the left hand side concerns a radially symmetric function and
the quoted first order differential inequality involving z# follows immediately, without the
use of isoperimetric inequality.
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The literature about the possible extensions of (1.3) is wide and, confining ourselves
only to the case of homogeneous Dirichlet conditions, we recall symmetrization results for
elliptic equations with lower order terms ([4]), for p-Laplacian type equations ([48]), for
porous medium equation ([52]), for parabolic equations ([6]), for anisotropic equations ([3],
[23]).

Actually, the effect of symmetrization on fractional elliptic problems like (1.1) has al-
ready been exploited in [24] and then in [54], [55], [45], [56], [28]. In those papers a
symmetrization result in terms of mass concentration (i.e., an integral comparison, as in
the parabolic case) is obtained in a somewhat indirect way. Indeed, it has been used in
an essential way the fact that problem (1.1) can be linked to a suitable, local extension
problem, whose solution  (x; y), an harmonic extension of u, is defined on the infinite
cylinder CΩ = Ω × (0;∞), to which classical symmetrization techniques (with respect to
the variable x ∈ Ω) can be applied: the difficulties in this approach is the translation of
the boundary conditions and the presence of the “extra” variable y ≥ 0, which is fixed
in the symmetrization arguments, an important detail which allows to use a Steiner sym-
metrization approach. Then an integral (or mass concentration) comparison is naturally
expected, and, being u the trace of  over Ω×{0}, the comparison result for the extension
 of u immediately implies an estimate for u. Furthermore, an absolutely non negligible
aspect characterizing the works [24], [54], [55], [56] from [45] is the fact that the former ones
deal with the spectral version of the fractional Laplacian operator (−∆)s

spec on Ω (which
is defined on a domain encoding de facto the boundary conditions), while the latter one
considers the so called restricted version of the fractional Laplacian. In any case, all these
approaches takes benefit from the local intepretation of the fractional Laplacian as the
Dirichlet-to-Neumann map, i.e., as an outward normal derivative on the boundary of the
half space H = {y > 0} of the solution  (the so called s-harmonic extension) of a local
extension problem posed on H , being H replaced by CΩ (with suitable boundary condition
on the lateral surface): this is essentially the nowadays classical result by Caffarelli and
Silvestre [19], generalized in [46].

Our aim is now not to use the local interpretation of the fractional Laplacian in the
derivation of the mass concentration comparison for the solution to problem (1.1) in terms
of the solution v to the symmetrized problem

(1.7)

8
<

:

(−∆)s v = f # in Ω#

v = 0 on RN \ Ω#:

The main goal is then a new proof of the mass concentration comparison

(1.8) u#(x) ≺ v(x)

where the above comparison (see Section 2 for more details) means that, for every r > 0,
it holds Z

|x |<r
u#(x) dx ≤

Z

|x |<r
v(x) dx:
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Even though comparison (1.8) has been already obtained with the techniques described
above, however we would like to point out that in our opinion the results contained in the
present paper could be of particular interest because the arguments used to prove (1.8) are
completely new and they seem to be very flexible with respect to those used in previous
papers. Furthermore, we include an observation about optimality of (1.8), which we have
not found elsewhere.

As regards the novelty of our approach, we observe that we develop techniques which
are in some sense intrinsic, that is, we use directly the weak formulation of solution to
problem (1.1) without using any local extension. The main original steps in the proof are
two.

In the first step, inspired by [37], we use the nonlocal version of the Pólya-Szegö principle
which holds true in fractional Sobolev spaces. We are able to show that it is possible to
apply such a principle to an integral containing the solution u and a truncated of u in order
to obtain a new inequality which can be seen as the nonlocal counterpart of inequality (1.4).
We are then reduced to consider an inequality where the solution u# is already rearranged,
but it appears on the left-hand side a quantity which appears to be, roughly speaking, a
kind of mass concentration of the s-Laplacian of u#. However, such an interpretation
cannot be completely justified because u# lacks the required regularity. So, in the second
relevant step, we are able to rewrite the obtained inequality as a differential inequality
that involves the s-Laplacian of the mass concentration of u# computed on RN +2. Thus,
in some sense, comparison (1.8) becomes quite natural.

It is worth to spend some words concerning the flexibility of our approach and its
several advantages. First, we point out that it definitely clarifies a certain continuity of
the comparison result with respect to the parameter s ∈ (0; 1), in the sense that Talenti’s
pointwise result is recovered in the limit as s → 1 (which looks clearer in Figures 1 and
2 of Section 4): this remark cannot be achieved using the extension method techniques
employed in the previous works on the subject. On the other hand, we observe that our
approach could be used in various contexts. As a matter of fact, because of the fact that
Pólya-Szegö principle holds true in more general situations, the extension to various classes
of nonlocal PDEs seems to be possible. For example, our methods appear to be suitable
for the investigation about the effects of symmetrization in cases where, apparently, a
corresponding approach via an extension problem is not available. Possible examples in
the elliptic framework are nonlocal semilinear equations or equations involving elliptic
integro-differential operators with general kernels of the Lévy type, e.g. operators in the
form

L K u = P.V.
Z

RN

�
(u(x)− u(y)

�
K (x; y)dy

where K is a symmetric, possibly singular, nonnegative kernel satisfying
Z

RN
min

�
1; |y|2

	
K (y)dy < ∞:
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Such operators are widely studied in literature, see, e.g., [42] and the extensive literature
therein. Another possibility would be in trying to adapt our methods to nonlinear equa-
tions involving the so-called fractional p-Laplacian operator, i.e., the nonlocal nonlinear
operator defined for 1 < p < ∞ (see e.g. [51], [15], [33])

(−∆)s
pu = P.V.

Z

RN

Φ(u(x)− u(y))
|x − y|N +sp dy;

where Φ(z) := |z|p−2z, z ∈ R. In all the above-cited examples, no extension technique is
possible to reduce to local interpretations. On the other side, our elliptic methods could be
employed for deriving mass concentration comparison for the parabolic evolution equations
(linear and nonlinear, in bounded or unbounded domains) with the diffusion terms given by
one of the above cited nonlocal operators. It is very-well known that some applications of
such symmetrization results for parabolic equations are, for instance, the rather immediate
derivation of time decay estimates with sharp constants when the qualitative properties of
the selfsimilar fundamental solutions are known, see for instance [54], [55]. For a consistent
survey of the important applications of mass concentration comparison results in the field
of nonlinear parabolic equations, see [50]. Finally, an interesting point would be to push
forward the applications of our techniques to the hot topic of the theory of aggregation
diffusion equations, in which symmetrization can be a powerful tools in characterizing
the geometry of the asymptotic profile, see e.g. [20]. We plan to address these topics in
forthcoming papers.

As regards the optimality of (1.8), the fact that it is possible to use in the nonlocal
context an approach similar to the one used in the local case could indicate that a pointwise
estimate as (1.3) could be true also for problem (1.1). We are able to exhibit, for any
s ∈ (0; 1), some counterexamples which show that (1.3) does not hold in general.

We finally observe that, even though (1.8) is weaker with respect to a pointwise estimate
as (1.3), however it implies that any norm of u increases under Schwarz symmetrization.
As a consequence, we get optimal estimates of the L p norms of u and we are also able to
prove a comparison between the nonlocal energy of u and v.

The paper is organized as follows. In Section 2 some preliminary results and notation are
collected. Section 3 contains the main comparison result, some applications and remarks.
In Section 4 we discuss some counterexamples, while in Section 5 we prove the main
theorem, splitting the proof in several steps. Finally, in Section 6 some possible extensions
are discussed, together with a few remarks.

2 Preliminaries and notation

For the proof of the main results we need some preliminary results concerning symmetriza-
tion, functional spaces, Fourier representation and hypergeometric functions. So, in this
section we give a brief account of such properties and we fix the notation used in the
sequel.

5



2.1 Rearrangements and symmetrization

We briefly recall the basic notions of Schwarz symmetrization and some related funda-
mental properties. Readers who are interested in more details of the theory are warmly
addressed to the classical monographs [32], [9], [34], [7] or to the paper [49].

A measurable real function f defined on RN is called radially symmetric (or radial)
if there is a function ef : [0;∞) → R such that f (x) = ef (|x|) for all x ∈ RN . We will
often write f (x) = f (r ), r = |x| ≥ 0 for such functions by abuse of notation. We say
that f is rearranged if it is radial, nonnegative and ef is a right-continuous, non-increasing
function of r > 0. A similar definition can be applied for real functions defined on a ball
BR(0) =

�
x ∈ RN : |x| < R

	
.

Let f be a real measurable function on RN . If f is such that its distribution function
� f satisfies

(2.1) � f (t) := |{x ∈ Ω : |f (x)| > t }| < +∞; for every t > 0;

we define the one dimensional decreasing rearrangement of f as

f ∗ (� ) = sup {t ≥ 0 : � f (t) > � } , � ∈ (0; |Ω|) :

If f is a real measurable function on an open set Ω ⊂ RN we extend f as the zero
function in RN \Ω and we define the one dimensional decreasing rearrangement of f as the
rearrangement of such an extension. This means that f ∗(� ) = 0 for � ∈ [|Ω|;∞). From
the above definition it follows that � f ∗ = � f (i.e., f and f ∗ are equi-distributed) and f ∗ is
exactly the generalized right inverse function of � f . Furthermore, if Ω# is the ball of RN

centered at the origin having the same Lebesgue measure as Ω (Ω# = RN if |Ω| = +∞),
we define the function

f # (x) = f ∗(! N |x|N ) , x ∈ Ω#;

that will be called radially decreasing rearrangement, or Schwarz decreasing rearrangement,
of f . We easily infer that f is rearranged if and only if f = f #.

A simple consequence of the definition is that rearrangements preserve L p norms, that
is, for all p ∈ [1;∞]

‖f ‖L p (Ω) = ‖f ∗‖L p (0;|Ω|) = ‖f #‖L p (Ω#) ;

furthermore, the classical Hardy-Littlewood inequality holds true

(2.2)
Z

Ω
|f (x) g(x)|dx ≤

Z |Ω|

0
f ∗(� ) g∗(� )d� =

Z

Ω#

f #(x) g#(x) dx ;

where f; g are measurable functions on Ω.
Here we recall an important ingredient in the proof of our main result, corresponding to

the following generalization of the Riesz rearrangement inequality (see [2, Theorem 2.2]).
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Theorem 2.1 Let F : R+×R+ → R+ be a continuous function such that F (0; 0) = 0 and

(2.3) F (u2; v2) + F (u1; v1) ≥ F (u2; v1) + F (u1; v2)

whenever u2 ≥ u1 > 0 and v2 ≥ v1 > 0. Assume that f; g are nonnegative measurable
functions on RN which satisfy (2.1), then we have the inequalities
(2.4)Z

RN

Z

RN
F (f (x); g(y))W (ax + by) dx dy ≤

Z

RN

Z

RN
F (f #(x); g#(y))W (ax + by) dx dy

and Z

RN
F (f (x); g(x)) dx ≤

Z

RN
F (f #(x); g#(x)) dx;

for any nonnegative function W ∈ L 1(RN ) and any choice of nonzero numbers a and b.

2.2 Mass concentration

Since we will provide estimates of the solutions of our fractional elliptic problem in terms
of their integrals, the following definition (see, for instance, [22], [5], [52]) is of basic
importance.

Definition 2.1 Let f; g ∈ L 1
loc(RN ).We say that f is less concentrated than g, and we

write f ≺ g if for all r > 0 we get
Z

B r (0)
f #(x) dx ≤

Z

B r (0)
g#(x) dx:

The partial order relationship ≺ is called comparison of mass concentrations. Of course,
this definition can be suitably adapted if f; g are defined in an open set Ω (considering the
extension to zero outside Ω). Moreover, we have that f ≺ g if and only if

Z �

0
f ∗(� ) d� ≤

Z �

0
g∗(� ) d�;

for all � ≥ 0.
The comparison of mass concentrations enjoys some nice equivalent formulations (for

the proof we refer to [21], [5], [53]).

Lemma 2.1 Let f; g ∈ L 1
+(Ω). Then the following are equivalent:

(i) f ≺ g;

(ii) for all � ∈ L∞
+ (Ω),

Z

Ω
f (x)� (x) dx ≤

Z

Ω#

f #(x)� #(x) dx:
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(iii) for all convex, nonnegative functions Φ : [0;∞) → [0;∞) with Φ(0) = 0 it holds
Z

Ω
Φ(f (x)) dx ≤

Z

Ω
Φ(g(x)) dx:

We explicitly observe that, if f; g ∈ L p(Ω) (1 < p ≤ ∞), then we may take � ∈ L p′(Ω) in
the point (ii) above.

From this Lemma it easily follows that if f ≺ g, then

(2.5) ‖f ‖L p (Ω) ≤ ‖g‖L p (Ω) ∀p ∈ [1;∞]:

2.3 Functional spaces and some computations for radial functions

It is well known that for s ∈ (0; 1) the fractional Laplacian of a smooth real function u on
RN can be equivalently defined as a pseudodifferential operator by means of

(−∆)su = F−1
�
|� |2sF(u)(� )

�
:

where F is the Fourier transform, and in terms of a hypersingular integral

(−∆)su(x) =  (N; s) P.V.
Z

RN

u(x)− u(y)
|x − y|N +2s dy;

where the explicit value of the normalization constant  (N; s) is given by

(2.6)  (N; s) =
s22sΓ

� N +2s
2

�

�
N
2 Γ(1− s)

:

In general, we can define (−∆)su in the distributional sense when u has a strong enough
decay at infinity, e.g., when u belongs to the weighted space (see for instance [44])

L s(RN ) =

�
u : RN → R such that

Z

RN

|u(x)|
1 + |x|N +2s dx < +∞

�
:

If Ω is an open set of RN and s ∈ (0; 1) we introduce the fractional Sobolev space H s(Ω),
defined as

H s(Ω) =
�

u ∈ L 2(Ω) : [u]H s (Ω) < ∞
	

;

where [·]H s (Ω) is the Gagliardo seminorm

[u]H s (Ω) =

� Z

Ω

Z

Ω

|u(x)− u(y)|2

|x − y|N +2s dx dy
� 1=2

:

We have that H s(Ω) is a Hilbert space w.r. to the scalar product

(u; v)H s (Ω) = (u; v)L 2(Ω) +

� Z

Ω

Z

Ω

(u(x)− u(y))(v(x)− v(y))
|x − y|N +2s dx dy

� 1=2
:
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When Ω = RN one can prove that (see for instance [25]) H s(RN ) = bH s(RN ), where

bH s(RN ) =

�
u ∈ L 2(RN ) :

Z

RN
(1 + |� |2s)|û(� )|2d� < +∞

�
;

so that
‖u‖H s (RN ) = ‖u‖L 2 + ‖(−∆)s=2u‖L 2 :

We now introduce the fractional Sobolev spaces where weak solutions to problems of the
type (1.1) are naturally settled. For a bounded Lipschitz domain Ω and s ∈ (0; 1) we
denote by H s

0(Ω) the closure of C∞
0 (Ω) w.r. to the H s(Ω) norm, furthermore we define

the interpolation space

H 1=2
00 (Ω) =

�
u ∈ H 1=2(Ω) :

Z

Ω

u2(x)
d2(x)

dx < ∞
�

with d(x) = dist(x; @Ω).
Since the fractional Laplacian (−∆)s will be evaluated on functions u compactly supported
in Ω (because of the homogeneous boundary conditions), the domain of the (−∆)s (which
is often called restricted fractional Laplacian on Ω) will be

Hs(Ω) =
�

u ∈ H s(RN ) : supp(u) ⊂ Ω
	

which can be identified as follows (see [12]):

(2.7) Hs(Ω) =

8
>><

>>:

H s(Ω) if 0 < s < 1=2;

H 1=2
00 (Ω) if s = 1=2

H s
0(Ω) if 1=2 < s < 1:

Now we recall some results concerning the representation of Fourier transform and of
fractional Laplacian applied to a radial function. The following result can be found in [11,
Theorem 40 and Ch. IV, § 5].

Theorem 2.2 (Fourier-Bessel representation) Let u(x) = u(|x|) be a radial function,
and suppose that

� → � N u(� )J N
2
−1(� ) ∈ L 1(R+);

where J N
2
−1(t) denotes the Bessel function of order N

2 − 1. Then, the Fourier transform
of u is given by

F(u)(� ) = 2� |� |−
N
2
+1

Z +∞

0
�

N
2 u(� )J N

2
−1(2� |� |� ) d�:

Furthermore, if u ∈ L 2(RN ), then formula above remains valid in L 2(RN ).
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The following result gives the expression of the fractional Laplacian in radial coordinates
and it can be found in [30].

Theorem 2.3 Let u(x) = u(|x|) be a radial function. Then

(−∆)su(x) =
(2� )2s+2

|x|
N
2
−1

Z +∞

0
� 1+2sJ N

2
−1(2� |x|� )

� Z +∞

0
�

N
2 u(� )J N

2
−1(2��� ) d�

�
d�

provided that the integrals exist and are convergent.

2.4 Some properties of hypergeometric functions

We now recall a few properties of the hypergeometric function 2F1(a; b; c; x) (see, for
example, [38, Ch. II]), which, for c > b > 0 and 0 < � < 1, can be represented as

(2.8) 2F1(a; b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

Z 1

0
� b−1(1− � )c−b−1(1− x� )−ad�

These properties will turn out useful in the proof of the main Theorem, namely Theorem
3.1. Classical results about the derivatives of 2F1(a; b; c; x) read as

2F ′
1(a; b; c; x) =

ab
c 2F1(a + 1; b+ 1; c+ 1; x);

2F1(a + 1; b; c+ 1; x) =
c

c− b 2F1(a; b; c; x)− c
c− b

1− x
a 2F ′

1(a; b; c; x);

2F1(a − 1; b; c− 1; x) =
c− 1− bx

c− 1
2F1(a; b; c; x) +

x(1− x)
c− 1

2F ′
1(a; b; c; x):

A straightforward consequence of the above equalities is the following one:

(2.9) 2F ′
1(a; b; c; x) =

ab
c 2F1(a + 1; b; c+ 1; x) +

ax
c 2F ′

1(a + 1; b; c+ 1; x):

We also recall the following equality which holds true for b > 0 and |x| < 1.

(2.10)
Z �

0

sin2b−1 �
(1− 2x cos � + x2)a d� =

√
� Γ(b)

Γ(b+ 1
2)

2F1(a; a− b+ 1
2 ; b+

1
2 ; x

2):

We finally recall that a direct computation in (2.8) gives

(2.11) 2F1(a; b; c; 0) = 1;

and, when c > a + b a formula due to Gauss states

(2.12) 2F1(a; b; c; 1) =
Γ(c)Γ(c− a − b)
Γ(c− a)Γ(c− b)

:
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The above information, together with the equality

(2.13) 2F1(a; b; c; x) = (1− x)c−a−b
2F1(c− a; c− b; c; x);

will be useful in order to establish some asymptotic behaviours.

3 Main results and remarks

We are now in position to give the following definition of weak solution to problems of the
type (1.1) (see [42])

Definition 3.1 Let f ∈ L p(Ω), for some p ≥ 2N=(N + 2s) when N ≥ 2.When N = 1 we
require p ≥ 2=(1 + 2s) when s ∈ (0; 1=2) and any p > 1 for s ∈ [1=2; 1). A weak solution
to problem (1.1) is a function u ∈ Hs(Ω) such that the equality
(3.1)

(u; ’ )Hs (Ω) :=
 (N; s)

2

Z

RN

Z

RN

(u(x)− u(y)) (’ (x)− ’ (y))
|x − y|N +2s dx dy =

Z

Ω
f (x) ’ (x) dx

holds for all test functions ’ ∈ Hs(Ω) .

It is clear that the bilinear form (·; ·)Hs (Ω) verifies the classical Lax-Milgram Theorem,
thus a unique weak solution u to problem (1.1) exists because f ∈ H−s(Ω) =: (Hs(Ω))′

due to the fractional Sobolev embeddings. As regards important properties of solutions,
such as maximum principles, regularity results or extensions to a wider class of operators
we refer to [42]. We also recall that the solution v to the symmetrized problem (1.7) is
radially strictly decreasing, see for instance [27, Theorem 1.1] or [8, Theorem 1.1].

Now we can finally state the main result of this paper.

Theorem 3.1 Let s ∈ (0; 1) and let f ∈ L p(Ω), with p ≥ 2N=(N + 2s) when N ≥ 2 and
any p > 1 for N = 1. If u is the weak solution to problem (1.1) and v is the solution to
the corresponding symmetrized problem (1.7), we have

(3.2) u#(x) ≺ v(x):

Theorem 3.1 has a certain number of interesting implications. For instance, (3.2) and
property (2.1) transfers the study of the L p regularity scale of the solution u to (1.1) to
the same regularity for the solution v to the radial problem (1.7). The advantage of this
step relies in the fact that v can be written in the integral form in terms of the Green
function on the ball, which is explicit. We can summarize all these considerations in the
following result.

Theorem 3.2 Let N ≥ 2, f ∈ L p(Ω), with p ≥ 2N=(N + 2s), and let u be the weak
solution to problem (1.1). We have:
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1. if p < N= (2s) then u ∈ L q(Ω), with

(3.3) q =
Np

N − 2sp

and there exists a constant C such that:

‖u‖L q(Ω) ≤ C‖f ‖L p (Ω);

2. if p > N= (2s) then u ∈ L∞(Ω) and there exists a constant C such that:

‖u‖L ∞(Ω) ≤ C‖f ‖L p (Ω);

3. if p = N=(2s), then u ∈ LΦp (Ω) and there exists a constant C such that:

‖u‖L Φp (Ω)
≤ C‖f ‖L p (Ω);

where LΦp (Ω) is the Orlicz space generated by the N -function

Φp(t) = exp(|t |p′)− 1:

Proof. The proof follows some arguments of [24, Theorems 4.3-4.4], but we propose here
the details for the sake of completeness. We write

v(x) =
Z

Ω#

GΩ#(x; y)f #(y)dy;

where GΩ# is the Green function of the restricted fractional Laplacian on the ball (see
[16]). Since (see for instance [35])

(3.4) GΩ#(x; y) ≤ C
|x − y|N −2s

for any x 6= y in Ω#, then, extending f to 0 out of Ω, Hardy-Littlewood-Sobolev inequality
(see [36]) implies, for p < N= (2s),

‖u‖L q ≤ ‖v‖L q ≤ C‖f ‖L p

where q is given by (3.3). The case p > (N=2s) is even easier, because

‖u‖L ∞(Ω) ≤ ‖v‖L ∞(Ω) ≤ C
Z

Ω#

f #(y)
|y|N −2s dy

≤ C‖f ‖L p (Ω)

� Z

Ω#

1

|y|(N −2s)p′ dy
� 1=p′

< ∞:
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The limit case is a bit more elaborate. Indeed, it can be proven that (see for instance [9,
Lemma 6.12]) LΦp (Ω) can be interpreted as the space of all measurable functions  such
that

sup
� ∈(0;|Ω|)

 ∗∗(� )
�
1 + log

�
|Ω|
�

�� 1=p′ < ∞;

where
 ∗∗(� ) =

1

�

Z �

0
 ∗(� )d�:

Since (see [41, Lemma 1.6])

(f # ∗ | · |2s−N )∗∗(� ) ≤
Z |Ω|

s
� (2s=N )−N f ∗∗(� )d�;

and the fact that the L p norms of f ∗ and f ∗∗ are equivalent (see [9, Lemma 4.5]) an easy
application of Hölder inequality and (3.2) provides

u∗∗(� )
�
1 + log( |Ω|

� )
� 1=p′ ≤ C

(f # ∗ | · |2s−N )∗∗(� )
�
1 + log( |Ω|

� )
� 1=p′

≤ C

�
log

�
|Ω|
�

�� 1=p′

�
1 + log( |Ω|

� )
� 1=p′ ‖f ‖L p (Ω);

which concludes the proof. �

Remark 3.3 For the sake of simplicity in the above theorem we have supposed N ≥ 2, but
similar arguments can be used also in case N = 1. In such a case, if s < 1=2 estimate (3.4)
still holds, thus Theorem 3.2 remains true. If s > 1=2 the Green function on a symmetric
interval is bounded [18, Corollary 3], while in the special case s = 1=2 the Green function
is explicit (see Section 4) and one has

GΩ#(x; y) ≤ C log
1

|x − y|

where we recall that −(1=� ) log |x| is exactly the fundamental solution of (−∆)1=2 for N =
1. Thus for s ≥ 1=2 the solution u is bounded for all p > 1.

It can be shown that optimal embedding results hold when the Lorentz spaces L p;q(Ω) are
introduced, see for such questions [24] and [56].
Another interesting consequence of (3.2) is the estimate of the nonlocal energy of u in
terms of the one of v, in the spirit of [47].
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Proposition 3.4 Under the assumptions of Theorem (3.1), we have

(3.5) [u]H s (RN ) ≤ [v]H s (RN ):

Proof. Simply inserting u as test function in the weak formulation (3.1), an employ of
Hardy-Littlewood rearrangement inequality and Lemma 2.1 provides

 (N; s)
2

Z

RN

Z

RN

|u(x)− u(y)|2

|x − y|N +2s dx dy =

Z

Ω
f (x) u(x) dx

≤
Z

Ω#

f #(x) u#(x) dx

≤
Z

Ω#

f #(x) v(x) dx

=
 (N; s)

2

Z

RN

Z

RN

|v(x)− v(y)|2

|x − y|N +2s dx dy:

�

Remark 3.5 It is interesting to guess, in the spirit of [13], [14], [40], what happens when
we want somehow to pass to the limit as s → 1 in the energy inequality (3.5). We observe
that by [10, Theorem 1.2] the solution u to problem (1.1) for s = 1, i.e. the solution to the
local Poisson equation with homogeneous boundary condition u = 0 on @Ω, can be seen
as the weak limit of the family of solutions us to (1.1) for s ∈ (0; 1). The same property
holds for the solution v to the symmetrized problem (1.7) for s = 1 and v = 0 on @Ω#.
Then applying Proposition 3.4 to each couple of solutions us; vs we can use [10, Theorem
1.2] to pass to the limit as s → 1 in the inequality

[us]H s (RN ) ≤ [vs]H s (RN );

and obtain Z

Ω
|∇u|2dx ≤

Z

Ω#

|∇v|2dx;

thus (3.5) can be seen as the nonlocal version of Talenti’s energy inequality.

4 Counterexamples to the pointwise comparison

One could ask if the comparison in terms of mass concentration could be improved to give
a pointwise estimate. In order to understand if a result similar to the one proved by Talenti
[47] in the local case could be expected also in the non local one, we devote this Section to
discuss some special cases which give a negative answer, showing that a pointwise estimate
cannot hold and then, that our result is optimal.
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In the case N = 1, s = 1
2 , Ω = (−1; 1), the explicit solution to problem

(4.1)

8
<

:

(−∆)1=2u = f in Ω;

u = 0 on R \ Ω;

can be computed explicitly in various cases, making use of the Green function on Ω (see,
e.g., [16, Theorem 3.1])

(4.2) u(x) =
1

�

Z 1

−1
f (x) log

 
1− x y +

p
(1− x2)(1− y2)

|x − y|

!

dy:

A direct computation shows that the solutions u(1) and u(2) to (4.1) corresponding to the
source terms f (1)(x) = |x| and f (2)(x) = � 1

2
< |x |< 1(x), respectively, are given by

u(1)(x) =
1

�

� p
1− x2 − x2 log |x|+ x2 log

�
1 +

p
1− x2

��

u(2)(x) =
1

�

 
2�
3

p
1− x2 −

�
1

2
− x

�
log

 
1− x

2 +
√
3
2

√
1− x2

|x − 1
2 |

!

−
�
1

2
+ x

�
log

 
1 + x

2 +
√
3
2

√
1− x2

|x + 1
2 |

!!

:

On the other hand, observing that Ω# = (−1; 1), f #
(i )(x) = 1 − f (i )(x), i = 1; 2, and

that
√
1− x2 solves the above problem when the source term is 1 (see [31] and [26]), the

solution v(i ), i = 1; 2, to the symmetrized problem
8
><

>:

(−∆)1=2v(i ) = f #
(i ) in Ω#;

v(i ) = 0 on R \ Ω#;

is given by
v(i )(x) =

p
1− x2 − u(i )(x)

All the functions u(i ) and v(i ) are symmetric with respect to the origin and one can prove
that in both cases the pointwise estimate (1.3) does not hold. These functions are plotted
in Figure 1 and Figure 2 where they correspond to us;i and vs;i with s = 1

2 .
In the case i = 1 (a similar analysis can be carried out when i = 2) a direct computation

shows that

u(1)(x) ∼
2

�

p
1− x2 as x → 1

v(1)(x) ∼
� − 2

�

p
1− x2 as x → 1;
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so, for a suitable " > 0 it holds

(4.3) u(1)(x) > v (1)(x); 1− " ≤ |x| ≤ 1

On the other hand, being f (1) a nonnegative (not identically zero) function, we have (see,
e.g., [17, Theorem 2.3.3]) u(1)(x) > 0 in [−1 + "; 1− " ]. Let

t̄ = min
[−1+";1−" ]

u(1)(x) > 0:

We observe that v(1)(x) is an even function which strictly decreases for x ∈ (0; 1). If
v(1)(x) < t̄ then (4.3) holds true for x ∈ (−1; 1) and then u#(x) > v (x) in (−1; 1),
contradicting (1.3).

So, we can suppose that there exists a unique x̄ ∈ (0; 1) such that v(1)(x̄) = t̄ . We claim
that the two truncated functions

ū(1)(x) = min{t̄; u (1)(x)}; v̄(1)(x) = min{t̄; v(1)(x)};

are such that

(4.4) ū(1)(x) ≥ v̄(1)(x); x ∈ R;

with strict inequality in a left neighborough of x = 1 (and in a right neighborough of
x = −1).

Indeed, considering the cases where x̄ belongs to (0; 1 − ") or to [1 − "; 1), from the
definition of t̄ it follows:

u(1)(x̄) ≥ t̄:

Moreover, for x ∈ (0; x̄), in view of (4.3) and the radial monotonicity of v(1) we have that
u(1)(x) ≥ t̄ , thus ū(1)(x) = t̄ = v̄(1)(x), x ∈ (0; x̄). Then (4.3) allows to obtain (4.4).

By the definition of distribution function we have by (4.4)

� u(1)
(t) = � ū(1)

(t) > � v̄(1)(t) = � v(1)(t); t ∈ (0; t̄);

so, in a left neighborough of x = 1 (and in a right neighborough of x = −1), it holds

u#
(1)(x) > v (1)(x);

which proves that the pointwise estimate

u#
(1)(x) ≤ v(1)(x);

does not hold true in (−1; 1).
As a matter of fact the phenomenon described above happens to be true for every

s ∈ (0; 1). Indeed, denote, respectively, by us;i and vs;i the solutions to the problems
8
<

:

(−∆)sus;i = f i in Ω;

us;i = 0 on R \ Ω;

8
<

:

(−∆)svs;i = f #
i in Ω#;

vs;i = 0 on R \ Ω#;
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10

s = 1=4

−1

us;1

vs;1

10

s = 1=2

−1

us;1

vs;1

10
s = 3=4

−1

us;1

vs;1

10
s = 1

−1

us;1

vs;1

Figure 1: Plot of us;1 and vs;1

where Ω and f i , i = 1; 2 are like above. The following computations are made for i = 1,
similar arguments apply for i = 2. For s ∈ (0; 1), s 6= 1=2 the solution us;1 can be
computed using the Green function on Ω (see again [16, Theorem 3.1]) obtaining

us;1(x) =
1

22sΓ(s)2

Z 1

−1
|x| |z − x|2s−1

0

@
Z (1−x 2)(1−z2)

|z−x |2

0

ts−1

(t + 1)
1
2

dt

1

A dz

and it follows

‘ us; 1 = lim
x→1−

us;1(x)
(1− x2)s =

1

22sΓ(s)Γ(s+ 1)

Z 1

−1
|z|(1− z)s−1(1 + z)sdz

=
1

22sΓ(s+ 1)2

Recalling that (1 − x2)s solves the problem with the source term equal to Γ(2s + 1) we
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have

vs;1(x) =
(1− x2)s

Γ(2s+ 1)
− us;1(x)

and it follows

‘ vs; 1(s) = lim
x→1−

vs;1(x)
(1− x2)s =

1

Γ(2s+ 1)
− 1

22sΓ(s+ 1)2

Now we use the following property of the function Γ(x)
√

� 21−2xΓ(2x) = Γ(x)Γ(x + 1
2); x > 0;

and the definition of beta function

B (x; y) =
Z 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

;

to get

‘ us; 1(s)− ‘ vs; 1(s) =
2

22sΓ(s+ 1)2
− 1

Γ(2s+ 1)
=

1

Γ(2s+ 1)

 
2√
�
Γ(s+ 1

2)

Γ(s+ 1)
− 1

!

=
1

Γ(2s+ 1)

�
2

�
B (s+ 1

2 ; 1
2)− 1

�
> 0; s ∈ (0; 1);

where we have observed that by definition B (s+ 1
2 ; 1

2) is decreasing with respect to s ∈ (0; 1)
and B (32 ; 1

2) =
�
2 . Thus, as above, in a left neighborhood of x = 1, it holds

u#
s;1(x) > v s;1(x):

Now we can repeat the arguments used in the case s = 1
2 to show that the pointwise

estimate
u#

s;1(x) ≤ vs;1(x);

does not hold true in (−1; 1).
In Figure 1 and Figure 2 the functions us;i and vs;i for various values of s are plotted

using the same unit for the two axes. The plots have been obtained applying the numerical
tools offered by Mathematica to the explicit 1D formula contained in [16, Theorem 3.1]
and proved to agree as expected with the outputs of the Matlab code kindly provided by
the authors of [1].
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10

s = 1=4

−1

us;2

vs;2

10

s = 1=2

−1

us;2

vs;2

10
s = 3=4

−1

us;2

vs;2

10
s = 1

−1

us;2

vs;2

Figure 2: Plot of us;2 and vs;2

5 Proof of Theorem 3.1

5.1 The case where f is nonnegative and regular

In the present subsection we suppose that f ∈ C∞
0 (RN ) and f (x) ≥ 0 in Ω. It follows

that u is a continuous function on RN of class C1 in Ω and 0 ≤ u(x) ≤ umax < +∞ in Ω,
where umax = maxRN u (see, e.g., [43, Theorem 1.1]). We split the proof in four steps.

• Step 1: Choice of the test function and nonlocal Pólya-Szegö inequality .

For 0 ≤ t < u max and h > 0, we choose the following test function

’ (x) = Gt;h (u(x))

where Gt;h (� ) is the classical truncation

(5.1) Gt;h (� ) =

8
>>>><

>>>>:

h if � > t + h

� − t if t < � ≤ t + h

0 if � ≤ t:

Notice that since
|Gt;h (u(x))− Gt;h (u(y))| ≤ |u(x)− u(y)|

we immediately have that Gt;h (u) ∈ Hs(Ω), thus we can use Gt;h (u) as a test function in
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the weak formulation of problem (1.1). Then we have
(5.2)

 (N; s)
2

Z

RN

Z

RN

(u(x)− u(y)) (Gt;h (u(x))− Gt;h (u(y)))
|x − y|N +2s dx dy =

Z

Ω
f (x)Gt;h (u(x)) dx:

In the spirit of [37] for the local case, our aim is now to find a bound from below of the left-
hand side of (5.2) in terms of the radially decreasing rearrangement u#. More precisely,
we will prove the inequality

Z

RN

Z

RN

(u(x)− u(y)) (Gt;h (u(x))− Gt;h (u(y)))
|x − y|N +2s dxdy(5.3)

≥
Z

RN

Z

RN

�
u#(x)− u#(y)

� �
Gt;h (u#(x))− Gt;h (u#(y))

�

|x − y|N +2s dxdy:

This approach consistently differs from the usual procedure in the local case, where
Fleming-Rishel formula and isoperimetric inequality are employed and seem not to work
in the present setting. Following [2, Section 9], we write
Z

RN

Z

RN

(u(x)− u(y)) (Gt;h (u(x))− Gt;h (u(y)))
|x − y|N +2s dxdy =

1

Γ(N +2s
2 )

Z ∞

0
I � [u; t; h ] � (N +2s)=2−1d�;

where

(5.4) I � [u; t; h ] =
Z

RN

Z

RN
(u(x)− u(y)) (Gt;h (u(x))− Gt;h (u(y))) exp[−|x − y|2� ]dx dy:

By virtue of this last representation, inequality (5.3) is proved when we succeed to show
that

(5.5) I � [u; t; h ] ≥ I � [u#; t; h ];

for all � > 0. To this aim, we use Riesz’s general rearrangement inequality (2.4) with the
choice W� (x) = exp[−|x|2� ], a = 1; b= −1 and

F (u; v) = u2 + v2 − (u − v)(Gt;h (u)− Gt;h (v))

for all u; v > 0. Observe that the function F is eligible. Indeed, using the fact that
Gt;h (� ) ≤ � for all � ≥ 0, simple computations give

F (u; v) = u(u − Gt;h (u)) + v(v − Gt;h (v)) + uGt;h (v) + vGt;h (u) ≥ 0

and also (2.3) holds, because for given u2 ≥ u1 > 0 and v2 ≥ v1 > 0 one has

F (u2; v2)+F (u1; v1)−F (u2; v1)−F (u1; v2) = (v1−v2)(Gt;h (u1)−Gt;h (u2))+(u1−u2)(Gt;h (v1)−Gt;h (v2)) ≥ 0:
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Plugging such function F in (2.4) yields
Z

RN

Z

RN
F (u(x); u(y))W� (x − y)dx dy ≤

Z

RN

Z

RN
F (u#(x); u#(y))W� (x − y)dx dy

that is

Z

RN

Z

RN

�
u2(x) + u2(y)− (u(x)− u(y)) (Gt;h (u(x))− Gt;h (u(y)))

�
W� (x − y)dx dy

(5.6)

≤
Z

RN

Z

RN

h
(u#)2(x) + (u#)2(y)− (u#(x)− u#(y))

�
Gt;h (u#(x))− Gt;h (u#(y))

�i
W� (x − y)dx dy:

Notice that by the equimisurability property of rearrangements we have
Z

RN

Z

RN
(u#)2(x)W� (x − y)dx dy =

Z

RN

Z

RN
u2(x)W� (x − y)dx dy

then employing the symmetry of the kernel W� in (5.6) we find (5.5).

So far we proved, as an easy consequence of (5.2), that
(5.7)
 (N; s)

2

Z

RN

Z

RN

�
u#(x)− u#(y)

� �
Gt;h (u#(x))− Gt;h (u#(y))

�

|x − y|N +2s dxdy ≤
Z

Ω
f (x)Gt;h (u(x)) dx:

• Step 2: Rewriting (5.7) in the radial coordinate.

This long step will be devoted to rewriting (5.7) in terms of one-variable integrals with
respect to the radial coordinate r := |x|. It will strongly involve the properties of the
hypergeometric functions recalled in Section 2.4. First we set

˚uffl(x) = ˚uffl(|x|) := u#(x);

hence ˚uffl is a nonincreasing continuous function defined on RN which vanishes for |x| ≥
R > 0, R being the radius of Ω#. Furthermore, taking into account the fact that Schwarz
rearrangement preserves Lipschitz continuity (see, e.g., [34, Theorem 2.3.3]) because of the
regularity of u, the function ˚uffl is locally Lipschitz continuous in Ω#, namely it is Lipschitz
continuous in every B r (0) with 0 < r < R . For every 0 ≤ t ≤ umax there exists a unique
r (t) such that |{x : ˚uffl(x) > t }| = |B r (t)(0)|. We observe that r (t) is a non increasing right
continuous function on 0 ≤ t ≤ umax. Our main issue now is how to pass to the limit as
h → 0 in (5.7). To this aim, let us consider the following integral:

I t;h =
1

N! N

Z

RN

Z

RN

(˚uffl(x)− ˚uffl(y)) (Gt;h (˚uffl(x))− Gt;h (˚uffl(y)))
|x − y|N +2s dxdy;(5.8)
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thus (5.7) translates to

N! N
 (N; s)

2
I t;h ≤

Z

Ω
f (x)Gt;h (u(x)) dx:

Putting as usual r = |x|, we have:

I t;h =

Z +∞

0

� Z +∞

0

� ˚uffl(r )− ˚uffl(� )�� Gt;h (˚uffl(r ))− Gt;h (˚uffl(� ))� ΘN;s (r; � )� N −1d�
�

r N −1dr;

where

(5.9) ΘN;s (r; � ) =
1

N! N

Z

|x ′|=1

 Z

|y′|=1

1

|r x ′ − � y ′|N +2s dH N −1(y′)

!

dH N −1(x ′)

In order to compute ΘN;s (r; � ) we observe that the internal integral in (5.9) does not
depend on x ′, so one can compute it choosing any fixed x ′, obtaining

ΘN;s (r; � ) =
Z

|y′|=1

1

|r x ′ − � y ′|N +2s dH N −1(y′)(5.10)

=� N

Z �

0

sinN −2 �

(r 2 − 2r� cos � + � 2)
N +2s

2

d�;

where

� N =
2�

N −1
2

Γ(N −1
2 )

:

By definition ΘN;s (r; � ) is symmetric, that is,

ΘN;s (r; � ) = ΘN;s (�; r );

and, by (2.10), it follows

(5.11) ΘN;s (r; � ) =

8
>>>><

>>>>:

� N

� N +2s 2F1

�
N + 2s

2
; s+ 1;

N
2
;

r 2

� 2

�
if 0 ≤ r < � < +∞

� N

r N +2s 2F1

�
N + 2s

2
; s+ 1;

N
2
;
� 2

r 2

�
if 0 ≤ � < r < +∞

It is possible to obtain the asymptotic behaviour of ΘN;s (r; � ) as r; � → +∞ or |r − � | → 0.
Indeed, using (2.11) with a = N +2s

2 , b= s+ 1, c = N
2 , we have

(5.12)

8
>>><

>>>:

ΘN;s (r; � ) ∼ 1

r N +2s as r → +∞

ΘN;s (r; � ) ∼ 1

� N +2s as � → +∞:
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On the other hand, with the same choice of a; b; c, (2.13) gives

2F1

�
N + 2s

2
; s+ 1;

N
2
; x

�
= (1− x)−1−2s

2F1

�
−s;

N
2

− s− 1;
N
2
; x

�
;

so by (2.12) we get

(5.13) ΘN;s (r; � ) ∼ 1

|r − � |1+2s as |r − � | → 0:

We also observe that (2.9) tells us that the function ΘN;s (r; � ) and its derivatives can
be related to the function ΘN +2;s(r; � ). Actually the use of that equality or a direct
computation gives:

� N −1ΘN;s (r; � ) =
N + 2s
2�

� N +1ΘN +2;s(r; � ) +
1

2�
@
@�

�
� N ΘN +2;s−1(r; � )

�
;(5.14)

� N −1@ΘN;s

@r
(r; � ) = −N + 2s

2�
r

@
@�

�
� N ΘN +2;s(r; � )

�
:(5.15)

Now we come back to the integral I t;h defined in (5.8) and observe that a decomposition
which makes use of (5.1) gives:

I t;h =

Z r (t)

r (t+h)

 Z r (t)

r (t+h)

� ˚uffl(r )− ˚uffl(� )� 2ΘN;s (r; � )� N −1d�

!

r N −1dr

(5.16)

+ 2

Z r (t+h)

0

 Z r (t)

r (t+h)

� ˚uffl(r )− ˚uffl(� )�� h − ˚uffl(� ) + t
�
ΘN;s (r; � )� N −1d�

!

r N −1dr

+ 2

Z +∞

r (t)

 Z r (t)

r (t+h)

� ˚uffl(r )− ˚uffl(� )�� − ˚uffl(� ) + t
�
ΘN;s (r; � )� N −1d�

!

r N −1dr

+ 2h
Z r (t+h)

0

 Z +∞

r (t)

� ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )� N −1d�

!

r N −1dr

= I (1)t;h + 2I (2)t;h + 2I (3)t;h + 2hI (4)
t;h :

Using the fact that ˚uffl(r ) is locally Lipschitz continuous in Ω# and the asymptotic behaviour
of ΘN;s (r; � ) as r → � and r; � → +∞, we can show that

(5.17)
1

h
I (i )t;h

h→0−−−→ 0; i = 1; 2; 3:
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Indeed, since ˚uffl is radially decreasing we find for r; � ∈ (r (t + h); r (t)),

|(˚uffl(r )− ˚uffl(� )| ≤ [˚uffl(r (t + h))− ˚uffl(r (t))] = h

then

1

h
I (1)t;h ≤ c

1

h

Z r (t)

r (t+h)

 Z r (t)

r (t+h)
|(˚uffl(r )− ˚uffl(� )||r − � |−2sd�

!

dr

≤ c
Z r (t)

r (t+h)

 Z r (t)

r (t+h)
|r − � |−2sd�

!

dr h→0−−−→ 0:

Similarly we find

0 ≤ 1

h
I (2)t;h ≤ c

Z r (t+h)

0

 Z r (t)

r (t+h)
|r − � |−2sd�

!

dr

≤ c|r (t)− r (t + h)|2−2s h→0−−−→ 0;

while

1

h
I (3)t;h ≤ c

h

Z R

r (t)

 Z r (t)

r (t+h)
|˚uffl(� )− t ||r − � |−2sd�

!

dr +
1

h

Z +∞

R

 Z r (t)

r (t+h)
|˚uffl(� )− t |ΘN;s (r; � )� N −1d�

!

r N −1dr

≤ c

" Z R

r (t)

 Z r (t)

r (t+h)
|˚uffl(� )− t ||r − � |−2sd�

!

dr +
Z r (t)

r (t+h)
� N −1

� Z +∞

R
ΘN;s (r; � )r N −1dr

�
d�

#
h→0−−−→ 0:

Then, collecting (5.16) and (5.17), for the left hand side of (5.7) it holds, for every
t ∈ (0; umax),

lim
h→0+

 (N; s)
2h

Z

RN

Z

RN

(˚uffl(x)− ˚uffl(y)) (Gt;h (˚uffl(x))− Gt;h (˚uffl(y)))
|x − y|N +2s =

= N! N  (N; s) lim
h→0+

I (4)t;h

= N! N  (N; s) lim
h→0+

Z r (t+h)

0

 Z +∞

r (t)

� ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )� N −1d�

!

r N −1dr

= N! N  (N; s)
Z r (t)

0

 Z +∞

r (t)

� ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )� N −1d�

!

r N −1dr

where the last passage to the limit is justified by monotone convergence and by the fact
that the function

(r; � ) →
� ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )� N −1r N −1
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is summable on
�
0; r (t)

�
×

�
r (t);+∞

�
. Indeed, for big values of � one uses the asymptotic

behaviour of ΘN;s (r; � ), while for r − � → 0 one uses the fact that
�� � ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )

�� ≤ c|r − � |−2s:

On the other hand,
Z

Ω
f (x)Gt;h (u(x)) dx h→0−−−→

Z

u>t
f (x) dx ≤ N! N

Z r (t)

0
f ∗(! N � N )� N −1d�:

So, for every t ∈ (0; umax), (5.7) implies
(5.18)

 (N; s)
Z r (t)

0

 Z +∞

r (t)

� ˚uffl(r )− ˚uffl(� )� ΘN;s (r; � )� N −1d�

!

r N −1dr ≤
Z r (t)

0
f ∗(! N � N )� N −1d�:

We now change the variables in both integrals, putting r N = ˚rffl and � N = ¯s, to obtain
(5.19)

 (N; s)
N

Z r (t)N

0

 Z +∞

r (t)N

� ˚uffl(˚rffl 1N )− ˚uffl(¯s 1
N )

�
ΘN;s (˚rffl 1N ; ¯s 1

N )d¯s
!

d˚rffl ≤
Z r (t)N

0
f ∗(! N ¯s)d¯s:

For � ∈ (0;+∞) we consider the functions

H (� ) =
Z �

0

� Z +∞

�

� ˚uffl(˚rffl 1N )− ˚uffl(¯s 1
N )

�
ΘN;s (˚rffl 1N ; ¯s 1

N ) d¯s
�

d˚rffl

and
G(� ) =

Z �

0
f ∗(! N ¯s) d¯s:

By the asymptotic behaviors of ΘN;s , both functions H (� ) and G(� ) are continuous and
inequality (5.19) can be written as

 (N; s)
N

H (� ) ≤ G(� ); if � = r (t)N for some t ≥ 0

Our aim is to show that the above inequality holds true for every � ∈ (0;+∞). Two cases
are missing:

(a) � > r (0)N ;

(b) r (t)N < � ≤ r (t−)N , if u has a flat zone at the level t > 0.

In case (a) we have (recall that u = 0 in RN \ Ω):

H (� ) =
Z r (0)N

0

� Z +∞

�
˚uffl(˚rffl 1N )ΘN;s (˚rffl 1N ; ¯s 1

N ) d¯s
�

d˚rffl
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which implies that H (� ) is a non increasing function for � > r (0)N . On the other hand,
G(� ) is constant in the same interval, so, taking into account the fact that  (N;s )

N H (r (0)N ) ≤
G(r (0)N ), we have

 (N; s)
N

H (� ) ≤ G(� ); � > r (0)N :

If u does not have a flat zone we have finished, so let us consider case (b), that is, let t
be such that |{x : u(x) = t}| > 0. The claimed inequality holds true at � = r (t)N and, by
continuity, also at � = r (t−)N , that is

 (N; s)
N

H (r (t−)N ) ≤ G(r (t−)N ):

It is immediate to observe that the function G(� ) is concave, so, in order to prove the
claimed inequality for r (t)N < � < r (t−)N , it is sufficient to show that H (� ) is convex on
such an interval. Indeed, it holds

H ′(� ) =
Z +∞

�

� ˚uffl(� 1
N )− ˚uffl(¯s 1

N )
�
ΘN;s (�

1
N ; ¯s 1

N ) d¯s−
Z �

0

� ˚uffl(˚rffl 1N )− ˚uffl(� 1
N )

�
ΘN;s (˚rffl 1N ; �

1
N ) d˚rffl

=

Z +∞

r (t−)N

�
t − ˚uffl(¯s 1

N )
�
ΘN;s (�

1
N ; ¯s 1

N )d¯s−
Z r (t)N

0

� ˚uffl(˚rffl 1N )− t
�
ΘN;s (˚rffl 1N ; �

1
N )d˚rffl

=: H1(� )− H2(� ):

We notice that for r (t)N < � < r (t−)N , using (5.11) a direct computation shows that

H1
′(� ) =

Z +∞

r (t−)N

�
t − ˚uffl(¯s 1

N )
� @

@�

�
ΘN;s (�

1
N ; ¯s 1

N )
�

d¯s ≥ 0;

H2
′(� ) =

Z r (t)N

0

� ˚uffl(˚rffl 1N )− t
� @

@�

�
ΘN;s (�

1
N ; ˚rffl 1N )

�
d˚rffl ≤ 0;

then H ′(� ) is increasing in r (t)N < � < r (t−)N , implying that H (� ) is convex.
Thus, we have proved

 (N; s)
N

H (� ) ≤ G(� ); � ≥ 0;

and, performing again a change of variables, for every r ≥ 0, we get
(5.20)

 (N; s)
Z r

0

� Z +∞

r

� ˚uffl(� )− ˚uffl(� )� ΘN;s (�; � )� N −1d�
�

� N −1d� ≤
Z r

0
f ∗(! N � N )� N −1d�:

• Step 3: Rewriting (5.20) in terms of the spherical mean function .
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Now our goal is to rewrite the left-hand side of (5.20) in terms of the following spherical
mean function

U(x) = U(|x|) = 1

|x|N

Z |x |

0
˚uffl(� )� N −1d�;

defined for all x ∈ RN . It is a very important step and represents one of the main novelty
of this approach, allowing to represent left-hand side of (5.20) as the fractional Laplacian
of U in N + 2 variables. It is easy to show that:

0 ≤ ˚uffl(x) ≤ umax; 0 ≤ U(x) ≤ umax

N
and

˚uffl(x) ≤ N U (x); x ∈ RN

Furthermore
U ′(� ) =

˚uffl(� )
�

− N
U(� )

�
≤ 0; � > 0

So U ′(� ) is of class C1;1loc and U(� ) is strictly decreasing for � ≥ r 0 where r 0 ≥ 0 is such
that

! N r N
0 = |{x ∈ RN : u(x) = umax}|

Indeed, by definition,
U(� ) =

umax

N
0 ≤ � ≤ r 0

U ′(� ) < 0 � > r 0

Turning back to (5.20), we write the left integral as an improper integral, i.e. in the form
Z r

0

� Z +∞

r

� ˚uffl(� )− ˚uffl(� )� ΘN;s (�; � )� N −1d�
�

� N −1d� = lim
"→0+

I"

where, for " > 0,

It;" :=

Z r−"

0

� Z +∞

r

� ˚uffl(� )− ˚uffl(� )� ΘN;s (�; � )� N −1d�
�

� N −1d�

and we manipulate I" in order to involve the function U. This approach has the advantage
to avoid considerations regarding the strong singularity of ΘN;s (�; � ), when � = � , in the
boundary terms appearing in the integration by parts formulas.

Splitting the integral It;" we have

It;" =

Z r−"

0
˚uffl(� )

� Z +∞

r
ΘN;s (�; � )� N −1d�

�
� N −1d� −

Z r−"

0

� Z +∞

r
˚uffl(� )ΘN;s (�; � )� N −1d�

�
� N −1d�

=

Z +∞

r
� N −1

� Z r−"

0
˚uffl(� )ΘN;s (�; � )� N −1

�
d� −

Z r−"

0

� Z +∞

r
˚uffl(� )ΘN;s (�; � )� N −1d�

�
� N −1d�
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and since
˚uffl(� )� N −1 =

d
d�

Z �

0
˚uffl(� )� N −1d�

integrating by parts we get

It;" =(r − ")N U(r − ")
Z +∞

r
ΘN;s (r − "; � )� N −1d�(5.21)

+ r N U(r )
Z r−"

0
ΘN;s (�; r )� N −1d�

−
Z +∞

r

� Z r−"

0
U(� )

@ΘN;s

@�
(�; � )� N d�

�
� N −1d�

+

Z r−"

0

� Z +∞

r
U(� )

@ΘN;s

@�
(�; � )� N d�

�
� N −1d�:

Now we evaluate each integral above. For the first two integrals we use (5.14) to get

(r − ")N U(r − ")
Z +∞

r
ΘN;s (r − "; � )� N −1d�(5.22)

=
N + 2s
2�

(r − ")N U(r − ")
Z +∞

r
ΘN +2;s(r − "; � )� N +1d� +

− 1

2�
r N (r − ")N U(r − ")ΘN +2;s−1(r − "; r );

and (recall that ΘN;s is symmetric)

r N U(r )
Z r−"

0
ΘN;s (�; r )� N −1d� =(5.23)

=
N + 2s
2�

r N U(r )
Z r−"

0
ΘN +2;s(�; r )� N +1d� +

+
1

2�
r N (r − ")N U(r )ΘN +2;s−1(r − "; r )
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For the remaining two integrals in (5.21) we use (5.15) to get

Z +∞

r

� Z r−"

0
U(� )

@ΘN;s

@�
(�; � )� N d�

�
� N −1d� =

Z r−"

0

�
U(� )

Z +∞

r

@ΘN;s

@�
(�; � )� N −1d�

�
� N d�

(5.24)

=
N + 2s
2�

r N
Z r−"

0
U(� )ΘN +2;s(�; r )� N +1d�;

and

Z r−"

0

� Z ∞

r
U(� )

@ΘN;s

@�
(�; � )� N d�

�
� N −1d� =

Z +∞

r

�
U(� )

Z r−"

0

@ΘN;s

@�
(�; � )� N −1d�

�
� N d�

(5.25)

=− N + 2s
2�

(r − ")N
Z +∞

r
U(� )ΘN +2;s(r − "; � )� N +1d�:

Collecting (5.21)-(5.25) we have:

It;" =
N + 2s
2�

 

(r − ")N
Z +∞

r

�
U(r − ")− U(� )

�
ΘN +2;s(r − "; � )� N +1d� +(5.26)

+ r N
Z r−"

0

�
U(r )− U(� )

�
ΘN +2;s(�; � )� N +1d�

!

+

+
1

2�
r N (r − ")N �

U(r )− U(r − ")
�
ΘN +2;s−1(r − "; r ):

We first observe that for the last term in (5.26), in view of (5.13) and of the fact that U
is locally Lipschitz continuous in Ω#, it holds:

r N (r − ")N �
U(r )− U(r − ")

�
ΘN +2;s−1(r − "; r ) "→0−−−→ 0

As regards the two integrals in (5.26) we change the integration variable to get

(r − ")N
Z +∞

r

�
U(r − ")− U(� )

�
ΘN +2;s(r − "; � )� N +1d� +(5.27)

+ r N
Z r−"

0

�
U(r )− U(� )

�
ΘN +2;s(�; � )� N +1d� =
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= (r − ")N r N +2

Z +∞

1

�
U(r − ")− U(� r )

�
ΘN +2;s(r − "; � r )� N +1d� +

+ r N (r − ")N +2

Z +∞

1

�
U(r )− U( r−"

� )
�
ΘN +2;s(

r−"
� ; r )� −N −3d�:

We observe that U is of class C1;1, so, for � ≥ 1 it holds

0 ≤ U(r − ")− U(� r ) = U ′(� " (� ))
�
r − " − � r

�
; for some � " (� ) ∈

�
r − "; � r

�

and

0 ≤ U( r−"
� )− U(r ) = U ′(� " (� ))

� r−"
� − r

�
; for some � " (� ) ∈

� r−"
� ; r

�
:

By the definition of ΘN +2;s we can use the homogeneity property

ΘN +2;s(
r−"

� ; r ) = � N +2+2sΘN +2;s(r − "; � r )

and (5.27) becomes

(r − ")N
Z +∞

r

�
U(r − ")− U(� )

�
ΘN +2;s(r − "; � )� N +1d� +

+ r N
Z r−"

0

�
U(r )− U(� )

�
ΘN +2;s(�; � )� N +1d� =

= (r − ")N r N +2

Z +∞

1

�
U ′(� h(� ))− U ′(� h(� ))

(r − ")2

r 2
� −N −3+2s

� �
r − " − � r

�
×

×ΘN +2;s(r − "; � r )� N +1d� =

= (r − ")N r N +2

Z +∞

1

�
U ′(� h(� ))− U ′(� h(� ))

��
r − " − � r

�
×

×ΘN +2;s(r − "; � r )� N +1d� +

+ (r − ")N r N +2

Z +∞

1
U ′(� h(� ))

�
1− (r − ")2

r 2
� −N −3+2s

� �
r − " − � r

�
×
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×ΘN +2;s(r − "; � r )� N +1d�:

In order to pass to the limit as " → 0 we need to know the behaviour of the integrands
when � is close to 1. Using (5.13) and the fact that U ′ is locally Lipschitz continuous in
Ω#, we have, for " small enough and for � − 1 small enough

�� � U ′(� h(� ))− U ′(� h(� ))
��

r − " − � r
�
ΘN +2;s(r − "; � r )

�� ≤ c
��r − " − � r

��1−2s

and, observing that

��r − " − � r
��1−2s ≤ c if 0 < s ≤ 1

2

��r − " − � r
��1−2s ≤ c(r )(� − 1)1−2s if

1

2
< s < 1

it follows that the first integrand is dominated by a summable function in a right neigh-
borhood of � = 1. For what concerns the summability in a neighborhood of +∞ it is
enough to observe that from the asymptotic behavior (5.12) we find, for � → +∞

Θ(r − "; �r )� N +1 ∼ C(r )
1

� 2s+1
:

As regards the second integrand, we have for " small enough and for � − 1 small enough
����U

′(� h(� ))
�
1− (r − ")2

r 2
� −N −3+2s

� �
r − " − � r

�
ΘN +2;s(r − "; � r )

���� ≤

≤ c
��r − " − � r

��−2s
�

� N +3−2s − (r − ")2

r 2

�
≤ c(r )

��r − " − � r
��−2s

�
r�

N +3−2s
2 − (r − ")

�
:

We observe that the function

x → r�
N +3−2s

2 − x
�
� r − x

� 2s

is increasing with respect to x ∈
�
0; r

�
, for every fixed � > 1 and r > 0. Then it follows

��r − " − � r
��−2s

�
r�

N +3−2s
2 − (r − ")

�
≤ C(r )

�
N +3−2s

2 − 1

(� − 1)2s

and then the second integrand is dominated by a summable function in a right neighbor-
hood of � = 1: indeed, this is clear for s < 1=2, while for s ≥ 1=2 we have

�
N +3−2s

2 − 1

(� − 1)2s ≤ C(r )(� − 1)1−2s:
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Hence from (5.26), (5.27) we have from the homogeneity of ΘN +2;s

It;"
"→0−−−→ N + 2s

2�
r N −2s

Z +∞

1

�
U(r )−U(� r )+

�
U(r )−U( r

� )
�
� −N −2+2s

�
ΘN +2;s(1; � )� N +1d�

which is proportional to the s-Laplacian of the function U(x) = U(|x|) computed in RN +2

at the point r (see [29]). More precisely, observing that

 (N; s)
N + 2s
2�

=
s22sΓ

� N +2s
2

�

�
N
2 Γ(1− s)

N + 2s
2�

=  (N + 2; s)

and using inequality (5.20) we get

 (N + 2; s)
r 2s

Z +∞

1

�
U(r )− U(� r ) +

�
U(r )− U( r

� )
�
� −N −2+2s

�
ΘN +2;s(1; � )� N +1d�

≤ 1

r N

Z r

0
f ∗(! N � N )� N −1d�

and from [29, Theorem 1]

(5.28) (−∆)s
RN +2U(r ) ≤ 1

r N

Z r

0
f ∗(! N � N )� N −1d�

for all positive r .

• Step 4: Comparison principle and end of the proof .

Now, for what concerns the solution v to the symmetrized problem (1.7) we notice that
inequality (5.3) becomes an equality for the radial symmetry, thus instead of (5.28) we
find

(−∆)s
RN +2V (r ) =

1

r N

Z r

0
f ∗(! N � N )� N −1d�

where V (r ) is the spherical mean of v, i.e.

V (x) = V (|x|) = 1

|x|N

Z |x |

0
v(� )� N −1d�:

Then we reach to the following crucial estimate

(5.29) (−∆)s
RN +2U(r ) ≤ (−∆)s

RN +2V (r )

on the whole space RN +2, equipped with decay conditions for U; V , that is U; V → 0 as
r = |x|N +2 → ∞. We claim that

(5.30) U ≤ V:
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Indeed, assume that W := U − V > 0 is some point x0. Let W (x̄) := maxW > 0, then
by (5.29) and the very definition of fractional Laplacian

0 ≤ (−∆)s
RN +2W (x̄) ≤ 0

thus (−∆)s
RN +2W (x̄) = 0, but this implies W = W (x̄), and the decay assumption W → 0

for |x|N +2 → ∞ yields W (x̄) = 0, a contradiction. Then (5.30) holds, namely

u# ≺ v:

5.2 The general case

Now we remove the hypotheses made in the previous subsection. If f (x) ≥ 0 is such that
f ∈ L p(Ω), p ≥ 2N=(N + 2s), with N > 2s, we consider, a sequence of smooth compactly
supported functions f n and we denote by un the corresponding solutions to problem (1.1)
with data f n and by vn the solutions to the symmetrized problems (1.7) with data f #

n .
It is not difficult to prove that un * u weakly in Hs(Ω) and vn * v weakly in Hs(Ω#).
For instance, taking un as a test function in the weak formulation of problem (1.1) with
datum f n one has the energy inequality

 (N; s)
2

Z

RN

Z

RN

|un(x)− un(y)|2

|x − y|N +2s dx dy =

Z

Ω
f n(x) un(x) dx

≤ ‖f n‖L (2∗s )′ (Ω)‖un‖L 2∗s (Ω)

where 2∗s = 2N=(N − 2s) and (2∗s)
′ = 2N=(N + 2s). Thus fractional Sobolev and Rellich-

Kondrachov Theorem (see, e.g., [25]) imply that up to subsequences un * u weak in
Hs(Ω) and un → u strong in L q(Ω) for all q < 2N=(N − 2s). On the other hand, if N = 1
and s ≥ 1=2, we suppose p > 1 and we can use the fact that u and un belong to L q(Ω)
for every q < +∞, obtaining again that up to subsequences un * u weak in Hs(Ω) and
un → u strong in L q(Ω) for all q < +∞. This is enough to pass to the limit in the weak
formulation satisfied by un . A similar argument can be done for vn . Now, by the previous
subsection we have

u#
n ≺ vn

and, passing to the limit in n, we have our concentration estimate (5.30) when f (x) ≥ 0.
Finally, if no sign assumption is made on f we observe that the comparison principle

implies |u| ≤ ũ, being ũ the solution to the elliptic problem (1.1) having |f | as source
datum. Thus, applying (5.30) to ũ, we have

u# ≺ ũ# ≺ v;

and the theorem is completely proved.
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6 Extensions and remarks

The methods used in the present note appear to be suitable for the investigation about
the effects of symmetrization on the solutions of various classes of nonlocal PDEs, such as
semilinear equations, fractional parabolic equations of porous medium type (particularly
the ones in bounded domains), equations involving operators (mentioned in the Introduc-
tion) with general Lévy kernels or the nonlinear variant of the fractional Laplacian, the
so-called fractional p-Laplacian. We plan to address these topics in forthcoming papers.

Here we just point out that an almost immediate application of our main result allows
us to state a symmetrization result for linear equations with a zero-order term, namely

(6.1)

8
<

:

(−∆)su + c u = f in Ω

v = 0 on RN \ Ω:

where, for example, c = c(x) ≥ 0 with c ∈ L∞(Ω). Indeed, because of the sign assumption,
the coefficient c has no influence when the solution u is compared with the solution v to
the symmetrized problem (1.7).

A different story is when we wish not to neglect the coefficient c in the symmetrization
procedure. For instance, assume that c > 0 is constant and we want to compare u with
the solution v to the problem

(6.2)

8
<

:

(−∆)s v + cv = f # (x) in Ω#

v = 0 on RN \ Ω#:

With the same arguments of the proof of Theorem 3.1 we arrive to the following inequality,
satisfied by u:

 (N; s)
N

Z r (t)N

0

 Z +∞

r (t)N

� ˚uffl(˚rffl 1N )− ˚uffl(¯s 1
N )

�
ΘN;s (˚rffl 1N ; ¯s 1

N )d¯s
!

d˚rffl+ 1

N

Z r (t)N

0
˚uffl(˚rffl 1N )d˚rffl

≤
Z r (t)N

0
f ∗(! N ¯s)d¯s

Observe now that if u has a flat zone at level t > 0 we easily find, for all r (t)N < � <
r (t−)N ,

Z �

0
˚uffl(˚rffl 1N )d˚rffl =

Z r (t)N

0
˚uffl(˚rffl 1N )d˚rffl+ (� − r (t)N )t

which is a linear function in � , thus the same convexity argument in the proof of Theorem
3.1 provides

 (N; s)
Z r

0

� Z +∞

r

� ˚uffl(� )− ˚uffl(� )� ΘN;s (�; � )� N −1d�
�

� N −1d� + c
Z r

0
˚uffl(� )� N −1d�

≤
Z r

0
f ∗(! N � N )� N −1d�;
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which becomes an equality when replacing u with v. Then we can argue as in Theorem
3.1 and (3.2) holds with u and v solutions to (6.1) and (6.2), respectively.

We conclude this section with a few remarks about the three main inequalities derived
in the proof of the main theorem, namely, inequalities (5.3), (5.20) and (5.28).

Remark 6.1 Inequality (5.3) allows us to deduce (5.20), that is, the “fractional” counter-
part of inequality (1.4) which holds true for solutions to problem (1.2). We would like to
emphasize that, unlike the fractional case, in the local case the derivation of (1.4) is quite
natural because the gradient of a truncation of the solution can be easily computed. Indeed,
if z is a solution to (1.2), the use of the test function Gt;h (z) and of the ellipticity condition
gives: Z

Ω
|DGt;h (z)|2dx ≤

Z

Ω
f (x)Gt;h (z(x)) dx:

The use of Pólya-Szegö principle is quite immediate because the function Gt;h (z) is a Sobolev
function and it immediately follows

Z

Ω#

|DGt;h (z#)|2dx ≤
Z

Ω#

f #(x)Gt;h (z#(x)) dx;

that is, the analogous of inequality (5.3) for the solution of problem (1.2).

Remark 6.2 According to Remark 3.5, the solution u to problem (1.1) for s = 1, i.e. the
solution to the local Poisson equation with homogeneous boundary condition u = 0 on @Ω,
can be seen as the weak limit of the family of functions ˚uffls = u#

s to (1.1) for s ∈ (0; 1).
Observe that the left-hand side of (5.20) can be written in the form

 (N; s)
Z r

0

� Z +∞

r

� ˚uffls(� )− ˚uffls(� )� ΘN;s (�; � )� N −1d�
�

� N −1d�

=  (N; s)
Z

B r

� Z

RN

˚uffls(x)− ˚uffls(y)
|x − y|N +2s dy

�
dx =

Z

B r

(−∆)s ˚uffls dx

then, passing to the limit as s → 1, the divergence theorem gives

−N! N r N −1 ˚uffl′(r ) ≤
Z r

0
f ∗(! N � N )� N −1d�;

which is an equality when u is replaced by v. Then integrating on (0; |Ω|) and using the
zero boundary conditions gives

(6.3) u#(x) ≤ v(x); x ∈ Ω#

namely the classical pointwise Talenti’s inequality.
Another easier form to recover the pointwise comparison is observing that letting s → 1 in
(5.29), which is a consequence of (5.28), provides a comparison between local Laplacians

(−∆)RN +2U(r ) ≤ (−∆)RN +2V (r )
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and a straightforward computation shows

(−∆)RN +2U(r ) = −u#′
(r )

r
; (−∆)RN +2V (r ) = −v′(r )

r

then we recover (6.3) again.

Remark 6.3 A way to get (5.28) is to use the representation via Fourier transform of
the fractional Laplacian applied to radial functions as described in Section 2. Actually, the
idea to deduce an inequality written in terms of a fractional Laplacian computed in RN +2

has originated from the computations we give here. In what follows we suppose that all
the passages are justified, in particular we suppose that ˚uffl(x) = u#(x) is regular enough in
such a way that one can compute (−∆)s ˚uffl pointwise, a property which does not need to be
satisfied in our context. Our aim is to compute the integral which is on the left-hand side
of (5.20), that is,

(6.4) Y (r ) =  (N; s)
Z r

0

� Z +∞

r

� ˚uffl(� )− ˚uffl(� )� ΘN;s (�; � )� N −1d�
�

� N −1d�:

Using the very definition of fractional Laplacian we have

Y (r ) =
Z r

0
(−∆)s ˚uffl(� )� N −1d�

and, by Theorem 2.3, we get

Y (r ) = (2� )2s+2

Z r

0

� Z +∞

0
� 1+2sJ N

2
−1(2�� � )

� Z +∞

0
�

N
2 ˚uffl(� )J N

2
−1(2��� ) d�

�
d�

�
�

N
2 d�:

Now, supposing that we can do it, we integrate by parts, exchange the order of integration
and use the following property of Bessel functions

x1−N
2 J N

2
(2�x� ) =

1

2��
d

dx

�
x1−N

2 J N
2
−1(2�x� )

�
;

to get

Y (r ) =(2� )2s+3

Z r

0

� Z +∞

0
� 2+2sJ N

2
−1(2�� � )

� Z +∞

0
� 1+N

2 U(� )J N
2
(2��� ) d�

�
d�

�
�

N
2 d�

=(2� )2s+2r
N
2

Z +∞

0
� 1+2sJ N

2
(2�� � )

� Z +∞

0
� 1+N

2 U(� )J N
2
−1(2��� ) d�

�
d�:

Using again Theorem 2.3 to compute the s-Laplacian in RN +2 applied to U, we have:

Y (r ) = r N (−∆)s
RN +2U(r ):

From (5.20) it follows (5.28).

36



Acknowledgments

V.F. was partially supported by Italian MIUR through research project PRIN 2017 �Direct
and inverse problems for partial di�erential equations: theoretical aspects and applica-
tions�. B.V. was partially supported by Gruppo Nazionale per l'Analisi Matematica, la
Probabilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica
(INdAM). Both authors are members of GNAMPA of INdAM.

References

[1] N. Abatangelo, D. Gómez-Castro, and J. Vázquez , Singular boundary behaviour and
large solutions for fractional elliptic equations, arXiv:1910.00366, (2019).

[2] F. J. j. Almgren and E. H. Lieb , Symmetric decreasing rearrangement is sometimes
continuous, J. Am. Math. Soc., 2 (1989), pp. 683�773.

[3] A. Alvino, V. Ferone, G. Trombetti, and P.-L. Lions , Convex symmetrization and
applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 14 (1997), pp. 275�293.

[4] A. Alvino and G. Trombetti , Equazioni ellittiche con termini di ordine inferiore e ri-
ordinamenti, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 66 (1979),
pp. 194�200.

[5] A. Alvino, G. Trombetti, and P.-L. Lions , On optimization problems with prescribed
rearrangements, Nonlinear Anal., Theory Methods Appl., 13 (1989), pp. 185�220.

[6] C. Bandle , On symmetrizations in parabolic equations, J. Analyse Math., 30 (1976), pp. 98�
112.

[7] , Isoperimetric inequalities and applications, vol. 7 of Monographs and Studies in Math-
ematics, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.

[8] B. Barrios, L. Montoro, and B. Sciunzi , On the moving plane method for nonlocal
problems in bounded domains, Journal d'Analyse Mathematique, 135 (2018), pp. 37�57.

[9] C. Bennett and R. Sharpley , Interpolation of operators, vol. 129 of Pure and Applied
Mathematics, Academic Press Inc., Boston, MA, 1988.

[10] U. Biccari and V. Hernández-Santamaría , The Poisson equation from non-local to local,
Electron. J. Di�erential Equations, 2018 (2018), pp. 1�13.

[11] S. Bochner and K. Chandrasekharan , Fourier transforms, vol. 19, Princeton University
Press, Princeton, NJ, 1949.

[12] M. Bonforte, Y. Sire, and J. L. Vázquez , Existence, uniqueness and asymptotic be-
haviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn.
Syst., 35 (2015), pp. 5725�5767.

[13] J. Bourgain, B. Brezis, and P. Mironescu , Another look at Sobolev spaces, in Op-
timal Control and Partial Di�erential Equations. A Volume in Honor of Professor Alain
Bensoussan's 60th Birthday, 2001 (eds. J. L. Menaldi, E. Rofman and A. Sulem, IOS Press,
Amsterdam,), pp. 439�455.

37


	Introduction
	Preliminaries and notation
	Rearrangements and symmetrization
	Mass concentration
	Functional spaces and some computations for radial functions
	Some properties of hypergeometric functions

	Main results and remarks
	Counterexamples to the pointwise comparison
	Proof of Theorem 3.1
	The case where f is nonnegative and regular
	The general case

	Extensions and remarks

