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ABSTRACT: Aiming to predict long-term performance of advanced cement-based materials and design more
durable structures, a reliable modelling of the autogenous healing of cementitious materials is crucial. A dis-
crete model for the regain in terms of water tightness, stiffness and strength induced by the autogenous and/or
“žstimulate’ž autogenous healing was recently proposed for ordinary plain concrete. The modelling proposal
stemmed from the coupling of two models, namely the Hygro-Thermo-Chemical (HTC) model, on one side,
and the Lattice Discrete Particle Model (LDPM), on the other side, resulting in the Multiphysics-Lattice Dis-
crete Particle Model (M-LDPM). Being this approach not customised only for ordinary concrete, but for the
whole broad category of cementitious materials, in this paper, its application to Fibre-Reinforced Cementitious
Composites is presented. To accurately simulate what has been experimentally observed so far, the mechanical
model is updated to also include the self-healing of the tunnel cracks at the fibre-matrix interfaces. Therefore,
the self-repairing process is modelled to develop on two independent stages: (a) matrix cracks healing, and
(b) fibre bridging action restoring. This research activity is part of the modelling tasks framed into the project
ReSHEALience, funded from the European Union’s Horizon 2020 Research and Innovation Programme.

1 INTRODUCTION

The unavoidable concrete cracking and the ensu-
ing degradation phenomena have encouraged many
researchers to increase the efforts in enhancing the
comprehension of such processes and the capability of
modelling the concrete long-term performance. In this
framework, the inherent healing capacity of cement
based materials has been gaining an increasing interest
by the concrete professional and scientific community.
As demonstrated by several authors since its discov-
ery (Snoeck & De Belie 2015), and mainly in the last
decades, the self-healing of concrete can lead to a
considerable recovery of physical and, in some cases,
mechanical properties of damaged concrete.

Through a painstaking literature survey, an unbal-
anced scientific production clearly stands out. Over the
years, an extensive research effort has been placed on
the experimental investigation of the self-healing phe-
nomenon, aiming to detect its peculiar features and
which techniques were worth being further explored
to turn it into a predictable and/or engineered process.
On the contrary, few models have been developed to
account for the healing-induced effects on both dura-
bility performance and mechanical behaviour. As a
consequence, in literature there is a limited number
of numerical studies on this phenomenon (Aliko-
Benítez et al. 2015; Barbero et al. 2005; Chen et al.
2021; Davies & Jefferson 2017; Di Luzio et al. 2018;
Hilloulin et al. 2014; Hilloulin et al. 2016; Mergheim

& Steinmann 2013; Oucif et al. 2018; Voyiadjis et al.
2011). The majority of them relies on continuum-
based approaches, leading to consider the aforemen-
tioned effects on the mechanical properties only as
a smeared contribution in terms of either stiffness
and/or strength regain in the cracked state. Likewise,
the impact of the crack self-repairing on durability
performance indicators, e.g. permeability, can be sim-
ulated only as an overall effect, missing in simulating
the local nature of the phenomena, e.g. where the water
permeability increases dramatically and restores after
healing.

The research activity presented in this paper aims to
formulate a discrete model for capturing the mechani-
cal recovery induced by an actual damage healing into
which the cracks sealing might eventually evolve.

Building more durable structures in order for con-
crete to result in a more sustainable material, develop-
ing sound models to predict the structural life span of
concrete structures, and accounting for durability as
a governing performance within the design process:
these are only three of the many concurrent causes that
have made the concrete durability worthwhile deserv-
ing an increasing interest by the scientific community.
These issues also represent the guidelines of the Hori-
zon 2020 project ReSHEALience, in which this work
is framed. The project aims to define the concepts of
Ultra High Durability Concrete (UHDC) and Dura-
bility Assessment-based Design (DAD). The UHDC
material concept encompasses advanced cementitious
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materials which fully exploit their own inherent capac-
ity of autonomously repairing the cracks. To the
purpose, supplementary cementitious materials, such
as slag and crystalline admixtures, are included into
the mixture. In the project ReSHEALience, the iden-
tification of a quantitative approach to predict long-
term performance of concrete structures, even when
exposed to extremely aggressive environments, was
performed through both laboratory experimental tests
and monitoring campaigns on pilot UHDC structures
exposed to real exposure conditions, together with the
development of numerical models at meso- and macro-
scale (Al-Obaidi et al. 2020, 2021; Lo Monte & Ferrara
2020, 2021).

2 RESEARCH BACKGROUND

The modelling proposal stems from the coupling
of two models, namely the Hygro-Thermo-Chemical
(HTC) model, on one side, and the Lattice Discrete
Particle Model (LDPM), on the other side (Di Luzio
& Cusatis 2009a, 2009b; Cusatis et al. 2011a, 2011b;
Pathirage et al. 2019). The result is the Multiphysics-
Lattice Discrete Particle Model (M-LDPM) (Abdel-
latef et al. 2015; Alnaggar et al. 2017; Cibelli et al.
2022; Yang et al. 2021).

2.1 Lattice Discrete Particle Model

In LDPM the geometrical configuration is generated
by a trial-and-error random procedure, in which the
aggregate particles, whose size distribution derives
from a Fuller-type curve, are assumed to have spheri-
cal shape and are randomly placed within the volume.
Then, zero-radius particles are located along the exter-
nal surfaces to facilitate the imposition of boundary
conditions. Based on the Delaunay tetrahedralisation
of the generated system of points, a three-dimensional
domain tessellation is carried out, and linear segments,
namely tetrahedra edges, are generated to connect all
particles centres. The outcome is a system of lattice-
connected cells interacting through triangular facets:
the mechanical interaction among particles is based
on four particle-subsystems (Figure 1a), in which the
spheres (nodes) are connected by struts (edges), hav-
ing cross section (triangular facets) resulting from the
volume tessellation (Figure 1b).

In LPDM, rigid body kinematics is employed to
describe the deformation of the lattice particle system,
and the displacement step [[uC ]] at the centroid of each
facet, Ck (Figure 1b), is used to define the strain mea-
sures which read εN = (nT [[uC ]])/l; εL= (lT [[uC ]])/l;
εM = (mT [[uC ]])/l, where n, l, m are the unit vectors
which identify a local reference system on each facet
in normal and shear directions, respectively.

Vectorial constitutive laws are defined at the cen-
troid of each projected facet to describe the meso-
scopic stress. In the elastic regime, normal and shear
stresses are proportional to the corresponding strains:

σN =EN εN ; σL=ET εL; σM =ET εM , where the elas-
tic moduli are EN =E0 and ET =αE0, in which E0 is
the effective normal modulus and α the shear-normal
coupling parameter. One of the unique feature of the
LDPM formulation consists of being able to automat-
ically capture the effects of the heterogeneity of the
concrete, such as splitting cracks and failure in com-
pression, which can not be achieved by employing the
classical theory of elasticity, e.g. see (Cusatis et al.
2011).

Figure 1. (a) four-particle subsystem; (b) triangular facets.

When in a facet under tension the strain reaches
the tensile elastic limit, the meso-scale crack open-
ing is calculated as wN = l (εN − σN /EN ); wL= l(εL −
σL/ET ); wM = l (εM − σM/ET ). Then, the crack open-
ing vector associated to each facet is wc=wN n+
wLl + wM m, where wN is the actual opening/closure of
the crack, along the direction orthogonal to the facet,
while wL and wM are two sliding components, catching
shear displacements at crack surfaces.

The non-linear behaviour is analysed considering
three non-linear meso-scale phenomena: (1) fracture
and cohesion, (2) compaction and pore collapse, and
(3) friction. For the latter two and further details about
the model calibration and validation, the reader can
refer to (Cusatis et al. 2011a, 2011b). Hereinafter, for
the sake of clarity, the constitutive law for the fractur-
ing behaviour is briefly recalled as the healing effect
is therein implemented.

In LDPM the fracture behaviour is mod-
elled by setting damage-type constitutive laws,
which stem from the definition of effective
strain, ε=

√
ε2

N + α
(
ε2

L + ε2
M

)
, and stress, σ =

√
σ 2

N +
(
σ 2

L + σ 2
M

)
/α. Then, for tensile loading (ε >

0), the effective mechanical parameters permit to
define the following relationships between strain and
stress in the local reference systems: σN = εN (σ/ε) ;
σL=α εL (σ/ε);σM =α εM (σ/ε).The effective stress
σ is incrementally elastic (σ̇ =E0 ε̇) and must satisfy
the inequality 0≤ σ ≤ σbt(ε, ω), in which σbt(ε,ω) is
a yield surface enforced by means of a vertical (at
constant strain) return algorithm.The strain-dependent
limit can be expressed as

σbt(ε,ω)= σ0(ω) exp
[
−H0 (ω)

〈εmax − ε0〉
σ0(ω)

]
(1)

where the brackets 〈·〉 are used in Macaulay sense:
〈x〉=max{x, 0}, and H0 is the post-peak softening
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modulus, whose formulation allows for a smooth tran-
sition from a softening behaviour under pure tensile
stress (H0(ω=π/2)=Ht) to perfectly plastic response
under pure shear (H0(0)= 0). In fact, the formulation
of H0 reads H0(ω)=Ht(2ω/π )nt , with nt softening
exponent.

In Eq. 1, ω is the parameter representing the degree
of interaction between shear and normal loading. It is
worth noting that εmax is a history-dependent variable,
making, on turn, the yield surface a history-dependent
exponential function. Therefore, the actual fracture
strength is assumed dependent on the actual level of
damage. Finally, in Eq. 1 the function σ0(ω) is the
strength limit for the effective stress and is formulated
as

σ0(ω)= σt

−sin(ω)+
√

sin2(ω)+ 4αcos2(ω)/r2
st

2αcos2(ω)/r2
st

(2)

in which rst = σs/σt is the ratio between the shear
strength, σs (cohesion), and the tensile strength, σt .

2.2 Lattice Discrete Particle Model for FRC
(LDPM-F)

The extension of LDPM to include fibre-reinforcing
mechanisms is obtained by inserting straight fibers,
in proportion to the volume fraction Vf , with random
positions and orientations, into the LDPM geomet-
rical configuration. The geometry of each individual
fiber is characterised by the diameter df and length Lf .
The fibre system is overlapped to the polyhedral cell
system, and each facet is paired with its intersecting
fibres.At the facet level, the matrix-fibre interaction is
described by the bridging forces carried by the fibres
crossing the facet, which are activated when the crack
opening initiates. In this configuration, equilibrium
considerations permit to reasonably assume a parallel
coupling between the fibres and the surrounding con-
crete matrix. Then, the total stresses on each LDPM
facet can be computed as σ = σc + (

∑
f ∈Ac

Pf )/Ac,
where Ac is the facet area, and Pf represents the
crack-bridging force for each fibre crossing the given
facet.

Since the mechanical interaction between the fibres
and the surrounding matrix occurs at a scale smaller
than the typical modelling scale of LDPM, the
micromechanics governing such interaction is not
explicitly simulated in the mesoscopic LDPM numeri-
cal framework. The micro-mechanical crack-bridging
mechanisms, featuring the bond between the single
fibre and the embedding matrix, are implemented into
the model within the formulation for computing the
bridging force Pf , briefly reported hereinafter as it was
published by (Schauffert & Cusatis 2012).

In addition to the above consideration, additional
hypothesis are postulated: (i) the contribution of fibres
to the equilibrium is negligible in case of either com-
pression stress on the facet or stress not exceeding
the elastic limit; (ii) the interaction between adjacent

fibres and the effect that adjacent mesoscale cracks
are both neglected; (iii) each fibre is assumed to
be straight, elastic, with negligible bending stiffness,
and non-circular cross sections are simulated through
an equivalent diameter, calculated as df = 2(Af /π )1/2

with Af fibre cross-sectional area.
As proposed by Li et al. (Lin et al. 1999), in LDPM-

F the slippage at full debonding vd is computed as vd =
(2τ0L2

e)/(Ef df )+ [(8GdL2
e)/(Ef df ]1/2, in which Le is

the embedment length, Ef the modulus of elasticity of
the fibre, τ0 the constant value of frictional stress for
the portion of the embedded fibre that has debonded,
and Gd the bond fracture energy. The parameters τ0
and Gd govern the debonding stage, modelled as a
tunnel-type cracking process (Yang et al. 2008).

During the debonding stage (v < vd ), the fibre
bridging force is given as (Lin et al. 1999)

P(v)=
[
π2Ef d3

f

2
(τ0v + Gd)

]1/2

(3)

After full debonding (v > vd ), the mechanism is
entirely frictional and the fibre load results from (Lin
et al. 1999)

P(v)=P0

(
1− v − vd

Le

)[
1+ β (v − vd)

df

]
(4)

where P0=πLedf τ0, whereas β is the coefficient in
charge of shaping the relationship to capture the high
variability of the frictional interface nature (Lin &
Li 1997). When the friction at the interface does not
depend on the slippage, β is set to zero. In case
of either slip hardening or slip softening friction, it
assumes positive (β > 0) or negative (β < 0) values,
respectively.

If the orientations of the embedded and free fibre
portions is different, at the point where the fibre exits
the matrix and changes orientation, the bearing stress
is partially supported by the underlying matrix. When
this localised stress field reaches a sufficient inten-
sity, spalling occurs, and the embedment length of the
fibre is consequently reduced by a length sf . Further-
more, when the fibre exits the tunnel crack, the latter
shortened because of the spalling, it wraps around the
intact matrix. This phenomenon is generally referred
to as snubbing effect, and it is modelled through the
frictional pulley idealisation (Li et al. 1990), which
complies with the fibre pull-out model adopted in the
LDPM-F model (Yang et al. 2008). The fibre load is
updated to account for spalling and snubbing phenom-
ena (see (Schauffert & Cusatis 2012)). The updated
value of the fibre load must comply with its rup-
ture strength, then the following relationship must

always hold: σf = (4Pf )/(πd2
f )≤ σu.f exp

(
−krupϕ

′
f

)
,

in which krup is a material parameter, and σu.f the ulti-
mate tensile strength of the fibre. In case of fibre stress
exceeding the corrected value of strength, Pf is set
to zero. The exponentional term reflects experimental
evidence showing lower rupture loads in single fibre
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pull-out tests for increasing values of ϕ′f (Kanda & Li
1998).

For a generic fibre, with embedment segment ori-
entation nf , subject to pull-out from both embedment
depths due to a crack opening w, and with a spalling
length sf on both sides, the crack-bridging force is
given by Pf =Pf n′f , with the crack-bridging seg-
ment computed as ||w′|| = 2sf + vs + vl and ||n′|| =
w′/||w′||, where ||w′|| is the vector length, and sf the
slippage reduction due to the matrix spalling. The
embedment segments have the relative slippage vs
and vl , respectively. The pullout resisting forces is

then Pf =P(vs) exp
(

ksnϕ
′
f

)
=P(vl) exp

(
ksnϕ

′
f

)
, and

on each side must be the same. From the last equal-
ity, the relative slippages vs and vl can be computed
by an interactive procedure in which the compatibil-
ity between the bridging segment and the slippages is
enforced.

Further details on the constitutive relations of fibres
and matrix-fibre interaction as well as on the cali-
bration of the governing parameters can be found in
(Schauffert & Cusatis 2012; Schauffert et al. 2012).

3 MESOSCALE HEALING MODEL

The modelling approach relies on the identification of
two different levels of damage: (i) matrix and (ii) fibre-
matrix interface cracks. The matrix cracks (Figure 2a)
are induced by the loads, either mechanical or environ-
mental, and are responsible of the fibres mechanical
activation: as long as no cracks intersect a fibre, the
latter does not play any role in the structural response.
The fibre-matrix interface cracks (Figure 2b) develop
during the interface debonding instead, and are here-
inafter also referred to as tunnel cracks between the
fibre and the surrounding embedding matrix.

Figure 2. Two levels in the damage modelling: (a) matrix
cracks at the mesoscale; (b) fibre-matrix interface cracks
at the microscale.

The self-healing model is in line with the LDPM
approach, dealing with matrix and tunnel cracks sep-
arately. The autogenous repairing of the former is
implemented within the constitutive fracture law at the
mesoscale, whereas the effect of healing on the fibres
response is taken into account within the calculation
of the bridging force carried by the steel reinforce-
ment. This approach stems from the idea for which the
recovery of matrix damage and tunnel cracks along
fibre-mortar interface affect the material mechanical
behaviour differently.

3.1 Healing characterization

The healing kinetic law formulated for plain cemen-
titious materials (Di Luzio et al. 2018; Cibelli et al.
2022) presents no limitations in being used for fibre-
reinforced composites as well. Following the concep-
tual differentiation between matrix and tunnel cracks,
it can be exploited for capturing the autogenous, and
eventually stimulated, healing of the matrix cracks. On
the other hand, in order to have two separate internal
variables feeding the mechanical model at two dif-
ferent levels, in the improved version of M-LDPM
a distinction is made between the normalised heal-
ing degree for matrix cracks and that for fibre-matrix
interface cracks, λm

sh and λ
f
sh respectively. In the fol-

lowing the formulation emphasising such splitting is
reported, with no theoretical differences with respect
to the original one (Di Luzio et al. 2018).

The kinetic laws for matrix (superscript m) and
tunnel (superscript f ) cracks read

λ̇m
sh= Ãm

sh

(
1− λm

sh

)
(5a)

λ̇
f
sh= Ãf

sh

(
1− λ

f
sh

)
(5b)

in which Ãm
sh and Ãf

sh, inversely proportional to the
reaction characteristic times, are calculated as

Ãm
sh= Ãm

sh0 · fh(h) · f m
w (wc) · e[−Em

sh/R(1/T−1/Tref )] (6a)

Ãf
sh= Ãf

sh0 · fh(h) · f f
w (wc) · e

[
−Ef

sh/R(1/T−1/Tref )
]

(6b)

where Ãm
sh.0 and Ãf

sh.0, namely the inverse of the
reaction characteristic times in standard conditions
(RH=100%, T =Tref , wc= 0), value

Ãm
sh0= Ãm

sh1

(
1− αsh0

c

)
c+ Ãm

sh2 · ad (7a)

Ãf
sh0= Ãf

sh1

(
1− αsh0

c

)
c+ Ãf

sh2 · ad (7b)

where c and ad are the cement and healing-promoting
admixture content, respectively. The material param-
eters Em

sh, Ef
sh, Ãm

sh1, Ãf
sh1, Ãm

sh2, and Ãf
sh2 are calibrated

against experimental data, allowing to catch the pecu-
liarities of phenomena occurring at two different
scales. Furthermore, the double degree of freedom
permits to properly simulate the effect of crack open-
ing, modelled through the coefficient fw(wc), on the
process evolution. The coefficient fh(h) accounts for
relative humidity and simulates the relevant role played
by the moisture supply, making the process proceed
or stop whether the healing water-driven reactions are
fed or not. In the Eqs. the relative humidity, h, and
temperature, T , fields are provided by the HTC model.

3.2 Healing implementation in LDPM and
LDPM-F

The healing-induced effect on the mechanical response
of the cementitious materials involves recovery of
post-cracking residual fracture strength. Depending on
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which cracks are healed, the aforementioned recovery
is the result of different physical phenomena. For this
reason, the implementation in the mechanical models
follows two separate dedicated approaches.

3.2.1 Matrix cracks
For matrix cracks, the healing effect is modelled by
enforcing a homothetic expansion of the boundary
limit curve σbt(ε,ω) (Eq. 1), as more pronounced as
more the repairing process has developed.

What has been experimentally observed so far is that
plain concrete specimens, once loaded, fractured and
unloaded, might show a recovery in strength and stiff-
ness if re-loaded after a long enough curing period. It
is due to the concurring delayed hydration and carbon-
ation self-healing mechanisms. This partially restores
the material continuity, having straightforward con-
sequences on the concrete bulk permeability and its
proneness to the attacks of environmental aggres-
sive agents. The effects on the mechanical response,
instead, depend on the chemical bounds between the
filling products and the crack walls; then, it is not
granted that the recovery in water tightness and the
regain in strength and stiffness proceed to the same
extent. In fact, the crack sealing might not result in an
actual concrete healing.

With reference to plain concrete specimens, pre-
cracked by means of three-point bending tests up to
damage threshold beyond the material linear limit (Eq.
2), the healing effect on fracture behaviour might be
measured by carrying out the same fracture tests after
varying curing periods. The recorded load-CMOD
curve may show reloading branches (1) stiffer than
the unloading ones, and (2) crossing the un-healed
material boundary curve (Figure 3).

Figure 3. An example of the experimental curves gained in a
laboratory campaign to assess the mechanical regain induced
by the autogenous healing (Ferrara et al. 2014).

In this work, the modelling strategy adopted aims
at preserving the inherent mechanical meaning of the
impact due to the healing on the fracture strength, and
relies on the homothetic expansion of the boundary
curve (Figure 4). The expansion extent is assumed to
be proportional to the healing degree λm

sh, thus cap-
turing the recovery in strength, without varying the

Figure 4. matrix cracks - Effect of healing on the boundary
curve for the fracturing behaviour.

crack width within the numerical framework. In other
words, the boundary expansion is conceived to catch
the behaviour described above: the material must be
allowed to overcome the strength value reached at
the beginning of the unloading branch, for the pre-
viously reached value of crack width, if any healing
has occurred.

In LDPM, the healing implementation affects the
strength limit calculation (Eq. 2), thus, on turn, the
limit curve (Eq. 1). The updated version of the heal-
ing dependent-constitutive law relevant to the fracture
behaviour reads

σ0(ω, λm
sh)= σ0(ω)

(
1+ csh · λm

sh

)
(8a)

σbt(ε,ω, λm
sh)= σ0(ω, λm

sh) e

[
−H0 (ω) 〈εmax−ε0〉

σ0(ω,λm
sh )

]

(8b)

In Eq. 8a, csh is an empirical coefficient governing
the impact of crack closure on mechanical strength.
It is defined as healing mechanical impact coefficient.
The parameter csh depends on several aspects, e.g. cur-
ing conditions and mixture composition, therefore, it
has to be calibrated experimentally.

Looking at the updated equation of the boundary
curve (Eq. 8b), it is important to notice that the healing
plays an active role as internal variable in both shaping
the softening branch and setting the stress limit for the
earlier stage of the constitutive law, namely when the
maximum strain does not exceed the elastic limit. It is
worth emphasising that, though the modelling strategy
yields a recovery of both linear and post-peak behav-
ior,the former is never imposed at the mesoscale, being
only the limit curve expanded exclusively on those
facets which experience cracking and healing.

3.2.2 Fibre-matrix interface cracks
With single-fibre pull-out tests, stopped after the first
load drop and resumed up to rupture after curing
periods featuring different duration and exposure con-
ditions, it has been observed that the healing of the
interface cracks does affect the pull-out strength.
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Whenever the healing process happens, it yields
delayed hydration products and CaCO3 crystals fulfill-
ing the tunnel between the fibre and the surrounding
mortar ((Qiu et al. 2019)). This results in a recovery
of the interface frictional bond. The phenomenon is
implemented in LDPM-F by updating the value of the
fibre bridging force P(v) with a coefficient propor-
tional to λf

sh. The updated constitutive law for the fibre
load reads

P
(

v, λf
sh

)
=

(
1+ γsh · λf

sh

)
P(v)≤α · P0 (9)

Referring to a single-fibre pull-out test, in Fig-
ure 5 the effect of the tunnel crack self-healing on
the mechanical response is qualitatively shown. After
the loading and unloading stages (branches L and U),
the specimen is exposed to given environmental con-
ditions for a time span long enough to permit the
self-healing process to develop. The cured specimen
is then reloaded (branch R) up to rupture. Due to the
recovered frictional bond, the specimen might experi-
ence a recovery in stiffness and strength, to an extent
proportional to the degree of completion of the heal-
ing process. By means of the device in Eq. 9 LDPM-F
is updated to be capable of capturing this experimen-
tal evidence. In Figure 5 the updated constitutive law
is plotted with reference to increasing self-healing
degrees, in the hypothesis of γsh= 1.00.

Figure 5. fibre-matrix interface cracks - Effect of healing
on the fibre load vs. slippage law.

The coefficientγsh has a physical meaning similar to
csh. It governs the impact that the healing of the tunnel
cracks has on the fibres contribution to the mechanical
equilibrium. With γsh= 0 it is possible to capture the
crack sealing, whereas if γsh≥ 0 the load carried by the
fibre is enhanced thanks to the increased friction along
the crack walls. The latter has an upper bound (α · P0)
in which the bridging force at full debonding P0 is
either amplified or reduced by the coefficient α. Both
γsh and α are material parameters to calibrate against
experimental data. Depending on the composition of
the cementitious composites, the technique adopted
to engineer the process, the fibres nature, the curing

conditions, and the loading regimes the healing might
allow to recover either partially or entirely the fibre
load bearing capacity. The parameter α sets the max-
imum achievable level of recovery. Once calibrated
experimentally, γsh must comply with the condition for
which, in case of full fulfilment of the tunnel crack:

if λ
f
sh= 1.00 =⇒ γsh≤ α · P0

P(v)
− 1 (10)

4 NUMERICAL SIMULATIONS

4.1 Healing of matrix cracks

The concrete self-healing is expected to affect the
meso-scale mechanical response of the material, in
tension as much as in shear. The model has been
implemented to catch this phenomenon, with the pos-
sibility of calibrating the entity of the induced strength
recovery by means of the parameter csh. In order to
investigate the model capability of capturing the self-
repairing effect on tensile and shear behaviours, the
numerical simulations of how two ordinary plain con-
crete (OPC) specimens behave after being damaged in
tension and brought to collapse, after curing, either in
pure tension or shear have been executed.

Table 1. Mix composition of the reference concrete
(dosages in kg/m3).

constituent content

cement 300
water 190
aggregates 5.5-16 mm 1950

The material adopted has been an ordinary plain
concrete whose mix composition is presented in
Table 1.

Concerning the geometry, the collapse in tension
has been investigated for a dogbone specimen, as usual
for pure tensile tests, having the dimensions reported
in Figure 6a and thickness of 20 mm. These dimen-
sions have been chosen in order to have the narrowest
part of the sample larger than the maximum aggregate
size of the adopted material, and, at the same time, as
smaller as possible to localise there the damage. The
other geometrical characteristics have been set accord-
ingly, with the aim of having a sample weak at the
midspan, and the parts 70 mm wide covering a portion
of the total length as smaller as possible. For the shear
failure, instead, a bi-notched prismatic specimen has
been used (Figure 6b), having dimensions 100x70x20
mm3, and the notches 2 mm wide and 25 mm deep.
In this case, it has been necessary to avoid a slender
sample, as the dog-bone specimen presented above is.
In fact, a stocky element presents a larger proneness
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Figure 6. Geometrical dimensions of the simulated specimens in millimetres.

Figure 7. LDPM modelled specimens for assessing the influence of healing implementation on (a) tension and (b) shear
behaviours.

to shear failure. However, likewise for the investiga-
tion in pure tension, it has been necessary to shape the
sample in order to have all the mechanical energy chan-
nelled into the growth of the fracture at the mid-span,
with no dispersion due to multi-cracking scenarios. For
this reason, it has been used a bi-notched shape, with
narrow and deep notches. It is worth mentioning that

also in this case the narrowest sample cross-section
has been set in order to have the smallest dimension
larger than the maximum aggregate size. The other
dimensions have been derived to result in a stocky
sample.

Once the samples geometry has been generated,
both specimens have been damaged by means of
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an increasing tensile loading, up showing a single
crack roughly 350µm wide (Figures 7a,b).Afterwards,
the dog-bone sample has been brought to failure in
tension, whereas the bi-notched one in shear. This
second stage has been repeated after having imposed
increasing value of the normalised healing degree, λm

sh,
ranging from 0.00 to 1.00, and in the hypothesis of
having unit healing mechanical impact coefficient, csh.
Then, in Figures 7c,d, the model ability of catching the
healing-induced recovery in tensile and shear strength
is shown plotting the (e) tensile load vs. displacement
and (f) shear load vs. slippage curves.

4.2 Healing of tunnel cracks

The dogbone specimen in Figure 6a has been used also
for testing the implementation of the tunnel cracks
healing, by generating a FRC-based mesh with the
same geometry. The concrete composition is reported
in Table 2, where it is possible to see that the aggregate
size has been reduced in order to have fibres length
complying with specimen dimensions and aggregate
size: Lf ≥ 3Dmax.

Table 2. Mix composition of the reference fibre-reinforced
concrete (dosages in kg/m3).

constituent content

cement 600
water 200
aggregates 3-6 mm 1518
steel fibres df = 0.22 mm, Lf = 20 mm 0.50% by volume

As for matrix cracks, the purpose of investigat-
ing if the healing implementation affects the fibre
load-slippage constitutive law as shown in Figure 5
is achieved through a simple set of numerical simu-
lations. The dogbone specimens has been loaded in
pure axial tension up to feature a single prominent
crack approximately 60µm wide. Then, it has been
completely unloaded. After having reached the zero-
load condition, the sample has been reloaded up to
failure. The reloading stage has been performed by
assuming for the tunnel cracks self-healing degree,
λ

f
sh, increasing fixed values between 0.00 and 1.00,

namely 0.00, 0.25, 0.50, 0.75, and 1.00.The numerical
simulations have been carried out in two different sce-
narios: with no matrix cracks healing, λm

sh= 0.00, and
in the hypothesis of matrix and tunnel cracks healing
evolving identically, λm

sh= λ
f
sh.

Firstly, it is important to assess how the model per-
forms at the single fibre-facet intersection, to see if the
P-v curve actually evolves as presented in Figure 5.The
comparison between the fibre load vs. slippage curves
on one of the most damaged LDPM facets obtained
with λ

f
sh equals to 0.00 and 1.00 are shown in Figure

8b. The effect of healing acts as expected, though the

re-loading in presence of healing stops before reach-
ing the ultimate slippage (Figure 8b). In fact, as stands
out from Figures 8c,d, in the numerical simulations
the specimen experiences a sudden drop in strength,
disregarding whether the healing of the matrix cracks
is considered or not.

5 CLOSING REMARKS

The healing implementation for both matrix and tun-
nel cracks show promising capability in capturing the
experimental evidence.

The healing of the matrix cracks affects the
macroscale response of the two specimens as expected,
in tension as much as in shear. With an increasing
healing degree, in the hypothesis of csh= 1.00, the
material experiences increasing stiffness during the re-
loading and higher strength. It is worth underlining that
the full recovery occurs at the mesoscale, shaping the
macroscale behaviour accordingly. The peak load after
re-loading, even in case of csh · λm

sh= 1.00 on the dam-
aged facets, is not equals to the peak load of the virgin
material.This is in line with laboratory results showing
that the hydration outcomes at the crack faces, the main
contributors to autogenous cracks healing, have gen-
erally lower performance compared to those in bulk
cement paste.

With λm
sh= 0.00 and increasing λf

sh (γsh= 1.00), the
model returns a recovery in stiffness and strength dur-
ing the re-loading, even though the numerical results
do not show a stable re-loading branch when the slip-
page overcomes the value of the pre-cracking stage.
This is likely due to the limited energy redistribution
allowed by the specimen geometry, imposed by the
necessity of having localised damage. This deduction
is justified also by the fibre load vs. slippage curve on
the most damaged facets. It is evident that the specimen
failure anticipates the full depletion of the load-bearing
capacity of the system fibre-matrix.

In case of λm
sh= λ

f
sh (γsh= 1.00), the recovery in

stiffness and strength is more pronounced as expected.
Also in this condition, the limited energy redistribution
due to specimen geometry does not permit to exploit
the full material ductility.

The model presented seems to have the potential
for capturing phenomenological trends and mechan-
ics standing out from the experimental investigations
available in the literature. However, the calibration and
validation against laboratory results, currently matter
of study, will help in further improving the proposed
approach.
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infrastructures through enHancEd-durAbiLity high-
performance cement-based materials, whose funding
the first, fourth and last author gratefully acknowl-
edge. This project has received funding from the
European Union Horizon 2020 research and innova-
tion programme under grant agreement No 760824.
The information and views set out in this publication
do not necessarily reflect the official opinion of the
European Commission. Neither the European Union
institutions and bodies nor any person acting on their
behalf, may be held responsible for the use which may
be made of the information contained therein. The
numerical analyses have been performed by means of
MARS, an explicit dynamic code distributed by ES3
Inc. (Engineering and Software System Solutions),
which is gratefully acknowledged.

REFERENCES

Abdellatef, M., M. Alnaggar, G. Boumakis, G. Cusatis, G. Di
Luzio, & R. Wendner (2015, September 21–23). Lattice
discrete particle modeling for coupled concrete creep and

shrinkage using the solidification microprestress theory.
In C. Hellmich, B. Pichler, and J. Kollegger (Eds.), 10th
International Conference on Mechanics and Physics of
Creep, Shrinkage, and Durability of Concrete and Con-
crete Structures - CONCREEP-10, Vienna, Austria, pp.
184–193.

Al-Obaidi, S., P. Bamonte, F. Animato, F. Lo Monte, I. Maz-
zantini, M. Luchini, S. Scalari, & L. Ferrara (2021).
Innovative design concept of cooling water tanks/basins
in geothermal power plants using ultra-high-performance
fiber-reinforced concrete with enhanced durability. Sus-
tainability 13(17).

Al-Obaidi, S., P. Bamonte, M. Luchini, I. Mazzantini, &
L. Ferrara (2020). Durability-based design of structures
made with ultra-high-performance/ultra-high-durability
concrete in extremely aggressive scenarios:Application to
a geothermal water basin case study. Infrastructures 5(11).

Aliko-Benítez, A., M. Doblaré, & J. Sanz-Herrera (2015).
Chemical-diffusive modeling of the self-healing behav-
ior in concrete. International Journal of Solids and
Structures 69-70, 392–402.

Alnaggar, M., G. Di Luzio, & G. Cusatis (2017). Mod-
eling time-dependent behavior of concrete affected by
alkali silica reaction in variable environmental conditions.
Materials 10(5).

94



Barbero, E. J., F. Greco, & P. Lonetti (2005). Contin-
uum damage-healing mechanics with application to self-
healing composites. International Journal of Damage
Mechanics 14(1), 51–81.

Chen, Q., X. Liu, H. Zhu, J. W. Ju, X. Yongjian, Z. Jiang,
& Z. Yan (2021). Continuum damage-healing framework
for the hydration induced self-healing of the cementitious
composite. International Journal of Damage Mechan-
ics 30(5), 681–699.

Cibelli, A., M. Pathirage, L. Ferrara, G. Cusatis, & G. Di
Luzio (2022).A discrete numerical model for the effects of
crack healing on the behaviour of ordinary plain concrete:
Implementation, calibration, and validation. Engineering
Fracture Mechanics in press.

Cusatis, G., A. Mencarelli, D. Pelessone, & J. Baylot (2011).
Lattice discrete particle model (LDPM) for failure behav-
ior of concrete. II: Calibration and validation. Cement and
Concrete Composites 33(9), 891–905.

Cusatis, G., D. Pelessone, &A. Mencarelli (2011). Lattice dis-
crete particle model (LDPM) for failure behavior of con-
crete. I: Theory. Cement and Concrete Composites 33(9),
881–890.

Davies, R. & A. Jefferson (2017). Micromechanical mod-
elling of self-healing cementitious materials. Interna-
tional Journal of Solids and Structures 113-114, 180–191.

Di Luzio, G. & G. Cusatis (2009a). Hygro-thermo-chemical
modeling of high-performance concrete. II: Numerical
implementation, calibration, and validation. Cement and
Concrete Composites 31(5), 309–324.

Di Luzio, G. & G. Cusatis (2009b). Hygro-thermo-chemical
modeling of high performance concrete. II: Theory.
Cement and Concrete Composites 31(5), 301–308.

Di Luzio, G., L. Ferrara, &V. Krelani (2018). Numerical mod-
eling of mechanical regain due to self-healing in cement
based composites. Cement and Concrete Composites 86,
190–205.

Ferrara, L., V. Krelani, & M. Carsana (2014). A “fracture
testing” based approach to assess crack healing of concrete
with and without crystalline admixtures. Construction and
Building Materials 68, 535–551.

Hilloulin, B., F. Grondin, M.Matallah, & A. Loukili (2014).
Modelling of autogenous healing in ultra high perfor-
mance concrete. Cement and Concrete Research 61-62,
64–70.

Hilloulin, B., D. Hilloulin, F. Grondin, A. Loukili, & N. De
Belie (2016). Mechanical regains due to self-healing
in cementitious materials: Experimental measurements
and micro-mechanical model. Cement and Concrete
Research 80, 21–32.

Kanda, T. & V. C. Li (1998). Interface property and appar-
ent strength of high-strength hydrophilic fiber in cement
matrix. Journal of Materials in Civil Engineering 10(1),
5–13.

Li, V.,Y. Wang, & S. Backer (1990). Effect of inclining angle,
bundling and surface treatment on synthetic fibre pull-out
from a cement matrix. Composites 21(2), 132–140.

Lin, Z., T. Kanda, & V. C. Li (1999). On interface prop-
erty characterization and performance of fiber reinforced
cementitious composites. Journal of Concrete Science and
Engineering, RILEM 1, 173–184.

Lin, Z. & V. C. Li (1997). Crack bridging in fiber reinforced
cementitious composites with slip-hardening interfaces.
Journal of the Mechanics and Physics of Solids 45(5),
763–787.

Lo Monte, F. & L. Ferrara (2020). Tensile behaviour identifi-
cation in ultra-high performance fibre reinforced cementi-
tious composites: indirect tension tests and back analysis
of flexural test results. Materials and Structures 53(6),
145.

Lo Monte, F. & L. Ferrara (2021). Self-healing characteri-
zation of uhpfrcc with crystalline admixture: Experimen-
tal assessment via multi-test/multi-parameter approach.
Construction and Building Materials 283, 122579.

Mergheim, J. & P. Steinmann (2013). Phenomenological
modelling of self-healing polymers based on integrated
healing agents. Computational Mechanics 52(3), 681–
692.

Oucif, C., G. Z. Voyiadjis, & T. Rabczuk (2018). Modeling
of damage-healing and nonlinear self-healing concrete
behavior: Application to coupled and uncoupled self-
healing mechanisms. Theoretical and Applied Fracture
Mechanics 96, 216–230.

Pathirage, M., D. Bentz, G. Di Luzio, E. Masoero, &
G. Cusatis (2019). The onix model: a parameter-free mul-
tiscale framework for the prediction of self-desiccation in
concrete. Cement and Concrete Composites 103, 36–48.

Qiu, J., S. He, Q. Wang, H. Su, & E.Yang (2019). Autogenous
healing of fiber/matrix interface and its enhancement.
Proc. of the 10st Intern. Conf. on Fracture Mechanics
of Concrete and Concrete Structures (FraMCoS-X), G.
Pijaudier-Cabot, P. Grassl and C. La Borderie Eds. 24-26
June, Bayonne, France.

Schauffert, E.A. & G. Cusatis (2012). Lattice discrete particle
model for fiber-reinforced concrete. i: Theory. Journal of
Engineering Mechanics 138(7), 826–833.

Schauffert, E. A., G. Cusatis, D. Pelessone, J. L. O’Daniel,
& J. T. Baylot (2012). Lattice discrete particle model for
fiber-reinforced concrete. ii: Tensile fracture and multi-
axial loading behavior. Journal of Engineering Mechan-
ics 138(7), 834–841.

Snoeck, D. & N. De Belie (2015). From straw in bricks to
modern use of microfibers in cementitious composites for
improved autogenous healing – a review. Construction and
Building Materials 95, 774–787.

Voyiadjis, G. Z., A. Shojaei, & G. Li (2011). A thermody-
namic consistent damage and healing model for self heal-
ing materials. International Journal of Plasticity 27(7),
1025–1044.

Yang, E.-H., S. Wang, Y. Yang, & V. C. Li (2008). Fiber-
bridging constitutive law of engineered cementitious com-
posites. Journal of Advanced Concrete Technology 6(1),
181–193.

Yang, L., M. Pathirage, H. Su, M. Alnaggar, G. Di Luzio,
& G. Cusatis (2021). Computational modeling of tem-
perature and relative humidity effects on concrete expan-
sion due to alkali–silica reaction. Cement and Concrete
Composites 124, 104237.

95


