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Abstract—Multi-band transmission is a promising solution
for capacity enhancement in optical networks. We propose a
novel strategy, named C to C+L Upgrade (CLU), to gradually
upgrade links from C to C+L bands. We develop a Recurrent
Neural Network (RNN)-based model to efficiently predict links
for upgrade, based on network state and resource utilization, to
reduce blocking and upgrade cost. Our results show that CLU
outperforms baseline strategies (which do not employ predictive
decisions) by upgrading fewer links at appropriate times.

Index Terms—C+L, recurrent neural network, upgrade, spec-
trum utilization, blocking probability.

I. INTRODUCTION

With the growth of bandwidth-hungry services in the 5G/6G
era, it is crucial for network operators to allocate sufficient re-
sources in optical backbone networks [1]. With the emergence
of Elastic Optical Networks (EONs), spectral efficiency of the
available C-band spectrum in single-mode fibers (SMFs) can
be enhanced; however, C-band capacity is limited to approx. 5
THz [2]. Hence, Multi-band (MB) technology is emerging as
a promising solution for the capacity-crunch issue by utilizing
additional bands in SMFs - especially the L band which
exhibits only a negligible increase in attenuation compared to
C band while providing an additional 5 THz bandwidth [3].

Expansion to MB requires network operators to upgrade
network links, but this operation incurs significant Capital Ex-
penditure (CapEx) and Operational Expenditure (OpEx). Prior
works have proposed link-upgrade strategies for MB expansion
to sustain traffic growth, while considering upgrade costs. For
example, authors in [4] showed the significance of proper
link selection by introducing a framework which accounts for
geographical dependence of fiber-capacity upgrades. Authors
in [5] proposed a planning strategy for determining the set of
fibers for upgrade which could lower upgrade costs. Similarly,
Ref. [6] proposed a multi-period batch-upgrade model from
C to C+L using resource utilization as a metric to select
a group of links for upgrade. Although these studies offer
various upgrade strategies, they consider only current resource
utilization in the network to assess the need for upgrades and
do not consider monitoring-based prediction mechanism for
timely and effective link selection for upgrade.

Emphasizing the significance of timely upgrades, we note
that, while early upgrades can mitigate occurrence of blocked
connections, i.e., reduce Blocking Probability (BP) in the
network, delaying upgrades can yield cost benefits stemming
from equipment depreciation. Therefore, it is important for
network operators to carefully choose times for upgrade to
reduce blocking and reduce upgrade cost in the network. Since
dynamics of blocking and cost are time-dependent, a Machine
Learning (ML)-based model capable of continuously monitor-
ing changes in the network state would be ideal to predict
suitable links for upgrade at appropriate times. The Long
Short-Term Memory (LSTM) variant of Recurrent Neural
Network (RNN), thanks to its capability of storing/retrieving
information over both short- and long-time periods and of
capturing non-linear patterns, make it a strong candidate for
tracking changes over time [7]. In this paper, we propose a
novel link-upgrade strategy, named C to C+L Upgrade (CLU),
and develop an LSTM-based model that leverages information
such as resource utilization, fragmentation, etc., over time
to efficiently predict the links that will more likely need an
upgrade. Our objective is to reduce BP in the network, while
increasing cost savings by adhering to a given upgrade budget.

II. SYSTEM MODEL

We consider an elastic backbone optical network topology,
G(V,E), comprising |V | nodes and |E| links, where V repre-
sents the set of nodes and E represents the set of links. In our
study, we consider C and L bands, with each band comprising
133 channels (considering 37.5 GHz frequency spacing [2]),
and the network initially operates only in C band. Incoming
traffic is quasi-static where requests enter and remain in the
network (which is a common scenario for telecom network
operators catering to clients requesting high-bandwidth pipes).
Source-destination pairs are generated using a gravity model
where traffic generation probability of each node is based on
its population density. The set of requests is denoted by R;
each request i ∈ R is represented by a tuple (Si, Di, Fi) where
S, D, and F are source, destination, and required Frequency



Slots (FSs), respectively. We define an upgrade budget Ĵ ,
which is decremented after each link upgrade in the network.

In this work, given an EON operating in C band, a set of
requests, and an upgrade budget, we employ a ML model to
effectively select which links to upgrade at what time, such
that BP and upgrade costs are reduced.

A. Upgrade Cost Model
Authors in [8] show that the cost of upgrading a link is

influenced by two key factors: number of Erbium-Doped Fiber
Amplifiers (EDFAs) and type of switches employed on links.
When upgrading from C to C+L bands, the cost significantly
rises due to the necessity of installing separate EDFAs to sup-
port L-band transmission [5], [9]. On the other hand, to support
both C- and L-band transmission, wavelength-selective, band-
switchable, multi-band optical cross-connect switches (MB-
OXCs) must be installed at all nodes, eliminating the need for
separate switches for L band.

We denote de and d∗ as the length of link e and the
maximum amplifier span for C and L bands, respectively.
Taking into account one pre-amplifier and one post-amplifier
on each link, the total number of L-band EDFAs required for
upgrade on link e is given by (⌈de/d∗⌉ + 2) [9]. We denote
JEDFA as the cost of each EDFA on link e and JWSS as
the cost of a Wavelength-Selective Switch (WSS) at each end
of link e. Considering an equipment depreciation factor of
δ ∈ [0, 1] for EDFA over a span of y years [6] (impact of cost
depreciation for WSS is considered negligible due to its lower
cost), the cost of upgrade for link e is given by:

Je =

(⌈de
d∗

⌉
+ 2

)
· JEDFA · (1− δ)

y
+ 2 · JWSS (1)

Eq. (1) implies that the upgrade cost exponentially decreases
w.r.t. the upgrade time so that delaying an upgrade can lead to
significant cost savings. However, it can increase BP; hence,
determining the appropriate upgrade time is crucial.

B. Cumulative Blocking Probability per Link

Total BP in a network depends on spectrum utilization (SU)
and fragmentation ratio (FR) of the links. SU is defined as the
ratio of FSs occupied on a link to the total bandwidth of the
link [10]. Considering Re(t) as the set of requests provisioned
over link e at time t and Be as the total capacity of link e,
SU (denoted by µ) is given as:

µe(t) =

∑
i∈Re(t)

Fi

Be
(2)

On the other hand, FR of a link depends on sets of available
continuous FSs, known as Slot Blocks (SBs). Considering
Ge(t) as the set of available SBs on link e at time t and
Hj as the size of the j-th available SB on link e, FR (denoted
by η) is expressed as [11]:

ηe(t) = 1−
maxj∈Ge(t) Hj∑

j∈Ge(t)
Hj

(3)

To alleviate total BP in the network, links over which more
requests are likely to be blocked need to be upgraded sooner.

Fig. 1. Proposed RNN-based model incorporating link features.

In this regard, we define Cumulative Blocking Probability per
Link (CBPL) as the ratio of the number of blocked requests
to the total number of requests over a link. Since requests are
provisioned using a Routing and Spectrum Allocation (RSA)
strategy, which influences the SU and FR of a link, exact
mathematical representation of CBPL is challenging. Hence,
we develop a LSTM (variant of RNN)-based model to predict
CBPL of the links as a function of SU and FR; details of the
model are described in Section III-A.

III. CLU: C TO C+L UPGRADE STRATEGY

During MB upgrades, it is crucial to reduce both blocking
and upgrade cost in the network. We propose a novel upgrade
strategy, namely CLU, to reduce BP and avoid untimely
upgrades leading to high cost. To achieve this goal, we design
an algorithm to identify the most suitable link(s), based on
CBPL threshold (i.e., the maximum allowable CBPL as set by
the operator) and budget constraint, for upgrade at appropriate
times. The upgrade budget (Ĵ) is derived by calculating the
cost of upgrading all links in the network at the beginning,
which results in the maximum cost as it does not consider
any link selection criteria and equipment cost depreciation.

A. RNN-Based CBPL Estimation Model
To efficiently predict CBPL of the links, we develop an

RNN-based model employing a LSTM architecture. In Fig.
1, we show the structure of the proposed model, which
comprises an input layer, a hidden layer, and an output layer.
Each link e ∈ E has a set of five features, indicated by
xe(t) = {µe(t), ηe(t), re(t), r̄e(t), qe(t)}, where µe(t), ηe(t),
re(t), r̄e(t), and qe(t) represent SU, FR, total number of
served requests, total number of blocked requests, and number
of remaining FSs on link e, respectively. The input layer is
composed of the features of all links for τ time steps, e.g., in
Fig. 1, we show the features of link 1 (x1) at time t = 0. On
the other hand, the output layer consists of |E| nodes, each
corresponding to CBPL (denoted by αe) of a link e ∈ E; the
model observes previous time steps to predict CBPL at t+1.

B. Algorithm
Algorithm 1 summarizes the steps of CLU which takes net-

work topology, set of requests (R), CBPL threshold (α̃), and
upgrade budget (Ĵ) as inputs. Total BP (ATotal) is initially set
to 0. Then, it employs the k-Shortest Path algorithm to identify
candidate paths for the incoming requests and allocates FSs
to each request using the First-Fit (FF) mechanism. Requests
unable to secure FSs are classified as blocked. Following this,
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Algorithm 1 CLU Algorithm

Input: G(V,E), R, α̃, Ĵ ;
Output: Total upgrade cost, upgraded links, ATotal;

1: Initialize: ATotal = 0;
2: for each time t do
3: for all incoming requests do
4: Perform corresponding RSA;
5: Update ATotal accordingly;
6: for each e ∈ E do
7: Estimate αe(t+ 1) using the RNN-based model;
8: Calculate Je using Eq. (1);
9: E′ ← Sorted links in descending order of αe(t+ 1);

10: for each e ∈ E′ do
11: if αe(t+ 1) ≥ α̃ && Je ≤ Ĵ then
12: Upgrade e and remove it from E;
13: Ĵ − = Je;

ATotal is updated based on the number of blocked requests and
the number of served requests in the network. In the next step,
CLU estimates the CBPL of all un-upgraded links for the next
time instance (t+1) using the proposed RNN-based model and
sorts them in descending order of CBPL. In addition, upgrade
cost of each link at time t is calculated using Eq. (1). Finally,
it chooses the links that satisfy both α̃ and Ĵ for upgrade,
removes them from the set of candidate links, and updates Ĵ .

IV. NUMERICAL EVALUATION

A. Modeling and Simulation Setup
An event-driven, custom-built, Python simulator is used to

model (i.e., emulate) an upgrade environment from C to C+L
band. Simulations are performed on the Indian RailTel network
(see Fig. 2) consisting of 19 nodes and 28 bi-directional
links [2]. L-band amplifiers are deployed at regular intervals
of 80 km. We repeat and average the simulations for 15
different seeds, each with about 1800 quasi-static demands.
We assume equipment cost to upgrade one link from C to
C+L as JEDFA = 1 unit, with yearly depreciation of δ =
5%, and JWSS = 0.5 unit. Using Eq. (1), we derive Ĵ = 512
units. To train/test the CBPL model, the dataset is obtained
through simulating numerous seeds and extracting necessary
link features. The data is split in chunks of τ time steps (for
our simulation, τ is set to 10).

B. Preliminary Evaluation of Baseline Approaches
To demonstrate the efficiency of CLU, we consider two intu-

itive baseline approaches: Basic Spectrum Utilization (BSU)
and Cost-aware Spectrum Utilization (CSU). In BSU, links
that exceed a predefined SU threshold (µ̃) are candidates for
upgrade. Since it does not consider budget constraint, we
introduce, as an extension of BSU, a cost-aware approach,
CSU, which not only checks µ̃, but also checks if the candidate
links can accommodate one or more requests (over a single
hop) so as to delay upgrades and reduce cost. We model CSU
to postpone upgrades for up to n iterations (e.g., if n = 3, we
check upto three times if a link can accommodate one more
request and hence delay the upgrade).

Since performance of CSU varies over n, we evaluate its
performance w.r.t. n. As shown in Fig. 3, we compare BP of

Fig. 2. Indian RailTel network with link lengths in km. Gradual link upgrades
by CLU (for α̃ = 0.05) are shown by solid and dashed lines.

CSU for different values of n with BSU. Since BSU relies only
on µ̃ to initiate an upgrade and does not wait to accommodate
additional requests, BSU exhibits the lowest BP compared to
CSU. Results also show that, with every increment of n, BP
continues to rise in CSU as postponing the upgrade leads to
higher BP. However, it also leads to lower cost as shown in
Fig. 4 which compares the total upgrade cost of CSU for
different values of n with BSU. Here, the cost of BSU is
almost comparable to CSU when n = 1 and n = 3 for
µ̃ = 0.4. However, when n = 8, the upgrade cost is lower
for all values of µ̃. Since CSU aims to delay upgrade, higher
values of n will lead to lower cost. Considering both blocking
and cost evaluation, CSU (n = 3) is selected for comparison
with CLU as it gives reasonable trade-off between BP and
upgrade cost compared to BSU and other variations of CSU.

Fig. 3. Blocking probability comparison of CSU and BSU.

C. CLU vs. Baseline Approaches
In Fig. 5, we evaluate the performance of CLU and analyze

the trade-off between BP (blue solid line) and upgrade cost
(red dashed line). In addition to comparing with CSU (n = 3)
(as discussed in Section IV-B), we also consider two extreme
cases: Early Upgrade (EU) and No Upgrade (NU). EU initiates
network operation by upgrading all links without considering
any selection criteria which leads to highest cost (512 units)
with lowest blocking. In NU, the entire network operates only
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Fig. 5. Comparison of CLU with baseline strategies.

in C band without any upgrade, which leads to highest BP
(about 16%) and lowest upgrade cost.

In Fig. 5, our strategy CLU outperforms CSU (n = 3) for
different values of µ̃. With α̃ = 0.05, CLU leads to lower BP
of about 4% compared to about 7% and 9% BP by CSU for
µ̃ = 0.5 and 0.6, respectively. CLU also significantly curtails
upgrade cost by about 32% and 15% compared to CSU for µ̃ =
0.5 and 0.6, respectively. As CBPL threshold is increased, i.e.,
α̃ = 0.1, CLU delays the upgrade lowering the cost slightly but
it leads to higher BP of about 6% (which is still lower than BP
of CSU). In terms of cost savings, CLU reduces upgrade cost
by about 41% and 26% compared to CSU for µ̃ = 0.5 and 0.6,
respectively. It is evident that increasing SU threshold reduces
upgrade cost at the expense of increased BP. Hence, a network
operator could benefit from using CLU, which reduces both
BP and upgrade cost compared to CSU.

TABLE I
NUMBER OF LINKS UPGRADED PER YEAR

hhhhhhhhhhhhMethod
Year 1 2 3 4 5 6 7 8 9 10 Total

BSU
µ̃ = 0.5 2 1 1 2 3 2 2 3 2 0 18
µ̃ = 0.6 1 1 1 1 2 1 2 2 2 0 13

CSU (n = 3)
µ̃ = 0.5 0 0 1 1 1 2 3 4 4 0 16
µ̃ = 0.6 0 0 0 1 1 1 2 3 5 0 13

CLU
α̃ = 0.05 0 2 4 3 0 0 0 1 0 0 10
α̃ = 0.1 0 0 2 4 2 1 1 0 0 0 10

To analyze the impact of upgrades at appropriate times,
Table I compares the number of links upgraded in a year by
each strategy. We see that BSU and CLU start upgrading at
year 1 and 2, respectively, while CSU starts at year 3. For

CSU, since upgrades are delayed by n = 3 times, most link
upgrades occur much later, e.g., at year 6 and beyond. As
shown in Table I, with increasing µ̃, fewer links are upgraded
by the baseline strategies (since not all links in the network
reach the SU threshold). For example, for µ̃ = 0.5, 18 and 16
links are upgraded by BSU and CSU, respectively, whereas 13
links are upgraded for µ̃ = 0.6. On the other hand, we show
that CLU significantly outperforms both BSU and CSU as it
upgrades only 10 links in appropriate years for α̃ = 0.05 and
0.1. In Fig. 2, we show which 10 links in the topology are
upgraded by CLU for α̃ = 0.05 in years 2, 3, 4, and 8.

V. CONCLUSION

We proposed a novel upgrade strategy, named CLU, uti-
lizing a RNN-based model that effectively identifies links
for upgrade in the network. Numerical results show that our
proposed strategy outperforms the baseline strategies in terms
of both BP and upgrade cost. These findings highlight the
potential for significant cost savings and reduced BP when a
network operator employs a trained ML model for upgrade
decision. Future work should consider a robust physical-
layer model to achieve a more comprehensive analysis of the
behavior of CLU under dynamic conditions.
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