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Direct Policy Search (DPS) is emerging as one of the most effective and widely applied Reinforcement Learning methods to
design optimal control policies for Multi-Objective Markov Decision Processes (MOMDPs). Traditionally, DPS defines the control
policy within a preselected functional class, and searches its optimal parameterization with respect to a given set of objectives. The
functional class should be tailored to the problem at hand and its selection is crucial, as it determines the search space within which
solutions can be found. In MOMDPs problems, a different objective tradeoff determines a different fitness landscape, requiring a
tradeoff-dynamic functional class selection. Yet, in state-of-the-art applications, the policy class is generally selected a priori, and
kept constant across the multidimensional objective space. In this work, we present a novel policy search routine called Neuro-
Evolutionary Multi-Objective Direct Policy Search (NEMODPS), which extends the DPS problem formulation to conjunctively search
the policy functional class and its parameterization in a hyperspace containing policy architectures and coefficients. NEMODPS
begins with a population of minimally structured approximating networks and progressively builds more sophisticated architectures
by topological and parametrical mutation and crossover, and selection of the fittest individuals with respect to multiple objectives.
We tested NEMODPS for the problem of designing the control policy of a multipurpose water system. Numerical results show that
the tradeoff-dynamic structural and parametrical policy search of NEMODPS is consistent across multiple runs, and outperforms
the solutions designed via traditional DPS with predefined policy topologies.
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I. INTRODUCTION

THE coexistence of multiple heterogeneous conflicting
objectives is a major challenge to many complex real

world control problems, which are often formalized as Multi-
Objective Markov Decision Processes (MOMDPs). In these
problems, the optimal solution is an ensemble of Pareto
optimal policies covering the space of tradeoffs and compro-
mises across different objectives. In the last decades, Multi-
Objective Reinforcement Learning (MORL) established as a
solid approach to solve MOMDPs problems, but several open
challenges remain in real world applications characterized by
large continuous spaces that are too complex for a traditional
optimal control formulation (for a review on MORL and open
challenges see [1] and references therein). Direct Policy Search
(DPS) [2] is emerging as one of the most popular MORL
methods for solving complex MOMDPs problems, given its
applicability to diverse tasks, scalability, and lack of restric-
tions in problem and objective formulation [3]. DPS defines
the control policy within a given functional parameterization,
and explores the policy parameters space by searching for the
best solution with respect to a given set of objectives. So far,
most of the DPS literature has focused on improving the search
method [4], assuming that the subspace defined by the policy
parameterization includes the optimal solution. This hypoth-
esis, nevertheless, overlooks the impact that simplifications
and mathematical assumptions in the problem formulation and
the policy parameterization can have on the representation
of the search space [5]. Some DPS works apply a linear or
piecewise linear policy parameterization, albeit conditioning
the control decision on trivial monodimensional state vectors
[6]. A nonlinear multi-input multi-output function, such as
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an approximating network, provides a more flexible control
policy shape [7]. Yet, approximating networks require the
specification of a topology, which is crucial to determine the
network processing capability and training requirements. The
a priori definition of the optimal network topology for a given
problem requires a full knowledge of the learning task that
is generally unavailable. In practical applications, a topology
is hence selected among few options via trials-and-errors,
balancing the network approximation capacity, training costs,
and overfitting tendency. Crucially, when multiple objectives
are considered, the fitness landscape changes depending on the
selected tradeoff, and the optimal network topology should be
set accordingly. Yet, in state-of-the-art applications of DPS,
a single policy class is selected to approximate solutions for
every objectives tradeoffs.

This work contributes a novel policy search routine that
addresses this challenge by evolving self-adaptive policy
architectures responsive to changes in tradeoffs, namely,
Neuro-Evolutionary Multi-Objective Direct Policy Search
(NEMODPS). NEMODPS builds on a recent Reinforcement
Learning branch called Neuro-Evolution (NE) (e.g., [8]),
which employs Evolutionary Algorithms to generate optimal
networks in terms of topologies and parameters. A well-known
NE algorithm is the NeuroEvolution for Augmenting Topology
(NEAT, [9]), a Single-Objective (SO) technique which begins
with a population of simple networks and progressively builds
more sophisticated ones through a complexification process
driven by parametrical and topological evolutionary opera-
tors. A topological niching scheme protects newly emerged
architectures from premature disappearence. Several authors
developed NEAT-inspired alternatives to adapt it to a variety of
machine learning tasks, mainly for game playing and robotics
(see e.g., [10] and references within). Among them, NEAT



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ?? 2

was tailored to problems characterized by highly discontin-
uous state-action mappings (RBF-NEAT, [11], SNAP-NEAT
[12], CA-NEAT [13]), little domain specific knowledge [14],
deceptive environments (Novelty Search, [15]), visual tasks
(HyperNEAT [16]), dynamic problems with moving optimum
(DynNEAT [17], SOMNE [18]), real-time adaptation of con-
trol policy (rtNEAT [19], ICONE [20]), and compact policy
representation (SUNA [21]).

However, all the above algorithms address SO problems,
i.e., optimization problems seeking to satisfy a single criterion
or metric, yielding to one single optimal solution. The appli-
cation of a SO algorithm to a Multi-Objective (MO) problem
can be performed via decomposition into several SO sub-tasks,
each characterized by a scalarized monodimensional objective
function via several methods (e.g., weights, constraints, etc),
albeit yielding to significant shortcomings related to compu-
tational inefficiency [22] and inadequacy to capture convex
portions of the Pareto front [23]. MO methods, conversely, do
not suffer from such shortcomings and are widely recognized
to be more desirable when tackling a MO problem [3].

Sub-tasks are solved iteratively, each yielding one Pareto-
approximate solution, resulting in a factorial growth of compu-
tational costs with the number of objectives, and suboptimality
in the Pareto Front approximations in its concave regions [23].
An attempt at developing an explicitly MO version of NEAT
(MO-neuroevolution [24]) required to sacrifice several crucial
NEAT operators, as they are supported by the inherently
single-objective niching scheme. In this work, we propose a
MO generalization of the niching routine, which allows to
preserve all NEAT operators in a MO problem.

We tested NEMODPS on a multi- and a many-objectives
(i.e., more than 2 objectives [25]) problem of designing a con-
trol policy for a multipurpose water reservoir. Water systems
are indeed often characterized by multiple water users such as
irrigation, flood protection, navigation, environmental preser-
vation [26]. In these contexts, the multiple objectives cannot
be easily aggregated a priori to turn the original problem into a
single objective one because of the intricacy of identifying the
decision maker (DM) preference structure, potentially yielding
to biased decisions [27]. Conversely, we need a posteriori
generating techniques to compute the full set of Pareto-optimal
solutions exploring the tradeoffs between different objectives
prior to eliciting the DM preferences. Stakeholders and DMs
can then negotiate the preferred solutions to implement on the
basis of the resulting Pareto front (see [28] for a review of
negotiation methods). Since this choice is not purely technical
but political as it generally results from a negotiation process
involving the different stakeholders and water users [29], it is
beyond the scope of the algorithm presented here, which aims
at the design of the Pareto-optimal set of solutions.

Technically, such MO control problems typically feature
a complex decision space, continuous domains, and a noisy
input-output mapping. Currently, the state-of-the-art policy ar-
chitectures for these problems are single-layer, fully connected
Artificial Neural Networks [3], [30]–[32].

NEMODPS implementation inherits NEAT basic structure
for the dynamic search of efficient policy architectures, and
the literature of NEAT refinements for problems presenting

large decision spaces and noisy environments. In particular,
inspiration came from the Evolutionary Acquisition of Neural
Topologies (EANT) algorithm [33] which addresses problems
characterized by a large decision space, continuous domains,
and a noisy environment by coordinating the search in a
dual timescale, optimizing the network’s connection weights
on a small timescale (exploitation phase), and the network’s
structure on a larger timescale (exploration phase) in order
to give newly created structures time to optimize their pa-
rameters. Other recent works dealing with noisy environments
and complex decision spaces experimented with the activation
functions of neurons. Applications to benchmark classification
[34] and regression problems [35] demonstrate how heteroge-
neous networks characterized by a combination of activation
functions can result in improved approximations capabilities,
smaller networks with fewer training requirements, and a
significantly reduced overfitting tendency when tested on noisy
environments. Additionally, the niching routine is generalized
for MO problems with a novel strategy, as to support the
exploration of multidimensional tradeoffs in a single run of
the algorithm.

In this work, we run a benchmark analysis [36] comparing
the policies produced by NEMODPS, NEAT, and traditional
DPS. Results show that the Pareto-dynamic structural and
parametrical policy search of NEMODPS produces reliable
policies, highly robust when tested on unseen data. Addition-
ally, we perform a Pareto-dynamic convergence analysis of
NEMODPS, and we analyze how the efficient architectures
change in response to a change in the objective tradeoff,
according to several metrics of structural analysis.

II. METHODS

A. Problem formulation

We consider a discrete-time continuous MOMDP defined
as a tuple < X ,U , T ,G > where X ⊆ Rnx is the
continuous state space, U ⊆ Rnu is the continuous action
space, T (xt+1|xt, ut) is the probabilistic transition function
defining the transition density between state xt and xt+1

under action ut, G(xt, ut, xt+1) =
[
G1, . . . , GM

]
is a M -

dimensional reward (or cost) function that specifies the vector
of instantaneous rewards (costs) gt = [g1t , . . . , g

M
t ] for each

objective when state xt+1 is reached from state xt by taking
action ut. Action ut is extracted from a control policy π,
ut = π(xt, ut), associated with a vector of expected returns
J(π) =

[
J1(π), . . . , JM (π)

]
defined over the control horizon

[0, H] as:

Jm(π) = E

{
H∑
t=0

(γm)tgm(t+ 1)|x0 ∼ µ

}
(1)

where γγγ = [γ1, . . . , γM ] ∈ [0, 1] is the vector of discount
factors relative to each objective, and µ is the initial state
distribution.
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The solution of the RL problem defined above is the policy
π∗ that yields the optimal value of objective vector J (here
considered as a cost to be minimized) in its M dimensions:

π∗ = arg min
π

J(π, µ)

= arg min
π

[
J1(π, µ), . . . , JM (π, µ)

] (2)

In general, conflicts occur among different operating objec-
tives, and it is thus not possible to define a single optimal
policy, representing the optimum with respect to the M
dimensions of J. The solution of a MO problem is, in general,
constituted by a set of non-dominated (or Pareto optimal)
solutions P∗ = {π∗|@π ≺ π∗}, which maps onto the Pareto
front F∗ = {J(·)|π∗ ∈ P∗}.

Definition 1: Policy π dominates policy π′, denoted by
π ≺ π′, if: ∀m ∈ {1, . . . ,M}, Jm(π) ≤ Jm(π′) ∧ ∃m ∈
{1, . . . ,M}, Jm(π) < Jm(π′).

It is possible to solve a MO problem with a SO optimization
algorithm by decomposing the MO problem into several
SO tasks, each representing a different prespecified objective
tradeoff. In particular, the M objectives are combined with
a scalarization function Γ : RM → R. Traditionally, a
convex combination of the objectives is applied using weights
λ = [λ1, . . . , λM ] ∈ ΛM−1, where ΛM−1 is the unit (M−1)-
dimensional simplex (so that

∑M
i=1 λi = 1 and λi ≥ 0 ∀i).

For a SO control routine, problem (2) is hence reformulated
as:

π∗ = arg min
π

J(π, µ) =

Γ
(
[J1(π, µ), . . . , JM (π, µ)]

) (3)

Given a desired precision of Pareto front approximation (i.e.,
number of solutions along a single objective axis), the com-
putational cost required by the solution of Problem (3) grows
factorially with the number of objectives M [22], and is
defined by the following permutation:

S =

M∑
i=1

M !

i!(M − i)!
+M (4)

where S is the number of sub-tasks to be solved, equal to the
number of Pareto approximate points produced.

Traditionally, the solution to Problem (2) is obtained by
searching for the optimal action-value function Q∗(xt, ut),
defined as the optimal cumulated future cost associated with
each pair (ut, xt) at time t. Such future cost is obtained by
integrating in the state space (X) the immediate cost G and
a discounted optimal future cost for time t+ 1:

Q∗(xt, ut) =

∫
X

[G(xt, ut, xt+1)+

γγγ min
ut+1∈U

Q∗(xt+1, ut+1)]T (dxt+1|xt, ut)
(5)

The exact complete estimation of the value function in
its M dimensions is however possible only for a limited
class of problems, while it quickly becomes computationally
intractable for problems characterized by high dimensional
action or state spaces (i.e., curse of dimensionality [37]) and

objective space (i.e., curse of multiple objective [38]). More-
over, any variable considered into the problem formulation
must be explicitly modeled in order to compute the value
function (i.e., curse of modeling [39]).

In general, an approximated method is used when one
or more curses prevent reaching an exact solution. The ap-
proximation can regard the action-value space (see e.g., [40],
[41]), or the policy space, where the search for the optimal
control policy is restricted to a prespecified parametric class
of functions [42]. In this second approach, the control policy is
applied to the system for a given horizon [0, H]. The sequence
of states and controls produced is employed to compute the
policy performance according to the problem’s objectives.

This sequence defines a trajectory τ employed in the calcu-
lation of the objective J(π) = E[G(τ)|π].

Direct Policy Search belongs to this class, and according
to the taxonomy of Policy Search methods proposed in [2]
configures as a stochastic, model-based and episode-based
method. In particular, DPS approaches policy design as a
problem of optimal functional parameterization, defining the
control policy πθ within a given function class, and then
searching the parameters’ space Θ to find the optimal param-
eterization θ∗ ∈ Θ with respect to the M -dimensional set of
objectives J. Hence, Problem (2) is reformulated as:

π∗θ = arg min
πθ

J(πθ, τ) (6)

Selecting an appropriate functional class for πθ is critical,
as DPS routines can find, at most, the best parameterization
within the predefined class. In the absence of pre-existing
knowledge of a (near-)optimal policy shape, highly flexible
function classes (e.g., nonlinear approximating networks) are
preferred [7], [30], [31], in order not to restrict the search
to a policy subspace that, likely, does not contain the optimal
one. Yet, optimizing the parameters of approximating networks
requires searching high dimensional spaces that map to a
noisy and multidimensional objective space. Comprehensive
reviews (e.g., [43]) and extensive diagnostic assessments [44]
have established the suitability and high algorithmic reliabil-
ity of MO Evolutionary Algorithms (MOEAs) for tackling
multi- and many- objective water control problems given
their demonstrated ability to efficiently handle performance
uncertainties [45], [46]. In state-of-the-art applications of DPS,
an appropriate network dimension is selected by trials-and-
errors, adjusting the number of neurons in a single-layer, fully
connected, homogeneous network [3], [30]–[32], [47]. This
architecture choice is motivated by theoretical results, which
demonstrated that single- or multi-layer feedforward neural
networks with continuous, non-constant, activation functions,
could approximate any continuous bounded function to a
desired accuracy, given enough nodes [48]. The nominal
capacity of a neural network to absorb information is thus
just limited by the number of its processing units, where
numerous units imply large flexibility and approximation
capacity. The network topology does not influence the the-
oretical expressiveness of a network; however, several studies
show that, in practical applications, it significantly affects
its training requirements, and approximation capacity. Firstly,
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fully connected networks offer high flexibility, but tend to
force spurious connections that have no physical meaning,
facilitating the overfitting to noise in training data [49], [50].
Secondly, the depth (i.e., number of layers) of a neural network
affects its behavior in solving high complexity learning tasks.
While a shallow (single-layer) network provides a direct input-
output mapping described by the single hidden layer, the
global mapping provided by a deep (multilayer) network is the
result of the composition of several layers, a valuable asset in
problems presenting regularities in the input-output mapping
[16], [51]. Thirdly, comparative studies have demonstrated
that the choice of nodes’ activation functions plays a key
role in determining convergence time and network accuracy
[52]. An appropriate mix of activation functions generally
reduces the number of processing units required for a task,
and, accordingly, its training requirements and overfitting
tendency [35]. Overall, these results indicate that in real-
world applications, the network’s topology plays a significant
role in determining its suitability for a given task, and it
should not be dismissed in DPS applications. Moreover, in MO
problems, the multidimensional landscape defined by solutions
mapped into corresponding value of objectives (i.e., fitness
landscape) changes depending on the tradeoff. Every possible
tradeoff combination originates a different sub-problem, and
an efficient network topology should be set accordingly and
tradeoff-dynamically.

B. Extending the scope of DPS

In this work, we extend the DPS problem formulation to
search optimal policies in terms of architectures and relative
parameterization Pareto dynamically. Accordingly, Problem
(6) is reformulated as:

π∗ζ(θ) = arg min
πζ(θ)

J(πζ(θ), τ) (7)

where πζ(θ) explicits the search for policy hyperparam-
eters ζ defining a policy architecture as well as regular
policy parameters θ, whose number and nature depend on
the hyperparameters as in ζ(θ). The policy search problem
is thus expanded to conjunctively search architectural and
parametrical spaces, enhancing DPS potential for single- and
especially multi-objective problems.

C. NEAT

Problem (7) can be solved with Neuroevolution, a machine
learning branch which employs evolutionary algorithms to au-
tomatically generate efficient artificial neural networks. NEAT
(NeuroEvolution for Augmenting Topology, [9]) is the first
prominent neuroevolution algorithm, and the benchmark for
this field. It begins with a population of simple networks and
progressively builds more complex topologies through a com-
plexification process. In every generation of the evolutionary
progress, the performance of each individual is evaluated with
respect to a fitness function, and the fittest individuals survive
onto the next generation. New derivative networks are created
based upon the surviving networks by applying evolutionary
operators (i.e., topological and parametrical mutation and

crossover), to drive the search for efficient topologies and
connection weights.

As the evolution proceeds and individuals complexify, in-
creasingly sophisticated behaviors emerge. However, the addi-
tion of new structural elements with unoptimized coefficients
is, at first, detrimental for an individual, and the usefulness of a
topological innovation may become apparent only when given
enough iterations to optimize. NEAT implements a niching
scheme with the dual aim of protecting topological innovations
from premature disappearance, and sustaining solution diver-
sity. Topological innovation is protected by allowing individual
competition only within niches of similar topologies. The pop-
ulation is partitioned into niches (or species), by evaluating a
metric of topological distance δ between couples of individuals
Xi and Xj :

δ(Xi, Xj) =
c1Ei,j
NTE

+
c2Di,j

NTE
+ c3Wi,j (8)

where Ei,j is the difference in number of connections between
Xi and Xj , Di,j is the difference in number of nodes, Wi,j

is the difference in average connection weights, c1, c2, c3
∈ [0, 1] express the relative importance of each factor, and
NTE is the maximum Number of Topological Elements in
the networks. Individual Xi is assigned to species s if:

δ(Xi, Xj,s) < δ∗ (9)

where δ∗ is a predefined speciation threshold, and Xj,s is the
reference individual for the species, extracted randomly from
species s at each generation. A new species is created if (9)
is not verified for any existing one.

Species compete among each other for their ability to repro-
duce, so that a larger offspring is assigned to well performing
niches. However, a fitness sharing mechanism is introduced to
penalize populous species and prevent them from taking over
the entire population, thereby sustaining topological diversity.

In particular, a species’ fitness is computed as the average
shared fitness of its components. The Shared Fitness of indi-
vidual Xi belonging to species s (SFXi,s ) is determined by
normalizing its fitness fXi to the species’ numerosity ns with
the following:

SFXi,s =
fXi
ns

(10)

The allotted number of individuals n′s to species s in the
next generation is determined by its average shared fitness
normalized by the population average SF :

n′s =
1
ns

∑ns
i=1 SFXi,s

SF
(11)

D. NEMODPS

The implementation of NEMODPS inherits NEAT structure,
and the literature of NEAT improvements targeting complex
control design problems, vast decision spaces, and noisy
environments. Additionally, we propose an original strategy
to extend the search to MO problems. The meta-algorithm
for NEMODPS is reported in the Supplementary Information
attached to this manuscript in Algorithm S1. Below, we discuss
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the additional elements that differ from the original NEAT
implementation.

First, NEMODPS assimilates the search dual timescale
proposed in EANT [33]. Parametrical mutations occur in
every generation to exploit existing structures. Topological
innovations are injected every few generations, performing the
exploration of the architectural hyperspace on a larger time
scale. Second, when new neurons are injected into a network,
the activation function is randomly selected among sigmoids
and gaussians, allowing the generation of heterogeneous net-
works. Third, the speciation strategy is modified to reduce the
criticality of the speciation threshold choice. An excessively
low speciation threshold produces too many species and an
overly fragmented population with restricted interaction be-
tween individuals, and weakened selection pressure. On the
contrary, an excessively high speciation threshold produces
overly homogeneous populations, an unfavorable environment
for new emerging topologies competing against well optimized
structures. Moreover, the appropriate speciation threshold can
vary significantly throughout the evolution as the population
complexifies. Alternatively to trying to guess a fair com-
promise for the selection threshold, some authors suggested
to, instead, select an appropriate number of species to be
maintained, and adjust the threshold accordingly during the
evolution [53]. NEMODPS implements the latter technique,
initializing a threshold for speciation specThresh = δ, and
an appropriate number of species to be maintained relatively
constant during the search, speciesNumerosity∗ = σ In
every generation, specThresh is incremented if the number
of species is above speciesNumerosity∗, and lowered if
inferior. Lastly, NEAT supports SO optimization, and its
application to a MO problems requires the iterated solution of
several SO tasks with a scalarized monodimensional objective
as in Problem (3). In a previous attempt to define a multi-
objective neuroevolution routine, named MO-neuroevolution,
the Non-dominated Sorting Genetic Algorithm II (NSGAII,
[54]) was embedded in NEAT to perform the selection of the
fittest individuals within niches in a multidimensional objec-
tive space [24]. The niching scheme supported by the Shared
Fitness defined in eq. (10), however, does not seamlessly
generalize to MO problems, given the difficulty to compare
fitnesses with respect to multiple objectives, and therefore the
MO-neuroevolution implementation sacrificed the speciation
and fitness sharing operators. In NEMODPS, we employ the
non-dominated sorting approach proposed in NSGAII (see
[54] for details) for intra-species competition suitable to select
a predetermined fraction of efficient individuals within a
species. Additionally, we contribute an original definition of
the fitness sharing operator for MO problems, thus restoring
the speciation operator accordingly.

The Generalized Shared Fitness of individual Xi in species
s, GSF (Xi,s), assigns a score to Xi equal to the number of
individuals Xj , j 6= i that are not dominating Xi.

GSF (Xi,s) =
∑

j∈[1,...,N ]:j 6=i

dj ; dj =

{
0 if Xj ≺ Xi

1 else

(12)
where N is the total number of individuals in the population.

The top score achievable is GSF (Xi, s) = N − 1, attained
by individuals populating the best current approximation of
the Pareto front. Solutions close to the approximate Pareto
front are assigned good scores if they are located in sparsely
populated regions, and lower scores if they are located in
crowded areas, as they are more likely to be (semi-)dominated.
An example of GSF computation for 2 individuals in a 2-
objectives problem is presented in Fig. S1 of the Supple-
mentary Information). Species grow or shrink depending on
whether the average generalized shared fitness of their individ-
uals is above or below the population average (lines 19-20), in
accordance with the NEAT implementation in eq. (11). Species
competition is thus based on a relative individual ranking, a
strategy that is often featured in MOEAs, and has been demon-
strated to handle performance uncertainties more effectively
than relying on the estimation of absolute performance [46].
Additionally, in this formulation, the fitness sharing operator
penalizes individuals’ proximity in the objectives space, rather
than in the topological space as originally conceived in NEAT.
This transition is encouraged by several authors, who have
observed that topological diversity does not necessarily induce
a behavioral diversity of solutions for every task [55], [56].
This observation is key in MO problems: if a certain sector of
the Pareto front can be approximated with a trivial solution,
a broad set of topologies will succeed in reaching a high
performance. By rewarding topological diversity, solutions
will quickly concentrate in the trivial region, resulting in a
topologically diverse population, but a poor approximation of
the Pareto front, which instead should be the ultimate goal
of MO policy search. With the proposed generalized fitness
sharing, species are encouraged to achieve solution diversity
intended as a good exploration of the tradeoffs in the Pareto
front, rewarding ensembles that are well performing, and that
occupy relatively empty and non-dominated regions of the
objective space.

E. Metrics of Structural Analysis

As argued in Section II-B, the learning behavior of a
network largely depends on its topology, therefore, topological
analysis of Pareto-approximate networks could provide useful
insights into the learning task. Neuro-optimized topologies
are generally irregular, presenting sparse connections, hidden
layers of different sizes, and heterogeneity in the activation
functions. In order to characterize their topology, we use three
metrics of structural analysis that capture critical network fea-
tures, allowing us to compare and contrast different topologies.

The first metric, namely the Preference for Deep Learning
(PDL), is measured as the ratio between number of hidden
layers (L) and hidden nodes (H) in a structure.

PDL =
L

H
(13)

PDL ∈ (0, 1], tends to zero when hidden nodes are organized
in one or few very populated layers, and assumes value one
when there are as many layers as nodes.

The second metric is a measure of Network Complexity
(NC), defined as the total number of parameters, namely
connection weights and node biases, needed for its description.
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The sum of the number of connections (C), hidden nodes (H),
and output nodes (O), determines the Network Complexity as
follows:

NC = C +H +O (14)

High NC values are representative of complex networks, likely
to reproduce sophisticated behaviors.

Lastly, the third considered metric of structural assessment
is a measure of Network Heterogeneity, computed as the ratio
of Gaussian nodes (GN) to the total number of hidden nodes.

NH =
GN

H
(15)

By definition, NH∈ [0, 1] where NH = 0 indicates a homoge-
neous network comprising only sigmoidal nodes, and NH = 1
indicates a homogeneous Gaussian network. An even mixing
of Gaussian and sigmoidal activation functions is verified
for NH = 0.5. For examples and visual representations of
the proposed metrics, refer to Fig. S2 in the Supplementary
Information.

III. CASE STUDY

NEMODPS is tested for a problem of designing the optimal
control of a multi-purpose water resources system. Typical
features of these problems are large decision spaces, presence
of noise, and multiple conflicting objectives.

In this application, we design the control policy of Lake
Como, a multipurpose regulated lake situated in the southern
Alpine belt (Italy). The main tributary, and only emissary
of the lake is the Adda river, whose waters are withdrawn
downstream to the lake to irrigate four agricultural districts.
The southwestern branch of Lake Como constitutes a dead
end, and exposes the city of Como to flooding events.

The system is modeled as a discrete-time, periodic, non-
linear, stochastic process defined by a scalar state variable xt
(i.e., storage), a control variable ut representing the release
decision from the dam gates, stochastic disturbances εt+1 (net
reservoir inflow), and a state-transition function f(·): xt+1 =
xt − rt+1 + εt+1 where the effective release rt+1 coincides
with the release decision ut corrected, where appropriate, with
a non-linear release function Rt(xt, εt+1) determining the
minimum and maximum releases feasible for the time interval
[t, t+1) to respect physical and legal constraints (for more on
this, see the control scheme in the Supplementary Information
in Fig. S3). The Adda River is described by a plug-flow model,
which simulates the routing of the lake releases to the intake
of the irrigation canals. The adopted time step is 1 day, and
and the system is periodic with period T = 365 days.

The lake regulation generally considers two conflicting aims
of minimizing flood risk on the lake shores, and supplying
water to downstream users by storing spring snowmelt-driven
inflow peak and releasing throughout summer when the irriga-
tion demand is highest. On the basis of previous works [57],
these two objectives are defined as:
Flooding: the average number of annual flood days, defined

as days in which the lake level ht is above the flood threshold
h̄ = 1.24 m, i.e.:

Jflood =
1

Ny

H−1∑
t=0

gfloodt+1 ; gfloodt+1 =

{
1 if ht+1 ≥ h̄
0 if ht+1 < h̄

(16)
where Ny is the number of years in the simulation horizon.
Irrigation: the daily average squared water deficit with respect
to the daily downstream demand wt, subject to the minimum
flow constraint qMEF = 5 m3/s to guarantee environmental
stakes. The quadratic formulation is selected with the aim of
penalizing severe deficits in a single time step, while allowing
for more frequent, small shortages. i.e.,

J irr =
1

H

H−1∑
t=0

(max(wt − (rt+1 − qMEF ), 0))2 (17)

In a second, more challenging experiment, we extend the
Lake Como problem formulation to include two additional
objectives, namely:
Navigation: the average number of annual dry days, defined
as days in which the lake level ht is below the navigation
threshold, under which lake navigation is prohibited h = 0.205
m, i.e.:

Jnav =
1

Ny

H−1∑
t=0

gnavt+1 ; gnavt+1 =

{
1 if ht+1 ≥ h
0 if ht+1 > h

(18)

Environment: the daily average squared deviation of the wa-
ter released in Adda river with respect to the downstream
undisturbed hydrological regime qt, computed as a 30 years
cyclostationary mean river regime downstream the lake on past
data of undisturbed river flow data.

Jenv =
1

H

H−1∑
t=0

(qt − rt+1)2 (19)

We hereby assume the considered simulation horizon H
is sufficiently long to not require the addition of a penalty
function to the final state.

IV. COMPUTATIONAL EXPERIMENT

The problem of finding a set of Pareto approximate control
policies for the Lake Como system was solved via three
policy search methods, NEMODPS, NEAT, and traditional
DPS, respectively. In these experiments, the designed optimal
control policies provide the control ut as a function of a three-
dimensional input set It comprising the state of the system
(i.e., the current reservoir storage) and two transformations
of the time index t with sine and cosine, to embed time-
variability and cyclostationarity in the control policy It =
|xt, sin(t), cos(t)|.

NEMODPS solves Problem (7), with J = [Jflood, J irr]
in the first, 2-objectives experiment, and J =
[Jflood, J irr, Jnav, Jenv] in the second, 4-objectives,
experiment. NEMODPS was run for 10 independently
initialized and randomized seeds. Each seed comprises a
Number of Function Evaluations (NFE) equal to 600,000,
corresponding to a population size of 600 evolved for
1000 generations. The population is divided in a number



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. ??, NO. ?? 7

of species that oscillates around the selected value of
speciesNumerosity∗ = 15. Individuals of the initial
population consist of one hidden, one output node, and 4
connections, for a total of 6 parameters. Connections link
inputs to the hidden node, and the hidden node to the output.
Evolved individuals feature different complexities, spanning
from 10 to 31 parameters across the 10 runs.

NEAT solves a SO version of Problem (7) where the
objectives are aggregated using a weighted mean with 15
uniformly sampled combinations of weights. NEAT is only
employed to solve the 2-objectives problem, as it would be
computationally prohibitive to apply it to adequately represent
the Pareto front in the 4-objectives problem. Each run of NEAT
thus demanded the same computational effort of NEMODPS
multiplied by the 15 tradeoff combinations considered.

Finally, the application of traditional DPS solves Problem
(6) searching only the policy parameters θ ∈ Θ for a pre-
defined functional class. DPS requires the specification of a
search algorithm, and of a policy structure. As search algo-
rithm we selected the ε-NSGAII MOEA [58], which demon-
strated consistently high levels of performance on an extensive
diagnostic benchmarking for challenging MO problems [44].
ε-NSGAII extends the original NSGAII by including epsilon
dominance archiving, adaptive population sizing, and time
continuation that were demonstrated fundamental in discover-
ing high quality solutions for similar problems characterized
by multi and many heterogeneous objectives. Such problems
are cursed by the issue of dominance resistance, i.e., the
number of non-dominated solutions increases very quickly,
and it becomes difficult to discriminate between solutions.
ε-dominance is shown to alleviate the dominance resistance
problem by allowing to discern among solutions with the
desired precision for each objective, instead of burdening the
search with a number of operationally equivalent solution with
minor numerical differences in the objective values. For a
detailed description of the algorithm refer to [58]. Concerning
the policy structure, a single-layer, fully connected, homoge-
neous network was selected, as in state-of-the-art applications
[3], [32]. The experiment was repeated for differently sized
networks, from 1 node (corresponding to 6 parameters), to
6 nodes (31 parameters), covering an interval of parameters
which contains the range delimited by optimized NEMODPS
networks. These networks were populated homogeneously
with sigmoidal activation functions, generating common Arti-
ficial Neural Networks (ANN), and with gaussian functions,
generating Gaussian Perceptrons (GP).

Because the DPS problem formulation only searches the
parameters’ space, in contrast to the Neuroevolutionary for-
mulation which searches the hyperspace comprising networks
parameters and topologies, the number of function evaluations
had to be adjusted to ensure a fair comparison across method-
ologies. By inspecting the search progression in NEMODPS,
it was determined that, on average, the structures populating
NEMODPS Pareto fronts remained fairly constant for the last
300 thousands evaluations. As a result, each DPS experiment
was run for 10 seeds, and for NFE = 300,000.

The above policy search experiments were performed on
a 10 years calibration horizon 1997-2006 comprising a mix

of wet and dry years. Optimal policies were then tested on
three validation chunks: an extended 20-years validation from
1977-1996, a combination of extreme dry years (1949, 1962,
1990, 1994, 2007), and wet years (1951, 1960, 1977, 2008,
2014) selected by searching the driest and wettest years from
the available historical record of inflows to Lake Como (1947-
2014), discarding the calibration years.

V. NUMERICAL RESULTS

A. Benchmark analysis

The first experiment we present is a multi-objective
benchmark analysis, contrasting the performance of Pareto-
approximate control policies produced via NEMODPS, NEAT,
and state-of-the-art DPS. The solutions displayed in this figure
are the non-dominated solutions resulting from merging the
Pareto front approximations of independent repetitions of the
three policy search routines selecting non-dominated solutions
among those generated by the multiple algorithmic runs. For
all the considered policy search methods, the control policies
are designed on a calibration dataset, and their performance
is reported in Fig. 1a. The best performing solutions locate in
the bottom left region of the objective space, corresponding
to low values of J irr and Jflood. Marker size is proportional
to network dimension (i.e., number of parameters, or topolog-
ical elements). State-of-the-art DPS networks with sigmoidal
activation functions (namely, ANN, pink diamonds) and Gaus-
sian functions (namely, GP, green diamonds) obtain the best
calibration results, producing a Pareto front that completely
dominates the one obtained via NEMODPS (blue circles) and
NEAT (black triangles). However, when tested on unseen val-
idation datasets, their performance significantly deteriorates.
Benchmark DPS architectures thus demonstrate a tendency
to overfit noise patterns in training data, which enables to
attain impressive calibration results, but without effectively
producing superior policies when compared to other policy
search routines. On the contrary, Neuroevolutionary (i.e.,
NEMODPS and NEAT) control policies offer a much more
stable validation/calibration ratio and consistently outperform
benchmark DPS on all three validation datasets. NEMODPS,
additionally, consistently offers an exhaustive exploration of
the Pareto front, with very limited gaps even when tested on
validation datasets. Conversely, solutions produced by fixed
structure DPS tend to concentrate in restricted portions of
the frontier, (e.g., panel (c)). NEAT policies almost overlap
with NEMODPS solutions in the extremes of the Pareto front;
however, the central region of the front is poorly characterized,
presenting large gaps, and dominated solutions. This holds true
both for the calibration and the validation experiments. Re-
markably, selecting evenly spaced set of weights to aggregate
the two objectives does not guarantee a uniform distribution
of NEAT solutions in the Pareto front. The dishomogeneity in
the solutions distribution could depend on concavities in the
real unknown Pareto front, which are impossible to capture
with a convex combination of objectives.

Intuitively, the higher reliability of neuro-evolved policies in
contrast to traditional pre-defined structures against a suite of
diverse validation experiments can be explained by the fact that
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Fig. 1. Comparison of the control policies performances designed via NEMODPS (blue circles), NEAT (black triangles), and traditional DPS with fixed
structures ANN and GP networks (pink and green diamonds). Policies are evaluated over a 10 years calibration period (panel (a)), a 20 years validation
horizon of recorded inflows trajectory (panel (b)), and two 5 years extreme validation horizons (extreme dry in panel (c), and extreme wet in panel (d)).

each topological element of neuro-optimized networks was es-
tablished as the result of a genetic selection [9]. Consequently,
the added value of every element is tangible, otherwise sim-
pler networks, with lower calibration requirements, would
have prevailed. On the contrary, by pre-specifying a network
structure, any superfluous element populating the network
(e.g., connections with no physical sense) will contribute to
overfit the noise patterns, ultimately undermining the network
generalization capability.

B. Trends in policies architectural features

The following analysis is aimed at exploring more in detail
NEMODPS topology selection, by uncovering possible trends
and regularities in the architectural features of the Pareto-
approximate solutions produced by the 10 independent runs of
NEMODPS. This analysis is supported by the three structural
metrics defined in Sec. II-E, computed for every solution, and
plotted against their performance with respect to Jflood in
Fig. 2. The flood objectives is used as a proxy to represent
the solution tradeoff, as, for a given seed, lower Jflood values
correspond to higher J irr values.

The first panel of Fig. 2 displays the Preference for Deep
Learning (PDL), defined in eq. (13). Each line represents one
of the 10 independent runs of NEMODPS. By inspecting the
lines ensemble a clear trend is visible: as Jflood increases,
(corresponding to moving the tradeoff in favor of good J irr

performance) the values of PDL tend to increase as well,
eventually reaching 1 in all the iterations. We notice more
architectural variability for low values of Jflood, attributable
to the fact that the Jflood minimization problem can be solved
more easily than the J irr problem (more on this in the next
section and Fig. 3), and can therefore be tackled by a variety
of alternative architectures.

The second panel of Fig. 2 shows the values of Net-
work Complexity (NC, equation 14) that counts the number
of topological elements present in the network, including
hidden and output nodes, and connections, with respect to
increasing values of Jflood. A visible trend persists in all
the 10 runs, indicating that efficient architectures tend to
simplify, on average, for high values of Jflood. Also the
range of complexities covered by the solutions is sensible
to a change in tradeoff. Low flood solutions display high
variability in NC across different seeds, spanning from 12
to 41 parameters below 20 flood days. On the other end of
the tradeoff curve, instead, solutions are confined within the
10 to 15 parameters range except for one seed stabilizing on
20 parameters. The last indicator of Network Heterogeneity
(eq. 15) does not present any visible trend in response to
the change of the Jflood objective. However, except for very
few cases, Pareto-approximate networks select heterogeneous
configurations comprising a mix of sigmoidal and gaussian
functions. In this mix, generally, sigmoidal functions constitute
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Fig. 2. Pareto dependent structural analysis of optimal solutions resulted
from 10 independent runs of NEMODPS, represented by different line colors.
The three metrics employed for structural analysis are Preference for Deep
Learning (top panel), Network Complexity (middle panel), and Network
Heterogeneity (bottom panel).

the greater portion (verified for NH < 0.5).
In summary, different runs of NEMODPS evolve indepen-

dently to reach a coherency in the architecture of Pareto-
approximate networks, indicating rationality in the network
generation. The optimization routine, moreover, responds to
changes in tradeoff by consistently adapting the solution
topology, confirming that multi-objectives problems should
be approached with a Pareto-dynamic selection of optimal
architectures.

C. Convergence analysis from a multi-objective perspective

The last experiment is aimed at verifying the convergence
of the solutions produced via NEMODPS across its inde-
pendent runs from a multi-objectives perspective. First and
second panel of Fig. 3 represent the minimum value of the
two objectives, Jflood and J irr, respectively, throughout the
search until the maximum generation is reached. These two
objectives present a remarkably different behavior: the best
value of Jflood = 6.3 is consistently found at an early stage
of the search by every algorithmic iteration, represented by
differently colored lines, indicating that policies that minimize
flood days (irrespective of their J irr value) are relatively trivial
to obtain. Conversely, the quest for an optimal irrigation deficit
performance appears much more complex, given the slower
progression towards low values of J irr. Notably, a marked dif-
ference in computational effort required by different objectives

poses an additional challenge to the use of SO policy search
routines, as it complicates the selection of the set of weights
employed in the objective aggregations. An example of this is
visible in Fig. 1, where an evenly spaced set of aggregation
weights for NEAT produces clusters of solutions scoring low
values of Jflood and gaps in the Pareto front. As opposed to
Jflood, the best J irr solution obtained at the end of the search
differs for every iteration, however, the final solutions place
within a range of 5.19% with respect to the lowest, indicating
a contained inter-seed variation even in regions of the Pareto
front that appear more difficult to approximate. Despite the
slower progression to the final optimal value of J irr, we
can consider the search converged, especially when examining
metrics for assessing the quality of the approximation of
the multi-dimensional Pareto front in Panels (c) and (d),
namely the hypervolume indicator HV [59], and the Inverted
Generational Distance (IGD) [60]. HV accounts for both
convergence and diversity of an approximate set of solutions
F capturing the behavior in intermediate regions of the front,
with respect to the best known approximation Pareto optimal
set F∗, constituted by the front resulted from the combination
of the 10 seeds approximation. The hypervolume measures the
volume of objective space Y dominated (�) by the considered
approximate set. IGD is defined as the average Euclidean
distance between each point in F∗ and the closest point in
F . While still evaluating the convergence of the Pareto front,
IGD is especially sensible to the presence of gaps in the Pareto
front. We seek to maximize the value of the HV indicator,
and minimize the value of IGD. For more details on their
formulation refer to [36], [44] or the Supporting Information
of this article.

Concerning the HV, its generational growth somewhat mir-
rors the search for the best irrigation solution, and by the end
of the search, the worst solution covers over 90.5% of F∗.
IGD decreases even faster, with values that stabilize around the
500th generation. Evidently, the NFE assigned to the evolution
appear more than sufficient to reach convergence, given that
the HV or IGD indicators do not significantly improve for any
seed in the second half of the search.

Additionally, we notice a contained intra-seed variability
remarking a satisfying convergence and a limited dependency
of NEMODPS solution on initial conditions. The maximum
intra-seed variability (i.e., difference in performance between
the best and the worst seed) is below 10% for all objectives
and metrics considered, resulting in 5.19% for J irr, 0% for
Jflood, 9.37% in terms of HV and 7.14% for the IGD metric.

D. Many-objective application

In this section, we explore the potential of NEMODPS on
a more challenging formulation of the Lake Como problem
where we increase the number of objectives to four, by
including the two additional objectives of navigation Jnav and
environmental preservation Jenv , yielding to a many-objective
problem.

NEMODPS performance is again benchmarked against DPS
with the 12 different prespecified policy architectures, namely
ANN and GP architectures, each comprising 1 to 6 nodes
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Fig. 3. Analysis of solution convergence with respect to multiple objectives. Each line represents the behavior of one of the 10 runs of NEMODPS. First
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The third panel represents the value of the Hypervolume indicator during the evolution.
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Fig. 4. Validation results for the many-objective formulation of the Lake Como problem. Each of the three panels corresponds to a different validation dataset,
and is composed of 4 subpanels relative to the 4 optimization objectives, namely, from left to right, Jflood, Jirr, Jnav , Jenv . The violin plot representation
allows to compare the distribution of the validation performance of the generated policies and few relevant statistics, such as 90th percentile, median, and
mean.

in the single hidden layer. NEAT is not included in this
benchmark experiment as generating a sufficiently character-
ized Pareto front for a many-objective problem with a SO
algorithm would be computationally prohibitive. Calibration
results are presented in Table I for the two DPS alternatives
(ANN and GP), and NEMODPS, in terms of the two metrics
of Hypervolume and IGD. Differently from the two-objectives
optimization, NEMODPS policies dominate ANN and GP
policies in the calibration experiment with respect to both
indicators, thanks to their architectural flexibility.

Efficient policies are then re-evaluated in a validation exper-
iment that employs the same three validation datasets used for
the 2-objectives optimization (Fig. 4), where efficient policies
are re-evaluated on the three validation datasets used in the 2-
objectives application of section V-A. Each validation panel is

TABLE I
MANY-OBJECTIVE OPTIMIZATION PERFORMANCE METRICS.

ANN GP NEMODPS

Hypervolume 0.952 0.903 0.989
IGD 0.05 0.073 0.03

composed 4 subpanels relative to the 4 optimization objectives,
namely, from left to right, Jflood, J irr, Jnav, Jenv . A violin
plot is chosen to represent the distribution of performance of
the re-evaluated policies. Compact distributions that lay in the
lower portion of the axis are preferable, as they indicate that
the policy search approach delivers a good and consistent per-
formance for that objective across different solution tradeoffs.
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On the contrary, expanded distributions with long tails indicate
high variability in the objective’s performance, and overall
low reliability of the policy search method whose solutions
may degrade significantly when tested on unseen conditions.
Across validation experiments and objectives, NEMODPS
consistently produces compact distributions concentrated in
the lower portion of the axis, where objectives values are more
desirable, indicating robustness against unseen conditions.
Traditional DPS policies instead show long tailed distributions
that extend in the upper region of the axis, with a more
marked behavior displayed by ANN policy architectures. This
confirms, on a many-objective setting, that DPS solutions
have the potential to degrade significantly in validation with
respect to one or more objective thereby producing high
conflict between sectors. On top of the visual inspection of
the distribution, this behaviour is quantifiable by comparing
the statistics highlighted in the violin plot, namely the 90th

percentile (black dot), median (white dot), and mean (solid
horizontal line). In risk neutral conditions (median and mean),
and especially in risk averse conditions (90th percentile),
NEMODPS consistently ensures lower objective costs.

VI. CONCLUSIONS

In state-of-the-art applications of Direct Policy Search, the
control policy is a priori defined as a fully-connected, single-
layer, homogeneous neural network, independently from the
problem characteristics or the objectives tradeoffs. This choice
is motivated by theoretical results that assert the universal
approximation capabilities of a wide range of network archi-
tectures. Many real-world applications, however, demonstrate
a key role of topology in determining a network approx-
imation skills and training requirements. Our results show
that traditional DPS with such predefined policy topology is
prone to overfitting in noisy environments, and does not offer
enough flexibility in multi- and many-objectives problems,
where different tradeoffs should be associated with different
network architectures. By embedding NeuroEvolutionary (NE)
techniques into the DPS framework, we extend the DPS
problem to search a hyperspace containing control policy
architectures and parameters. Yet, existing NE techniques,
most notably NEAT and NEAT-inspired alternatives, are tai-
lored to SO problems, and demonstrate a limited capacity to
produce a high-quality approximation of the Pareto front in
terms of solutions distribution and performance, while also
requiring a substantially higher computational effort when
compared to MO routines. This work contributes NEMODPS,
a novel policy search algorithm which features the structure
of the neuroevolutionary benchmark NEAT, several NEAT
improvements proposed in the literature, and an original
strategy to extend the routine to MO problems, exploring
a multidimensional objective space in a single run of the
algorithm. NEMODPS is a flexible framework that can support
the exploration of alternative future research directions. One
is to test its scalability to more complex control problem, for
instance comprising multiple control decisions. New architec-
tural and parametrical operators can be included in NEMODPS
to enhance its effectiveness in exploring the architectural-
parameteric hyperspace. Additional architectural operators can

include new activation functions like ReLu, linear, or step
functions, or the removal of existing nodes and connections.
New parametrical operators can be included to target the
investigation of a solution’s proximity, or, alternatively, of
unexplored regions of the parameter space (see, e.g., Reed et
al., 2013). Numerical results show significant consistency in
topological features of networks optimized across independent
runs of NEMODPS, suggesting that the generated control
policy architecture is rational and depends on the characteris-
tics in the fitness landscape. Moreover, a change in objective
tradeoff corresponds to a change in fitness landscape, and
the Pareto-approximate topologies adjust accordingly. Finally,
neuro-generated control policies demonstrate the ability to
handle noisy environments featuring remarkable reliability,
and generalization potential with respect to benchmark fixed-
structure DPS solutions when tested on a suite of diverse
validation experiments.
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