
Citation: Amieva, J.F.; Oxoli, D.;

Brovelli, M.A. Machine and Deep

Learning Regression of Chlorophyll-a

Concentrations in Lakes Using

PRISMA Satellite Hyperspectral

Imagery. Remote Sens. 2023, 15, 5385.

https://doi.org/10.3390/rs15225385

Academic Editors: Miro Govedarica,

Flor Alvarez-Taboada and Gordana

Jakovljević
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Abstract: The estimation of Chlorophyll-a concentration is crucial for monitoring freshwater ecosys-

tem health, particularly in lakes, as it is closely linked to eutrophication processes. Satellite imagery

enables synoptic and frequent evaluations of Chlorophyll-a in water bodies, providing essential

insights into spatiotemporal eutrophication dynamics. Frontier applications in water remote sens-

ing support the utilization of machine and deep learning models applied to hyperspectral satellite

imagery. This paper presents a comparative analysis of conventional machine and deep learning

models—namely, Random Forest Regressor, Support Vector Regressor, Long Short-Term Memory,

and Gated Recurrent Unit networks—for estimating Chlorophyll-a concentrations. The analysis is

based on data from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral

mission, complemented by low-resolution Chlorophyll-a concentration maps. The analysis focuses on

three sub-alpine lakes, spanning Northern Italy and Switzerland as testing areas. Through a series of

modelling experiments, best-performing model configurations are pinpointed for both Chlorophyll-a

concentration estimations and the improvement of spatial resolution in predictions. Support Vector

Regressor demonstrated a superior performance in Chlorophyll-a concentration estimations, while

Random Forest Regressor emerged as the most effective solution for refining the spatial resolution

of predictions.

Keywords: machine learning; deep learning; hyperspectral imagery; PRISMA satellite; Chlorophyll-a;

water quality; lakes eutrophication

1. Introduction

Eutrophication is predominantly an anthropogenic process characterized by an exces-
sive accumulation of nutrients, primarily nitrogen and phosphorus, in surface freshwater
ecosystems such as lakes. This nutrient excess promotes the rapid growth of algae and
aquatic plants which can increase both water turbidity and, as algae die and decompose,
water oxygen depletion, leading to negative impacts on aquatic life and lake ecosystems [1].
Human disturbances to the water cycle, such as agricultural runoff, urban development,
and wastewater discharge, mostly contribute to eutrophication [2]. Therefore, controlling
and mitigating lake eutrophication is essential to protect both freshwater ecosystems and
human well-being by maintaining the ecological and economic value of lakes [3]. The need
to preserve freshwater ecosystems is further enforced by their direct connection with the
United Nations Sustainable Development Goal 6 (SDG 6: Ensure availability and sustain-
able management of water and sanitation for all) [4]. Accordingly, effective control and
mitigation actions towards freshwater ecosystem protection are imperative and require
both space- and time-resolved monitoring and quantification of eutrophication levels in
surface water bodies [5].

A significant indicator of eutrophication is the concentration of Chlorophyll in water,
which is a major component of algae pigments and cyanobacteria and allows for the esti-
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mation of algal biomass in water bodies [6]. Specifically, Chlorophyll-a (Chl-a) is mostly
used as a proxy for total algal biomass [7]. Chl-a concentration is relatively easy to measure
using various techniques, including imaging spectroscopy [8], and both in-situ and remote
sensing methods are often applied in the practice [9]. In-situ monitoring generally suffers
from limitations in terms of space–time coverage of measurements [10]. Conversely, re-
mote sensing methods, such as satellite multispectral and hyperspectral imagery, allow for
the synoptic assessment of Chl-a concentration over the whole water body’s surface and
provide repeated measurements over time, which are critical to capturing eutrophication
space–time dynamics [11]. Imaging spectroscopy exploits characteristic Chl-a sunlight
absorption and reflection patterns at specific wavelengths including green, blue, red, and
near-infrared bands [12] to determine its concentration in water. Airborne and spaceborne
imagery has been employed since the 1980s for monitoring Chl-a concentration, proving
to be more successful in ocean and seawater applications rather than inland waters due
mainly to the limited spatial and spectral resolution of data available at that time [10].
Moreover, the optical complexity of inland waters, primarily caused by a high presence of
suspended particles, reduces the reliability of both atmospheric corrections and estimation
models initially designed for land and ocean applications [12]. Nonetheless, the detailed
and frequent retrieval of inland water biochemical parameters, including Chl-a, has become
possible thanks to the latest generation of medium to high spatial resolution multispec-
tral spaceborne sensors, such as those onboard Landsat-8/9, Sentinel-2, and Sentinel-3
satellites [13].

Frontier applications of inland water quality remote monitoring involve hyperspectral
satellite imagery, on which bio-optical algorithms demonstrated improved performances
compared with multispectral imagery [14,15]. These applications are also favoured by new
advancements in global hyperspectral remote sensing, proven by the recent or upcoming
launches of hyperspectral satellites [16]. An early example of the above is the Hyperion
imager, launched by the United States (US) National Aeronautics and Space Administration
(NASA) in 2000 and operational until 2017 [17]. Relevant examples of the most recent mis-
sions that provide publicly available imagery are as follows: the German Aerospace Center
Earth Sensing Imaging Spectrometer (DESIS) [18] and the hyperspectral imager aboard the
Environmental Mapping and Analysis Program (EnMAP) satellite mission [19], the Chinese
Advanced Hyperspectral Imager (AHSI) aboard the GaoFeng-5 satellite [20], followed by
the launch of the PRecursore IperSpettrale della Missione Applicative (PRISMA) sensor by
the Italian Space Agency (ASI) [21], and HyperScout instruments launched on nanosatel-
lites by the European Space Agency (ESA) [22]. These imaging systems offer data cubes
where each pixel is composed of several spectral bands enabling space, time and spectral
resolved detection of water biochemical constituents [23].

As the resolution and coverage of satellite hyperspectral images continue to improve,
cutting-edge data technologies, particularly the implementation of machine and deep learn-
ing algorithms [24], are playing a pivotal role in advancing the diffusion and enhancing
the capabilities of Chl-a estimation models. Alongside traditional spectral indices and
physics-based models [25], machine and deep learning approaches have been frequently
exploited in the literature within hyperspectral imaging for Chl-a and other biochemical
constituents estimation in water bodies [26]. Recent and pertinent examples are as follows.
In [27], Partial Least Squares (PLS) is utilized to determine Chl-a and Total Suspended
Matter (TSM). Ref. [28] models in-situ measurements using linear models and Support
Vector Machines (SVM) to predict Chl-a concentrations in Lake Taihu (China). Ref. [29]
estimates water quality parameters, including Chl-a, for the Elbe River using ten different
machine-learning regression models. Ref. [30] evaluates Random Forest (RF), SVM, and Ar-
tificial Neural Networks (ANN) for predicting Chl-a concentrations in various inland water
bodies, also exploring the inclusion of spectral derivatives as input data. Ref. [31] devel-
oped a PLS-ANN model for Chl-a prediction in Lake Erie. Additionally, Ref. [32] utilizes
simulated hyperspectral satellite data to predict Chl-a concentrations in lakes, employing
an array of models including RF, SVM, Multivariate Adaptive Regression Spline (MARS),
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and CNN. Ref. [33] generates synthetic EnMAP hyperspectral imagery using EnMAP
end-to-end simulator software (EeteS) [34] for Chl-a prediction in Czech Republic water
reservoirs using Principal Component Regression, PLS Regression, and RF models. Fi-
nally, Refs. [35,36] utilize hyperspectral data from the Hyperspectral Imager for the Coastal
Ocean (HICO) [37] and the PRISMA satellite, respectively, to predict Chl-a concentrations
using Mixture Density Network (MDN) models.

Despite the availability of machine and deep learning algorithms, there are persistent
challenges in implementing them for operational monitoring tasks, often due to a lack of
the space–time resolved reference data necessary to train and validate such models [25,38].
With this in mind, the present study aims to employ a variety of machine and deep
learning regression models and subsequently conduct a comparative assessment across
diverse experimental setups, with the goal of predicting Chl-a concentration maps from
medium-resolution hyperspectral satellite imagery through the training and evaluation
of these models with reference data characterized by lower spatial resolution, heightened
acquisition frequency up to 2 days, and a wide swath width. The objective of the analysis is
twofold. Firstly, it aims to verify that the use of the rich spectral information of hyperspectral
imagery, coupled with machine and deep learning models, is suitable for reconstructing
Chl-a concentration maps using pre-existing and widely accessible reference data. Secondly,
it aims to assess the potential for enhancing the spatial resolution of pre-existing Chl-a
concentration maps by aligning it with the hyperspectral imagery employed as the regressor
in model implementation.

The selected study area includes three sub-alpine lakes between Northern Italy and
Switzerland, specifically Lake Como, Lake Maggiore, and Lake Lugano (see Figure 1).
These lakes were chosen because they align with the selection made by the “Informative
System for the Integrated Monitoring of Insubric Lakes and their Ecosystems” (SIMILE)
project, within which this research is conducted. The SIMILE project is funded by the Inter-
reg program of the European Union, which primarily focuses on enhancing coordinated
management and stakeholder involvement in monitoring the water quality of sub-alpine
lakes between Northern Italy and Switzerland [39,40]. It exploits a combination of in-situ
measurements and remote sensing techniques to fulfil its objectives. Within the realm of
satellite remote sensing, the project computes three key indicators for assessing lake water
quality: Lake Water Surface Temperature derived from Landsat 8 imagery, Total Suspended
Matter, and Chl-a concentrations [41] derived from the Sentinel-3 A/B Ocean and Land
Colour Instrument (OLCI) imagery at 300 m resolution, which provides a revisit time of
less than 2 days. Each of these indicators is monitored by generating time-series of raster
maps [42].

In this study, hyperspectral images obtained from the PRISMA mission are used.
PRISMA imagery features 239 bands spanning the Visible and Near-Infrared (VNIR) and
Short-Wave Infrared (SWIR) regions of the electromagnetic spectrum (400–2500 nm) [21].
PRISMA images have a spatial resolution of 30 m, a Spectral Sampling Interval (SSI) of
12 nm, and a revisit time of 29 days [21]. For model training and testing, time-series
maps of Chl-a concentration generated by the SIMILE project team from Sentinel-3 data
are employed as low-resolution reference data. Quality assessment for these maps was
provided by [40] through comparisons with in-situ measurements, supporting their use
as reference Chl-a concentration data in this work. The study considers both machine
learning models, such as RF Regressor and SVR, as well as deep learning models such
as Long Short-Term Memory (LSTM) networks [43,44] and Gated Recurrent Unit (GRU)
networks [45]. The choice of these models is based on empirical evidence from the literature
and is primarily guided by two key characteristics, as suggested by [24] and summarized
as follows. First, when considering RF Regressor and SVR models, their effectiveness in
handling non-linear dependencies within the input data is a primary factor. Moreover,
when integrated with dimensionality reduction techniques, these models excel in reducing
redundant spectral information. Second, LSTM and GRU models are preferred for their
suitability in dealing with hyperspectral imagery. This preference is rooted in the sequential
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nature of the hyperspectral data, enabling them to capture both long and short-range
dependencies of the contiguous bands in the spectral dimension.

Figure 1. Summary of available data (pixels with information of Chl-a maps and PRISMA acquisi-

tions) within the study’s AOI. In the reference map is highlighted the approximate location of the

AOI within Europe (red dot).

The models are employed to (i) reconstruct reference Chl-a concentrations maps com-
puted from Sentinel-3 data, and (ii) augment the spatial resolution of such maps from 300 m
to 30 m, thereby aligning them with the resolution of PRISMA imagery. The ultimate goal
of such applications is to evaluate the performance of different models in reconstructing
the reference Chl-a maps exploiting PRISMA images. Several experiments involving dif-
ferent configurations of model hyperparameters and resolutions for the training/testing
datasets were conducted. The resulting accuracies were analyzed statistically to delineate
and recommend the most effective models and experimental settings. The SVR model
performed best for reconstructing reference Chl-a maps at 300 m spatial resolution, while
the RF Regressor model proved to be the most effective for predicting Chl-a maps at 30 m
spatial resolution.

The remainder of the paper is as follows. Section 2 describes the data utilized in the
study, detailing the criteria for dataset selection, outlining data preparation techniques,
and introducing the models considered along with their respective hyperparameter settings.
Section 3 presents the outcomes of the modelling experiments, offering a discussion of the
significant findings compared with the experimental settings adopted. Finally, Section 4
includes conclusions and future directions of the work.
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2. Data and Methods

2.1. Data Procurement and Preprocessing

This study examined two input datasets, namely reference Chl-a concentration raster
maps (generated by the SIMILE project at a spatial resolution of 300 m and co-registered on
a common grid) and PRISMA hyperspectral imagery with a resolution of 30 m. PRISMA
Level L2D geocoded and bottom-of-atmosphere reflectance data [46] were employed in the
analysis. The complete time series of reference Chl-a concentration maps encompasses a
total of 389 layers, each providing complete coverage of the designated Area of Interest
(AOI) within this study (see Figure 1). This time series spans from 15 January 2019 to 5
November 2022. Through the examination of the accessible hyperspectral PRISMA images
catalogued in the official missions data portal (http://prisma.asi.it/js-cat-client-prisma-src
(accessed on 22 May 2023)), 27 acquisitions that intersected with the AOI in the timeframe
of the reference Chl-a maps time series were identified. All bands of each considered
PRISMA image were manipulated in the preprocessing operations. Following an initial
manual screening process based on the extent of intersection with the reference Chl-a
maps, cloud coverage within each PRISMA acquisition, and sun glint disturbance, a total
of 12 PRISMA images were deemed suitable. The chosen PRISMA image tiles provided
only partial coverage of the AOI, as illustrated in Figure 1. Notably, part of Lake Maggiore
is excluded from the analysis due to the unavailability of PRISMA tiles in the catalogue
covering that area.

Table 1 provides an overview of the dataset utilized in this study. While the acquisition
dates of the reference Chl-a maps and the corresponding PRISMA images do not coincide,
the maximum temporal discrepancy is limited to 2 days. The table also includes information
about the lakes covered by each PRISMA acquisition.

Figure 1 additionally provides a synopsis of the regions containing accessible data,
defined as pixels incorporating information on each pair of Chl-a concentration maps and
corresponding PRISMA acquisitions across the entirety of the dataset. This pertains to the
three lakes within the AOI.

Table 1. Selected pairs of Chl-a maps and PRISMA images with acquisition dates and lakes’ cov-

erage. ID acquisitions are sorted by dates and refer to the original 27 PRISMA acquisitions avail-

able in the official mission data portal. Missing IDs correspond to acquisitions excluded after the

manual screening.

ID Acquisition
PRISMA
Acquisition Date

Lake Como Lake Maggiore Lake Lugano
Reference Chl-a
Map Date

1 24 April 2020 YES NO YES 23 April 2020
2 24 April 2020 YES NO NO 23 April 2020
4 25 April 2020 NO YES NO 23 April 2020
6 3 July 2020 NO YES NO 5 July 2020
10 9 July 2021 YES NO YES 9 July 2021
13 31 August 2021 YES NO NO 31 August 2021
17 16 October 2021 NO YES NO 16 October 2021
18 22 October 2021 YES NO NO 22 October 2021
19 22 October 2021 YES NO YES 22 October 2021
21 26 November 2021 NO NO YES 24 November 2021
23 9 February 2022 NO YES NO 9 February 2022
24 27 March 2022 YES NO NO 25 March 2022

Following the acquisition of PRISMA images, an array of preprocessing operations
was executed. This included co-registration, intersection with their reference Chl-a maps,
and the removal of null values and anomalous pixels possibly affected by disturbances
in water surface spectral signature. The schematic representation of these pre-processing
steps is depicted in Figure 2.

http://prisma.asi.it/js-cat-client-prisma-src


Remote Sens. 2023, 15, 5385 6 of 22

Figure 2. Schematic of pre-processing operations on the input data.

While the L2D PRISMA imagery used in this study is already geocoded, an extra
step of co-registration was necessary to rectify both local and global distortions. For this
purpose, the Python library Gefolki [47] was employed. The co-registration process was
critical to ensure accurate alignment of the PRISMA images with the reference data.

The co-registration algorithm implemented in Gefolki computes pixel-wise displace-
ments (optical flow) between pairs of images. A reference grid from the Sentinel-2 mission
was considered because of its higher spatial resolution (10 m) and positional accuracy than
the original PRISMA grid. To accomplish this, a mosaic using Sentinel-2 images from the
period of 11 September 2022 to 18 September 2022 covering the entire AOI was employed.
The full AOI coverage could not be achieved with a single Sentinel-2 image tile. Each
PRISMA image was resampled to 10 m spatial resolution to perform the co-registration
with the Sentinel-2 reference image. The Sentinel-2 mosaic was cropped to the intersected
area with the associated PRISMA image, and the displacements between the pixels of the
PRISMA image and the reference image were estimated and used to correct the original
distortions. Finally, the PRISMA images were resampled to their original resolution (30 m).
This procedure is used to co-register all the PRISMA images on a common grid in the
final dataset.

After completing the co-registration of the PRISMA images, the next step involved
intersecting the co-registered images with their corresponding Chl-a maps. This process
aimed to preserve the overlapping regions shared by each acquisition pair. During this
operation, pixels with no data in the PRISMA image were set to null in the corresponding
Chl-a map, and conversely, for all the acquisition pairs.

The final pre-processing step involved removing anomalous pixels which contained
values in the spectral signature inconsistent with the Chl-a concentration recorded in the
Chl-a concentration maps, or pixels possibly associated with disturbances on the water
surface, such as scum or foam. Anomalous pixels were removed from both the PRISMA
images and the corresponding Chl-a maps. To detect the anomalous pixels, the procedure
adopted in this study consisted of determining different spectral indices by using the
reflectance values of the Sentinel 3 A/B OLCI images that generated the Chl-a maps. These
indices are based on bands algebra and were retrieved from the literature with no name
associated. The indices were then used to verify the following conditions and identify the
anomalous pixel values as shown in Figure 3.
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The first condition implies assessing whether, for each pixel, its corresponding value of
the Index 1 [48], which is computed using Equation (1), is less than one while the associated
Chl-a value exceeds 10 µg/L. Under these circumstances, the pixel is considered anomalous.
This is attributed to the expectation that pixels with an index less than one are more likely
associated with very low Chl-a concentrations, and conversely.

Index 1 =
Band 11 (708 nm)

Band 8 (665 nm)
. (1)

It is important to specify that in Equation (1), band 11 of Sentinel-3 A/B OLCI corre-
sponds to the red edge transition of the Chlorophyll fluorescence baseline, while band 8
is linked to the second peak of Chlorophyll absorption [49]. A second condition is used
instead to check whether the subsequent ratio [50], computed using Equation (2) and
referred to in this work as Index 2, is higher than one for a specific pixel. If so, that pixel
should be removed as it may indicate an anomaly on the water surface, likely associated
with noise, scum, or foam.

Index 2 =
Band 12 (753 nm)

Band 11 (708 nm)
. (2)

In Equation (2), band 12 of Sentinel-3 A/B OLCI is used because of its connection to
the absorption of oxygen, as well as the presence of clouds and vegetation [49]. The last
condition is verified by comparing two indices which are computed using Equations (3)
and (4), and referred to in this work respectively as Index 3a and Index 3b. Where one of
them is above 1 but the other is not, the pixel is considered anomalous [51]. If both indices
are below one, this means that the pixel refers to an area of deep blue water and if the two
indices are above one, it is likely that the pixel is related to the presence of phytoplankton.

Index 3a =
Band 6 (560 nm)

Band 3 (442.5 nm)
(3)

Index 3b =
Band 6 (560 nm)

Band 4 (490 nm)
. (4)

In Equations (3) and (4), band 3 of Sentinel-3 A/B OLCI corresponds to the point
where Chlorophyll absorption is at its highest, while band 4 indicates areas with high
Chlorophyll concentration. Band 6 serves instead as a reference indicator for the lowest
Chlorophyll concentration in the image [49].

Figure 3. Schematic of the anomalous pixels removal procedure.
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2.2. Training and Test Datasets Preparation

Following the pre-processing of reference Chl-a maps, it became necessary to devise
a data-splitting strategy for the three primary phases involved in the implementation of
machine and deep learning models: training (train set), validation (validation set), and
evaluation (test set). To accomplish this, an iterative methodology was adopted to uphold
consistent distributions between the test set and the combined training and validation set.
By allocating pairs of acquisitions to one of the two alternate groups, the distribution of
Chl-a values for each group was assessed. The aim was to achieve the most accurate fit
to the identity function. To this end, a Quantile-Quantile plot (QQ-plot) was employed
(see Figure 4), yielding an R2 of 0.876, thus indicating a robust alignment with the target
function. As a result of this process, acquisitions 4, 23, and 24 (see Table 1) were assigned
to the test set while the remaining ones were preserved for the training and validation set.
Subsequently, the training-validation set was partitioned using a fixed ratio of 80% for
training and 20% for validation. Considering the distribution of Chl-a concentrations in the
whole dataset, the acquisitions in the test set embed a broad range of Chl-a concentrations.
Specifically, acquisition 4 is associated with relatively low-to-medium Chl-a concentrations
(mean equal to 3.07 µg/L and a maximum equal to 4.49 µg/L). Acquisitions 23 and 24 depict
medium to high Chl-a concentrations, with respective mean concentrations of 5.21 µg/L
and 5.21 µg/L, and maximum concentrations of 8.92 µg/L and 7.06 µg/L. This choice was
adopted to mitigate possible model over-fitting due to the low number of acquisitions for
the study area in the considered time period and to evaluate models on the widest available
array of Chl-a concentration episodes. Because of data availability, very high or low Chl-a
concentrations could not be included in the test set.

Figure 4. QQ-plot of training and test sets. Blue dots represent quantiles of pixel values distribution

from reference Chl-a maps in the training set (X-axis) and test set (Y-axis).
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2.3. PRISMA Images Normalization and Dimensionality Reduction

Further operations were conducted on PRISMA images, including normalization
and dimensionality reduction. The PRISMA images were initially transformed from their
original Digital Number (DN) units to reflectance values, employing the standard formula
(see Equation (5)) outlined in the PRISMA data manual [52].

xscaled = L2scaleXXmin + xDN
(L2scaleXXmax − L2scaleXXmin)

65.535
. (5)

The term “XX” in Equation (5) denotes a particular region within the input spectrum,
either “VNIR” or “SWIR”. L2scale min and max represent the minimum and maximum
scaling factors provided in the metadata for each PRISMA image. The normalization value
of 65.535 is derived from the computation of 216

− 1 , which accounts for the 16-bit coding
used to store pixel information. Then, these reflectance values were scaled to a range of
[0–216] to store them as unsigned integers (uint16). Starting with this information, three
alternative approaches for normalizing the PRISMA images were considered: (i) Min-max
scaling, (ii) standard scaling, and (iii) normalization to float reflectance units within the
range [0–1], i.e., dividing by the fixed factor of 216. Another assessed aspect was the
dimensionality reduction of the hyperspectral images. For this purpose, the Principal
Component Analysis (PCA) technique was exploited to reduce the spectral dimension to
30 Principal Components (PCs). Finally, the benefits of reducing the spatial dimension
were explored by lowering the resolution of the PRISMA images to match that of the
associated Chl-a maps, i.e., from 30 m to 300 m. For this case study, the use of 30 PCs
explained more than 99% of the variance for all the acquisitions. This was considered
sufficient for testing purposes and used as a sample case in the modelling experiments.
Different normalization and dimensionality reduction approaches were tested within
different modelling experiments, as explained in the following section.

2.4. Machine and Deep Learning Regression Models for Chl-a Concentration

Performances of two machine learning (RF Regressor and SVR) and two deep learn-
ing (LSTM and GRU) models in estimating Chl-a concentrations maps by combining
Sentinel-3 derived data and PRISMA hyperspectral imagery were explored. The evaluation
encompasses a range of hyperparameter settings to identify the most effective combination.
Several experiments were designed for each model by intervening in one or more set-
tings. Details are provided in Section 3. The general settings used to define the modelling
experiments are outlined below.

1. Normalization approach: A set of experiments was conducted to determine the best
normalization approach among the ones discussed in Section 2.3.

2. Spectral dimensionality reduction: An experiment was conducted to investigate
whether the PCA technique contributes or not to the model performances.

3. Data augmentation: For the machine learning models, additional bands extracted
using image filters were included in the processing. The considered filters were the
Sobel X and Sobel Y filters [53], and the Mean filter [54].

4. Model hyperparameters: Different hyperparameter settings were investigated for
each model following a grid search strategy. The considered hyperparameters are
listed in Tables 2–4.

5. Tests on best input spatial resolution: First, all experiments used 300 m spatial resolu-
tion inputs and then, considering the best experiment for each model typology, it was
repeated using inputs at 30 m resolution to determine which of the two approaches
performed better. This approach was followed because, despite the different spatial
resolution, the data derives from the same original distribution, ensuring that the
model selection step remains unaffected.
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The machine learning models considered in this study were the RF Regressor [55]
and the SVR [56]. In some of the experiments, where the spatial downsampling of the
PRISMA images to the spatial resolution of the associated Chl-a maps was applied, data
augmentation approaches were implemented. These approaches involved extracting ad-
ditional bands from the input images using the Sobel X and Sobel Y filters, and the Mean
filter. The extracted bands were stacked into the input data to augment the dataset size,
compensating for the reduction induced by spatial downsampling.

For the implementation of the RF Regressor model, the Scikit-learn Python library was
used [57]. Model hyperparameters considered for tuning are described in Table 2.

Table 2. RF Regressor hyperparameters [58].

Parameter Description

Number of estimators
It is the number of decision trees built. Higher values are
expected to improve performance while increasing
computational time.

Minimum number of samples
per leaf

It sets the minimum samples required for a leaf node,
reducing over-fitting with higher values.

Maximum depth of each deci-
sion tree

It controls model complexity; large values can lead to
over-fitting.

Table 3. SVR hyperparameters [59].

Parameter Description

Gamma

Kernel coefficient for the RBF. It governs the shape of the
decision boundary. A high value leads to an extended or
complex decision boundary, which, if not carefully controlled,
may result in over-fitting.

C

It influences the width of the margin and the tolerance for
misclassified data points. It is a regularization
hyperparameter which enables to balance between training
and testing errors.

For the implementation of the SVR model, the Radial Basis Function (RBF) kernel,
computed using the Scikit-learn Python library, was used to conduct trials for the empirical
definition of the best hyperparameter values, as detailed in Table 3.

Regarding deep learning models, two architectures were considered, namely
LSTM [43,44] and GRU [45] networks. Both are recurrent architectures well suited for
the sequential structure of the hyperspectral data. The Tsai Python package [60] was
used for their implementation. The hyperparameters considered for the definition of the
experiments are explained in Table 4 and these are common for both architectures.

Table 4. LSTM and GRU hyperparameters.

Parameter Description

Number of layers The number of LSTM or GRU cells stacked on top of each other.

Dropout in the recurrent neu-
ral network cells

Effective regularization method that contrast over-fitting by
randomly deactivating a portion of neurons [61]. When dealing
with recurrent neurons, dropout is specifically applied to the
connections between consecutive recurrent hidden cells.
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Table 4. Cont.

Parameter Description

Dropout in the fully con-
nected layer

Proportion of dropout applied to the fully connected
layers’ outputs.

Directionality

Both unidirectional and bidirectional networks were investigated.
The difference is that bidirectional networks calculate the hidden
state at each time step using information from both past and
future inputs, whereas unidirectional networks utilize only past
inputs in their calculations.

Hidden size The number of features in the hidden state.

3. Results and Discussion

This section reports the results of the modelling experiments described in Section 2.4.
The predictive performances of the different models under different settings are reported
and compared using well-known metrics, such as the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE). The evaluation is based on the acquisitions from the test
set, specifically acquisitions 4, 23, and 24 (see Section 2.2).

3.1. RF Regressor

A total of 12 experiments with different settings were performed using the RF Regres-
sor model. Experimental settings and results are reported in Table 5.

Considering the PRISMA image normalization approaches introduced in Section 2.3,
three experiments were carried out (RF-1 to RF-3) to establish the best option. The re-
sults achieved by the three experiments are identical in terms of predictive performances,
suggesting a negligible effect of the normalization approach on the output.

The fourth experiment (RF-4) was used to evaluate the benefits of applying the PCA
technique to reduce the spectral dimension to 30 PCs. As observed in Table 5, this exper-
iment yielded a worse performance in comparison with the previous three cases. This
may be attributed to the ensemble nature of RF which utilizes decision trees, known to
be robust against multicollinearity. Consequently, in this particular context, PCA may not
yield substantial advantages, given that the algorithm inherently handles a multitude of
features and their complex interactions.

In the fifth experiment (RF-5), it was investigated whether including additional bands
would benefit the performance of the model. The same normalization approach of Exper-
iment RF-2 (standard scaling) and no dimensionality reduction were applied. For each
pixel, the Mean and the Sobel x and Sobel y filters were applied. According to the result,
the addition of these new features was not helpful in terms of predictive performance.

In order to determine the optimal configuration for the model’s hyperparameters,
five experiments were undertaken, denoted as RF-6 through RF-11. These experiments
assessed various combinations of hyperparameters to ascertain which yielded the most
favourable outcomes. Experiment RF-10 emerged as the top-performing RF Regressor
model configuration.

The final experiment (RF-12) aimed to assess whether utilizing input data at a
30-m spatial resolution could lead to improved performance compared to the previously
identified best-performing model configuration (i.e., RF-10). To achieve this, Chl-a maps
needed to be upsampled to match the spatial resolution of the PRISMA images. The Nearest
Neighbour method was employed for this purpose. It is important to note that, due to
computational limitations, the number of trees was reduced to 1000 in this experiment
compared to RF-10. Under these specified conditions, the results of Experiment RF-12
demonstrate a higher level of error compared to RF-10.



Remote Sens. 2023, 15, 5385 12 of 22

Table 5. Settings and results of RF Regressor model experiments. MAE and RMSE represent the

average score of the metrics from the application of the experiments to each of the acquisitions in the

test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Data
Augm.

N Trees
Min.
Leaf

Max.
Depth

MAE
[µg/L]

RMSE
[µg/L]

RF-1 Norm. 300 No Minmax No 1000 3 10 0.931 1.112
RF-2 Norm. 300 No Std. No 1000 3 10 0.931 1.112
RF-3 Norm. 300 No Reflect. No 1000 3 10 0.931 1.112
RF-4 Spec. red. 300 30 PCs Std. No 1000 3 10 1.020 1.245
RF-5 Data augm. 300 No Std. Yes 1000 3 10 1.106 1.296
RF-6 Model hyperp. 300 No Std. No 1000 3 5 1.032 1.192
RF-7 Model hyperp. 300 No Std. No 1000 3 20 0.930 1.113
RF-8 Model hyperp. 300 No Std. No 100 3 20 0.947 1.128
RF-9 Model hyperp. 300 No Std. No 10,000 3 20 0.924 1.107
RF-10 Model hyperp. 300 No Std. No 10,000 2 20 0.915 1.099
RF-11 Model hyperp. 300 No Std. No 10,000 10 20 0.934 1.114
RF-12 Spatial res. 30 No Std. No 1000 2 20 0.986 1.181

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Numbers of estimators (N trees), Minimum number of samples
per leaf (Min. leaf), Maximum depth of each decision tree (Max. depth), Spectral dimensionality reduction (Spec.
red.), Min-max scaling (Minmax), standard scaling (Std.), normalization to float reflectance units within the range
[0, 1] (Reflect.), Model hyperparameters (Model hyperp.).

3.2. SVR

A total of 10 experiments with different settings were performed using the SVR model.
The experimental settings and results are reported in Table 6.

The effect of PRISMA image normalization approaches was analysed through three
experiments (SVR-1 to SVR-3). The standard scaling resulted in the most effective approach
in terms of prediction performances. The effect of PCA application for reducing the
spectral dimension of the PRISMA images was evaluated in Experiment SVR-4. In this
case, prediction performance resulted to be significantly improved with the use of 30 PCs
instead of the original PRISMA bands. This result may be explained by the fact that the
SVR model is based on an RBF kernel, which incorporates feature distances and may be
sensitive to multicollinearity, thereby possibly resulting in over-fitting. Experiment SVR-5
investigated the advantages of employing data augmentation on the input data. This
did not lead to an improvement in the model’s performance, achieving a less favourable
outcome compared to SVR-4. Different setups for the SVR model hyperparameters, C
and gamma, were assessed in experiments SVR-6 to SVR-9. Despite the evaluations, it
was found that Experiment SVR-4 consistently yielded the most favourable outcomes.
Therefore, SVR-4 was identified as the best-performing model configuration. The final
experiment (SVR-10) assessed the impact of employing a 30-m spatial resolution for the
input data, which included the original PRISMA images and the Chl-a maps upsampled
via the Nearest Neighbor technique. Unfortunately, the results from SVR-10 were not
satisfactory, with both MAE and RMSE metrics surpassing those attained by the previously
identified top-performing model configuration, SVR-4.
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Table 6. Settings and results of SVR model experiments. MAE and RMSE represent the average score

of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Data
Augm.

Gamma C
MAE
[µg/L]

RMSE
[µg/L]

SVR-1 Norm. 300 No Minmax No 0.001 15 1.285 1.431
SVR-2 Norm. 300 No Std. No 0.001 15 0.699 0.898
SVR-3 Norm. 300 No Reflect. No 0.001 15 1.253 1.394
SVR-4 Spec. red. 300 30 PCs Std. No 0.001 15 0.687 0.895
SVR-5 Data augm. 300 30 PCs Std. Yes 0.001 15 0.909 1.126
SVR-6 Model hyperp. 300 30 PCs Std. No 0.0001 15 0.752 0.993
SVR-7 Model hyperp. 300 30 PCs Std. No 0.01 15 0.956 1.152
SVR-8 Model hyperp. 300 30 PCs Std. No 0.001 1.5 0.756 0.955
SVR-9 Model hyperp. 300 30 PCs Std. No 0.001 150 1.106 1.307
SVR-10 Spatial res. 30 30 PCs Std. No 0.001 15 1.260 1.555

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Nor-
malization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max
scaling (Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.),
Model hyperparameters (Model hyperp.), Spatial resolution (Spatial res.).

3.3. LSTM Network

A total of 14 experiments with different settings were performed using the LSTM
network. Experimental settings and results are reported in Table 7.

The first three experiments (LSTM-1 to LSTM-3) explored the best normalization
approach. The best performance was achieved with the experiment LSTM-2 which cor-
responds to the standard scaling method. Experiment LSTM-4 explored the spectral
dimensionality reduction, and determined that this technique was useful for improving the
performance as it achieved a lower level of error. From Experiment LSTM-5 to Experiment
LSTM-12, all the hyperparameters of this model architecture were systematically adjusted.
Among these experiments, the best-performing configuration was the Experiment LSTM-10.
Furthermore, Experiment LSTM-13 used the same hyperparameter settings as LSTM-10
but incorporated bidirectional flow. Notably, this modification improved the performance
compared to LSTM-10. The utilization of 30-m resolution inputs was examined in Experi-
ment LSTM-14. The model hyperparameters and input normalization were kept identical
to those in Experiment LSTM-13. However, the outcome did not show any improvement
over the performance metrics of the best-performing model configuration, LSTM-13.

Table 7. Settings and results of LSTM model experiments. MAE and RMSE represent the average

score of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting
Res
[m]

PCA Norm.
Hidden
Size

N Layers
Drop.
RNN

Drop.
FCN

Bidir.
MAE
[µg/L]

RMSE
[µg/L]

LSTM-1 Norm. 300 No Minmax 10 2 0.6 0.4 No 1.443 1.584
LSTM-2 Norm. 300 No Std. 10 2 0.6 0.4 No 1.303 1.431
LSTM-3 Norm. 300 No Reflect. 10 2 0.6 0.4 No 1.897 2.012
LSTM-4 Spec. red. 300 30 PCs Std. 10 2 0.6 0.4 No 1.298 1.428
LSTM-5 Model hyperp. 300 30 PCs Std. 5 2 0.6 0.4 No 1.386 1.522
LSTM-6 Model hyperp. 300 30 PCs Std. 15 2 0.6 0.4 No 1.323 1.452
LSTM-7 Model hyperp. 300 30 PCs Std. 10 4 0.6 0.4 No 1.494 1.635
LSTM-8 Model hyperp. 300 30 PCs Std. 10 1 0.6 0.4 No 1.334 1.490
LSTM-9 Model hyperp. 300 30 PCs Std. 10 2 0.2 0.4 No 1.342 1.475
LSTM-10 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.4 No 1.278 1.407
LSTM-11 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.6 No 1.366 1.498
LSTM-12 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.2 No 1.305 1.434
LSTM-13 Dir. flow 300 30 PCs Std. 10 2 0.8 0.4 Yes 1.211 1.345
LSTM-14 Spatial res. 30 30 PCs Std. 10 2 0.8 0.4 Yes 1.278 1.455

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max scaling
(Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.), Model
hyperparameters (Model hyperp.), Spatial resolution (Spatial res.), Number of layers (N layers), Dropout in the
recurrent neural network cells (Drop. RNN), Dropout in the fully connected layer (Drop. FCN), Directionality (Bdir.).
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3.4. GRU Network

A total of 17 experiments with different settings were performed using the GRU
network. Experimental settings and results are reported in Table 8.

The first three experiments (GRU-1 to GRU-3) focused on investigating the effect of
normalization approaches. The standard scaling method (GRU-2) emerged once again as
the most effective approach. The results obtained from Experiment GRU-4 indicate that
employing the PCA method for this model did not yield any significant benefit. Hyperpa-
rameter tuning was carried out by experiments GRU-5 to GRU-15, with Experiment GRU-8
resulting as the best-performing model configuration. Experiment GRU-16 was used to
determine whether configuring the GRU-8 network with bidirectional flow would enhance
its performance. The results indicate a decrease in performance. Finally, Experiment GRU-
17 maintained an identical configuration to Experiment GRU-8, except for the utilization of
30-m input data. However, this adjustment did not yield any improvements in the model’s
performance. As a result, the best-performing model configuration was identified as that of
Experiment GRU-8.

Table 8. Settings and results of GRU model experiments. MAE and RMSE represent the average

score of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Hidden
Size

N
Layers

Drop.
RNN

Drop.
FCN

Bidir.
MAE
[µg/L]

RMSE
[µg/L]

GRU-1 Norm. 300 No Minmax 10 2 0.6 0.4 No 1.367 1.499
GRU-2 Norm. 300 No Std. 10 2 0.6 0.4 No 1.287 1.416
GRU-3 Norm. 300 No Reflect. 10 2 0.6 0.4 No 1.559 1.698
GRU-4 Spec. red. 300 30 PCs Std. 10 2 0.6 0.4 No 1.305 1.433
GRU-5 Model hyperp. 300 No Std. 5 2 0.6 0.4 No 1.435 1.575
GRU-6 Model hyperp. 300 No Std. 20 2 0.6 0.4 No 1.235 1.366
GRU-7 Model hyperp. 300 No Std. 40 2 0.6 0.4 No 1.221 1.352
GRU-8 Model hyperp. 300 No Std. 60 2 0.6 0.4 No 1.186 1.321
GRU-9 Model hyperp. 300 No Std. 100 2 0.6 0.4 No 1.271 1.408
GRU-10 Model hyperp. 300 No Std. 60 1 0.6 0.4 No 1.236 1.373
GRU-11 Model hyperp. 300 No Std. 60 10 0.6 0.4 No 1.231 1.362
GRU-12 Model hyperp. 300 No Std. 60 2 0.2 0.4 No 1.272 1.419
GRU-13 Model hyperp. 300 No Std. 60 2 0.8 0.4 No 1.194 1.340
GRU-14 Model hyperp. 300 No Std. 60 2 0.6 0.2 No 1.202 1.355
GRU-15 Model hyperp. 300 No Std. 60 2 0.6 0.8 No 1.260 1.399
GRU-16 Dir. flow 300 No Std. 60 2 0.6 0.4 Yes 1.213 1.363
GRU-17 Spatial res. 30 No Std. 60 2 0.6 0.4 No 1.203 1.382

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max scaling
(Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.), Model
hyperparameters (Model hyperp.), Spatial resolution (Spatial res.), Number of layers (N layers), Dropout in the
recurrent neural network cells (Drop. RNN), Dropout in the fully connected layer (Drop. FCN), Directionality (Bidir.).

3.5. Summary of Best Models and Inference on 30 m

Drawing from the aforementioned experiments, it is evident that the best perfor-
mances were attained when training and assessing the models with 300-m input datasets.
The details of the best-performing configurations for each model are consolidated in Table 9,
with SVR (Experiment SVR-4) emerging as the top-performing model overall.

Figure 5 presents the visual results for Experiment SVR-4 with its model setting applied
to the test acquisitions (ID 4, 23 and 24; see Table 1) and Figure 6 shows the distribution of
the errors for each of the acquisitions in the test set.
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Figure 5. Predictions and reference Chl-a map and their absolute difference (Abs. difference)

computed from Experiment SVR-4 applied to each of the acquisitions in the test set.

Figure 6. Distribution of the errors of Experiment SVR-4 applied to each of the acquisitions in the

test set.
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Table 9. Comparison of metrics for the best-performing configuration for each model applied to each

of the acquisitions in the test set. Overall MAE and RMSE represent the average score of the metrics

from the application of the experiments on the test set acquisitions. Values are reported in [µg/L].

Exp. ID Model
MAE
Overall

RMSE
Overall

MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24

SVR-4 SVR 0.687 0.895 0.544 0.688 0.712 0.961 0.806 1.036
RF-10 RF 0.915 1.099 0.464 0.622 0.903 1.106 1.378 1.570
GRU-8 GRU 1.186 1.321 0.929 0.997 1.262 1.420 1.365 1.544
LSTM-13 LSTM 1.211 1.345 0.992 1.053 1.288 1.442 1.355 1.538

Until this moment, the output spatial resolution of 300 m was overlooked, and only
the resulting performance was analyzed. However, recognizing that output with a finer
spatial resolution of 30 m could yield more valuable results, efforts were directed towards
determining the optimal approach to achieve predictions at this higher resolution.

For this purpose, two alternative approaches were identified. The first, which has
already been investigated, consisted of using 30-m data for model training, validation,
and evaluation (testing). The second approach involved the use of the best-performing
configurations of each considered model, which were trained with 300 m data (a summary
of the results is included in Table 9), and to perform an inference on 30-m data for their
evaluation. Figure 7 provides a schematic of these two alternative approaches.

Figure 7. Schematic of the inference procedures on 30 m spatial resolution output.

After evaluating both approaches with the best-performing configurations of the
four model typologies, the RF Regressor (Experiment RF-12) both trained and evaluated
with 30-m data, emerged as the best alternative for achieving a prediction with 30 m of
spatial resolution. The summary of these results is reported in Table 10.
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Table 10. Comparison of metrics for the best-performing configuration for each model using 30 m

spatial resolution data, applied for each of the acquisitions in the test set. Training set (Train res.) and

evaluation set (Eval. res) spatial resolutions are reported in dedicated columns. Overall MAE and

RMSE represent the average scores for the metrics obtained from applying the experiments to each of

the acquisitions in the test set. Values are reported in [µg/L].

Exp. ID Model
Train.
Res. [m]

Eval.
Res. [m]

MAE
Overall

RMSE
Overall

MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24

RF-10 RF 300 30 1.076 1.241 0.988 1.071 0.836 1.068 1.405 1.585
RF-12 RF 30 30 0.986 1.181 0.815 0.921 0.707 0.987 1.435 1.635
SVR-4 SVR 300 30 1.107 1.266 1.578 1.620 0.778 1.017 0.964 1.161
SVR-10 SVR 30 30 1.260 1.555 1.052 1.571 1.043 1.235 1.686 1.859
LSTM-13 LSTM 300 30 1.234 1.369 0.826 0.905 1.413 1.556 1.462 1.648
LSTM-14 LSTM 30 30 1.278 1.455 1.004 1.112 1.004 1.214 1.826 2.039
GRU-8 GRU 300 30 1.248 1.393 0.643 0.746 1.294 1.448 1.808 1.986
GRU-17 GRU 30 30 1.203 1.382 0.598 0.727 1.518 1.732 1.493 1.686

Figure 8 presents the visual results of Experiment RF-12, trained and evaluated at 30-m
spatial resolution data and applied to each of the acquisitions in the test set. The associated
errors’ distributions are shown in Figure 9.

Figure 8. Predictions and reference Chl-a map and their absolute difference (Abs. difference)

computed from Experiment RF-12 trained and evaluated at 30-m spatial resolution data and applied

to each of the acquisitions in the test set.
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Figure 9. Distribution of the errors of Experiment RF-12 trained and evaluated at 30-m spatial

resolution data and applied to each of the acquisitions in the test set.

A final observation drawn from the presented results is the tendency of the considered
machine learning models to underestimate Chl-a values in high local concentration spots.
Further considerations on the above are reported in the following section.

4. Conclusions and Outlook

This study addressed the implementation aspects related to the generation of Chl-a
concentration maps utilizing PRISMA hyperspectral imagery, with low-resolution training
data derived from Sentinel-3 imagery. The complete workflow for preparing input data for
a range of machine and deep learning models was outlined. Performances of the models
under various hyperparameter configurations were compared to offer empirical insights
into the best-performing solutions for estimating multi-resolution Chl-a concentrations
in lakes using hyperspectral imagery and pre-existing Chl-a concentration maps at lower
spatial but higher temporal resolution.

By conducting several modelling experiments, the optimal configurations for each of
the four analyzed models were determined. Specifically, the most favourable performances
were attained when employing 300 m spatial resolution inputs for all experiments. The best
results were achieved with the SVR model. Supplementary experiments were conducted to
evaluate model performances in enhancing the spatial resolution of Chl-a concentration
predictions from the original 300 m reference data (i.e., Sentinel-3 derived Chl-a concentra-
tion maps) to 30 m resolution such as the one of PRISMA hyperspectral imagery. The RF
Regressor proved to deliver the best performance for this last objective.

While the obtained performances are relevant for all model typologies, it is worth
noting that these results could be potentially improved with the availability of additional
PRISMA acquisitions. As discernible from the presented results, the selected machine
learning models demonstrated a tendency to underestimate regions characterized by high
Chl-a concentrations. The inclusion of supplementary PRISMA acquisitions linked to high
Chl-a concentration spots in the input dataset (which were limited in the dataset used for
this study) is expected to mitigate this discrepancy and represents a critical improvement
for future developments of this work.

Given the limitations to the accessibility of ground truth data for training and evaluat-
ing machine and deep learning models, the approach outlined in this study is promising
for preliminary large-scale estimates of Chl-a concentrations in freshwater bodies. This
is because it suggests strategies for the use of low-resolution and widely accessible train-
ing and testing datasets by leading to a final product with a significantly higher spatial
resolution than the reference data while maintaining an acceptable margin of error. This
enhancement is achieved by leveraging both spectral and spatial characteristics of the
emerging hyperspectral satellite imagery. It is worth remarking that operations such as
resampling low-resolution reference data for model evaluation on 30 m resolution outputs
were tested for purely experimental purposes. The use of high-resolution reference data is
envisaged to improve both the quality and reliability of the proposed procedure, especially
of local gradients of Chl-a concentrations in each single water body.
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The outcomes of the suggested method have the potential to function as supportive
resources for the monitoring and administration of the lakes under investigation. The use
of global coverage and freely available data, coupled with open modelling tools, ad-
ditionally strengthens this groundwork for enhancements and replications in different
geographic regions.
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The following abbreviations are used in this manuscript:

AHSI Advanced Hyperspectral Imager

ANN Artificial Neural Networks

AOI Area of Interest

ASI Italian Space Agency

Chl-a Chlorophyll-a

CNN Convolutional Neural Network

DESIS German Aerospace Center Earth Sensing Imaging Spectrometer

DN Digital Number

EeTeS EnMAP end-to-end Simulator Software

EnMAP Environmental Mapping and Analysis Program

ESA European Space Agency

FCN Fully-connected Network

GRU Gated Recurrent Unit

HICO Hyperspectral Imager for the Coastal Ocean

LSTM Long-short Term Memory

MAE Mean Absolute Error

MARS Multivariate Adaptive Regression Spline

MDN Mixture Density Network

NASA National Aeronautics and Space Administration

OLCI Ocean and Land Colour Instrument

PCA Principal Component Analysis

PCs Principal Components

PLS Partial Least Squares

PRISMA PRecursore IperSpettrale della Missione Applicativa

QQ-plot Quantile-Quantile plot

RBF Radial Basis Function

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SIMILE Informative System for the Integrated Monitoring of Insubric Lakes and their Ecosystems

SSI Spectral Sampling Interval

SVM Support Vector Machines

SVR Support Vector Regressor
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SWIR Short-Wave Infrared

TSM Total Suspended Matter

US United States

VNIR Visible and Near-infrared
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