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Abstract: Implementing machine learning technologies in manufacturing environment relies heavily

on human expertise in terms of domain and machine learning knowledge. Yet, the required machine

learning knowledge is often not available in manufacturing companies. A possible solution to

overcome this competence gap and let domain experts with limited machine learning programming

skills build viable applications are digital assistance systems that support the implementation. At the

present, there is no comprehensive overview over corresponding assistance systems. Thus, within

this study a systematic literature review based on the PRISMA-P process was conducted. Twenty-

nine papers were identified and analyzed in depth regarding machine learning use case, required

resources and research outlook. Six key findings as well as requirements for future developments are

derived from the investigation. As such, the existing assistance systems basically focus on technical

aspects whereas the integration of the users as well as validation in industrial environments lack

behind. Future assistance systems should put more emphasis on the users and integrate them both in

development and validation.

Keywords: machine learning; systematic literature review; manufacturing; digital assistance systems;

work-based learning

1. Introduction and Background

Caused by latest innovations such as a strong decrease of computing times of proces-
sors as well as advances in algorithms, Machine Learning (ML) applications yield high
potentials for manufacturing companies [1,2]. Yet, a survey by the World Economic Forum
identifies a mismatch between ML capabilities and operational needs as well as insufficient
skills at the intersection of ML and operations leading to a poor dissemination in practice [3].
Indeed, most initiated ML projects fail due to unstructured project management and a lack
of prerequisites such as ML knowledge, infrastructure and data [4,5]. Despite all technical
advances, implementing such applications still relies strongly on the expertise of different
specialists like domain experts, software engineers and data scientists [6,7]—as well as
external experts not familiar with specific processes [3]. Nevertheless, recent publications
show that data scientists and their required ML expertise are missing in many companies,
especially in small and medium enterprises (SMEs) [8–10]. Although SMEs usually have a
high level of manufacturing knowledge, the lack of programming skills hinders the imple-
mentation of ML applications [9,11,12]. However, employees think in causal chains and
make connections from existing knowledge and experiences [13]. The ability to abstract and
transfer them to new situations underlines their importance for successful implementation
of ML.

In their literature review, Aggogeri et al. [14] identify various possible applications
of ML in manufacturing processes. They finally state that ML models are currently used
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to determine vibrations on equipment, roughness estimation and prediction, quality as-
surance, modeling the behavior of machine tool components and parts, and machine and
tool condition monitoring. Mypati et al. [15] investigate approaches to specific production
processes (casting, machining, molding, welding, etc.). They also arrive at similar use cases.
In the context of assembly, ML applications are suitable for predicting overall equipment
effectiveness [16], for supporting employees in identifying the right components [17] and
for process planning [18]. Other production-related approaches use ML to simplify root
cause analysis [19], for human-machine interaction [15], for robot control [20], to ramp up
production [21] or to monitor energy consumption [22].

A large number of process models have been developed in recent years to support
project management. Probably the best known is the CRISP-DM [23]. The KDD [24],
SEMMA, DMME [25] and the CRISP-ML(Q) [26] have also become popular.

Beyond that, authors addressed the gap between potentials and actual distribution
by developing easy-to-use software-based digital assistance systems (DAS), which as-
sist domain experts in implementing ML applications without demanding programming
knowledge. Those assistance systems exhibit the following properties [27]:

• They provide an end-to-end ML pipeline in a generic and structured way.
• They contain technical details and application scenarios and thereby allow use in

arbitrary ML tasks.
• They provide performance measurements indicating the models’ performance.

Such DAS have already been developed and diffused in other domains than manufac-
turing. For example, Wöstmann et al. [28] created an architecture for the process industry
by which data collection from several databases and the subsequent performing of machine
learning tasks are simplified without having to write program code. Several models are
trained and evaluated automatically. Diamantis and Iakovidis [27] developed a framework
based on Deep Learning for obstacle recognition in images in several health use cases. The
application simplifies the ML pipeline by pretrained models whereby coding tasks are
externalized from the user. Martín et al. [29] described an architecture called Kafka-ML
that manages the pipeline of ML applications through data streams. By writing few lines
of source code in a graphical user interface, users can create an ML model and control the
ML pipeline, create configurations to evaluate different ML models, train, validate, and
deploy them. Likewise, numerous commercial systems such as KNIME [30], WEKA [31],
or Orange [32] have been launched previously. Rosemeyer et al. [33] provide a detailed de-
scription of published applications of communal use, including a classification of strengths
and weaknesses.

Notwithstanding their potential in supporting manufacturing managers and workers
during the implementation of machine learning on the shop floor by providing a step-by-
step guide and support in numerous decisions [34,35], examples of DAS are still limited.
Therefore, for researchers and manufacturing managers interested in this topic and willing
to increase the spread of ML applications in manufacturing, it is of paramount importance
to gain an overview over software-based DAS existing in literature. However, to the best of
the authors’ knowledge, no systematic review exists that parses the current state of research
regarding corresponding DAS and analyzes them in depth. Hence, this publication aims to
shed light over the research landscape by conducting a systematic literature review (SLR).
Based on the findings, requirements for the development of future DAS are derived. This
publication thereby allows researchers to easily identify research gaps in the description of
existing DAS and serves as baseline for future research.

The remainder of this paper is thus structured as follows. In Section 2, the research
methodology including research questions, search term and investigation criteria is de-
scribed in depth. The findings of the SLR are then outlined in Section 3. In Section 4, the
findings are discussed as well as requirements for future research derived. Section 5 finally
summarizes the contribution of the paper.
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2. Systematic Literature Review Methodology

An SLR was considered an adequate method to provide the intended overview of the
current state of research and to identify existing gaps. The guidelines proposed by Kitchen-
ham [36] and Page et al. [37] were applied. For the sake of ensuring reliability within the
SLR, all conducted steps including search term, inclusion and exclusion criteria and interim
results for reaching the overview are described in the following paragraphs [38]. Given the
aim of the study, a bibliometric analysis and a content analysis were performed. In terms
of bibliometric analysis, publication year, region of origin of the authors, author keywords
and publication medium (e.g., conference proceedings or journal) were analyzed. As for
the content analysis, the ML use cases regard in existing DAS were investigated. Besides,
three further research questions (RQs) were posed, which are named in the following and
briefly described thereupon.

RQ1: Which ML use cases are addressed by the identified DAS?
In a first step, the ML use case addressed in the identified DAS were analyzed and

thereupon classified in a previously published scheme. Thus, it was explored whether
the articles take monitoring, quality prediction or anomaly detection into consideration.
Following, the use cases were categorized into the classes given by Nti et al. [39]. In addition,
an analysis of integrated algorithms was conducted. In particular, it was determined
whether there were any focal points in the choice of algorithm.

RQ2: To what extend are shortcomings of SMEs considered in identified DAS?
Second, it was investigated whether the shortcomings described in Section 1, namely

lack of ML knowledge, lack of information technology (IT) infrastructure and lack of data
are targeted in the papers. In this context, it is of question, whether those hurdles as well as
other prerequisites are addressed or whether observed articles solely concentrate on the
infrastructure of described DAS. In order to deliver an adequate answer, the five factors for
organizational artificial intelligence (AI) readiness first proposed by Pumplun et al. [40]
and later outlined by Jöhnk et al. [41] and their respective sub-factors were adopted and
extended with two factors proposed by Hamm and Klesel [42]. A brief explanation of each
factor is presented in the following.

Strategic alignment: The factor describes the condition that the use of AI technologies
is in line with the business goals of a company and that one’s customers are also prepared
for product-integrated applications. Corresponding sub-categories are AI-business potentials,
Customer AI readiness, Top management support, AI process fit and Data-driven decision-making.

Since the factor Strategic alignment is outside of the scope of this paper, it was dropped.
Resources: The factor comprises all resources that have to be considered when imple-

menting AI technologies: Financial budget, AI personnel (meaning domain experts with basic
understanding of AI serving as translators) and IT infrastructure.

Knowledge: The factor describes any knowledge about AI that employees in different
positions need to have encompassing AI awareness (awareness of prerequisites for AI
applications like high-quality data), Upskilling (upskilling of existing employees), AI ethics
(adherence to ethical standards like gender bias).

Culture: The factor relates to any influence on company’s culture dealing with Innova-
tiveness (ability to taking risky decisions), Collaborative Work (capability to collaborate in
teams from several departments) and Change management (competence to deal with fears of
employees).

Data: The factor encompasses all aspects that are related to data that are needed to
train and test the AI application focusing on Data availability (quantity of data), Data quality
(high-quality data), Data accessibility (access management to several data sources) and Data
flow (pipeline to move data from source to application).

Industrial validation: This aspect investigates whether authors validate their models
in real industrial validation. Optionally, they might either use an open-source data set,
focus on learning factories or have no validation at all.
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Target group validation: This factor focuses on a validation with the target group, e.g.,
manufacturing employees with decision-making competency but no deep programming
knowledge.

RQ3: Which focal points for next development steps can be outlined in the publications?
Lastly, emphasis was laid on the research outlook that is presented in the articles. In

order to present the results compactly, they were classified into the three categories Human,
Technology and Organization by Strohm and Escher [43].

The research was conducted on the Web of Science in February 2024. The following
keywords were searched in abstract, title and author keywords for finding proper publica-
tions: ((AI OR “artificial intelligence” OR ML OR “machine learning” OR “data science”
OR “data analytics”) AND (production OR manufacturing) AND (“digital assistan*” OR
“cognitive assistan*” OR tool* OR guide*)).

In the following, a description is delivered how articles for deeper investigation
were selected. An overview over inclusion and exclusion criteria is applicable in Table 1,
whereas their description is delivered thereupon. Besides, the selection process according
to PRISMA-P [37] is displayed in Figure 1 at the end of the description.

 

Figure 1. Publication selection process; own illustration based on Page et al. [37].



Mach. Learn. Knowl. Extr. 2024, 6 2812

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Publication date: 2015–2024
• Document type: Articles, conference proceedings and book

chapter
• WoS Categories:

◦ Engineering Manufacturing
◦ Engineering Industrial
◦ Engineering Mechanical

• Publication language: English

• Duplicates
• Titles and abstracts containing the terms “2D”, “3D”,

“additive*”, “AGV”, “bio*”, “blockchain”, “CAD”,
“chemical”, “digital twin”, “empirical”, “fluid”, “green”,
“health*”, “lean”, “medicine”, “process industry”,
“review”, “robot*”, “safety”, “secur*”, “simulation”,
“strategic”, “supply chain”, “survey”, “sustainab*”,

• Titles and abstracts that contain specific ML algorithms,
processes or products such that models are not universally
applicable

• Papers focusing on theoretical models without technical
realization

• Papers, whose full text was not accessible

An analysis by means of the search term results in 9285 papers. In the first step,
papers published before 2015 were excluded to find latest innovations (1936 publications).
Second, the document types were limited to articles, proceeding papers and book chapters
(5768 papers). Next, the categories offered by Web of Science were limited to discrete pro-
duction engineering applications (721 papers). Thereupon, a limitation was conducted to
papers written in English and duplicates removed (4 articles). Thus, the titles of 856 records
were screened.

In the context of the title investigation, articles that contained terms such as “3D”,
“chemistry” or “health*”, among others, which were not in line with the review goals
and questions, respectively, were excluded (see also Table 1). Likewise, publications
whose titles indicate that developed models therein could only be used in very specific
application scenarios (e.g., by naming the process (“on a milling machine”), product (“in
the turning of automotive parts”) or algorithm (“using neural networks and support vector
machines”)), violated the criteria introduced by Diamantis and Iakovidis [27] (see chapter 1)
and consequently eliminated from further analysis. The reports sought for retrieval result
in 204 articles.

Subsequently, an investigation of the abstract was made. Since the frame of this review
is on versatile DAS with a focus on operative implementation and targeting domain experts
in manufacturing environment when implementing ML applications, articles providing
decision support for ML use cases in manufacturing or algorithm selection for respective
use cases were not within the scope of this paper and therefore excluded. Particular
attention was paid to whether the assistance systems are suitable for arbitrary ML tasks or
merely focus on one isolated solution. Publications that only focus on one application once
again violate the criteria by Diamantis and Iakovidis [27] listed above and were therefore
discarded. The condition for this was that the use cases were already named or described
before the actual development steps. In contrast, publications that describe the use case
only from the evaluation were not affected by the sorting, as it is assumed that no focus
on the specific application was undertaken. In this context, 152 articles were excluded,
resulting in 52 publications.

This was followed by an analysis of the full text with the same questions. Besides,
papers only describing purely theoretical models were not further regarded. Consequently,
another 32 articles were excluded, whereby 20 papers remain. Finally, a snowball search
was conducted whereby increasing the number of relevant publications to 29. The resulting
papers were finally explored in depth. The entire research process and the in-depth analysis
can be found following the link provided in the Data Availability Statement.
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3. Results of the Review

Firstly, this section provides an overview over the bibliometric information of the
identified articles. Subsequently, a report about the findings of the content analysis by
answering the three research questions posed in Section 2 is given. A detailed presentation
of the results can be found in the Supplementary Materials.

3.1. Descriptive Analysis

To gain an overview over the state of the art on the subject, the publication year,
continent, and country of the authors were analyzed in a first step. This makes it possible to
make a statement about possible distortions. In case of cross-continental work, the continent
of the corresponding author was considered. It is apparent, that no relevant publication
was found in 2015 and 2016 and that no year-related trend is applicable (see Figure 2).
Moreover, it can be seen that most publications are originated in Europe (20 papers, and
here especially from Germany (8 publications)) followed by Asia (four papers) and North
America (three papers). Only one paper each can be located in Africa and Australia.
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Figure 2. Distribution by publication year.

In addition, it is apperent that 16 papers were published in a journal, 11 presented
during a conference and two are book chapters. To investigate most relevant mediums, a
more detailed analysis of the single journals and conferences was performed. As such, cited
authors published their articles in 18 different books, conferences, or journals. Thereby, the
most frequently used ones are the Journal of Manufacturing Systems, Procedia CIRP and
The International Journal of Advanced Manufacturing Technology. Other citing media can
be seen in Table 2.

Table 2. Most relevant journals and conferences.

Publication Medium Number

Journal of Manufacturing Systems 4
The International Journal of Advanced Manufacturing Technology 3

Procedia CIRP 3
Computers in Industry 2

Journal of Intelligent Manufacturing 2
IFIP Advances in Information and Communication Technology 2

Procedia Manufacturing 2
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Additionally, an examination of author keywords was undertaken using VOS viewer.
The findings of the co-occurrence network analysis are depicted in Figure 3, with temporal
trends illustrated in Figure 4. Figure 3 highlights that “Industry 4.0” and “machine learning”
form the primary clusters, followed by “artificial intelligence” and “cyber-physical systems”.
Meanwhile, Figure 4 demonstrates a growing research focus on the development and
integration of AI systems in manufacturing over time. Furthermore, recent years have
witnessed the emergence of keywords related to skills, human-centered approaches, and
assistive systems, signalling the need of incorporating human in the AI loop and a growing
interest in supporting industrial stakeholders—managers, professionals, and operators—in
leveraging the advantages offered by AI.

 

Figure 3. Clustering of co-occurrence keywords network using VOSviewer.

 

Figure 4. Overlay visualization using VOSviewer.
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3.2. Content Analysis

3.2.1. Results of RQ1

In the context of the first research question, the ML use case addressed in each paper
was analyzed. They were then categorized into the classification scheme provided by
Nti et al. [39]. The analysis reveals that most of the articles focused on manufacturing
monitoring, cost and power consumption (although costs are not of importance) as well as
wear and tear monitoring (seven publications each). Slightly less important were anomaly
detection and predictive maintenance (five papers). This was followed by machine vision
and fault diagnostics (two papers each). In five of the papers the use case could not be
classified into the framework or remains unclear. The results are also displayed in Figure 5.

 
0 1 2 3 4 5 6 7 8

Other/unclear

Fault diagnostics

Machine Vision

Anomaly detection and predictive maintenance

Wear and tear monitoring

Manufacturing monitoring, cost and power

consumption

Figure 5. ML use cases.

In order to determine how the individual use cases were approached in practice, algo-
rithms used were also analyzed. This shows that the articles examined rely on numerous
different algorithms. In particular, decision trees and random forests are made use of.
Specifically, eleven publications included one or both models. Another focus is on artificial
neural networks, which occur in various forms (convolutional neural network, recurrent
neural network, long-short term memory). A third focus can be identified in the application
of automated machine learning. Four authors focus on corresponding solutions. Lastly, the
investigation demonstrates that most authors rely on a number of algorithms. In return, six
articles only include one model An overview of the algorithms used in each case can be
found in the research data (see Data Availability Statement).

3.2.2. Results of RQ2

To answer the second research question, the factors for AI adoption as described in
Section 2 were considered within the articles. For this, each paper was ranked regarding
its extend against the single criteria. A summary is reported in Table 3. Unless otherwise
stated, a paper is assigned an empty space if the respective factor is not mentioned at all. In
case of naming without deeper description of a fact, papers are given a semi-filled circle. If
a detailed description over several sentences can be found, papers are ranked with a filled
circle. In case of the latter situation, a brief introduction about the realization within the
respective paper is presented thereupon.
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Table 3. Overview over the publications in alphabetical order of the titles.

Source Personnel
IT Infra-
Structure

AI
Awareness Upskilling

Collaborative
Work

Data Avail-
ability

Data
Quality

Data Acces-
sibility

Industrial
Validation

Target
Group

Validation
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First, the extent of needed Personnel was regarded. Eleven papers did not mention
required employees and competencies. Only technical requirements and functionalities
were described. Eleven authors briefly introduced the work of affected employees, and
seven papers describe affected roles and their tasks in more detail. As such, Villanueva
Zacarias et al. [46] introduce a framework where domain experts are responsible for the
problem definition, whereas data engineer and data scientist take over algorithm-related
tasks. Kranzer et al. [53] follow a different approach. They describe the user’s interaction
with the system which is realized by a tablet PC and augmented reality. Senna et al. [54] sub-
divide their development steps into three pillars, out of which human-machine interaction
is one of them. Indeed, the authors aim to display relevant information to decision-makers
in a human-centered way. Yet, its realization is not outlined. Bocklisch et al. [62] put
strong focus on the later user by testing his interaction with the developed system and
subsequently collect his feedback. Neunzig et al. [35] introduce an assistance system aiming
at employees from development and planning departments. To address user requirements’
they develop three different interaction modes that are based on different skill levels. An-
gulo et al. [68] describe the development of a cognitive assistance system that interacts with
its user. To achieve appropriate interaction, the authors additionally collect user’s feedback
by empirical methods and respective scales. Wellsandt [67] develop a DAS that is able to
interact with its users by text-to-speech methods. The user is thereby equipped through
additional information.
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The next aspect deals with the IT infrastructure on the shop floor and connectivity
towards the presented assistance systems. It should be noted that the aim here is not
to show the extent of IT within the systems, but the connection to IT systems on the
production floor. From the results, it is apparent that 31% of the authors did not mention
the IT infrastructure needed by a company interested in the developed system. 48% of the
publications at least named requirements or described them in few words. Another 21% of
the papers gave further descriptions about how to connect the developed model to existing
IT infrastructure. For example, Rousopoulo et al. [57] make use of a data acquisition module
that is connected to factory machines and cloud services using an open-source hardware
system as well as a Message Queuing Telemetry Transport (MQTT) broker. Liu et al. [51]
integrate several industrial ethernet, fieldbus and serial communication protocols as well
different communication protocols which allows data collection from numerous sensors
directly implemented in a machining process. Wu et al. [45] list a number of communication
protocols that is used in their application to interact with physical devices in the production
hall. As such, several wireless communication technologies (e.g., Wi-Fi, and 4G LTE) enable
network connectivity whereas MTConnect ensures interoperability. Likewise, Deshpande,
et al. [58] also make use of MTConnect and use Hypertext Transfer Protocol (HTTP) for
data transport. A similar approach follow Woo et al. [60] who connect their platform to a
manufacturing execution system (MES) using MTConnect. Heimes et al. [66] connect their
platform to several open source and commercial databases, such as Hadoop, Open Shift,
Microsoft Azure or Amazon Web Services.

As described by Jöhnk et al. [41], a basic requirement for successful adoption is the AI
awareness of its functionalities. Hence, the third factor analyzes the amount of knowledge
about ML that affected employees need to have. The review reveals that in six of the papers
high knowledge is needed, especially about several algorithms, metrices, among others.
17 articles present a model that requires some basic knowledge about ML or statistics,
deeper knowledge is taken over by the framework. The remaining six papers describe
easy-to-use models in terms of required background knowledge. As such, the system
developed by Villanueva Zacarias et al. [46] allows users to give instructions in a language
they are familiar with. ML-based tasks are then overtaken by respective experts. The model
described by Senna et al. [54] requires little ML-knowledge due to an expert system that
deals with numerous steps of the ML-pipeline and therefore simplifies its use. As the
system described by Kranzer et al. [53] requires little interaction with the user, it is also
assigned a full circle. Data is collected via an interface from the Supervisory Control and
Data Acquisition (SCADA) system and output given to users finally. Fischbach et al. [55]
develop a model where many steps from the ML-pipeline is transferred to the assistance
system. The user is basically responsible for data generation and result evaluation. Users
of the model presented by Garouani et al. [70] require little previous ML knowledge due to
the high number of automated tasks such as data ingestion, algorithm selection and tuning
as well as provision of recommendations based on a knowledge-base. Due to the focus on
visual inspection, the DAS by Deshpande et al. [58] allows users to perform ML applications
more easily and intuitively. Theoretically, the system developed by Neunzig et al. [35] has
to be attributed different ratings to as it integrates three different skill modes (beginner,
advanced and expert). Those user modes thereby differ in the scope of the instructions and
in the variety of functions. Given the beginner mode, within this publication, a full circle
indicating little required ML knowledge was considered most appropriate.

Jöhnk et al. [41] furthermore state that “upskilling enables employees to learn and
develop AI or AI-related skills”. In this context, papers within the review at hand were
investigated regarding its ability to function for a so-called work-integrated learning.
Papers were rated with a full circle if a detailed description of procedures and background
knowledge and thereby methods for non-formal learning were provided, with a semi-
filled circle in case of a brief explanation and an empty one otherwise. Precisely, one
paper contains an in-depth knowledge support, four articles provide at least some ideas
and 24 publications do not contain any deeper knowledge description at all. Other than
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described above, also papers with a half-filled circle are to be described here. Angulo
et al. [68] make use of a cognitive module that analyzes its environment and extracts
information. This information is provided to the user for learning reasons. Another
possible method for realization of upskilling deliver Garouani et al. [70] by the integration
of explainable AI, whereby facilitating the interpretability of algorithms. Likewise, Terziyan
et al. [65] transfer human knowledge to their system and use this to support the decision-
making in later steps. As described earlier, Senna et al. [54] aim to enhance users’ cognitive
abilities by their assistance system. However, they do not describe a realization of this goal.
As described before, Neunzig et al. [35] make use of different user modes depending on the
previous experience of the users. They describe that, i.e., the length of instructions varies
in this context. Thus, beginners are given longer text to introduce them in the subject and
explain in more detail what to do and what will happen in the DAS.

Not only an explanation of stakeholder was under examination, but also their Collabo-
rative work. The analysis demonstrates that 22 of the articles do not provide a description of
different functions/departments (e.g., manufacturing operators, information technology or
human resources). Six of the papers at least briefly mention or describe the role of several
stakeholders. Only in one paper, a detailed description with roles and integrative work
is explained. As already introduced above, Villanueva Zacarias et al. [46] indicate that
domain experts are responsible for the problem definition and model evaluation in terms
of applicability in manufacturing, whereas data engineer and data scientist are in charge
for algorithm-related tasks. Hence, a delimitation of tasks is described.

An essential prerequisite for ML models is the Data availability. Thus, both the quantity
and quality were investigated. The review demonstrates that six papers do not address at
all in what way data was used. Some of them neither validate their models. Twenty-two
of the articles validate the model by either using open-source data or by using a complete
data set from learning factories or industrial partners. Only one publication generates
data when using the model developed and demonstrate practical applicability in that
context. As such, Woo et al. [60] use their framework for energy prediction on a milling
machine. In the context of the prototype implementation, they record data with a given set
of work piece, machine tool and operation. In contrast, the other articles follow different
approaches. Therein, they collect their data within an existing learning factory [55], set
up a demonstrator specifically for the evaluation [71], augment collected demonstrator
data by additional data points [50] oder simulate real manufacturing lines [69]. A different
approach is the usage of open source data, for example from Kaggle, such as in [35].
Optionally, authors can draw on historical data recorded in previous projects [66].

Also, Data Quality can be considered to be crucial for ML implementation. Never-
theless, 55% of the articles do not outline in what way data quality is ensured. 24% of
the publications briefly describe methods to improve data within their model. Six articles
extensively ensure that data quality is considered and improved. The model described
by Villanueva Zacarias et al. [46] consists of four sub-modules out of which one is meant
for increasing data quality. It also allows to summarize a profile of the later to be used in
later steps. Zhang et al. [47] describe in detail and over several paragraphs necessary steps
for ensuring high data quality and how it realized in their assistance system. Similarly,
Rousopoulou et al. [57] included data cleaning with i.e., missing value handling and nor-
malization as well as remove low variance features as both decrease the model performance.
Equal steps are taken by Garouani et al. [70] who also conduct a robustness test in order
to ensure the applicability of the model in the long-term. Lechevalier et al. [49] include a
data pre-processing module in their system aiming to clean, reduce and transform data as
necessary. Heimes et al. [66] place a filter to maintain data quality at the beginning of their
DAS. In this way, they ensure that only high-quality data is used and that, in case of doubt,
adjustments are made to the data set at an early stage. To achieve this, they rely on various
visualization tools.

As stated by Jöhnk et al. [41] Data accessibility should also be considered. It can be
outlined that slightly half of the papers (15) do not provide information about access to
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data. Further eleven articles only mention accessibility, while three articles elucidate in
detail the access to data that they used within their model. In the validation of those papers
listed here with a full circle, data must be collected directly from a machine. Otherwise, the
accessibility cannot be proven. Liu et al. [51] describe several sensors and connectors to
allocate data directly from machines. In consequence, their system allows data analytics
in real-time. Wu et al. [45] make use of MTConnect and Open Platform Communications
Unified Architecture (OPC UA) to gather data directly from the shop floor and then store it
in a local data base. As previously shown, Heimes et al. [66] link their assistance system
with various cloud platforms and can therefore easily access data. They then divide the
data into different categories so that their DAS can analyze it precisely.

In addition, a focus was laid on the validation in industrial environment. Papers were
rated with a full circle if the validation was indeed conducted in manufacturing environ-
ment and with semi-filled if the validation took either place on an open-source data set or
in a learning factory. In case that there was no validation at all, papers were rated with an
empty circle. The research reveals that five research ideas were validated in the manufac-
turing environment of partner enterprises. Another nineteen of the articles validated their
models on open-source data sets and learning factories, respectively, and five developments
were not validated at all. Frye et al. [61] perform wear and tear monitoring and vibration
prediction in a milling process of a real product. After conducting necessary steps, they
outline next steps for long-term deployment. Terziyan et al. [65] use their assistance system
to facilitate decision-making in the absence of actual decision-makers at a company site in
Ukraine. It simplifies the decision-making process for non-experts. Rousopoulou et al. [57]
perform anomaly detection on six injection molding machines of an anonymous company
site and extract relevant information for a high-quality machining process. Jun et al. [56]
conduct condition monitoring in an injection company. They extract data from an MES
and feed it into their assistance system. González Rodríguez et al. [52] solve a hybrid flow
shop problem in an industrial production planning process. There, they aim to control the
stocks at a tactical level. Heimes et al. [66] validate their solution in two use cases of an
automotive battery production for electric vehicles. In this context, they record data from
several sensors and try to investigate whether there exists a correlation.

Lastly, it was investigated whether the validation was carried out only by the authors of
the papers or whether the target group was actively involved. Deviating from the previously
described classification, a paper reporting a validation with non-ML experts was rated
with a full circle, an empty one otherwise. From the findings, it can be seen that the target
group was directly involved in four of the 29 papers. In the other 25 publications, only the
work of the developers was described. González Rodríguez et al. [52] for example assign
specific tasks to several users that are relevant for the validation in practice. Yet, from
their description, it can be concluded that the authors themselves still strongly support
the users during execution. As described above, Bocklisch et al. [62] test their assistance
system with one user, observe him while execution and thereupon collect his feedback.
Terziyan et al. [65] point out that three employees from a targeted company were involved
in the validation. Nevertheless, it remains unclear what their specific tasks were. Angulo
et al. [68] describe how an operator can collaboratively work with the system, especially
what his tasks are and in what way he can overrule the proposals made by the assistance
system. Garouani et al. [70] perform interviews with the target group after execution for
collecting feedback when working with their system. A detailed description of the feedback
is given subsequently.

Finally, it can be highlighted that the sub-factors Financial budget, AI ethics, Innovative-
ness, Change management and Data flow were not considered in the papers.

3.2.3. Results of RQ3

Within the frame of RQ3, the outlook for future research presented in the papers were
investigated and categorized into the classes Human, Technology and Organization [43]. It
must be noted that the classification is not disjoint, as authors might present more than one
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outlook. The research reveals that seven publications describe improvements and necessary
adjustments for the users. Here, emphasis is mostly laid on collecting users’ feedback
as well as improving the user interface for better interaction. Most effort is attributed to
the technology, as 23 papers contain respective delineations. The respective articles either
describe improvements regarding the algorithms selected as well as extensions to other
algorithms or outline adjustments in the assistance system infrastructure. Ten publications
contain specifications for organizational aspects, most often indicating the need to transfer
the model developed to other manufacturing use cases, and to industrial implementation,
respectively. Two articles provide no outlook at all. In sum, it can be concluded that future
effort is mostly assigned to technical improvements of developed DAS, whereas the impact
on the users as well as the organization usage in manufacturing environments are poorly
regarded. Figure 6 summarises the findings and presents them graphically.

 

Human, 7

Technology, 23

Organization, 10

None, 2

Figure 6. Presented research outlook.

4. Discussion of the Results and Research Outlook

In this section, the previously obtained and described findings are first further dis-
cussed. This is followed by recommendations for future research.

The review shows that increasing effort has been put on the development of DAS
supporting users with little programming knowledge in designing ML use cases for man-
ufacturing environments especially in the last years. In return, no relevant publication
could be found in 2015 and 2016. This finding is not unexpected as research on ML tech-
nologies is conducted in particular in recent years [72]. Especially authors from Europe
concentrate their effort on the design of such applications, which leads to a European bias
in the publications.

In addition, six key findings (KF) can be derived from the results of RQ2 (extend of
AI readiness) and RQ3 (focal points in research outlook), which will be outlined here and
discussed in more detail subsequently:

As displayed in KF1 most emphasis is laid on technical aspects and technical im-
provements. In fact, almost 80% of the articles describe future advances in additional
algorithms or improvements of ML-common performance indicators (e.g., accuracy). The
focus on technical aspects and technical improvements can be attributed to the novelty of
the research field and to the fact that technical developments are of high importance in the
peer-review process of high-ranked journals and conferences.
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KF1: The focus of development and improvement steps is laid on technical issues. 

KF2: Despite the focus on technical issues, little emphasis is laid on data acquisition 

and access.  

KF3: The user is only regarded marginally both in development steps and practical 

usage. 

KF4: Learning on the side of the users to work with the systems independently is not 

ensured. 

KF5: Developed DAS are mostly validated in laboratory settings and not in 

manufacturing environments. 

KF6: The shortcomings of SMEs described in section 1 of this article have barely been 

addressed. 

Despite the previously described focus on technical developments, regarded articles
only roughly concentrate on data generation, quality and access (KF2). In contrast, it is
often supposed that sufficient data are already available and only need to be loaded into the
respective system. It can be assumed that this behavior is due to the difficulty of accessing
data sets by researchers. Even if data is generated during the evaluation phase, they often
come from demonstrators [50,71] or from existing production lines in laboratories [55].
Indeed, application projects in industrial companies face considerable challenges, as they
are usually both extensive and lengthy. One particularly demanding aspect is the recording
of data, which is time-consuming and resource-intensive due to the complexity of corporate
structures and the heterogeneity of the data landscape. However, researchers are under
pressure to publish, which traditionally focuses on the development of new systems. On
the other hand, the application of practical work only rounds them off. Consequently,
findings from these are often given secondary consideration. As a result, in many cases
either public data sets from learning factories or synthetically generated data sets were
used. Even if researchers have their own production environments, giving them greater
control over data generation, the problem of large volumes of data remains.

Although the integration of users is considered a success factor [73,74] only few publi-
cations also focus on them (KF3). Firstly, the targeted personnel is marginally described and
the validation is mostly not performed with the target group. Secondly, only few articles
describe future human-centric development plans. In fact, special attention to the users
is only given by Villanueva Zacarias [46], Garouani et al. [70], Senna et al. [54], Bocklisch
et al. [62], Wellsandt et al. [67], Neunzig et al. [35], Kranzer, et al. [53] and Angulo et al. [68].
The authors mentioned address various potential roles (employees, IT, ML expert) and
describe their specific tasks. Profiles are also created, which increases the usability of users,
as explanations are based on their level of knowledge. Interaction with the developed
DAS is also simplified. A special focus on the users is placed by Bocklisch et al. [62], who
evaluate the application of their assistance system in a user-centered manner through an
empirical study and collecting feedback from them. Notably, many of the articles point
out in their introduction that solutions for non-experts are needed. Nevertheless, only five
papers also include the target group in the final validation. Besides, the low consideration
of possibilities for non-formal learning leaves the question unanswered as to whether
domain experts can operate independently with the models in a comparable situation
in the future (KF4). Corresponding approaches are only very briefly described by Senna
et al. [54], Terziyan et al. [65], Angulo et al. [68] and Garouani et al. [70]. The cited authors
pursue two strategies. Either they try to increase the interpretability of the results of their
DAS by using explainable AI approaches. Users thus gain a deeper understanding by
being able to mirror results against their input. Optionally, various user or competence
profiles are explained in referenced publications. These differ primarily in the amount of
explanation required. In consequence, users who consider themselves to have very little
prior knowledge receive more information than advanced beginners. However, a more
detailed description is pending.
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A consideration of consecutive Change management with respect to the use of ML is
therefore difficult to implement. Moreover, the deployment of models is rarely regarded
(KF5). Indeed, a technology readiness level (TRL) of five can be attributed to most applica-
tions, meaning that models were tested in laboratory settings and not in real production
environments and are therefore in particular not deployed. The investigation allows to
conclude that most papers perform a support evaluation and possibly application eval-
uation [75]. A success evaluation is hardly evident and can only be attributed to those
five articles that carry out the validation with the target group. Rather, the validation
is carried out by the authors themselves. This observation can be attributed to the fact
that the development of corresponding assistance systems is a novel topic and thus few
real industrial applications are expected but more industrial pilots or industry-related
environments such as learning factories. However, the marginal validation in industrial
practice also hinders the consideration of AI ethics.

Considering the key findings, it can be concluded that the answer to RQ2 is that
SMEs’ shortcomings (lack of ML knowledge, lack of (high quality) data and lack of IT
infrastructure) as described at the beginning of this article are barely addressed (KF6). It
remains open to what extend employees from SMEs can use the DAS analyzed in this paper.

However, this publication cannot provide an in-depth analysis of the systems them-
selves as software code was barely accessible. Likewise, an evaluation of the applicability
in industrial environments from the user’s point of view was outside of the research frame.
Thus, only the descriptions within the publications were considered in this work and not
the assistance systems themselves. This limitation may result in individual DAS being
more usable than described by the authors. For example, they could be intuitive for users
to operate. This applies all the more to the learnability of the systems, which, as shown,
was only marginally described. Further research is necessary in this regard.

Subsequently, requirements for future research projects are pointed out. These follow
an ideal situation in which all the criteria described above are integrated completely. The
corresponding key findings are referenced at the appropriate points to simplify under-
standing. Consequently, the shortcomings for ML in SMEs are regarded in particular and
employees from SMEs are enabled to use the systems. At this point, the discussion and
recommendations are enriched leveraging on the available (extended) literature and the
experience of the authors. Here again, four requirements, which can be derived from the
analysis, are listed first and then explained in more detail.

 

REQ1: Relevant stakeholders are considered both in development and validation to 

ensure acceptance and usability. 

REQ2: Assistance in data and IT infrastructure generation is provided to overcome 

existing technological gaps in SMEs. 

REQ3: Legal and ethical requirements are addressed to increase trustworthiness. 

REQ4: Theoretical background knowledge is supplied such that knowledge building 

and non-formal learning on ML is simplified. 

Just as the DAS described in this article, newly developed assistance systems contain
a detailed description about functionalities and sub-systems. But it becomes necessary
that they put the actual target group and their requirements in the center of development
(KF3) [73,74]. Due to the criticality of users’ acceptance [76], they should be regarded in
detail. To this end, researchers can take advantage of several methodologies that have
been proposed for integrating human factors in engineering design [77], user-centered
design and human-centered design elements [78,79]. Here, it is in particular necessary to
develop user interfaces that meet the expectations of the users. Established quality criteria
are usability and user acceptance. Furthermore, future research requires a comprehensive
description of how relevant data can potentially be obtained from the use cases under
consideration. Depending on the use case, suggestions can be made on the basis of existing
publications as to how data can be generated. A focused consideration of the data protocols
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and storage systems used is suitable for this purpose. From the descriptions, technical
requirements on the side of the shop floor thus become evident. To increase practical
relevance, it needs to be indicated how access to data is realized (KF2). However, in
complex ML systems, data quality should be monitored throughout the entire life cycle.
This applies to data preparation, training and testing as well as the validation of ML
models [80]. Besides, legal and ethical requirements are to be elicited and addressed to
improve transparency, fairness, and trustworthiness of ML applications throughout the
entire lifecycle [81–83]. Users should be involved in the individual steps.

Moreover, the DAS itself automates as many steps of the ML pipeline as possible and,
according to possibility, encompasses a cognitive module from which explanations about
results can be drawn. For the sake of simplified use of such assistance systems as well as
for independent future applicability, relevant background knowledge, such as explanations
of functionalities and other non-formal learning opportunities are to be integrated (KF4).
For instance, Clement et al. [84] and Naqvi et al. [85] provide an overview of Explainable
Artificial Intelligence techniques that have been implemented in the manufacturing domain.
Furthermore, if applicable, coaches in the form of supervisors or colleagues, respectively,
can be considered, such that the systems can be used for competence development among
the users. Since ML-projects require company-wide collaboration and change management
efforts [86], support in the construction of an interdisciplinary and innovative team is of
advantage. Thus, not only the main target group should be analyzed and involved, but
also other affected stakeholders such as IT and HR units. When it comes to the validation
phase, use cases with respective data from real industry processes are considered (KF5).
The systems should not (only) be validated by the authors themselves or colleagues of
theirs but by the considered target group. This allows a success evaluation, in which it can
be finally stated whether the original goal, the development of an easy-to-use assistance
system on the topic of ML for non-experts, has been achieved. An optimal case is the
application of the users in their real production environment. This makes it easier to make
statements about the practicality of the solutions.

In summary, the requirements and the criteria examined by Jöhnk [41] will be com-
pared and the extent to which they are addressed will be explained. Subsequently, more
precise statements can be made about the extent to which future solutions can close the gaps
identified in this review. If the users are systematically included in the development and
validation process as an example, this will result in a detailed description of the personnel.
This also makes it easier to design systems that require less prior knowledge. If DAS
focus more strongly on the needs of SMEs, consideration is given to the design of the IT
infrastructure and a comprehensive description is provided of the sources from which data
was obtained and how it was processed. The final comparison is shown in Table 4.

Table 4. Comparison of analyzed criteria and requirements.

REQ1 REQ2 REQ3 REQ4

Personnel X X
IT Infrastructure X
AI Awareness X X X
Upskilling X X
Collaborative Work X
Data availability X
Data quality X
Data accessibility X
Industrial validation X X X
Target group validation X X

5. Conclusions and Outlook

In this publication, 29 software-based digital assistance systems focusing on the imple-
mentation of ML applications in manufacturing environment and targeting non-ML-experts
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with limited programming knowledge were reviewed and analyzed in depth. A special
emphasis was thereby laid on an examination of the systems regarding organizational AI
readiness previously defined in literature [40,41].

The review shows that this topic is especially addressed in European countries. Within
development steps, articles focus on technical aspects. Algorithm improvements, perfor-
mance improvements, among others are considered in detail and represent the essential
focus for future improvement. In contrast, human-centered matters lack behind—despite
the relevance described by most of the authors themselves. Besides, many assistance sys-
tems have not been validated in industrial practice and even if they were, validation was
carried out in most cases by the developers themselves. The most frequently considered
ML use cases are manufacturing monitoring, cost and power consumption as well as wear
and tear monitoring.

The conducted research provides a summary and points out future research directions
to researchers interested in this field and companies interested in assisted implementation
and use of ML in their manufacturing environment. In consequence, suggestions for future
research projects were provided in detail. They are designed in such a way that also SMEs
with their lack of ML specialists can profit from them.

In addition to the integration of the described requirements in newly developed
systems, future research is necessary on the effects of such digital assistance systems on the
users. As such, a more detailed analysis of user requirements has to be performed and the
described DAS rated against them. For this, an in-depth investigation using the systems is
necessary.
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