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Abstract: This article analyzes and compares the integration of two different maximum power
point tracking (MPPT) control methods, which are tested under partial shading and fast ramp
conditions. These MPPT methods are designed by Improved Particle Swarm Optimization (IPSO)
and a combination technique between a Neural Network and the Perturb and Observe method (c).
These two methods are implemented and simulated for photovoltaic systems (PV), where various
system responses, such as voltage and power, are obtained. The MPPT techniques were simulated
using the MATLAB/Simulink environment. A comparison of the performance of the IPSO and
NN-P&O algorithms is carried out to confirm the best accomplishment of the two methods in terms
of speed, accuracy, and simplicity.

Keywords: maximum power point tracking (MPPT); improved particle swarm optimization (IPSO);
photovoltaic (PV); neural network and perturb and observe method (NN-P&O)

1. Introduction

Regarding the profitable economic benefits of a clean environment and sustainable
solar energy, power generation across photovoltaic (PV) systems has recently gained great
importance. However, the main disadvantage of PV systems is the low efficiency of
converting sunlight into electricity [1]. In addition, the power generated by the PV module
depends on environmental factors, namely solar radiation and the atmospheric temperature.
These factors affect the current–voltage (I-V) and power–voltage (P-V) characteristics of
the photovoltaic system. Under uniform irradiation, the P-V curve of the PV array has a
maximum power point (MPP) [2]. However, in the case of uneven irradiance, such as the
partial shading of certain photovoltaic modules or even certain photovoltaic cells, the PV
characteristics become more complicated, showing multiple peaks, of which only one peak
is the global peak (GMPP), whereas the others are local peaks (LMPP) [3].

Therefore, a control technique called “Maximum Power Point Tracking” (MPPT) must
be applied to make the best use of the available power under all operating conditions [4].
So far, many MPPT controllers have been proposed and implemented in the literature [5,6].
These controllers have some common requirements, such as low complexity, low cost,
minimum output power fluctuation, and the ability to quickly track when the working
conditions change [7]. The most widely used algorithms are Perturbation and Observation
(P&O) and Incremental Conductance (InC) [8]. These conventional methods achieve
moderate performance with easy implementation and low cost. In order to obtain better
transient and steady-state performance, artificial intelligence-based MPPT technologies
have been proposed, such as fuzzy logic and artificial neural network controllers (ANN) [9].
ANN controllers have good performance under rapidly changing irradiance and partial
shading, especially in terms of efficiency and response time [10]. The combination of two
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methods—ANN and fuzzy logic, which can be found in [11,12]—is used to track the MPP
of PV systems. After collecting experimental data, the ANN is trained offline to define
a reference voltage, that is, the absciss of the MPP. Then, the reference voltage and the
instantaneous voltage are compared to refine the signal error. The signal and the change in
the error are used as the FLC inputs. The FLC generates a duty cycle value for the pulse
width modulation (PWM). The latter is applied for switching the boost converter, which
connects the PV panels to the load. The main drawback of this method is that it needs a lot
of data for training.

The Improved Particle Swarm Optimization (IPSO) method, introduced in [13], has
the capacity to locate the MPP, where the positions of the PSO particles correspond to duty
cycles. IPSO has high potential for MPPT due to the fast computation capability, regardless
of partial shading.

The emphasis of this paper will be on theoretical comparisons between two techniques,
namely the improved PSO and NN-P&O, taking partial shading conditions into account. As
a result, the aim of this research is to compare two MPPT algorithms in order to determine
which technique performs better. The efficiency of the algorithms is assessed using power
calculation that values the total energy generated by the panel during a time interval. In
the simulations, the MPPT techniques under consideration were implemented exactly
as described in the references. It should be noted that a standalone photovoltaic system
built by connecting the boost converter between the photovoltaic panel and a dc load is
considered in this study.

The paper is organized as follows: Section 2 introduces the PV model and presents
its features, while Section 3 describes the two MPPT techniques. The comparison and
discussion are provided in Section 4. Finally, in Section 5, the conclusion is presented.

2. Photovoltaic Modeling and Features
2.1. PV Panel Model

Solar cells can be illustrated using a variety of models. The single diode shown in
Figure 1 is one of the most well-known circuits [14–17].

Figure 1. PV cell model.

Equation (1) describes the relationship between the module’s output current Ipv and
its voltage Vpv:

Ipv = Iph − I0 ×
(

e(
Vpv+Ipv×Rs

Vt
) − 1

)
−

Vpv + Ipv × Rs
Rsh

(1)

Vt is the thermal voltage:

Vt =
kT
q

(2)

where Iph is the light-generated current, which depends on the irradiance, G, and the cell
temperature Tc; Rs is the series resistance; Rsh the shunt resistance; q is the charge of the
electron; k is the Boltzmann’s constant; T is the PN junction temperature; and ns is the
number of series cells in the module.
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2.2. PV Characteristics

The PV module considered in this work is the polycrystalline BP Solar MSX 120, whose
parameters are provided in Table 1.

Table 1. Parameters of the BP MSX-120 panel.

Maximum Power Pmp 120 W

Voltage at Pmp Vmp 33.7 V

Current at Pmp Imp 3.56 A

Series resistance Rs 0.4728 Ω

Shunt resistance Rsh, ref 1365.8 Ω

Short-circuit current IscSTC 3.87 A

Open-circuit voltage VocSTC 42.1 V

This PV module comprises 72 polycrystalline silicon sunlight-based cells electrically
orchestrated into four arrangement strings of 18 cells. In this work, a 72-cell arrangement
setup with four bypass diodes is considered [18].

2.3. Influence of Uniform Irradiance

Under an ordinary condition, when the PV panel receives different values of uniform
irradiance, the P-V curves show one MPP each, as presented in Figure 2.

Figure 2. P-V curves under different uniform irradiance conditions.

The MPPs composed of maximum power (Pmpp) and the optimal voltage (Vmpp) are
provided in Table 2.

Table 2. Pmpp and Vmpp values extracted under different uniform irradiances and Tc = 25 ◦C.

Set Irradiance
(W/m2) Vmpp Pmpp

P 1000 33.70 119.9720

Q 600 32.79 69.9888

R 800 33.33 94.90

S 400 31.94 45.3924



Energies 2022, 15, 7668 4 of 15

2.4. Influence of Partial Shading Condition

When partial shading happens, the shaded string of the panel will not create as much
current as the unshaded strings. This downside is defeated by utilizing a bypass diode
that permits the current of the unshaded cells to bypass the shaded cell. The changes
in the irradiance of shading panel area (GS), which affects 25% of the panel area, and
non-shading panel area (G) were established in four sets, as shown in Figure 3a,b and
Table 3. Figure 3b shows that each P-V curve was characterized by two peaks designed by
global MPP (GMPP) and local MPP (LMPP) [19–21].

Figure 3. (a) Partial shading affects 25% of the panel area and (b) P-V curves under different partial
shading conditions.

Table 3. MPP values extracted under different uniform irradiances.

Set G GS
GMPP LMPP

Vmpp Pmpp VLMPP PLMPP

P’ 1000 600 25.18 90.2943 37.75 56.89
Q’ 600 600 25.18 55.2495 25.18 55.24
R’ 800 600 25 73.076 38.48 28.50
S’ 1100 600 24.63 98.6604 37.36 70.69
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3. MPPT Control Techniques

The output power characteristics of PV systems vary with irradiance, temperature,
and partial shading conditions in a non-linear manner [22]. In this case, the MPP of the PV
array will change continuously. Therefore, the operating point of the photovoltaic system
must be changed to the maximum energy produced [23]. Thus, the MPPT technology was
used to maintain the operating point of the PV array at its MPP [24]. There are many MPPT
techniques available in the literature; the methods considered in this work are described in
the following sections.

3.1. IPSO Method

The Improved PSO (IPSO) algorithm, called cooperative particles, consists of solving
the problem of nonlinear system optimization using a group of Np particles (Pi)2≤i≤Np.
This technique is based on six steps [25–28].

Step 1: Initialize the Np, w, α, and β parameters, which are integrated in Equation (3).

∆Dk+1
i = w × ∆Dk

i + α
(

DPbesti − Dk
i

)
+ β

(
DGbest − Dk

i

)
(3)

where the weighted summation of three criteria, ω, α, and β, is equal to 1; ∆Dk+1
i is the

perturbation in the present position; ∆Dk
i is the perturbation in the previous position;

DGbest is the global best position of the leader swarm particle; and DPbesti is the local best
position of each particle of index i.

Step 2: Initialize the k-th iteration and the index of the i-th particle at 1.
Step 3: If k ≤Np, the command that will be generated by i-th particle is determined by

applying Equation (4).

Di = γ, 1 ≤ i ≤ Np (4)

where γ is a random number in [Dinf..Dsup].
If k > Np, the algorithm selects the i-th particle, which satisfies the following condition:

the division remainder of (k-i) by Np is equal to 0, in order to complete the step and the new
duty cycle Di using the following equation.

Dk+1
i = Dk

i + ∆Dk+1
i (5)

where Dk+1
i is the new position and Dk

i is the actual position.

Step 4: Send the command U = Di to the boost converter. Measure the voltage Vpv and
current Ipv to calculate the output power that corresponds to the i-th particle.

Step 5: The i-th particle must update its own best duty cycle, which is designated DPBesti.
Moreover, it is necessary to compare the best powers generated by Np particles during
k iteration in order to update DGbest generated by the leader particle.

Step 6: If the convergence of each duty cycle produced by particle i to DGbest is not reached
yet, k is increased by 1, and return to step 3. If DGbest is reached by all the particles, that
is to say (DPbesti)1≤i≤Np = DGbest, then the converter must be operating in a regular way
with this optimal duty cycle until a change in the environmental conditions occurs,
which causes the return to step 2 for tracking the new MPP.

These steps are summarized in the following flowchart (Figure 4):

3.2. NN-P&O Method under Partial Shading Conditions

In order to keep the power level at the peak state and improve the energy efficiency, no
matter how the environment changes, the NN-P&O technique based on the two controllers,
the Neural Network (NN) and Perturb and Observe (P&O) methods, was simulated. The
selected structure of the NN-P&O includes three simple layers: input, hidden, and output
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layers. The input layer has two nodes, the hidden layer has eight nodes, and the output
layer has one node, as illustrated in Figure 5.

Figure 4. Flowchart of the IPSO-based MPPT algorithm.
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Figure 5. Configuration of the utilized NN under partial shading.

The main idea of the NN-P&O algorithm is using the NN controller to predict the
voltage value (Vest) during the variation in irradiation in the shaded and non-shaded
areas, respectively; ∆G and ∆GS are different to zero. Otherwise, the P&O method in-
volves a very small step size to reach the MPP. This algorithm is presented in a flowchart
(Figure 6).
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Figure 6. Flowchart of the NN-P&O method.
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4. Simulation Results under Various Atmospheric Conditions

In order to reveal the characteristics of the NN-P&O and the IPSO methods, different
environmental conditions were adopted and applied to the PV system.

4.1. Results and Discussion under Shading

To check the success of the NN-P&O and IPSO techniques, the two algorithms were
tested in the MATLAB/Simulink environment under shading, as exhibited in Figure 3 and
Table 3. The simulation results are presented in Figure 7.

Figure 7. Simulation results under shading by the NN-P&O and IPSO algorithms: (a) voltage under
shading, and (b) power under shading.

Figure 7 shows not only the ability of the NN-P&O and the IPSO algorithms to
follow the GMPP, but also the decrease in the transient response (Tr) when the NN-P&O
was applied. Indeed, it indicates that the IPSO method is able to follow GMPP without
oscillations around the ideal point. To compare the efficiency and effectiveness of the two
techniques, the average efficiency in every irradiance status (Ess) was calculated using
Equation (6):

Ess =
Pss

Pmpp
(6)

where Pss indicates the power under every irradiance status.
Table 4 confirms that the response time when applying NN-P&O was shorter than

that when applying IPSO. Moreover, [29] showed that, when the duty cycle was small, the
response time increased, so the precision increased and the value of Ass was almost the
same as that under IPSO. An observation that can highlight the benefits of IPSO is that, if
the irradiation level remains constant for a long time, Ass can reach 100%, while the PV
system can never reach this value when using NN-P&O.
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Table 4. Performances comparison between NN-P&O and IPSO under shading.

Algorithm Set Pss (W) Ess (%) Tr (s)

NN-P&O
D = 0.001

P’ 90.2943 99.99 0.2003
Q’ 55.2495 99.99 0.0003
R’ 73.076 99.99 0.7003
S’ 98.6604 99.99 0.0003

IPSO

P’ 90.2913 99.99 3.96
Q’ 55.2495 100 3.26
R’ 73.0760 99.99 3.26
S’ 98.6604 99.99 3.66

4.2. Results and Discussion under Various Irradiation Slopes

Different algorithms, i.e., P&O, NN, and NN-P&O, were incorporated in MATLAB/Simulink
under ramp irradiation, as shown in Figures 8 and 9.

Figure 8. Simulation results under a slope of 20 W/m2/s: (a) irradiance, (b) voltage, and (c) power.



Energies 2022, 15, 7668 11 of 15

Figure 9. Simulation results under a slope of 100 W/m2/s: (a) irradiance, (b) voltage, and (c) power.

Figures 8a and 9a present two trapezoidal irradiation profiles: the first starts at 10 s,
with a positive slope from 100 W/m2 to 1000 W/m2 in 45 s, followed by a 10 s steady state
period, and finally returns to 100 W/m2 irradiation in 45 s. The second trapezoid starts at
10 s from 100 W/m2, reaches its maximum (1000 W/m2) at 9 s, maintains a steady state
for 10 s, and arrives back at its initial value at 38 s. This profile was used to compare the
NN-P&O technique with P&O and NN.

Figures 8b and 9b show that the P&O method cannot track correctly the MPP exactly
under fast ramp irradiance, where the PV voltage is largely oscillating around the MPP one.
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This has caused the harvested power to be less than the maximum available one. However,
the MPP was tracked properly when the NN method was applied but with small error
around the MPP voltage, causing smaller power loss, as shown in Figures 8c and 9c. To
enhance the precision at steady state, a combination of the two methods: P&O with a small
duty cycle, which is used when the irradiation is constant, and an NN technique, which
is integrated under fast ramp irradiation. The results of this hybrid method show that
the obtained V-P are almost similar to MPP values. In order to determine the precision
of P&O, NN, and NN-P&O techniques, the efficiencies (Essi)1≤i≤n were measured under
the trapezoidal irradiation exhibited previously, showing the efficiencies presented in
Figures 10 and 11 below.

Figure 10. Efficiency of three MPPT methods under a slope of 20 W/m2/s.

Figure 11. Efficiency of three MPPT methods under a slope of 100 W/m2/s.
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Figures 10 and 11 confirm that the integration of NN to obtain NN-P&O to control
the PV system clearly enhanced the efficiency compared with the classical P&O algorithm.
Moreover, if the slope value increased, the P&O efficiency decreased, resulting in the
inaccuracy of the P&O algorithm. These figures indicate that the NN-P&O error at steady
state was negligible relative to the NN error.

To prove this interpretation, the average error (Er) of every technique, i.e., P&O,
modified InCond, NN, dP-P&O, LI-PSO, and NN-P&O, was evaluated by Equation (7).

Er =

n
∑

i=1

(
Pmppi−Pss i

Pmppi

)
n

× 100 (7)

where n is the iteration number.
Table 5 shows that the NN-P&O error was inferior to those of the other techniques. It

was equivalent to 0.005% under a slope of 20 W/m2/s and equal to 0.003% under a slope of
100 W/m2/s. This proves the better performance of the NN-P&O method in MPP tracking.

Table 5. Errors Values.

Algorithm Slope (W/m2s) Er (%)

P&O

20

3.557
Modified IncCond [28] 0.4966

NN 0.006
dP-P&O [6] -
LI-PSO [28] 0.06
NN-P&O 0.005

P&O

100

5.724
Modified IncCond [28] 0.5378

NN 0.004
dP-P&O [6] 2.95
LI-PSO [28] 0.03
NN-P&O 0.003

5. Conclusions

The aim of this work was to highlight the performance of NN-P&O by comparing
this method with the IPSO technique under shading and with other methods under a fast
ramp. NN-P&O is the association of two interesting methods: P&O and NN, which were
incorporated to command the PV system output power through a dc–dc converter. This
hybrid method greatly affected the response time duration required to reach the operating
point, as well as the stability around the MPP. The obtained results confirm that NN-
P&O was able to track the MPP very quickly, regardless of the environmental conditions.
However, this tracking was accompanied by error, which occurred in the training step of
the neural networks. This error became negligible when the P&O method was integrated
with a very small duty cycle, resulting in very small oscillations around the MPP. However,
the IPSO method was characterized by stability and a very long response time. In future
work, a developed PSO is required to track MPP under fast ramp environmental conditions.
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