
ORIGINAL PAPER

Regularised Volterra series models for modelling
of nonlinear self-excited forces on bridge decks

Henrik Skyvulstad . Øyvind W. Petersen . Tommaso Argentini .

Alberto Zasso . Ole Øiseth

Received: 27 October 2022 /Accepted: 18 April 2023

� The Author(s) 2023

Abstract Volterra series models are considered an

attractive approach for modelling nonlinear aerody-

namic forces for bridge decks since they extend the

convolution integral to higher dimensions. Optimal

identification of nonlinear systems is a challenging

task since there are typically many unknown variables

that need to be determined, and it is vital to avoid

overfitting. Several methods exist for identifying

Volterra kernels from experimental data, but a large

class of them put restrictions on the system inputs,

making them infeasible for section model tests of

bridge decks. A least-squares identification method

does not restrict the inputs, but the identified model

often struggles with noisy (non-smooth) kernels,

which is deemed to be unphysical and a sign of

overfitting. In this work, regularised least-squares

identification is introduced to improve the perfor-

mance of model identification using least-squares.

Standard Tikhonov regularisation and other penalty

techniques that impose decaying kernels are also

explored. The performance of the methodology is

studied using experimental data from wind tunnel tests

of a twin deck section. The regularised Volterra

models show equal or better results in terms of

modelling the self-excited forces, and the regularisa-

tion makes the models less prone to overfitting.

Keywords Aeroelasticity � Nonlinear � Volterra
models � Regularisation � Bridge aerodynamics

1 Introduction

Nonlinear bridge aerodynamics is an active research

field due to the inherent nonlinear behaviour of bluff

bridge decks. The progression of experimental meth-

ods, numerical methods, and computer power has

opened the opportunity to widen the scope beyond

linear models. The nonlinear flutter instabilities have

been modelled by [1–5]. In References [6, 7] modelled

nonlinear galloping, while [8, 9] modelled nonlinear

vortex-induced vibrations. Significant contributions to

general nonlinear models for bridge aerodynamics

have also been made [7, 10–19]. Modelling and

understanding nonlinear bridge behaviour remains a

challenging task.
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A general type of nonlinear load model is the

Volterra Series-based model, initially proposed by

Volterra [20]. The Volterra series model extends linear

convolutions to higher-order convolutions [21]. Vol-

terra models have been widely used, and the properties

of the model have been extensively explored. For a

review of Volterra models in an engineering context,

see Cheng [22]. Volterra models have also been used

in bridge aerodynamics by multiple authors

[19, 23–31]. The optimal experimental design and

identification of Volterra models for bridge aerody-

namics is, however, still an open question.

Data-driven identification of Volterra-models was

first explored byWiener [32], who suggested rewriting

the Volterra series to the Wiener series via orthogonal

Wiener kernels. The Wiener series is made orthogonal

using Gram–Schmidt orthogonalisation, assuming

Gaussian white noise input as the training data. This

method was expanded further by Lee and Schetzen

[33], who utilised a cross-correlation-based identifi-

cation method, where the input data were restricted to

Gaussian white noise. Korenberg and Hunter [34]

developed an identification method softening the

requirements of the input data to Gaussian coloured

noise. Amorocho and Brandstetter [35] re-casted the

data-driven identification problem to a linear least-

squares regression problem. To solve the least-square

regression more efficiently, Korenberg [36] proposed

the ordinary orthogonal algorithm and the fast-

orthogonal algorithm. A significant advantage of the

linear least-square regression method is that it does not

restrict the form or distribution of the input and output

data; for instance, it is not required that the input be

Gaussian white noise. However, one of the significant

drawbacks of least-squares is potential overfitting.

Overfitting is a well-known issue in model identifica-

tion problems, where it is usually necessary to accept a

trade-off between the model complexity and the

closeness-of-fit to the dataset output. For Volterra

series models, overfitting leads to noise magnification

and non-smooth kernel shapes, which is deemed to be

an unphysical representation of the fluid memory

effects. Nowak [37] addressed removing noise from

the kernels by introducing penalties on the kernel’s

shapes via regularizing techniques. This idea was

further developed by Birpoutsoukis et al. [38, 39], who

used decay and smoothing types of regularisation of

the kernels up to the 3rd-order. Regularizing the least-

squares problem is a widely used technique to reduce

the effect of noise and unexplained components in the

measured output; thus, they are popular in machine

learning applications, as well as inverse problems

[40–44]. However, this technique has not yet been

explored in the context of Volterra models for bridge

aerodynamics.

In this paper, traditional 0th- and 2nd-order

Tikhonov regularisation [45] is introduced into the

identification of Volterra-kernels. Furthermore,

decay-type regularisation is introduced, which is

appropriate for systems with finite memory. It is

shown that regularisation can reduce the effect of

noise and reduce overfitting, which makes the trained

models more robust for new predictions. The methods

are then tested on a numerical example and on

experimental data from one- and two-degrees-of-

freedom forced vibration section model tests of a twin

deck.

The Volterra models and regularisation techniques

are presented in Sect. 1 and 2. In Sect. 3, the methods

are explored in a numerical example, while in Sect. 4,

the methods are used on experimental data for a twin

deck. The final chapter summarises and concludes the

findings.

2 Theory

2.1 Data-driven identification in bridge

aerodynamics

Training mathematical models for estimating the

system behaviour based on input–output data is

called data-driven identification. Experimental data

in an aerodynamic bridge setting are typically

obtained via forced or free vibration wind tunnel

tests [46–48] or computational fluid dynamics

[49–52]. Figure 1 shows the bridge cross-section

considered in this article at the model scale. The

forces and moments F and the motions r are also

shown, which are referred to as the centre point in

the gap. Data from forced vibration tests conducted

at the fluid mechanics laboratory at the Norwegian

University of Science and Technology are used to

fit and validate the Volterra models considered in

this paper. Section 4 explains the experimental

setup, and more details of the wind tunnel and the
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forced vibration apparatus are presented in Siedzi-

ako et al. [53].

2.2 Volterra series

In the following, the main equations for discrete

Volterra models are presented. A pth-order discrete-

time single-input-single-output (SISO) Volterra sys-

tem with memory length M can be formulated as

follows [54]:

F½n� ¼ h0 þ
XM

k¼0

h1½k�r½n� k� þ
Xp

P¼2

HP
M ½n� ð1Þ

HP
M½n� ¼

XM

k1

:::
XM

kp

hp½k1; :::; kp�r½n� k1�:::r½n� kp�

ð2Þ

where hp is the pth-order Volterra kernel, r (bridge

motion) is the system input, and F is the output

(forces). The model can then be expanded to include

multiple inputs with the inclusion of cross-kernels, as

shown below. A discrete-time 2nd-order Volterra

model with two inputs, rz and rh, can be formulated as

follows:

F½n� ¼ h0 þ
XM

k¼0

hz1½k�rz½n� k� þ
XM

k¼0

hh1½k�r1½n� k�

þ :::

ð3Þ

XM

k1¼0

XM

k2¼0

hzh2 ½k1; k2�rz½n� k1�rh½n� k2�

þ
XM

k1¼0

XM

k2¼0

hhz2 ½k1; k2�rh½n� k1�rz½n� k2� þ :::

XM

k1¼0

XM

k2¼0

hzz2 ½k1; k2�rz½n� k1�rz½n� k2�

þ
XM

k1¼0

XM

k2¼0

hhh2 ½k1; k2�rh½n� k1�rh½n� k2�

where hzz2 k1; k2½ � and hhh2 k1; k2½ � denote the 2nd-order

direct kernels, while hzh2 k1; k2½ � and hhz2 k1; k2½ � are the

2nd-order cross-kernels. The system in Eq. (3) is

referred to as a 2nd-order multi-input–single-output

(MISO) system. The equations are only shown for the

2nd-order Volterra system for brevity, but the equa-

tions can readily be extended for systems with a higher

order. The slightly longer equations involved for a

third-order system are shown in ‘‘Appendix A’’.

Orders higher than 3 are rarely considered in engi-

neering problems due to the immense computational

demand.

2.3 Identification using linear least-squares

Multiple identification techniques exist for identifying

Volterra models from input–output data. One of the

most popular is linear least-squares [24, 55]. A

significant advantage of least-squares identification

is that there is no restriction on the type of motion used

for the input data. However, it should be noted that,

although no assumptions on the input are made, it is

still vital to use inputs that are as similar to the

predictive situations the models are to be used on,

considering the reduced frequency, motion histories

and motion amplitudes. Considering a dataset with N

input–output triplets (two inputs and one output), the

system model can be written as follows:

FN�1 ¼ rN�QHQ�1 ð4Þ

where F is the system output vector, r is the system

regression matrix, And H is a vector that contains allQ

Fig. 1 Bridge section considered in this paper and the positive directions of forces and motions. All dimensions are given in mm
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unknown parameters (i.e., the Volterra kernel coeffi-

cients), as shown later in this chapter. The subscript

a� b denotes the number of rows and columns, and is

omitted where dimensions are obvious. In most data-

driven identifications, the number of equations N is

larger than the number of unknown variables Q,

making the system overdetermined, and thus with no

unique solution. However, a standard approximate

solution is found with the linear least-squares method

that aims to minimise the second norm of the system

residual:

argmin
H

F � rHk k22
� �

ð5Þ

The output vector is given by

FN�1 ¼ ½F½0�;F½1�; :::;F½N��T ð6Þ

where F is the output. For the 2nd-order Volterra

model case, the regression matrix is constructed in the

following way:

rN�Q ¼ ½rz;N�Q1
; rh;N�Q1

; rzz;N�Q2
; rhh;N�Q2

; rzh;N�Q2
; rhz;N�Q2

�

ð7Þ

where rz and rh are the two inputs of the system. The

submatrices in the regression matrix in Eq. (7) can be

constructed as follows:

rz;N�Q1
¼

rz½0� 0 � � � 0

rz½1� rz½0� � � � 0

..

. ..
. ..

. ..
.

rz½N� rz½N � 1� � � � rz½N �M�

2
6664

3
7775

ð8Þ

The structure for rh;N�Q1
is similar. The contribu-

tions for the second-order direct and cross-terms can

be constructed in the following fashion:

Although not shown here, matrices rhh and rhz are

similarly constructed by changing the subscripts. The

unknown parameter vector to be determined is defined

as:

HQ�1 ¼ Hz
Q1�1

T ;Hh
Q1�1

T
;Hzz

Q2�1
T ;Hhh

Q2�1

T
;Hzh

Q2�1

T
;Hhz

Q2�1

T
h iT

ð11Þ

Hz
Q1�1 ¼ hz1½0�; hz1½1�; . . .; hz1½M�

� �T ð12Þ

Hzz
Q2�1 ¼ ½hzz2 ½0; 0�; hzz2 ½0; 1�; . . .; hzz2 ½0;M�; . . .;

hzz2 ½M; 0�; hzz2 ½M; 1�; hzz2 ½M;M��T
ð13Þ

Hzh
Q2�1 ¼ ½hzh2 ½0; 0�; hzh2 ½0; 1�; . . .; hzh2 ½0;M�; . . .;

hzh2 ½M; 0�; hzh2 ½M; 1�; hzh2 ½M;M��T
ð14Þ

where hi are coefficients in the Volterra kernels in

Eqs. (2) and (3). Although not shown here, the vectors

rzz;N�Q2
¼

rz½0�2 rz½0�0 � � � rz½0�0
rz½1�2 rz½1�rz½0� � � � rz½1�0
..
. ..

. ..
. ..

.

rz½N�2 rz½N�rz½N � 1� � � � rz½N�rz½N �M�

. . .

rz½0�M�rz½0� rz½0�M�0 . . . rz½0�M�0
rz½1�M�rz½1� rz½1�M�rz½0� . . . rz½1�M�0

..

. ..
. ..

. ..
.

rz½N �M�rz½N� rz½N �M�rz½N � 1� � � � rz½N �M�2

2

666664

3

777775

ð9Þ

rzh;N�Q2
¼

rz½0�rh½0� rz½0�0 � � � rz½0�0

rz½1�rh½1� rz½1�rh½0� � � � rz½1�0

..

. ..
. ..

. ..
.

rz½N�rh½N� rz½N�rh½N � 1� � � � rz½N�rh½N �M�

. . .

rz½0�M�rh½0� rz½0�M�0 . . . rz½0�M�0

rz½1�M�rh½1� rz½1�M�rh½0� . . . rz½1�M�0

..

. ..
. ..

. ..
.

rz½N �M�rh½N� rz½N �M�rh½N � 1� � � � rz½N �M�rh½N �M�

2
6666664

3
7777775

ð10Þ
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Hhh and Hhz can be similarly defined by changing the

superscripts. Note that the solution assumes that the

output data have zero mean, so that the coefficient h0
in Eq. (1) vanishes. The least-squared solution of

Eq. (4) can then be solved with the Moore–Penrose

pseudoinverse (denoted by the symbol y):

HQ�1 ¼ ðrTN�QrN�QÞ�1rTN�QFN�1 ¼ ðrN�QÞyFN�1

ð15Þ

The number of coefficients (Q) for the 2nd-order

double-input-single-output Volterra system is given

by:

Q ¼ 2Q1 þ 4Q2; Q1 ¼ ðM þ 1Þ; Q2 ¼ ðM þ 1Þ2

ð16Þ

2.4 Symmetry reduction

The size of the least-squares problem increases

drastically with an increasing memory length, the

number of inputs and model order. A considerable

reduction of the problem without a loss of accuracy

can be made by exploiting the symmetry of the

kernels. Although symmetry is a well-known property,

it is still elaborated upon here due to its necessity to

reduce the memory requirements and calculation time

in the identification problem. A practical and straight-

forward way to implement the symmetries in the

Volterra equations in matrix form is also presented.

Direct kernels can always be made symmetric with

respect to the time lags. For the second-order direct

kernel, the relation hzz2 ½k1; k2� ¼ hzz2 ½k2; k1� holds. For a
largeM, this leads to a reduction of approximately half

the unknown coefficients. Similarly, for the 2nd-order

cross-kernels, the pairwise symmetry relation

hzh2 ½k1; k2� ¼ hhz2 ½k2; k1� holds. The same argument

can be extended to 3rd-order kernels. Considering,

for instance hzzz3 ½k1; k2; k3�, all six possible permuta-

tions of k1, k2, and k3 yield the same Volterra

coefficient. Furthermore, the cross-kernels have the

permutation hzzh3 ½k1; k2; k3� ¼ hzzh3 ½k2; k1; k3� ¼ hzhz3 ½k1;
k3; k2� ¼ hzhz3 ½k2; k3; k1� ¼ hhzz3 ½k3; k1; k2� ¼ hhzz3 ½k3; k2;
k1�. With the removal of redundant coefficients, the

following unique terms remain for a 3rd-order cross-

model:

Hred
W�1 ¼ ½ðHzÞT ; ðHhÞT ; ðHzzÞT ; ðHhhÞT ; ðHzhÞT ;

ðHzzzÞT ; ðHhhhÞT ; ðHzzhÞT ; ðHhhzÞT �T

ð17Þ

This reduction of coefficients is significant without

reducing the model’s performance. For the two-input

case, the number of coefficients is given by:

Q ¼
Xp

i¼1

2i M þ 1ð Þi; W � 2ðM þ 1Þ þ
Xp

i¼2

iðM þ 1Þi

ð18Þ

A pragmatic way of implementing symmetry

reduction is to introduce a sparse Boolean selection

matrix S that populates the full vector of coefficients H

from the smaller vector Hred as follows:

HQ�1¼ SQ�WHred
W�1 ð19Þ

For instance, if, for brevity, one considers a 2nd-

order system withM = 1 with only the vertical motion

as input, Eq. (19) becomes:

hz½0�
hz½1�

hzz½0; 0�
hzz½1; 0�
hzz½0; 1�
hzz½1; 1�

2

6666664

3

7777775
¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

2

6666664

3

7777775

hz½0�
hz½1�

hzz½0; 0�
hzz½1; 0�
hzz½1; 1�

2

66664

3

77775

ð20Þ

where the symmetry hzz½1; 0� = hzz½0; 1�½0; 1� is

enforced. In this example, the reduction of coefficients

from 6 to 5 is minimal, but the effect is significant for

higher orders and larger values of M. For a 3rd-order

double-input–single-output system with M = 20, the

number of coefficients is reduced from 76.000 to

29.000. Inserting Eq. (19) into Eq. (4), the input–

output relation now becomes:

FN�1 ¼ rN�QSQ�WHred
W�1 ð21Þ

Likewise, the least-squares problem with fewer

numbers of unknown coefficients can nowbewritten as:

Hred
W�1 ¼ ðST

Q�WrTN�QrN�QSQ�WÞ�1ST
Q�WrTN�QFN�1

ð22Þ

The computational advantage is clear; the inverse

in Eq. (22) now operates on a matrix with dimensions

WxW rather than QxQ. After the coefficient vector
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Hred is found, the full coefficient vector H can simply

be found by using Eq. (19).

2.5 Regularisation of the least-squares

identification

Regularisation is a well-known technique in inverse

problems for controlling overfitting and increasing the

robustness of the model to predict outputs from new

input data. The regularisation restricts the unknown

parameters, adding a penalty term in the least-squares

problem as follows:

min F � rHk k22þk2 LHk k22
� �

ð23Þ

which is also known as the general form of Tikhonov

regularisation [45]. The corresponding least-squares

solution is given by:

H ¼ ðrTr þ k2LTLÞ�1rTF ð24Þ

Note that, for clarity, this chapter does not include the

symmetry reduction (Eq. 19) in thepresented equations.

However, symmetry reduction is also valid for systems

with regularisation. The choice of the penalty factor k is
elaborated upon later. Setting k = 0 corresponds to no

regularisation, and Eq. (24) reduces to the solution of

the ordinary least-squares problem in Eq. (15). On the

other hand, k[ 0 is helpful for avoiding overfitting and

can help the model distinguish between actual data and

noise when, for instance, the forces F are polluted with

noise or when the model is imperfect, which is always

the case for experimental data.

The Tikhonov matrix L can have different forms

depending on the type of regularisation applied. For

the simplest form of regularisation, i.e., 0th-order

regularisation, L is the identity matrix. This implies

that a penalty proportional to Hk k22 is introduced,

which controls the magnitude of the coefficients.

Another form of regularisation penalises the 2nd-order

derivative between the neighbouring elements, which

has a smoothening effect. For a single-input 1st-order

kernel and M = 3, this can be illustrated as follows:

L1stH
z ¼

1 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

2
664

3
775

hz1½0�
hz1½1�
hz1½2�
hz1½3�

2
664

3
775

ð25Þ

For the 2nd-order kernel, the regularisation

becomes more complicated since the smoothing

should be applied in both the k1 and k2 directions.

Figure 2 illustrates one element’s regularisation in a

2nd-order kernel, where the gradient in both directions

is penalised. For the 3rd-order kernel, smoothing is

conducted in all three directions in the k1–k2–k3 space,

which is shown in the ‘‘Appendix’’.

The matrix L is finally constructed as a block-

diagonal matrix, where each submatrix operates on the

different kernel coefficients. For example, for the 2nd-

order model with two inputs:

LH ¼

L1st

L1st

L2nd

L2nd

L2nd

L2nd

2

666666664

3

777777775

Hz

Hh

Hzz

Hhh

Hzh

Hhz

2

666666664

3

777777775

ð26Þ

Figure 3 shows an example of noisy and clean

kernels. The two kernels are then identified from the

same system. The output of the identified models

becomes almost equal, and it is not necessarily given

that the smooth kernel gives better predictions on

independent validation data. However, for physical

systems, the coarse shape of the noisy kernel is

unrealistic. Models with noisy kernels may often be

less robust than clean kernels. The 2nd-order Tikhonov

Fig. 2 Illustration of 2nd-order Tikhonov regularisation of a

single point in the 2nd-order kernel
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regularisation guides the identification towards a

minimisation of the relative change between neigh-

bouring points, which will in turn minimise the

noisiness of the kernel.

The optimal choice of k is not trivial, and a trade-off
must be made between the amount of penalty applied

and the model fit. One well-documented method is the

L-curve criterion [56], which is aimed at finding a

minimum between the penalty norm LHk k2 and the

residual norm of the data fit rH � Fk k2. A typical

L-curve plot is shown in Fig. 4, which is constructed

by solving the least-squares problem for a range of

different k-values. It can be argued that the corner-

point of the L-curve yields an optimal value for k, as it
represents the least amount of regularisation needed

while still obtaining a reasonably good model fit.

Thus, the regularisation is an interplay between

reducing the model accuracy on the training data and

smoothing the solution.

2.6 Exponential decay regularisation

The Tikhonov matrix L can, in principle, take any

form, and choosing a matrix that reflects prior

knowledge of the connection between the coefficients

could be efficient. Most physical systems have a

fading memory property where the influence of the far

past is negligible, indicating that the Volterra kernels

should converge towards zero at the end of the

memory. This effect can be enforced by introducing a

regularisation that favours decay in the kernels.

Similar ideas were implemented by Birpoutsoukis

et al. and Lawson [38, 57], where both decay

regularisation in the diagonal direction of the kernel

and smoothing regularisation in the off-diagonal

direction were used. In this work, we propose a simple

form of decay regularisation. For a 1st-order kernel,

the decay regularisation is defined as follows:

L1st;decayði; jÞ ¼
e
cðj�1Þ
M � 1

ec � 1

 !
dij; i; j ¼ 1; 2; . . .M þ 1;

where dij ¼
1 for i ¼ j

0 for i 6¼ j

�

ð27Þ

Here, 0\ c B ? is a parameter determining the

steepness of the decay. The diagonal of the regular-

isation matrix is shown in Fig. 5, where some

characteristics can be seen. (1) The curve starts at 0

and ends at 1. (2) The curve converges towards a linear

curve when c is close to 0, indicating a linear

regularisation of the kernel. (3) The curve moves

towards a unit step function for a high c value,

indicating that only the final value of the kernel will be

penalised.

The decay regularisation matrix can also be

extended to the 2nd-order kernel. The regularisation

of the kernel’s diagonal is identical to the 1st-order

Fig. 3 Example of a clean and noisy kernel identified from the

same system. For a given input history, the output from these

kernels could be very similar, but the clean kernel is more

realistic for a physical system. Regularisation promotes smooth

kernels during identification

Fig. 4 Illustration of the L-curve used to determine the optimal

regularisation parameter k
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kernel. The reduction of the first off-diagonal elements

is shifted with one time step, etc. The pattern is

illustrated in the first part of Fig. 6, where elements

with the same letter represent the same decay, and the

higher elements in the alphabet represent stronger

decay regularisation. The full 2nd-order regularisation

matrix is shown in the second part of Fig. 6. Here, one

can see that the regularisation matrix is diagonal, since

no regularisation between the kernel points is applied,

only on the absolute value of each individual kernel

parameter.

L2nd; decayði; jÞ ¼
e
cðmaxðm;qÞ�1Þ

M � 1

ec � 1

 !
dij; where

dij ¼
1 for i ¼ j
0 for i 6¼ j

�

ð28Þ

mðMþ1Þ2 ¼ f1; 2; :::;M þ 1; 1; 2; :::;M þ 1; :::;M þ 1g
ð29Þ

qðMþ1Þ2 ¼ f1; 1; :::1; 2; 2; :::2; :::;M þ 1;M þ 1:::;M þ 1g

ð30Þ

Figure 7 shows the shape of the 2nd-order regular-

isation surface restacked into the k1–k2 plane. The

restacking essentially extracts the diagonal elements,

only placing the elements on the k1–k2 plane according

to the m and q mapping vectors. The 2nd-order

regularisation matrix has the same characteristics as

the 1st-order regularisation matrix. It can also be seen

from the figure that the regularisation surface regu-

larises in both directions.

Introducing the decay regularisation could be done

in at least two ways: using the same value for k, the
decay regularisation of the 1st- and 2nd-order kernels

or using two separate k values. In this work, the latter

Fig. 5 Diagonal of the first order regularisation matrix when

using the decay regularisation method. Three different c
parameters are shown

Fig. 6 Left: Illustration of

the weight of the decay

regularisation for the 2nd-

order kernel. A higher

number in the alphabet

illustrates stronger

regularisation. Right: The

full 2nd-order decay

regularisation matrix.

Variables m and q are

identification vectors

mapping the point in the

regularisation matrix back to

the kernel
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choice is made. The 1st- and 2nd-order regularisation

matrices are block-diagonal-independent of one

another. Further inserting the decay regularisation

into Eq. (15) gives:

HQ�1 ¼ ðrTr þ k21st ;decayL
T
1st ;decay;totL1st ;decay;tot

þ k22nd ;decayL
T
2nd ;decay;totL2nd ;decay;totÞ

�1rTF

ð33Þ

where k1st;decay and k2nd;decay are the 1st- and 2nd-order
decay parameters. Using this approach generates 3

unknown parameters. A pragmatic way of finding the

parameters chosen here is (1) choosing parameter c
between 3 and 10; and (2) loop over different k1st;decay
and k2nd ;decay values, making a 3-dimensional L-curve

with L1st;decay;totH
�� ��

2
, L2nd;decay;totH
�� ��

2
and

rH � Fk k2 on the axis. Figure 8 shows an example

of this. The optimal point is as near the origin as

possible, reducing all three norms.

2.7 Least-squares algorithms

Note that least-squares solvers in popular program-

ming languages (e.g., MATLAB or Python) often

include a solution that utilises a truncated singular

value decomposition (SVD), which is also a form of

regularisation. Thus, the nonregularised solutions

denoted ‘‘LSQ’’ (calculated by the function mldivide()

in MATLAB) may include a small amount of regu-

larisation imposed by the machine to stabilise the

solution so that singular values that are small

compared to machine precision are filtered out. As

will be shown, however, this form of inbuilt regular-

isation is typically not sufficient to avoid noise

magnification. Truncated SVDs are an alternative

form of regularisation that is not discussed here [58].

Fig. 7 Shape of the 2nd-order decay regularisation mapped on

the k1-k2 plane similar to the kernel. c = 5

L1st;decay;totH ¼

L1st;decay

L1st;decay

0 Mþ1ð Þ2; Mþ1ð Þ2
0 Mþ1ð Þ2; Mþ1ð Þ2

0 Mþ1ð Þ2; Mþ1ð Þ2
0 Mþ1ð Þ2; Mþ1ð Þ2

2

6666664

3

7777775

Hz

Hh

Hzz

Hhh

Hzh

Hhz

2

6666664

3

7777775

ð31Þ

L2nd ;decay;totH ¼

0ðMþ1Þ;ðMþ1Þ
0ðMþ1Þ;ðMþ1Þ

L2nd ;decay

L2nd ;decay

L2nd ;decay

L2nd ;decay

2

6666664

3

7777775

Hz

Hh

Hzz

Hhh

Hzh

Hhz

2

6666664

3

7777775
ð32Þ
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3 Numerical validation

A numerical example is presented to evaluate the

performance of the regularisation. The same example

has also been used in Skyvulstad et al. [19] to identify

the parametric Volterra models. The 1st-order kernel is

assumed to be shaped as a rational function without

instantaneous terms [59]:

h1 ¼ � dV

B
e �dV

B tð Þ ð34Þ

The linear model is then expanded to a nonlinear

model, introducing a static nonlinearity to form a

Weiner model:

F ¼ a1F1 þ a2F
2
1 þ Fnoise ð35Þ

F1 ¼
XM

k¼0

h1½k�r½n� k� ð36Þ

where a1 and a2 are constants, F1 is the force from the

linear 1st-order kernel, and r is the input driving the

system. Additive noise, Fnoise, is added to the output.

The input–output data are used to train models with

and without regularisation. Two input–output datasets

were used:

1. SNR (signal-to-noise ratio) = ?, i.e., a pure

signal without added output noise (Fnoise ¼ 0).

2. SNR = 10. A signal-to-noise ratio of 10 represents

imperfect experimental measurements.

The input driving the system, r, is a time series with

pink noise that illustrates a scenario with energy

concentrated at low frequencies, as seen for the

turbulent wind spectrum. The additive noise, Fnoise,

is an independent pink noise realisation. Different

types of models were tested:

1. R0 = 0th-order Tikhonov regularisation.

2. R1 = 2nd-order Tikhonov regularisation sepa-

rated into Low, High and Best denoting a low,

high and best possible value, respectively, for the

regularisation coefficient, k2, according to the

L-curve criterion. Figure 9 shows the L-curve

with the chosen k values.

3. LSQ = model without regularisation.

4. DECAY = model with a decay type of regularisa-

tion, with c = 5.

All optimal regularisation coefficients are found by

utilizing the L-curve or double L-curve. Supplemen-

tary parameters can be found in Table 1.

All models identified on the dataset without noise

gave near perfect model fits, and the suggested k was

Fig. 8 Double L-curve; the

optimal point is marked in

red. The Double-L Curve is

from the theoretical system

given in Sect. 2. (Color

figure online)
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close to zero, indicating that no regularisation was

needed. This means that the Volterra model is able to

model the theoretical problem, and that the regularised

models are also applicable for noise-free data, even if

there is no advantage of using regularisation on noise-

free data with a perfect model fit. The presentation of

the perfect noise-free dataset is therefore minimised.

An advantage of the Volterra series models is that

the kernels can give insight into the physics of the

system. Since the Volterra series model is said to

model a wide range of nonlinearities, if a sufficiently

high model order is used, a true set of kernels could, in

theory, be found for a wide range of nonlinear systems.

Furthermore, since the Volterra kernels are a gener-

alisation of the impulse response function, the iden-

tified kernels can give insight into several aspects of

the system, including (1) memory lengths for the

different orders, (2) contributions from the different

kernel orders, (3) time-lag effects, and (4) coupling

effects between impulses with different time-lags. The

kernels can also be transformed into the frequency

domain in order to study the multidimensional

frequency response functions to gain further insight.

Both smooth and decaying kernels are expected for the

physical system of self-excited forces on bridge decks,

and it is therefore important to evaluate not only the

Fig. 9 L-Curve plot of the Volterra model with 2nd-order

regularisation. Low, Best and High denote different models used

Fig. 10 1st-order kernels of

the identified Volterra

models. R0 and R1 denote

0th-and 2nd-order Tikhonov

regularised models. Decay

denotes the model with

decay regularisation, and

LSQ denotes the model

without regularisation

Table 1 Parameters of the

numerical example
d = 3, V = B = 1 a1 = 1, a2 = 0.1

Nr. of training data points, N = 10.000 Nr. of validation data points, N = 10.000

M = 25 dt = 0.1 s

c = 5 (decay factor) k2SNR=? = 10–14

k2low, k
2
best, k

2
high = {5, 400, 104} k21st,decay, k

2
2nd,decay = {104, 103}
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performance of the models, but also the shape of the

kernels.

Figure 10 shows the 1st-order kernels for the

various Volterra models. The case without noise is

excluded. The kernel from the LSQ model with noise

has some scatter at the end of the kernel, but it is not

significant. The highly regularised model (R1 high)

over-smooths the kernels, while (R1, low) portrays a

kernel similar to that obtained by standard least-

squares. The (R1 best) model is reasonably smooth but

does not fully capture the negative start values of the

kernel. The same effect is seen for the R0 regularisa-

tion. The Decay model seems to predict the kernel

fairly well but overshoots the negative values slightly.

Figure 11 shows the 2nd-order kernels for the

estimated Volterra models. Figure 12 shows the

diagonal of the 2nd-order kernels to better compare

the amplitudes of the different kernels. One can see

that the LSQ model gives the noisiest kernels. The

same effects can be seen on the R1, Lowmodel, but the

noise is reduced, while R1, High over smooth the 2nd-

order kernel, and R1, best gives a good kernel

estimation, but the top of the kernel is underestimated.

Decay regularisation gives a good prediction of the

kernel, and the kernel goes to zero towards the end of

the memory.

Figure 9 shows the L-curve for the R1 models

denoting high, low, and best choice for the k factor.

Figure 13 shows the double L-curve for the Decay

model. Both L-curves have distinct corner regions,

making it viable to extract a suitable value for k.

Fig. 11 2nd-order kernels for the different Volterra models

identified from the theoretical input–output data. R1 denotes the

model with 2nd-order Tikhonov regularisation. Decay denotes

the model with decay type regularisation. LSQ denotes the

model without regularisation. SNR denotes the signal-to-noise

ratio
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For most physical systems, smooth kernels are a

sign that the identified model is reasonable. Never-

theless, the model needs to be validated on new

datasets. For the presented numerical example, three

sets of validation datasets were used: (1) pink noise

validation input data with N = 10.000, with

N = 10.000 pink noise training data, (2) white noise

validation input data with N = 10.000, with

N = 10.000 pink noise training data, and (3) white

noise validation input data with N = 10.000, with

N = 100.000 pink noise training data. The first case

(pink noise input) has identical statistical properties as

the input in the training dataset. The white noise inputs

have a wider frequency content compared with the

training dataset. In practical engineering, the experi-

mental data could, quite possibly, only cover a limited

range of the operating data. The model needs to be

reliable and robust for these cases. Figure 14 shows

Fig. 12 Diagonal of the

2nd-order kernels from the

models identified from the

theoretical input–output

data. R1 denotes the 2nd-

order Tikhonov regularised

model. Decay denotes the

model with decay

regularisation. LSQ denotes

the model without

regularisation

Fig. 13 Double L-curve for the SNR = 10 decay regularised model
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some of the model predictions compared to the

independent white noise validation data. It is seen

from the figure that Decay and R1, best perform

significantly better than the LSQmodel. The increased

performance for the regularised models can be

explained by the increased model robustness using

the regularised models.

The normalised mean square error (NMSE) is used

to evaluate the model prediction. The NMSE is

defined as:

NMSE ¼ 1�
xref � xpred

�� ��2

xref �meanðxref Þ
�� ��2 ð37Þ

where xref is the measured data, xpred is the predicted

data, and xk k represents the second norm. The NMSE

varies between 1 for a perfect fit and -? for a very

poor fit. Table 2 shows the different model perfor-

mances according to the NMSE. The model with pink

noise validation data performs very well for all the

models. The lengths of the training data differ for the

white noise validation data, and it can be seen that the

length of the training data increases all model

performance with noise. All models without noise

give a perfect fit for both lengths of training data,

which is expected since a Volterra-type model was

used to generate the data used in the numerical

example. It is interesting to note that the regularised

models perform better for the white noise validation

data than the nonregularised ones. Even the R1, Low

model has a significant performance boost compared

with the pure LSQ model. It is also interesting to note

that the Decay regularisation model performs the best

models with noise. These observations indicate that

this form of regularisation could be a good choice for

decaying nonlinear systems.

4 Wind tunnel experiments

A wind tunnel experimental campaign was conducted

at the Norwegian University of Science and Technol-

ogy (NTNU). A forced vibration rig with the ability to

excite a section model in an arbitrary prescribed

Fig. 14 Time-domain realisations of different Volterra models. The training data input is N = 10.000 pink noise with additive pink

noise on the output, and the validation input data is N = 10.000 white noise

Table 2 NMSE performance of the different models with

different validation data and training data

Training data type Pink Pink Pink

Training data length (N) 10.000 10.000 100.000

Validation data type Pink White White

Signal to noise ratio (SNR) 10 10 10

Noise in the training data Pink Pink Pink

R0, SNR = ? 1.000 1.000 1.000

R0, SNR = 10 0.994 0.954 0.997

R1, SNR = ? 1.000 1.000 0.934

R1, SNR = 10, k2 = best 0.998 0.970 0.998

R1, SNR = 10, k2 = high 0.951 0.630 1.000

R1, SNR = 10, k2 = low 0.999 0.977 0.993

LSQ, SNR = ? 1.000 1.000 0.999

LSQ, SNR = 10 0.999 0.886 0.999

Decay, SNR = 10 0.999 0.989 1.000
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vertical, horizontal, and pitching motion was used. For

a description of the test rig, see the cited paper

Siedziako et al.[53]. Figure 1 shows the shape of the

tested section model. The beams between the bridge

decks were not included in the model, and the detailing

consists of two railings and a windscreen per deck.

Figure 15 shows a picture of the section model

mounted in the test rig. The sectionmodel is connected

to a load cell at each end, measuring forces at 200 Hz.

All tests were conducted in a smooth flow.

The method from Han et al. [60] was used for the

extraction of self-excited forces. The method

involves testing identical motions in wind and in

still air to obtain the self-excited forces as the

difference between the two. The test overview is

summarised in Table 3. The shape of the static

coefficients, shown in Fig. 16, indicates that nonlin-

earities in the lift and pitching moment could be

present for a mean angle of attack of - 2 degrees. A

mean angle of attack of -2 degrees is within

reasonable operating limits for long-span bridges

[61, 62]. The remainder of the tests, consisting of

single harmonic and stochastic motions, were con-

ducted at a mean angle of attack of - 2 degrees to

further investigate the effect of nonlinearities. The

stochastic motions are time-domain realisations of

band-limited white noise with a constant spectrum

between 0 and 2.5 Hz. The stochastic motions are

Fig. 15 Section model mounted in the forced vibration rig in the wind tunnel at NTNU, Trondheim, Norway

Table 3 Overview of the

wind tunnel tests. T denotes

the pitching motion, and TV

denotes combined pitching

and vertical motion

Type of test Static coefficient Single harmonic Stochastic motion

Amplitude, vertical [m] 0 0 Max 0.04

Amplitude, pitch [deg�] - 5 to ? 5 2 Max 4

Number of tests 1 3 2

Duration 10 s per angle increment 20 full cycles 320 s

Wind speed [m/s] 12 12 12

Degree of freedom T T T, TV

Mean angle of attack [�] 0 - 2 - 2

Frequency [Hz] N/A 0.8, 1.7, 2.5 0–2.5
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then used as training and validation data for the

Volterra models, and the single harmonic tests are

utilised as a part of the validation of the models.

Single degree of freedom pitching motions and two

degrees of freedom combined pitching and vertical

stochastic motions tests were used.

Fig. 16 Static coefficients. CD, CL, and CM denote drag, lift and

pitching moment static coefficients. Drag is normalised to the

bridge deck height, the lift is normalised to the total bridge deck

width and pitching moment is normalised to the square of the

bridge deck width

Table 4 NMSE values for different models. The models are trained with stochastic motion data and validated with an independent

set of stochastic motion data

Order Wind speed (m/s) Memory k, R1 k, Decay k1st/k2nd NMSE R1 NMSE LSQ NMSE decay

CD 1st 12 60 101 101 0.643 0.661 0.640

CD 2nd 12 60 10–2 101/10–1 0.933 0.927 0.934

CD 3rd 12 60 10–3 – 0.930 0.935 –

CL 1st 12 60 101 101 0.796 0.818 0.797

CL 2nd 12 60 10–1 101/10–1 0.979 0.983 0.980

CL 3rd 12 60 10–8 – 0.982 0.982 –

CM 1st 12 60 10–1 10–2 0.941 0.961 0.960

CM 2nd 12 60 10–5 10–2/10–5 0.991 0.994 0.993

CM 3rd 12 60 10–8 – 0.994 0.996 –

123

H. Skyvulstad et al.



5 Experimental validation

This chapter presents the modelling of the self-

excited forces v Volterra models for the twin deck

shown in Fig. 15. First, different Volterra models

were trained on one degree of freedom (1DOF)

stochastic pitching motion data. Furthermore, the

models were validated using independent stochastic

Fig. 17 Figures from self-excited lift force modelling on 12 m/

s random pitching motion tests: (a–c) 1st-order kernels for

different models. R1, LSQ and Decay denote 2nd-order

regularisation, without regularisation and using decay

regularisation, respectively. (d and f) are the L-curves for the

2nd-order regularisation models. (e, g, h) are the 2nd-order

kernels for the different models
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input motions, and the performance of the models is

tested for single harmonic input motions. Last, the

two degrees of freedom data are used to check the

regularisation method validity of the Volterra mod-

els, including the cross-terms of vertical and pitching

movement.

Fig. 18 Models of the self-excited pitching moment on 12 m/s

random pitching motion tests: (a–c) 1st-order kernels for

different models. R1, LSQ and Decay denote 2nd-order

regularisation, without regularisation and using decay

regularisation, respectively. (d and f) are the L-curves for the

2nd-order regularisation models. (e, g, h) are the 2nd-order

kernels for the different models
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5.1 Single degree of freedom data

In the following, 1st-, 2nd-, and 3rd-order Volterra

models with different regularisation types have been

calibrated and validated for a single degree of freedom

stochastic pitching motion. The stochastic motion is a

time-domain realisation of coloured noise with a

constant spectrum between 0 and 2.5 Hz. The training

Fig. 19 Figures from the self-excited drag force modelling on

12 m/s random pitching motion tests: (a–c) 1st-order kernels for
different models. R1, LSQ and Decay denote 2nd-order

regularisation, without regularisation and using decay

regularisation, respectively. (d and f) are the L-curves for the

2nd-order regularisation models. (e, g, and h) are the 2nd-order
kernels for the different models
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and validation data are 300 s long with a sampling rate

of 66.6 Hz, giving N * 20.000 samples. The flow in

the wind tunnel is smooth with a velocity of 12 m/s. A

memory length of M = 60 is used, since more

extended memory did not improve the performance.

The numerical example showed that the 0th-order

Tikhonov regularisation had a lower performance than

the 2nd-order Tikhonov regularisation. The 0th-order

regularisation is, therefore, not explored in the

following. Note that the decay type of regularisation

is only developed for models up to the 2nd order. The

optimal k factors were found using the L- or double L-
curve. Table 4 shows the performance of the tested

Volterra models. The different models are summarised

as follows: (1) R1 is the 2nd-order Tikhonov regular-

isation model, and (2) LSQ is the least-squares

identification without regularisation, using mldivide()

in MATLAB. Decay denotes decay regularisation

with c = 5. The table shows that increasing the model

order from 1 to 2 increases the performance in the

NMSE metric, while increasing the model order to the

3rd-order gives a minor improvement. Lift and drag

forces show signs of nonlinearities because of the

significant performance increase from the 1st- to the

2nd-order models. The different models with the same

model order perform similarly, but the nonregularised

Fig. 20 Measured vs. predicted forces from different models.

R1, LSQ and Decay denote the 2nd-order Tikhonov regularised

models, the nonregularised models, and the decay regularised

models. The models are trained on self-excited pitching motion

experimental data and validated on an independent set of

experimental data
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models tend to give a slightly better NMSE. The

nonregularised solution is very free to adapt its

coefficients but also leads to highly non-smooth

kernels, as illustrated in Fig. 17b and g. Although

nonregularised kernels might sufficiently reproduce

the output due to their cancellation effects (i.e., large

dips and large peaks in the impulse response will

cancel out in the output), it can be argued that they do

not reflect the physics of the problem. The regularised

solution, however, gives some insight into the fluid

memory effects. For instance, in Fig. 17h, it is clear

that the kernel is concentrated around short time lags

(k1\ 10, k2\ 10), which is not at all possible to

deduce from the nonregularised solution in Fig. 17g.

Interestingly, the 2nd-order model for the drag force

without regularisation performs worse than the regu-

larised versions. This can be due to the high noise-to-

signal ratio of the drag force.

Note that the linear benchmark of the 1st-order

model is expected to perform equally well or slightly

better than the well-established rational-function

approximation model [59], since both are impulse-

response function models.

Figures 17, 18 and 19 show the 1st- and 2nd-order

kernels and the L-curves for the identified Volterra

models. Figure 17 shows the lift force models. First,

Fig. 21 Measured vs. predicted forces from different models.

R1 denotes 2nd-order Tikhonov regularisation models, and 1st

and 2nd relate to 1st- and 2nd-order Volterra models. The

models are trained on self-excited pitching motion experimental

data and validated on an independent set of experimental data
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one can observe that both L-curves have well-defined

corner points. The shape of the kernels from the

Tikhonov regularisation looks far smoother than the

nonregularised one. The 1st- and 2nd-order kernel

should probably converge to 0 at the end of the kernel.

Introducing a longer memory M was explored, but

produced the same results. On the other hand, the

decay kernels look more realistic than the others.

Figure 18 shows an in-depth view of the pitching

moment Volterra models. The L-curve of the model

has no distinct corner point due to the lower signal–

noise ratio of the measured pitching moment com-

pared to the measured lift force. The 2nd-order

Tikhonov model gives an unfavourable shape of the

1st-order kernel since it is increasing. This could be a

sign of overfitting. The problem could also be due to

the low nonlinearity of the data giving an almost

obsolete 2nd-order part of the model, which again

provides a significant number of free unknowns. The

nonregularised models give very noisy kernels, as can

be seen for the lift force. The decay regularisation

gives very smooth kernels with high maximum values

of the 2nd-order kernel for low memory lengths. This

might be a sign of overfitting as well.

Figure 19 shows an in-depth view of the drag force

models. The L-curve shows distinct corner points,

indicating significant experimental noise. The kernels

from the nonregularised models are very noisy. The

1st-order kernels from the Tikhonov models do not

converge to 0. The decay kernels are very clean and

are probably close to the true kernel.

5.1.1 Time-domain comparison of self-excited force

Figures 20 and 21 show comparisons of the experi-

mental self-excited forces and predictions by the

Volterra models. All 2nd-order models perform very

well and provide predictions that are almost equal. The

1st-order model struggles to predict the drag and lift

force and, to some extent, the pitching moment. This

indicates that significant nonlinearities are present for

these force components.

Figure 22 shows two model predictions for models

trained on the same dataset. One can clearly see that

not having any form of regularisation gives signifi-

cantly unstable behaviour for the first M elements.

This issue is not major but might cause instability

issues for an unwary user trying to run time-domain

simulations of a model loaded with a nonregularised

Volterra model.

5.1.2 Harmonic motion validation

For all nonlinear models, it is highly recommended to

have a training dataset that covers the entire operating

region of the model. However, in many cases this

might not be possible for practical reasons, and it is

therefore recommended to train a model that is as

robust as possible. In this section, the robustness of the

models is validated using harmonic input motions. The

input motions are within the region of the training data

but are still very different from the broadband

stochastic motion used as training data.

Figures 23, 24 and 25 show a comparison between

the measured and predicted forces for three different

harmonic motions. The first two cycles are removed

from the experimental data to remove possible tran-

sient effects. The remaining 18 cycles are then shown

in the figures as light grey lines, and the mean values

are shown as dark blue lines. Some general comments

can be made. The 2nd-order models capture the first

two peaks in the Fourier amplitudes at one and two

times the harmonic motion frequency, and the 1st-

order models capture the first peak. The 1st-order

gives elliptical hysteresis since the model is linear.

Figure 23 shows the predicted drag force. An

accurate prediction of the drag force is challenging

since the data used to identify the kernels have a high

Fig. 22 Comparison of the first predicted element from a

regularised and a nonregularised model. Both plots are the same

but with different Y-axis limits. R1 and LSQ denote the 2nd-

order Tikhonov model and the nonregularised model
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noise-to-signal ratio. The 2nd-order model predictions

for the 0.8 and 1.7 Hz series is slightly off near the

largest angles of attack, but all models predict nearly

the same loop. For the 2.5 Hz case, the model without

regularisation differs significantly from the measured

loop and predictions by the other two models. This

observation indicates overfitting for the nonregu-

larised model. It is also important to note that 2.5 Hz

single harmonic input motion with a 2-degree

amplitude is close to the border of the applied training

data since coloured noise data with a frequency

content between 0 and 2.5 Hz was used. The decay

model is the model that best fits the single harmonic

drag data.

Figure 24 shows a comparison of the measured and

predicted lift forces for single harmonic motion. The

lift force damping is minimal, so the hysteresis is

almost flat. For the 2.5 Hz data, the nonregularised

Fig. 23 Measured experimental and predicted drag forces for

single harmonic motion. The model predictions are trained on

stochastic motion experimental self-excited drag force data. R1,

LSQ and Decay denote the 2nd-order Tikhonov regularised

models, the nonregularised models, and the decay regularised

models. (Color figure online)
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model seems to struggle with the prediction due to

overfitting. The rest of the hysteresis fits reasonably

well.

Figure 25 presents a comparison of the measured

and predicted lift forces for single harmonic motion.

The hysteresis is almost elliptical, and the 2nd-order

effects are negligible. Only minor discrepancies

between the predicted and measured hysteresis data

are present, which supports the observations seen

earlier in this paper.

5.2 Two degrees of freedom motion

Two degrees of motion freedom, consisting of simul-

taneous random vertical and pitching motion, has also

been tested in the wind tunnel. These two motion

histories are used as inputs to the self-excited force

model. 1st- to 3rd-order multi-input–single-output

Volterra models have been calibrated and validated on

two independent self-excited force datasets. The

different model identification methods used are as

Fig. 24 Measured experimental and predicted lift forces for

single harmonic motion. The model predictions are trained on

stochastic motion experimental self-excited lift force data. R1,

LSQ and Decay denote the 2nd-order Tikhonov regularised

models, the nonregularised models, and the decay regularised

models. (Color figure online)
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follows: (1) R1 is the 2nd-order Tikhonov regularisa-

tion model, (2) LSQ is the least-squares model without

regularisation using the mldivide() function in

MATLAB, and (3) Decay is the decay type regular-

isation with c = 5. In addition, a no-cross model is

introduced, which is a higher-order Volterra model

without cross-kernels. The model is introduced to

investigate the effects of neglecting the cross-input

nonlinearity.

The stochastic motion excited in the wind tunnel is

coloured noise with a constant spectrum between 0

and 2.5 Hz. The training data and validation data are

300 s with a sampling rate of 66.6 Hz, giving

N * 20.000 samples. For the 1st- and 2nd-order

model, a memory length of M = 45 elements is used.

The decreased memory lengths compared with the

1DOF tests do not reduce the performance, and it

speeds up the computation and reduces the number of

unknowns. Due to the high computational demand of

Fig. 25 Measured experimental and predicted pitching

moments for single harmonic motion. The model predictions

are trained on stochastic motion experimental self-excited

pitching moment data. R1, LSQ and Decay denote the 2nd-order

Tikhonov regularised models, the nonregularised models, and

the decay regularised models. (Color figure online)
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the 3rd-order MISO models, a memory length of

M = 15 is used. All k factors were found using the L-

or double L-curve. Note that the k-factor is set equal
for all kernels for the Tikhonov regularisation models.

For the decay type of the model, two k factors were

introduced, one for the 1st-order kernels and one for

the 2nd-order kernels, meaning that all direct and

cross-terms of the same order have equal weighted

regularisation. Note that for modelling of MISO

models compared to SISO models, the amount of

unknown greatly increases meaning that the demand

for additional training data increases to avoid

overfitting.

Table 5 shows the NMSE values for the different

models. Nonlinearity is present for both the lift and the

drag forces due to the low performance of the 1st-order

Volterra models. The 3rd-order models without cross-

terms and regularisation show a low performance

compared to the other models, which is probably due

to overfitting. The no-cross model with regularisation

does not struggle nearly as much. Since the 3rd-order

models perform worse than the 2nd-order models, this

could be due to overfitting, but could also be related to

the shorter memory lengths. The rest of the models

perform relatively equally and at a high level.

Figure 26 shows Volterra kernels for various

models trained on the experimental self-excited drag

force data. The same conclusions as for the 1 DOF

cases can be drawn regarding the shape of the kernels:

(1)Models without regularisation have kernels that are

very noisy; (2) Kernels using the 2nd-order regular-

isation reduces the noisiness but does not decay

towards zero; and (3) Kernels from the Decay-type

regularisation makes the kernels significantly cleaner.

Note that all the 2nd-order models have an almost

equal performance for independent validation data.

Figure 27 shows the time-domain realisation from

various Volterra models trained on measured self-

excited drag forces caused by 2DOF stochastic

motion. The centre plot shows the performance of

the 2nd-order models. The model performance of the

2nd-order models is good, but some underpredictions

are found for the peaks, especially when the vertical

motion velocity is at its highest together with high

torsional displacements, which can be seen at approx-

imately 241.8 s. Overall, the 2nd-order model per-

forms very well.

The bottom plot in Fig. 27 shows the two 3rd-order

Volterra models trained without including cross-terms

for the self-excited drag force. According to Table 5,

the no-cross model with regularisation performed

fairly well, with some overfitting, but the no-cross

model without regularisation had significant overfit-

ting issues. This is also seen in the time-domain

realisation, where one can observe that the model

without regularisation has high-frequency oscillations

around the experimental measurements. This is espe-

cially present in the interval of 236–237 s in the

bottom part of Fig. 27. This shows that regularisation

of the kernels can alleviate the problem of overfitting.

6 Conclusion

This paper explored the use of regularised least-

squares identification of Volterra models for nonlinear

bridge aerodynamics applications. The main findings

indicate that the regularised least-squares

Table 5 NMSE values for the models and forces

Order Wind speed

(m/s)

Memory k,
R1

k, Decay
k1st/k2nd

NMSE

R1

NMSE

LSQ

NMSE

Decay

NMSE no-

cross R1

NMSE no-cross

LSQ

CD 1st 12 45 10–2 100 0.654 0.655 – – –

CD 2nd 12 45 10–3 100/10–1 0.938 0.930 0.936 0.929 0.745

CD 3rd 12 15 10–3 – 0.925 0.935 – 0.917 -13.712

CL 1st 12 45 10–1 100 0.787 0.793 – – –

CL 2nd 12 45 10–1 100/10–1 0.951 0.961 0.952 0.950 0.954

CL 3rd 12 15 10–4 – 0.945 0.833 – 0.941 -8.120

CM 1st 12 45 10–2 10–3 0.948 0.952 – – –

CM 2nd 12 45 10–6 10–3/10–4 0.985 0.988 0.985 0.985 0.988

CM 3rd 12 15 10–9 – 0.989 0.901 – 0.989 - 1.809
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identification of the Volterra model has several

advantages. The models are more robust, the shape

of the kernels becomes more realistic, and prior

knowledge of the expected shape of the kernel can be

used when introducing the regularisation.

The models were studied by considering a numer-

ical example and measured self-excited forces from

forced vibration wind tunnel tests. The following

conclusions can be drawn from the considered

examples:

Fig. 26 Kernels from 2nd-order Volterra models trained on experimental self-excited drag force 2DOF stochastic motion data. R1,

LSQ and Decay denote the 2nd-order Tikhonov regularised models, the nonregularised models, and the decay regularised models
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• Models identified by ordinary and regularised

least-squares perform equally well if the training

data are long enough and the training data and the

validation data have the same frequency content. If

that is not the case, then the models identified by

regularised least-squares perform better than those

where regularisation has not been applied.

• For the experimental single degree of freedom

motions studied, it is observed that the regularised

and the nonregularised versions perform well for

all considered cases. However, the regularised

version’s performance is better for some single

harmonic cases due to less overfitting. This is

because single harmonic motions were not used to

obtain the Volterra kernels.

• The kernels obtained by nonregularised least-

squares are unphysical. Tikhonov regularisation

improves this, to a certain extent, while decay

regularisation ensures that the kernel also decays as

they should.

• For combined vertical pitching motion, the higher-

order models can predict the forces with a

relatively good accuracy. Nevertheless, for the

drag force, the nonregularised version of the

incomplete models without cross-terms struggle

to predict the forces as well as the models obtained

with regularised least-squares.

Fig. 27 Time-domain realisation of the drag force from various

Volterra models trained on experimental self-excited 2DOF

stochastic motion data. R1, LSQ and Decay denote the 2nd-

order Tikhonov regularised models, the nonregularised models,

and the decay regularised models, and no-cross models denote

Volterra models without cross kernels
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Regularised Volterra model identification is a

viable method for modelling nonlinear self-excited

forces. It is also expected that similar models could be

developed for a wider class of nonlinear bridge

aerodynamics problems, including large angles of

attack caused by turbulence and limit cycle

oscillations.

6.1 Toolbox

The authors have supplied a MATLAB toolbox

together with the manuscript.
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Appendix A

Supplemental equations for the 3rd-order Volterra

model

The appendix gives additional equations for the

discrete 3rd-order Volterra model with two inputs to

supplement the main report. Equation references to the

main report are provided in parentheses. A discrete-

time 3rd-order Volterra model with two inputs, rz and

rh, can be formulated as follows (Eq. 3):

F½n� ¼ h0 þ
XM

k¼0

hz1½k�rz½n� k� þ
XM

k¼0

hh1½k�r1½n� k�

þ :::

ð38Þ

Fig. 28 Illustration of 2nd-order Tikhonov regularisation of a single point in the 3rd-order kernel. Illustrates 3 different (k1-k2) planes

in the (k1,k2,k3) space of the third-order kernel
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XM

k1¼0

XM

k2¼0

hzh2 ½k1; k2�rz½n� k1�rh½n� k2�

þ
XM

k1¼0

XM

k2¼0

hhz2 ½k1; k2�rh½n� k1�rz½n� k2� þ :::

XM

k1¼0

XM

k2¼0

XM

k3¼0

hzzz3 ½k1; k2; k3�rz½n� k1�rz½n� k2�rz½n

� k3� þ
XM

k1¼0

XM

k2¼0

XM

k3¼0

hhhh3 ½k1; k2; k3�rh½n� k1�rh½n

� k2�rh½n� k3�

XM

k1¼0

XM

k2¼0

XM

k3¼0

hzzh3 ½k1; k2; k3�rz½n� k1�rz½n� k2�rh½n

� k3� þ
XM

k1¼0

XM

k2¼0

XM

k3¼0

hzhz3 ½k1; k2; k3�rz½n� k1�rh½n

� k2�rz½n� k3�

XM

k1¼0

XM

k2¼0

XM

k3¼0

hhzz3 ½k1; k2; k3�rh½n� k1�rz½n� k2�rz½n

� k3� þ
XM

k1¼0

XM

k2¼0

XM

k3¼0

hhhz3 ½k1; k2; k3�rh½n� k1�rh½n

� k2�rz½n� k3�

XM

k1¼0

XM

k2¼0

XM

k3¼0

hhzh3 ½k1; k2; k3�rh½n� k1�rz½n� k2�rh½n

� k3� þ
XM

k1¼0

XM

k2¼0

XM

k3¼0

hzhh3 ½k1; k2; k3�rz½n� k1�rh½n

� k2�rh½n� k3�

The regression matrix is constructed in the follow-

ing way for a 3rd-order, two-input system (Eq. 7):

rN�Q ¼ ½rz;N�Q1
; rh;N�Q1

; rzz;N�Q2
; rhh;N�Q2

; rzh;N�Q2
;

rhz;N�Q2
; rzzz;N�Q3

; rhhh;N�Q3
; rzzh;N�Q3

; rzhz;N�Q3
:::

ð39Þ

rhzz;N�Q3
; rhhz;N�Q3

; rhzh;N�Q3
rzhh;N�Q3

�

The submatrices involving the 3rd-order expansion

can be constructed as follows

where � is the Hadamard product (element-wise

product) of two equal-sized matrices. The remaining

matrices are constructed similarly by changing the

subscripts. The unknown parameter vector is defined

(Eq. 11):

HQ�1 ¼ ½Hz
Q1�1

T ;Hh
Q1�1

T
;Hzz

Q2�1
T ;Hhh

Q2�1

T
;Hzh

Q2�1

T
;

Hhz
Q2�1

T
;Hzzz

Q3�1
T ;Hhhh

Q3�1

T
;Hzzh

Q3�1

T
;Hzhz

Q3�1

T
;

Hhzz
Q3�1

T
;Hhhz

Q3�1

T
;Hhzh

Q3�1

T
;HzhhT

Q3�1�
T

ð42Þ

:

rzz;N�Q2
¼

rz½0�2 rz½0�0 � � � rz½0�0
rz½1�2 rz½1�rz½0� � � � rz½1�0
..
. ..

. ..
. ..

.

rz½N�2 rz½N�rz½N � 1� � � � rz½N�rz½N �M�

. . .

rz½0�M�rz½0� rz½0�M�0 . . . rz½0�M�0
rz½1�M�rz½1� rz½1�M�rz½0� . . . rz½1�M�0

..

. ..
. ..

. ..
.

rz½N �M�rz½N� rz½N �M�rz½N � 1� � � � rz½N �M�2

2
666664

3
777775

ð40Þ

rhzz;N�Q3
¼ rzz �

rh½0� � � � rh½0�
..
. ..

.

rh½N� � � � rh½N�

2

64

3

75; � � � ; rzz �
rh½0�M� � � � rh½0�M�

..

. ..
.

rh½N �M� � � � rh½N �M�

2

64

3

75

2

64

3

75 ð41Þ
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Hzzh
Q3�1 ¼ ½hzzh3 ½0; 0; 0�; hzzh2 ½0; 0; 1�; :::; hzzh2

½0; 0;M�; :::; hzzh2 ½0;M;M�; :::; hzzh2 ½M;M;M��T

ð43Þ

The number of coefficients (Q) for the 3rd-order

double-input–single-output Volterra system is given

by (Eq. 16):

Q ¼ 2Q1 þ 4Q2 þ 8Q3; Q1 ¼ ðM þ 1Þ; Q2

¼ ðM þ 1Þ2; Q3 ¼ ðM þ 1Þ3

ð44Þ

Figure 28 illustrates the smoothing of the 3rd-order

kernel (Fig. 2).

The block diagonal L matrix for the Tikhonov

regularisation (Eq. 26):

LH ¼

L1st

L1st

L2nd

L2nd

L2nd

L2nd

L3rd

. .
.

L3rd

2
666666666666666664

3
777777777777777775

Hz

Hh

Hzz

Hhh

Hzh

Hhz

Hzzz

..

.

Hzhh

2
66666666666666666664

3
77777777777777777775

ð45Þ
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