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Abstract

In this manuscript, we obtain a plane wave decomposition for the delta distribution in
superspace, provided that the superdimension is not odd and negative. This decomposition
allows for explicit inversion formulas for the super Radon transform in these cases. Moreover,
we prove a more general Radon inversion formula valid for all possible integer values of the
superdimension. The proof of this result comes along with the study of fractional powers
of the super Laplacian, their fundamental solutions, and the plane wave decompositions of
super Riesz kernels.
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1 Introduction
This paper inserts in the broad field of studies on superspace whose importance is well-known since its
introduction by Berezin in the sixties, see e.g. [3], mainly motivated by problems in theoretical physics.
In the literature there are various approaches to superspace which range from differential to algebraic
geometry, see e.g. [3, 5, 15, 22, 24, 25, 28]. In this paper we will follow a more recent approach based on
an extension of harmonic and Clifford analysis to superspace, which have been already proved to offer
various advantages, among which a natural treatment of the super Dirac and super Laplace operators.
This approach started with the early paper by Sommen [27] and then continued with the works of
Coulembier, De Bie and Sommen, see e.g. [6, 7, 8, 9, 10, 11, 12, 13].

In this framework we shall consider the Radon transform, another cornerstone in theoretical and
applied mathematics. In theoretical mathematics, this integral transform, originally defined on the space
of lines in the plane, was then generalized to higher dimensions and also to the complex case, giving rise to
the Penrose transform. The applications to practical problems such as tomography or image recognition
are well-known. The Radon transform in superspace was initially introduced in [10] by means of the
central-slice theorem, i.e. as the action of two consecutive Fourier transforms. In the later work [8], a
more geometrical interpretation of this transform was given as an integral over the set of all hyperplanes.

In this paper we shall study more properties of the Radon transform in the superspace setting.
In particular, we will prove inversion formulas for this transform. This poses important differences in
comparison with the purely bosonic case, i.e. when only commuting variables are considered. Indeed, let
Rm[φ](w, p) denote the Radon transform in Rm of the function φ, i.e. the integral of φ over the hyperplane
〈x,w〉 = p where w is a unit vector, p ∈ R and 〈·, ·〉 is the Euclidean inner product in Rm. Then the
inversion formula of Rm[φ](w, p) reads as (see e.g. [14, 19, 20])

φ(x) =
(−1)

m
2

(2π)m

∫ ∞
−∞

1

p

(∫
Sm−1

∂m−1
p Rm[φ](w, p+ 〈x,w〉) dSw

)
dp, for m even, (1)

φ(x) =
(−1)

m−1
2

2(2π)m−1

∫
Sm−1

∂m−1
p Rm[φ](w, p)

∣∣∣∣
p=〈x,w〉

dSw, for m odd, (2)

where dSw is the area element of the unit sphere Sm−1 ⊂ Rm. The extension of these formulas to
superspace requires the replacement of the dimension m ∈ N by the so-called superdimension M ∈ Z.
Clearly, the above formulas fail to preserve their classical forms for negative values of M . For instance,
the derivatives with respect to p would have a negative exponent, playing thus the role of an indefinite
integral (or primitive function). As we shall see in our Theorem 5, when M is even and negative, a novel
structure for these inversion formulas is given in terms of a primitive function of higher order of p−1.

To prove these inversion formulas we are in need of a plane wave decomposition of the Dirac delta
distribution in superspace, which is the third pillar of this paper. We show how to extend some classical
formulas by adopting the point of view of hyperfunctions, namely by using the fact that the Dirac delta is
a suitable boundary value of the super Cauchy kernel (see Theorem 3). This approach has been announced
in [17] where a plane wave decomposition of the super Cauchy kernel was obtained , provided that the
superdimension M is not odd and negative. Combining these facts we obtain a plane wave expansion
of the super Dirac delta distribution in these cases (see Theorem 4). Again, when the superdimension
is negative and even, the obtained formulas no longer resemble the structure of the classical plane wave
decompositions given in [16, Ch.1 - §3 ]. The plane wave decomposition of the Dirac delta is a result of
independent interest in the theory of distributions in superspace. In a forthcoming paper, we shall study
the decomposition into plane waves of the super Dirac distribution and the super Cauchy kernel in the
case where the superdimension M is odd and negative. This shall yield explicit Radon inversion formulas
in those exceptional cases.

The inversion formulas that we prove coincide with the classical formulas in the purely bosonic case.
In that case, regardless of the parity of the dimension, formulas (1)-(2) can be written in a unified way
as follows

φ(x) =
1

2mπm−1
(−∆x)

m−1
2

∫
Sm−1

Rm[φ](w, 〈x,w〉) dSw,

where ∆x is the Laplace operator in Rm. The final purpose of this paper is to show how this unified
formula can also be extended to superspace (see Theorem 7). Moreover, we show that this extension

2



holds for any value of the superdimension M ∈ Z. To that end, we first introduce fractional powers
of the super Laplacian and construct fundamental solutions for such operators (see Theorem 6). These
results extend the work in [13], where fundamental solutions for natural powers of the super Laplace
operator were obtained. Along our proof of the unified inversion formula, we also provide a plane wave
decompostion for the super Riesz potential |x|−1. As in the case of the plane wave decomposition for the
Dirac delta distribution, these two last results are of independent interest in superanalysis.

The plan of the paper is as follows. In Section 2, we give a brief introduction on harmonic and Clifford
analysis in superspace focusing on the notions needed in the sequel. In Section 3, we discuss some facts on
distributional calculus in superspace. In particular, we introduce important generalized superfunctions
(and their classical analogues in Rm) such as concentrated Dirac delta distributions and |x|λ with λ ∈ C,
which are necessary in the subsequent sections. In Section 4, we prove some of the main properties of
the Radon transform in superspace. Section 5 is fully devoted to the plane wave decomposition of the
Dirac delta distribution in superspace. First, we review the classical procedure followed to obtain some
plane wave decompositions in Rm, which shall also be useful for subsequent computations. Then, we
proceed to obtaining plane wave decomposition formulas for the super Dirac delta distribution from the
point of view of hyperfunctions. An alternative proof for this result, using only direct computations and
the Funk-Hecke theorem, is provided in Appendix A. This plane wave decomposition is used in Section 6
to derive explicit inversion formulas of the super Radon transform. Finally, in Section 7, these inversion
formulas are unified into a single expression, regardless of the parity and sign of the superdimension.

2 Preliminaries
Consider m commuting (bosonic) variables x1, . . . , xm and 2n anti-commuting (fermionic) variables
x̀1, . . . , x̀2n in a purely symbolic way, i.e. xjxk = xkxj , x̀j x̀k = −x̀kx̀j and xj x̀k = x̀kxj . They give
rise to the supervector variable

x = (x, x̀) = (x1, . . . , xm, x̀1, . . . , x̀2n) .

The variables x1, . . . , xm are generators of the polynomial algebra R[x1, . . . , xm] while x̀1, . . . , x̀2n generate
a Grassmann algebra G2n. We denote by G

(ev)
2n and G

(odd)
2n the subalgebras of even and odd elements of

G2n respectively. All the variables together generate the supercommutative algebra of superpolynomials

P := AlgR(x1, . . . , xm, x̀1, . . . , x̀2n) = R[x1, . . . , xm]⊗G2n.

The bosonic and fermionic partial derivatives ∂xj = ∂
∂xj

, ∂x̀j = ∂
∂x̀j

are defined as endomorphisms on P
by the relations 

∂xj [1] = 0,

∂xjxk − xk∂xj = δj,k,

∂xj x̀k = x̀k∂xj ,


∂x̀j [1] = 0,

∂x̀j x̀k + x̀k∂x̀j = δj,k,

∂x̀jxk = xk∂x̀j ,

where δj,k is the Kronecker symbol and 1 denotes the constant superpolynomial p ≡ 1. The above
relations can be recursively applied for both left and right actions of the linear operators ∂xj and ∂x̀j .

Associated with these variables we consider the flat supermanifold Rm|2n = (Rm,ORm|2n) where
ORm|2n is the structure sheaf that maps every open subset Ω ⊂ Rm to the graded algebra C∞(Ω)⊗G2n,
and C∞(Ω) denotes the space of smooth complex-valued functions defined in Ω. The partial derivatives
∂xj , ∂x̀j extend from P to C∞(Rm)⊗G2n by density.
Let us rewrite the supervector variable x as

x = x+ x̀ =

m∑
j=1

xjej +

2n∑
j=1

x̀j èj ,

where e1, . . . , em, è1, . . . , è2n is the standard homogeneous basis of the graded vector space Rm,2n =
Rm,0 ⊕ R0,2n. Here we have denoted by x =

∑m
j=1 xjej and x̀ =

∑2n
j=1 x̀j èj the so-called bosonic and
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fermionic projections of x respectively. We consider an orthosymplectic metric in Rm,2n, giving rise to
the super Clifford algebra Cm,2n := AlgR(e1, . . . , em, è1, . . . , è2n) governed by the multiplication rules

ejek + ekej = −2δj,k, ej èk + èkej = 0, èj èk − èkèj = gj,k,

where gj,k is a symplectic form defined by

g2j,2k = g2j−1,2k−1 = 0, g2j−1,2k = −g2k,2j−1 = δj,k, j, k = 1, . . . , n.

In this case the inner product of two supervectors x and y is given by

〈x,y〉 := −1

2
(xy + yx) = 〈x, y〉+ 〈x̀, ỳ〉 =

m∑
j=1

xjyj −
1

2

n∑
j=1

(x̀2j−1ỳ2j − x̀2j ỳ2j−1).

The generalized norm squared of the supervector x is thus defined by

|x|2 = 〈x,x〉 = −x2 =

m∑
j=1

x2
j −

n∑
j=1

x̀2j−1x̀2j . (3)

Observe that the fermionic vector variable x̀ is nilpotent. Indeed, its norm squared satisfies

x̀2n = n! x̀1x̀2 · · · x̀2n−1x̀2n,

which is the element of maximal degree in G2n.
Functions in C∞(Ω)⊗G2n (often called superfunctions) can be explicitly written as

F (x) = F (x, x̀) =
∑

A⊂{1,...,2n}

FA(x) x̀A, (4)

where FA(x) ∈ C∞(Ω) and x̀A = x̀j1 . . . x̀jk with A = {j1, . . . , jk}, 1 ≤ j1 < . . . < jk ≤ 2n. For studying
integral transforms in superspace we need of course a broader set of functions. For our purposes, it
suffices to consider the function spaces F(Ω) ⊗ G2n and F(Ω) ⊗ G2n ⊗ Cm,2n where F(Ω) stands for
C∞(Ω), C∞0 (Ω) or S(Rm). In general, the functions FA ∈ F(Ω) in (4) are complex-valued. We say that
F is a real superfunction when all elements FA are real-valued.
Every superfunction can be written as the sum F (x) = F0(x)+F(x, x̀) where the complex-valued function
F0(x) := F∅(x) is called the body F , and F :=

∑
|A|≥1 FA(x) x̀A is the nilpotent part of F . Indeed, it is

clearly seen that F2n+1 = 0.
The bosonic and fermionic Dirac operators are defined by

∂x =

m∑
j=1

ej∂xj , ∂x̀ = 2

n∑
j=1

(
è2j∂x̀2j−1

− è2j−1∂x̀2j

)
,

giving rise to the left and right super Dirac operators (super-gradient) ∂x· = ∂x̀ · −∂x· and ·∂x =
− · ∂x̀ − ·∂x respectively. As in the classical setting, the action of ∂x on the vector variable x results in
the superdimension

M := ∂x[x] = [x]∂x = ∂x̀[x̀]− ∂x[x] = m− 2n.

Given an open set Ω ⊂ Rm, a superfunction F ∈ C∞(Ω)⊗G2n⊗Cm,2n is said to be (left) monogenic
if ∂x[F ] = 0. As the super Dirac operator factorizes the super Laplace operator:

∆x = −∂2
x =

m∑
j=1

∂2
xj − 4

n∑
j=1

∂x̀2j−1
∂x̀2j

,

monogenicity also constitutes a refinement of harmonicity in superanalysis. The super Laplace operator
can be decomposed as ∆x = ∆x + ∆x̀ where ∆x =

∑m
j=1 ∂

2
xj and ∆x̀ = −4

∑n
j=1 ∂x̀2j−1∂x̀2j are the

bosonic and fermionic Laplacians with respect to x, respectively.
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The super Euler operator is defined by

E =

m∑
j=1

xj∂xj +

2n∑
j=1

x̀j∂x̀j .

We denote by N0 := {0}∪N the set of non-negative integers. Homogeneous superpolynomials of degree j ∈
N0 are eigenfunctions of the super Euler operator with eigenvalue j. We denote the space of homogeneous
superpolynomials of degree j ∈ N0 as Pj = {R ∈ P : E[R] = j R}, which allows for the decomposition

P =

∞⊕
j=0

Pj .

The operators ∆x, x2 and E satisfy the canonical commutation relations of the special linear Lie
algebra sl2 (see e.g. [12])[

∆x

2
,
−x2

2

]
= E +

M

2
,

[
∆x

2
,E +

M

2

]
= ∆x,

[
−x2

2
,E +

M

2

]
= x2, (5)

where [a, b] := ab− ba. The following calculation also extends the bosonic case

∂xx + x∂x = 2

(
E +

M

2

)
.

This means that the same computation rules of classical Clifford and harmonic analysis can be transferred
to the superspace setting by substituting the Euclidean dimension m by the superdimension M . In
particular, the following identity can be proved using formulae (5) iteratively, see e.g. [12, 13],

∆j
x

[
x2`
]

=

(−4)j `!
(`−j)!

Γ(M2 +`)
Γ(M2 +`−j)

x2`−2j , j ≤ `,

0, ` < j.
(6)

More details on the theory of monogenic and harmonic superfunctions can be found for instance in
[7, 12, 13].

3 Distributional calculus in superspace
In this section we discuss the notion of generalized functions in the superspace setting, study some
important examples, and introduce integration over the supersphere by means of the concentrated Dirac
distribution. These ideas shall be useful when dealing with the super Radon transform in the subsequent
sections.

The analogue in superspace of the classical integral
∫
Rm dVx in Rm is given by∫

Rm|2nx

=

∫
Rm

dVx

∫
B,x̀

=

∫
B,x̀

∫
Rm

dVx,

where dVx = dx1 · · · dxm is the classical volume element in Rm and the integral over fermionic variables
is given by the Berezin integral (see [3]), defined by∫

B,x̀

:=π−n ∂x̀2n
· · · ∂x̀1

=
(−1)nπ−n

4nn!
∂2n
x̀ .

The subscript x̀ means that we are integrating with respect to the x̀ variable.
Similarly to the function spaces, we define the spaces of generalized functions F ′(Ω) ⊗ G2n and

F ′(Ω)⊗G2n⊗Cm,2n, where F ′(Ω) stands for the spaces of generalized functions E ′(Ω),D′(Ω) and S ′(Rm)
respectively. The action of a superdistribution α ∈ F ′(Ω)⊗G2n given by

α =
∑

A⊂{1,...,2n}

αAx̀A, αA ∈ F ′(Ω),

5



on a test superfunction F ∈ F(Ω)⊗G2n of the form (4) is defined as∫
Rm|2nx

αF =
∑

A,C⊂{1,...,2n}

〈αA, fC〉
∫
B,x̀

x̀A x̀C ,

where, as usual, the notation

〈αA, fC〉 =

∫
Rm

αA(x)fC(x) dVx,

is used for the action of the real distribution αA ∈ F ′(Ω) on the test function fC ∈ F(Ω).

3.1 Useful generalized functions in Rm

Before introducing the specific generalized superfunctions needed in this paper, we recall some basic facts
about the generalized functions tλ+, tλ−, |t|λ, sgn(t)|t|λ, |x|λ with λ ∈ C. We refer the reader to [16] for a
complete study of these generalized functions.

When Re(λ) > −1, the functionals tλ+ and tλ− are defined on S(R) by means of the integrals

〈tλ+, φ(t)〉 =

∫ ∞
0

tλφ(t) dt, and 〈tλ−, φ(t)〉 = 〈tλ+, φ(−t)〉 =

∫ 0

−∞
|t|λφ(t) dt,

respectively. The mappings λ 7→ tλ+ and λ 7→ tλ− extend from the complex region {Re(λ) > −1} to an
analytic mapping on C \ {−1,−2, . . .} with values in S ′(R), i.e. λ 7→ 〈tλ+, φ〉 and λ 7→ 〈tλ−, φ〉 are analytic
functions on C \ {−1,−2, . . .} for all φ ∈ S(R). These analytic continuations of tλ± can be written in the
strip −`− 1 < Re(λ) < −`, with ` ∈ N, as

〈tλ+, φ〉 =

∫ ∞
0

tλ

φ(t)−
`−1∑
j=0

tj

j!
φ(j)(0)

 dt, 〈tλ−, φ〉 =

∫ ∞
0

tλ

φ(−t)−
`−1∑
j=0

(−1)j
tj

j!
φ(j)(0)

 dt. (7)

From these formulas, it follows that tλ+ and tλ− have simple poles at λ = −1,−2, . . . and their residues at
λ = −` are given by

(−1)`−1

(`− 1)!
δ(`−1)(t), and

δ(`−1)(t)

(`− 1)!
, (8)

respectively.
We will also use the generalized functions

|t|λ := tλ+ + tλ−, and sgn(t) |t|λ := tλ+ − tλ−,

where sgn(t) stands for the sign of t. By virtue of (8), it follows that |t|λ has poles only at λ =
−1,−3,−5 . . ., while sgn(t) |t|λ has poles only at λ = −2,−4,−6 . . .. Moreover, their residues are given
by

res
λ=−2`−1

|t|λ = 2
δ(2`)(t)

(2`)!
, and res

λ=−2`
sgn(t) |t|λ = −2

δ(2`−1)(t)

(2`− 1)!
.

In particular, this means that |t|λ is defined for λ = −2`, while sgn(t) |t|λ is defined for λ = −2` − 1.
This yields the following definitions for t−2` and t−2`−1,

〈t−2`, φ(t)〉 =

∫ ∞
0

t−2`

φ(t) + φ(−t)− 2

`−1∑
j=0

t2j

(2j)!
φ(2j)(0)

 dt, (9)

〈t−2`−1, φ(t)〉 =

∫ ∞
0

t−2`−1

φ(t)− φ(−t)− 2
∑̀
j=1

t2j−1

(2j − 1)!
φ(2j−1)(0)

 dt. (10)
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Given x =
∑m
j=1 xjej ∈ Rm, consider its Euclidean norm |x| =

(∑m
j=1 x

2
j

)1/2

. If Re(λ) > −m, the

generalized function |x|λ is defined by

〈|x|λ, φ〉 =

∫
Rm
|x|λφ(x) dVx, φ ∈ S(Rm).

Using spherical coordinates in the above integral, i.e. x = rw with r = |x| and w ∈ Sm−1, we get

〈|x|λ, φ〉 =

∫ ∞
0

rλ+m−1

(∫
Sm−1

φ(rw) dSw

)
dr = σm 〈rλ+m−1

+ ,Σ[φ](r)〉, (11)

where dSw is the Lebesgue measure on the unit sphere Sm−1 = {w ∈ Rm : |w| = 1}, σm = 2π
M
2

Γ(M2 )
is the

surface area of Sm−1, and

Σ[φ](r) =
1

σm

∫
Sm−1

φ(rw) dSw

is the so-called spherical mean of φ. Clearly, φ ∈ S(Rm) implies that Σ[φ] ∈ S(R+) where R+ denotes
the set of non-negative real numbers. Similarly, φ ∈ C∞0 (Rm) implies that Σ[φ] ∈ C∞0 (R+).

From (11) we see that |x|λ represents the action of rλ+m−1
+ on Σ[φ](r). As a function of the complex

parameter λ, this action is an analytic function in the region Re(λ) > −m. Using (7), it can be extended
to the whole λ-plane except for the points λ = −m,−m− 1,−m− 2, . . ., where it has simple poles. The
residue of 〈rλ+m−1

+ ,Σ[φ](r)〉 at λ = −m− `+ 1 (` ∈ N) can be computed using (8) as follows

σm res
λ=−m−`+1

〈rλ+m−1
+ ,Σ[φ](r)〉 = σm res

λ=−`
〈rλ+,Σ[φ](r)〉 =

σm
(`− 1)!

d`−1

dr`−1
Σ[φ](0).

But it is known that the derivatives of odd order of the spherical mean Σ[φ] vanish at r = 0, see [16,
Ch.1 - §3.9]. Thus the poles corresponding to even values of ` do not exist. This leaves us with the poles
corresponding to ` = 1, 3, 5 . . . or equivalently λ = −m − 2`, ` ∈ N0. In [16], the residues of |x|λ for
λ = −m− 2` were computed to be

res
λ=−m−2`

|x|λ =
2π

m
2 ∆`

xδ(x)

22``!Γ
(
m
2 + `

) , (12)

where δ(x) = δ(x1) · · · δ(xm) is the m-dimensional real Dirac distribution. These simple poles can
be eliminated if we divide |x|λ by an ordinary function of λ with exactly the same simple poles. A
good candidate for such a function is Γ

(
λ+m

2

)
which has simple poles at λ = −m − 2` with residue

res
λ=−m−2`

Γ
(
λ+m

2

)
= 2(−1)`

`! . Thus the generalized function |x|λ

Γ(λ+m2 )
is an entire analytic mapping of λ,

and its values at the singular points of |x|λ can be computed as

|x|λ

Γ
(
λ+m

2

) ∣∣∣∣∣
λ=−m−2`

=
res

λ=−m−2`
|x|λ

res
λ=−m−2`

Γ
(
λ+m

2

) =
(−1)`π

m
2 ∆`

xδ(x)

22`Γ
(
m
2 + `

) . (13)

3.2 Taylor expansions to construct superdistributions
We can extend the definitions of the above generalized functions to superspace by considering their finite
Taylor expansions. This also is an important technique to produce interesting even superfunctions (i.e.
elements of C∞(Ω)⊗G

(ev)
2n ) out of real-valued functions see e.g. [3].

Definition 1. Consider a function F ∈ C∞(E) where E is an open region of R`, and ` even real
superfunctions aj(x) ∈ C∞(Ω) ⊗ G

(ev)
2n , j = 1, . . . , `. We expand every aj as the sum of its body and its

nilpotent part, i.e. aj(x) = [aj ]0(x) + aj(x). If the domain E ⊆ R` contains the image of the function
([a1]0, . . . , [a`]0), we define the composed superfunction F (a1(x), . . . , a`(x)) ∈ C∞(Ω)⊗G2n by means of
the Taylor expansion as

F (a1, . . . , a`) =
∑

k1,...,k`≥0

F (k1,...,k`) ([a1]0, . . . , [a`]0)

k1! · · · k`!
a1

k1 · · ·a`k` . (14)

7



Remark 1. Note that the series in the above definition of F (a1, . . . , a`) is finite in view of the nilpotency
of aj(x). Moreover, it is clear that Definition 1 can be used also for (generalized) functions that are not
C∞ as long as all the derivatives appearing in the formula exist.

The expansion (14) is used to define arbitrary real powers of even superfunctions. Let λ ∈ R and
a = a0 + a ∈ C∞(Ω)⊗G

(ev)
2n , then for a0 > 0 we define

aλ:=

n∑
j=0

aj

j!

Γ(λ+ 1)

Γ(λ− j + 1)
aλ−j0 . (15)

If m 6= 0, we use this idea to define the norm of the supervector variable x. Indeed, its norm squared
−x2 is an even smooth superfunction with non-negative body |x|2 =

∑m
j=1 x

2
j , see (3). Hence, the norm

of x is defined as

|x|:=(−x2)1/2 =
(
|x|2 − x̀ 2

)1/2
=

n∑
j=0

(−1)j x̀ 2j

j!

Γ
(

3
2

)
Γ
(

3
2 − j

) |x|1−2j .

Similarly, the analogue of the generalized function |x|λ in superspace is given by

|x|λ:=
(
|x|2 − x̀ 2

)λ/2
=

n∑
j=0

(−1)j x̀ 2j

j!

Γ
(
λ
2 + 1

)
Γ
(
λ
2 − j + 1

) |x|λ−2j =

n∑
j=0

x̀ 2j

j!

Γ
(
−λ2 + j

)
Γ
(
−λ2
) |x|λ−2j , (16)

where, in the last equality, we have used the identity (−1)j
Γ(λ2 +1)

Γ(λ2−j+1)
=

Γ(−λ2 +j)
Γ(−λ2 )

. It is easily seen that

|x|λ has simple poles at λ = −M − 2` with ` ∈ N0.
To compute the corresponding residues of |x|λ, we need to introduce first the Dirac delta distribution

in the supervector variable x

δ(x) := δ(x)
πn

n!
x̀ 2n = πnδ(x)x̀1 · · · x̀2n,

where the product δ(x̀) := πnx̀1 · · · x̀2n defines the Dirac distribution with respect to the fermionic
variables. Indeed, it can be verified that

〈δ(x), G(x)〉 =

∫
Rm

∫
B,x̀

δ(x)G(x) dVx = G(0),

where G ∈ C∞(U) ⊗ G2n and U ⊂ Rm is a neighborhood of the origin. We may now extend formulas
(12)-(13) to superspace.

Theorem 1. Let m 6= 0, M = m− 2n and ` ∈ N0. Then the following properties hold.

i) ∆`
xδ(x) = πn`!

min(`,n)∑
j=0

4j x̀ 2n−2j

(`− j)!(n− j)!
∆`−j
x δ(x).

ii) res
λ=−M−2`

|x|λ =
2π

M
2

22` `! Γ
(
M
2 + `

)∆`
xδ(x).

iii) The normalization
|x|λ

Γ(λ+M
2 )

defines an analytic mapping on the entire λ-plane with values in

S ′(Rm)⊗G2n. Moreover,

|x|λ

Γ(λ+M
2 )

∣∣∣∣∣
λ=−M−2`

=
(−1)`π

M
2

22`Γ
(
M
2 + `

)∆`
xδ(x).

Proof.
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i) It is easily seen that

∆`
xδ(x) =

πn

n!

(
∆x + ∆x̀

)` [
δ(x)x̀ 2n

]
=
πn

n!

∑̀
j=0

(
`

j

)
∆j
x̀

[
x̀ 2n

]
∆`−j
x [δ(x)] .

Formula (6) now gives ∆j
x̀

[
x̀ 2n

]
=

{
4j n! j!

(n−j)! x̀
2n−2j j ≤ n,

0, j > n.
Substituting this expression into the

above sum yields the desired conclusion.

ii) From formula (12) we obtain

res
λ=−M−2`

|x|λ−2j = res
λ=−m−2(`+j−n)

|x|λ =


2π

m
2 ∆`+j−n

x δ(x)

22`+2j−2n (`+ j − n)! Γ
(
m
2 + `+ j − n

) ` ≥ n− j,

0, ` < n− j.

Then, using formula (16) we obtain

res
λ=−M−2`

|x|λ =

n∑
j=0

x̀ 2j

j!

Γ
(
M
2 + `+ j

)
Γ
(
M
2 + `

) (
res

λ=−M−2`
|x|λ−2j

)

=

min(n,`)∑
j=0

x̀ 2n−2j

(n− j)!
Γ
(
M
2 + `+ n− j

)
Γ
(
M
2 + `

) 2π
m
2 ∆`−j

x δ(x)

22`−2j (`− j)! Γ
(
m
2 + `− j

)
=

2π
m
2

22`Γ
(
M
2 + `

) min(n,`)∑
j=0

4j x̀ 2n−2j

(n− j)! (`− j)!
∆`−j
x δ(x),

where we have replaced the index j by n − j in the second equality. Comparison of the above
equality with i) completes the proof.

iii) We recall that res
λ=−M−2`

Γ
(
λ+M

2

)
= 2(−1)`

`! . Hence, it immediately follows from ii) that

|x|λ

Γ(λ+M
2 )

∣∣∣∣∣
λ=−M−2`

=
res

λ=−M−2`
|x|λ

res
λ=−M−2`

Γ
(
λ+M

2

) =
(−1)`π

M
2

22`Γ
(
M
2 + `

)∆`
xδ(x).

�

3.3 Concentrated delta distributions and integral over the supersphere
Throughout this paper, we will integrate over supermanifolds of co-dimension 1 in Rm|2n. To that end,
we need the following definition of concentrated Dirac delta distribution.

Definition 2. Consider an even real superfunction g = g0 + g ∈ C∞(Rm) ⊗ G
(ev)
2n , where g0 and g are

the body and the nilpotent part of g respectively, and such that ∂x[g0] 6= 0 on the surface g−1
0 (0) := {w ∈

Rm : g0(w) = 0}. The distribution δ(`)(g), ` ∈ N0, is defined as the Taylor series

δ(`)(g):=

n∑
j=0

gj

j!
δ(`+j)(g0). (17)

When ` = 0, the above distribution is the concentrated delta distribution on the supermanifold defined by
the equation g(x) = 0.

In [18], integration over general supermanifolds of codimension 1 was introduced by means of the
action of concentrated Dirac distributions. In particular, the supersphere Sm−1,2n is algebraically defined
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by the relation x2 + 1 = 0 if m 6= 0. Thus the classical integral over the unit sphere in Rm is extended
to Sm−1,2n as (see also [8, 12])∫

Sm−1,2n

F (x) dSx = 2

∫
Rm

∫
B,x̀

δ(x2 + 1)F (x) dVx, (18)

where δ(x2 + 1) =
∑n
j=0

x̀ 2j

j! δ(j)(1− |x|2) is the concentrated delta distribution on the supersphere. For
a superfunction F of the form (4), the above integral reads as follows∫

Sm−1,2n

F (x) dSx = 2
∑

j=0,...,n
A⊂{1,...,2n}

1

j!

(∫
B,x̀

x̀ 2j x̀A

)(∫
Rm

δ(j)(1− |x|2)FA(x)Vx

)
,

where δ(j)(1− |x|2) is the j-th derivative of the concentrated delta distribution (or (j + 1)-fold layer) on
the unit sphere Sm−1 = {w ∈ Rm : |w| = 1}. As usual, the notation

∫
Rm δ

(j)(1 − |x|2)FA(x)Vx is used
for the evaluation of the distribution δ(j)(1− |x|2) on the real function FA(x), which can be computed as∫

Rm
δ(j)(1− |x|2)FA(x)Vx =

1

2

∫
Sm−1

(
∂

∂r2

)j [
rm−2FA(rw)

] ∣∣∣
r=1

dSw.

We refer the reader to [16, 21] for a complete treatment on concentrated delta distributions and j-fold
layer integrals in Rm, and to [8, 18] for concrete examples of their use in integration over the supersphere.

The integral (18) is (up to a multiplicative constant) the unique osp(m|2n)-invariant integration
operator over the supersphere that satisfies (see [6, 8])∫

Sm−1,2n

f(|x|)F (x) dSx = f(1)

∫
Sm−1,2n

F (x) dSx, (19)

for any f : R→ R smooth in a neighborhood of the point x = 1.
In [8], it was proven that the integral (18) over Sm−1,2n reduces to the following Pizzetti formula

when integrating superpolynomials∫
Sm−1,2n

R(x) dSx =

∞∑
j=0

2πM/2

22j j! Γ(j +M/2)
∆j

x[R]
∣∣∣
x=0

. (20)

In particular, one obtains that the surface area σM of Sm−1,2n is given by σM = 2π
M
2

Γ(M2 )
.

In the case M = −2k, the first (k + 1) terms of the Pizzetti sum vanish, i.e.∫
Sm−1,2n

R(x) dSx =

∞∑
j=k+1

2πM/2

22j j! Γ(j +M/2)
∆j

x[R]
∣∣∣
x=0

.

This implies that the integral of any polynomial of degree ≤ 2k + 1 vanishes. In particular, the area of
the supersphere equals zero in this case, i.e.

σ−2k =

∫
Sm−1,2n

1 dSx =
2π−k

Γ(−k)
= 0.

Thus the normalized integral 1
σ−2k

∫
Sm−1,2n F (x) dSx is in general not well-defined. However, for certain

functions F with a vanishing integral over the supersphere, it is possible to define a (non-vanishing)
normalized integral. We now recall a few important facts about this normalized integral for even and
negative superdimensions. We refer the reader to [12, 17] for more details.

The idea behind the definition of the normalized integral is as follows. ConsiderM as a formal complex
parameter, the Pizzetti formula (20) for the normalized integral of a polynomial R(x) ∈

⊕2k+1
j=0 Pj reads

1

σM

∫
Sm−1,2n

R(x) dSx =

k∑
j=0

Γ(M/2)

22j j! Γ(j +M/2)
∆j

x[R]
∣∣∣
x=0

.
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Taking the limit of this expression for M → −2k, and using the fact that the Gamma function has
simple poles at −k,−k + 1, . . . , 0, we obtain the following definition

1

σ−2k

∫
Sm−1,2n

R(x) dSx := lim
M→−2k

k∑
j=0

Γ
(
M
2

)
22j j! Γ(j +M/2)

∆j
x[R]

∣∣∣
x=0

=

k∑
j=0

(k − j)!
22j j! k!

(−∆x)
j

[R]
∣∣∣
x=0

. (21)

This definition is particularly interesting in the purely fermionic casem = 0, in which the Pizzetti formula
(20) yields the trivial functional

∫
S−1,2n · dSx ≡ 0. The normalized integral (21) still satisfies (19) (see

[17]), namely if R2j ∈ P2j and j + ` ≤ k, then
1

σ−2k

∫
Sm−1,2n

x 2`R2j(x) dSx = (−1)`
1

σ−2k

∫
Sm−1,2n

R2j(x) dSx. (22)

4 Radon transform in superspace
In this section we discuss some of the main properties of the Radon transform in superspace. Let us start
by providing a brief overview about the classical Radon transform in Rm. In the purely bosonic case, the
Radon transform of a function φ ∈ S(Rm) is defined as

Rm[φ](w, p) =

∫
Rm

δ(〈x,w〉 − p)φ(x) dVx =
1

|w|

∫
〈x,w〉=p

φ(x) dSx,

where dSx denotes the Lebesgue measure on the hyperplane 〈x,w〉 = p. This transform maps functions
in S(Rm) into functions in S(Pm), where Pm is the space of all hyperplanes in Rm. See e.g. [14, 19, 20]
for a more complete discussion of the properties of the Radon transform.

We recall that each hyperplane in Pm can be written as {x ∈ Rm : 〈x,w〉 = p} with w ∈ Sm−1 and
p ∈ R. Note that the pairs (w, p) and (−w,−p) define the same hyperplane in Pm. Thus, the mapping

(w, p) 7→ {x ∈ Rm : 〈x,w〉 = p} ∈Pm

is a double covering of Sm−1 × R onto Pm.
The Radon transform is closely related to the Fourier transform in Rm

Fm[φ](ξ) =
1

(2π)m/2

∫
Rm

e−i〈x,ξ〉φ(x) dVx.

In fact, from the central-slice theorem we have (see [19, 20])

Fm[φ](rw) =
1

(2π)m/2

∫ ∞
−∞

e−irpRm[φ](w, p) dp, (w, p) ∈ Sm−1 × R. (23)

It is easily seen that φ ∈ S(Rm) implies that Fm[φ](rw) ∈ S(R) for each fixed w. Thus it is clear from (23)
that the function p 7→ Rm[φ](w, p) belongs to S(R). Property (23) can be further extended as follows.

Proposition 1. Let g ∈ S ′(R), φ ∈ S(Rm) and ξ ∈ Rm \ {0}. Then∫
Rm

g(〈ξ, x〉)φ(x) dVx =

∫ ∞
−∞

g(p)Rm[φ](ξ, p) dp.

Proof. Let us write ξ = rw with r > 0 and w ∈ Sm−1. Consider the coordinate transformation y = Mx
where M ∈ SO(m) is a rotation matrix whose first row is given by the unit vector w, i.e. the first
component of y is y1 = 〈w, x〉. Then,∫

Rm
g(〈ξ, x〉)φ(x) dVx =

∫
Rm

g (ry1) φ
(
M−1y

)
dy1 . . . dym

=

∫ ∞
−∞

g(p)

(
1

r

∫
Rm−1

ψ
(p
r
, y2, . . . , ym

)
dy2 . . . dym

)
dp, (24)
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where we have used the substitutions p = ry1 and ψ(y) = φ
(
M−1y

)
. Using the same coordinate

transformation, we obtain

Rm[φ](ξ, p) =

∫
Rm

δ(〈x, ξ〉 − p)φ(x) dVx

=

∫
Rm

δ(ry1 − p)ψ(y) dy1 . . . dym

=
1

r

∫
Rm−1

ψ
(p
r
, y2, . . . , ym

)
dy2 . . . dym. (25)

Combining (24) and (25) we obtain the desired result. �
We now have the following definition of the Radon transform in the superspace setting.

Definition 3. Let m 6= 0. Given a commuting variable p and a supervector variable w, both independent
of x, we define the Radon transform of a superfunction φ ∈ S(Rm)⊗G2n as

Rm|2n[φ](w, p) =

∫
Rm|2nx

δ(〈x,w〉 − p)φ(x), with δ(〈x,w〉 − p) =

2n∑
j=0

〈x̀, ẁ〉j

j!
δ(j)(〈x,w〉 − p). (26)

Remark 2. The Radon transform in superspace was introduced in the works [8, 10] where some basic
properties were studied. Initially, the super Radon transform was introduced in [10] in terms of the super
Fourier transform using the central-slice property (23) as definition. In the later work [8], the above
definition in terms of the Dirac distribution was introduced. It has been proven that this definition indeed
satisfies the central-slice theorem, i.e.

Fm|2n[φ](rw) =
1

(2π)M/2

∫ ∞
−∞

e−irpRm|2n[φ](w, p) dp, (27)

where
Fm|2n[φ](y) =

1

(2π)M/2

∫
Rm|2nx

e−i〈x,y〉φ(x),

is the Fourier transform in superspace. The transform Fm|2n defines an isomorphism of S(Rm) ⊗ G2n,
see [10, Theorem 7]. Then the condition φ ∈ S(Rm) ⊗ G2n implies that, given a supervector parameter
w, the function r 7→ Fm|2n[φ](rw) is a rapidly decreasing function of the real variable r.

Now, we show some additional properties of the super Radon transform which shall be useful in what
follows.

Proposition 2. The Radon transform in superspace satisfy the following properties:

i) Homogeneity: Consider an even real superfunction h = h0 +h ∈ C∞(Rm)⊗G
(ev)
2n , where h0 and h

are the body and the nilpotent part of h respectively. If h0 > 0 in Rm, then

Rm|2n[φ](hw, hp) =
1

h
Rm|2n[φ](w, p).

ii) Shifting property: Consider the translation φy(x) = φ(x− y). Then

Rm|2n[φy](w, p) = Rm|2n[φ](w, p− 〈y,w〉).

iii) Derivatives of the transform:

∂wjRm|2n[φ](w, p) = −∂pRm|2n[xjφ](w, p),

∂ẁ2j−1
Rm|2n[φ](w, p) =

1

2
∂pRm|2n[x̀2jφ](w, p),

∂ẁ2j
Rm|2n[φ](w, p) =

−1

2
∂pRm|2n[x̀2j−1φ](w, p).
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iv) Action of the Dirac and Laplace operators:

∂wRm|2n[φ](w, p) = ∂pRm|2n[xφ](w, p),

∆wRm|2n[φ](w, p) = ∂2
p Rm|2n[|x|2φ](w, p).

Proof.

i) Given two real superfunctions g, h ∈ C∞(Rm)⊗G
(ev)
2n , it is known that δ(hg) = δ(g)

h , provided that
the body h0 of h is positive in Rm, and that the body g0 of g has a non-vanishing gradient on the
surface g−1

0 (0). This was proved in [18, Proposition 7]. Taking g(x) = 〈x,w〉 − p, we obtain

Rm|2n[φ](hw, hp) =

∫
Rm|2nx

δ (h(〈x,w〉 − p)) φ(x) =
1

h
Rm|2n[φ](w, p).

ii) In virtue of the translation invariance of the Berezin integral (see [3, Ch.2 - §2]), the change of
variable u = x− y yields

Rm|2n[φy](w, p) =

∫
Rm|2nx

δ(〈x,w〉 − p)φ(x− y)

=

∫
Rm|2nu

δ (〈u,w〉+ 〈y,w〉 − p) φ(u)

= Rm|2n[φ](w, p− 〈y,w〉).

iii) By the chain rule in superspace (see [3, Ch.2 - §1]), we obtain

∂ẁ2j−1
Rm|2n[φ](w, p) =

∫
Rm|2nx

∂ẁ2j−1
δ(〈x,w〉 − p)φ(x)

=

∫
Rm|2nx

− x̀2j

2
δ′(〈x,w〉 − p)φ(x)

=
1

2
∂pRm|2n[x̀2jφ](w, p).

The formulas for ∂wjRm|2n[φ](w, p) and ∂ẁ2j
Rm|2n[φ](w, p) can be proven in a similar way.

iv) It follows from direct computations using iii). �

Proposition 1 extends to the superspace setting as follows.

Proposition 3. Let g ∈ S ′(R) and φ ∈ S(Rm)⊗G2n . Then∫
Rm|2nx

g(〈x,w〉)φ(x) =

∫ ∞
−∞

g(p)Rm|2n[φ](w, p) dp. (28)

Proof. From formula (27) and the fact that Fm|2n[φ](rw) is a S(R) function of r ∈ R, it follows that

Rm|2n[φ](w, p) = (2π)
M
2 −1

∫ ∞
−∞

eirpFm|2n[φ](rw) dr,

which is of class S(R) when considered as a function of the real variable p. Thus, the action of the
tempered distribution g(p) on Rm|2n[φ](w, p) in (28) is well-defined. Using Proposition 1 and the finite
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Taylor expansion of g(〈x,w〉) we obtain∫
Rm|2nx

g(〈x,w〉)φ(x) =

2n∑
j=0

∫
B,x̀

〈x̀, ẁ〉j

j!

∫
Rm

g(j)(〈x,w〉)φ(x) dVx

=

2n∑
j=0

∫
B,x̀

〈x̀, ẁ〉j

j!

∫ ∞
−∞

g(j)(p)Rm[φ](w, p) dp

=

2n∑
j=0

∫
B,x̀

〈x̀, ẁ〉j

j!
(−1)j

∫ ∞
−∞

g(p) ∂jpRm[φ](w, p) dp

=

∫ ∞
−∞

g(p)

∫
B,x̀

2n∑
j=0

〈x̀, ẁ〉j

j!

∫
Rm

δ(j)(〈x,w〉 − p)φ(x) dVx

 dp

=

∫ ∞
−∞

g(p)

(∫
Rm|2nx

δ(〈x,w〉 − p)φ(x)

)
dp

=

∫ ∞
−∞

g(p)Rm|2n[φ](w, p) dp,

which proves the result. �

Corollary 1. Let g ∈ S ′(R) and φ ∈ S(Rm)⊗G2n. Then

i) If g ≡ 1, it follows that ∫
Rm|2nx

φ(x) =

∫ ∞
−∞

Rm|2n[φ](w, p) dp.

ii) Given a real superfunction a(w) ∈ C∞(Rm)⊗G
(ev)
2n , we have∫

Rm|2nx

g(〈x,w〉+ a(w))φ(x) =

∫ ∞
−∞

g(p)Rm|2n[φ](w, p− a(w)) dp.

Proof. We only prove ii) since i) is a direct consequence of Proposition 3. Let us write a(w) = a0(w) +
a(w) where a0 and a are the body and nilpotent parts of a respectively. Then∫

Rm|2nx

g(〈x,w〉+ a(w))φ(x) =

n∑
j=0

a(w)j

j!

∫
Rm|2nx

g(j) (〈x,w〉+ a0(w))φ(x).

Using Proposition 3 for the tempered distributions g(j) (t+ a0(w)) on the real line (t ∈ R), we obtain∫
Rm|2nx

g(〈x,w〉+ a(w))φ(x) =

n∑
j=0

a(w)j

j!

∫ ∞
−∞

g(j) (p+ a0(w))Rm|2n[φ](w, p) dp

=

n∑
j=0

a(w)j

j!

∫ ∞
−∞

g(j) (p)Rm|2n[φ](w, p− a0(w)) dp

=

∫ ∞
−∞

g(p)

 n∑
j=0

(−1)j
a(w)j

j!
∂jpRm|2n[φ](w, p− a0(w))

 dp

=

∫ ∞
−∞

g(p)Rm|2n[φ](w, p− a(w)) dp,

which proves the result. �
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5 Plane wave decomposition of the delta distribution
The main goal of this section is to obtain a plane wave decomposition of the Dirac delta distribution in
superspace. This is an important step towards the inversion formulas for the Radon transform, which
will be obtained in the next section. Before studying the superspace case, let us recall first some useful
plane wave decompositions in Rm.

5.1 Plane wave decompositions in Rm

Let w ∈ Sm−1, λ ∈ C with Re(λ) > −1 and let Fλ(〈x,w〉) be the generalized function defined by

〈Fλ(〈x,w〉), φ(x)〉 :=
∫
Rm

|〈x,w〉|λ

Γ
(
λ+1

2

) φ(x) dVx, φ ∈ S(Rm).

By Proposition 1, this generalized function in Rm can be written as the following 1-dimensional functional

〈Fλ(〈x,w〉), φ(x)〉 =

∫ +∞

−∞

|p|λ

Γ
(
λ+1

2

)Rm[φ](w, p) dp.

Then, on account of (13), Fλ(〈x,w〉) can be analytically continued to the entire λ-plane. Since Fλ(〈x,w〉)
is a functional depending continuously on the parameter w, we can integrate Fλ(〈x,w〉) over Sm−1. In
this way, we obtain a new functional Gλ given by

〈Gλ, φ(x)〉 :=
∫
Sm−1

〈Fλ(〈x,w〉), φ(x)〉 dSw.

This integral can be explicitly computed for Re(λ) > −1 yielding (see e.g. [16, Ch.1 - §3.10 ])

1

π
m−1

2 Γ
(
λ+1

2

) ∫
Sm−1

|〈x,w〉|λ dSw =
2|x|λ

Γ
(
λ+m

2

) . (29)

Again, the validity of this formula can be extended by analytic continuation from {Re(λ) > −1} to the
rest of the λ-plane. Formula (29) provides the so-called plane wave decomposition for

2|x|λ

Γ
(
λ+m

2

) .
Evaluating formula (29) at λ = −m− 2`, and making use of (13), we obtain

1

π
m−1

2

∫
Sm−1

|〈x,w〉|λ

Γ
(
λ+1

2

) ∣∣∣∣∣
λ=−m−2`

dSw =
(−1)`2π

m
2 ∆`

xδ(x)

22`Γ
(
m
2 + `

) . (30)

Thus, if m is even, this formula reduces to

1

π
m−1

2 Γ
(

1−m
2 − `

) ∫
Sm−1

〈x,w〉−m−2` dSw =
(−1)`2π

m
2 ∆`

xδ(x)

22`Γ
(
m
2 + `

) . (31)

On the other hand, if m is odd, the integrand in formula (30) is evaluated at one of the simple poles of
|t|λ. Using formula (13) on the real line, i.e. when m = 1, we obtain

|t|λ

Γ
(
λ+1

2

) ∣∣∣∣∣
λ=−2j−1

=
(−1)jj!

(2j)!
δ(2j)(t). (32)

Then, taking t = 〈x,w〉 and j = m−1
2 + `, formula (30) yields

(−1)
m−1

2

(
m−1

2 + `
)
!

π
m−1

2 (m− 1 + 2`)!

∫
Sm−1

δ(m−1+2`)(〈x,w〉) dSw =
2π

m
2 ∆`

xδ(x)

22`Γ
(
m
2 + `

) . (33)
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Summarizing, taking ` = 0 in (31) and (33) we obtain the following plane wave decompositions of δ(x)

δ(x) =


(−1)

m
2 (m− 1)!

(2π)m

∫
Sm−1

〈x, ω〉−m dSω, for m even,

(−1)
m−1

2

2(2π)m−1

∫
Sm−1

δ(m−1)(〈x, ω〉) dSω, for m odd.

(34)

For a more complete study of these plane wave decompositions we refer the reader to [16, Ch.1 - §3 ].

5.2 Plane wave decompositions in superspace
In this section, we obtain a decomposition of the distribution δ(x) = δ(x)π

n

n! x̀
2n into plane waves inte-

grated over the supersphere, thus extending formulas (34) to superspace. To that end we will not follow
the classical approach from [16], which was briefly described in Section 5.1. Instead, we will look at this
problem from the perspective of hyperfunctions. Indeed, we will first show that δ(x) is a suitable bound-
ary value of the super Cauchy kernel, i.e. the fundamental solution of the generalized Cauchy-Riemann
operator ∂x − ∂x0 , where x0 is an extra real variable. Then, we combine this result with the plane wave
decomposition obtained in [17] for this Cauchy kernel.

A fundamental solution ϕm+1|2n
1 (x0,x) of ∂x − ∂x0 must satisfy the condition

(∂x − ∂x0)ϕ
m+1|2n
1 (x0,x) = δ(x0)δ(x).

The following explicit expressions for ϕm+1|2n
1 (x0,x) were computed in [17]. For a detailed account on

fundamental solutions of the super Dirac operator ∂x and super Laplace operator ∆x we refer the reader
to [13].

Lemma 1. A fundamental solution of ∂x − ∂x0 is given by

ϕ
m+1|2n
1 (x0,x) = πn

n∑
j=0

(−1)j22jj!

(n− j)!
ϕ
m+1|0
2j+1 x̀ 2n−2j − πn

n−1∑
j=0

(−1)j22j+1j!

(n− j − 1)!
ν
m+1|0
2j+2 x̀ 2n−2j−1, (35)

where νm+1|0
2j+2 is the fundamental solution of ∆j+1

m+1|0, being ∆m+1|0 := ∂2
x0

+ ∆x the bosonic Laplacian in

(m+ 1) dimensions, and ϕm+1|0
2j+1 := (∂x − ∂x0)ν

m+1|0
2j+2 is a fundamental solution of (−∂x − ∂x0)∆j

m+1|0.

Moreover, if M + 1 /∈ −2N0, the fundamental solution ϕm+1|2n
1 can also be written as

ϕ
m+1|2n
1 (x0,x) =

−1

σM+1

x0 − x

|x0 − x|M+1

where |x0 − x| = |x0 + x| =
(
x2

0 + |x|2 − x̀ 2
) 1

2 .

Before stating the plane wave decomposition theorem for the super Cauchy kernel, we recall how to
construct monogenic plane waves out of holomorphic functions, see e.g. [17, 26]. Let g(z) = g1(a, b) +
ig2(a, b) be a holomorphic C-valued function of the complex variable z = a + ib in an open domain
Ω ⊆ R2 ∼= C. If m 6= 0, given a supervector parameter w = w + ẁ, we define

g(〈x,w〉 − x0w) = g1(〈x,w〉, x0|w|)−
w

|w|
g2(〈x,w〉, x0|w|), (36)

as an element of C∞(Ωw) ⊗ G2n ⊗ Cm,2n where Ωw =
{

(x, x0) ∈ Rm+1 : (〈x,w〉, x0|w|) ∈ Ω
}
. Here the

functions g`(〈x,w〉, x0|w|), ` = 1, 2, are defined as in (14). A function of the type (36) is called a
monogenic plane wave. The monogenicity of g(〈x,w〉−x0w) with respect to the operator (∂x − ∂x0

) was
indeed established in [17], i.e. (∂x − ∂x0

) g(〈x,w〉 − x0w) = 0.
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Remark 3. In (36), we have replaced the role of the complex imaginary unit i by the supervector − w
|w| .

We recall that this correspondence does not exist if m = 0 since w = ẁ is nilpotent. However, it is still
possible to find an analogue of definition (36) in this context given by

g(〈x̀, ẁ〉 − x0ẁ) =

2n∑
j=0

(〈x̀, ẁ〉 − x0ẁ)j

j!
g(j)(0),

for any real-valued function g of class C2n in a neighborhood of z = 0. Therefore, in the case m = 0, it
suffices to consider only the generators (〈x̀, ẁ〉 − x0ẁ)j for j = 0, 1, . . . , 2n.

We also introduce the following sequence of complex functions

G`(z) =
z`

`!
ln(z)− a`z`, with a`+1 =

1

`+ 1

(
a` +

1

(`+ 1)!

)
, a0 = 0, (37)

where ln(z) is the the principle branch of the complex logarithm, i.e. we consider −π < Arg(z) ≤ π.
The sequence {a`} can also be explicitly defined as a` = Ψ(`+1)−Ψ(1)

`! where Ψ(z) = Γ′(z)
Γ(z) is the digamma

function. The functions in the sequence {G`}`∈N0 are primitives of the complex logarithm function.
Indeed, it is easy to check that G′`+1 = G` while G0(z) = ln(z).

We can now formulate the decomposition into plane waves of the super Cauchy kernel ϕm+1|2n
1 (x0,x)

obtained in [17].

Theorem 2. [Plane wave decomposition of Cauchy kernel] Let x0 6= 0 and M + 1 /∈ −2N0, with
M = m− 2n. Then

i) If M ≥ 1,

−1

σM+1

x0 − x

|x0 − x|M+1
= −sgn(x0)

(−1)
M
2 (M − 1)!

2(2π)M

∫
Sm−1,2n

(〈x,w〉 − x0w)−M dSw, for M even,

−1

σM+1

x0 − x

|x0 − x|M+1
= − (−1)

M+1
2 (M − 1)!

2(2π)M

∫
Sm−1,2n

(〈x,w〉 − x0w)−Mw dSw, for M odd.

ii) If M = −2k (m 6= 0),

−1

σM+1

x0 − x

|x0 − x|M+1
=

−sgn(x0)

4k(k!)2 σ−2k+1
∆k

w

[
(〈x,w〉 − x0w)2k

]
+

(−1)k(4π2)k

2
sgn(x0)

∫
Sm−1,2n

G2k (〈x,w〉 − x0w) dSw,

with G2k defined as in (37).

iii) If M = −2n (m = 0),

−1

σ−2n+1

x0 − x̀
|x0 − x̀|−2n+1

=
−sgn(x0)

4n (n!)2 σ−2n+1
∆n
ẁ

[
(〈x̀, ẁ〉 − x0ẁ)2n

]
.

Remark 4. The actions of the Laplace operators in ii) and iii) on the corresponding plane wave poly-
nomials can be seen as normalized integrals over the supersphere as defined in (21). In particular,

−sgn(x0)

4k(k!)2 σ−2k+1
∆k

w(〈x,w〉 − x0w)2k =
−(−1)ksgn(x0)

σ−2k+1

1

σ−2k

∫
Sm−1,2n

(〈x,w〉 − x0w)2k dSw.

and

−sgn(x0)

4n (n!)2 σ−2n+1
∆n
ẁ

[
(〈x̀, ẁ〉 − x0ẁ)2s

]
=
−(−1)n sgn(x0)

σ−2n+1

1

σ−2n

∫
S−1,2n

(〈x̀, ẁ〉 − x0ẁ)2ndSẁ.
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We now show that, similarly to the classical case, the delta distribution in superspace can be written
as the boundary value of the Cauchy kernel. We define the boundary value of a generalized superfunction
f(x0,x) at x0 = 0 by

B.V. [f ] (x) := lim
x0→0+

[f(x0,x)− f(−x0,x)] .

Theorem 3. Let M + 1 /∈ −2N0, with M = m− 2n. Then

− δ(x) = B.V.
[
ϕ
m+1|2n
1

]
(x) = lim

x0→0+

[
ϕ
m+1|2n
1 (x0,x)− ϕm+1|2n

1 (−x0,x)
]
. (38)

This is equivalent to the following set of equalities (see Lemma 1),

B.V.
[
ϕ
m+1|0
1

]
(x) = −δ(x), (39)

B.V.
[
ϕ
m+1|0
2j+1

]
(x) = 0, j = 1, . . . , n, (40)

B.V.
[
ν
m+1|0
2j+2

]
(x) = 0, j = 0, . . . , n− 1. (41)

Proof. The equivalence between (38) and (39)-(41) immediately follows from the definition of δ(x) and
formula (35). We proceed to prove each of the formulas (39)-(41).
In order to prove (39) we need to introduce the notion of Cauchy transform of a distribution in Rm, see
e.g. [4]. Let T ∈ E ′(Rm), the Cauchy transform of T is defined as

T̂ (x0 + x) = −
〈
Tu, ϕ

m+1|0
1 (x0, x− u)

〉
=

1

σm+1

∫
Rm

u+ x0 − x
|u+ x0 − x|m+1

T (u) dVu, x0 6= 0,

where ϕm+1|0
1 (x0, x) =

−1

σm+1

x0 − x
|x0 − x|m+1

is the Cauchy kernel in the purely bosonic case, i.e. the funda-

mental solution of −(∂x0
+∂x). Since x0 6= 0, it is clear that ϕm+1|0

1 (x0, x−u) ∈ C∞(Rm) in the variable
u. Thus the above action of the distribution Tu is well-defined and T̂ (x0 + x) is a monogenic generalized
function. Here monogenicity is understood with respect to the operator ∂x0

+ ∂x.
From [4, Theorem 27.7], any distribution T ∈ E ′(Rm) can be written as the boundary value of its Cauchy
transform, i.e. T = B.V.[T̂ ], or equivalently,

〈T, φ〉 = lim
x0→0+

∫
Rm

(
T̂ (x0 + x)− T̂ (−x0 + x)

)
φ(x)dVx, φ ∈ C∞0 (Rm). (42)

Now, if we take T = δ(x) = δ(x1) . . . δ(xm), we have

δ̂(x0 + x) = −
〈
δ(u), ϕ

m+1|0
1 (x0, x− u)

〉
= −ϕm+1|0

1 (x0, x) =
1

σm+1

x0 − x
|x0 − x|m+1

.

Then by formula (42) we obtain δ(x) = −B.V.
[
ϕ
m+1|0
1 (x0, x)

]
, which proves (39).

Now, we proceed to prove (40). We first recall that the fundamental solution ν
m+1|0
2j of ∆j

m+1|0, with
m+ 1− 2j /∈ −2N0, is given by (see [2])

ν
m+1|0
2j = c(m+ 1, j)|x0 + x|2j−m−1, where c(m+ 1, j) =

(−1)jΓ
(
m+1

2 − j
)

22jπ
m+1

2 Γ(j)
. (43)

Thus the fundamental solution ϕm+1|0
2j+1 of the operator (−∂x− ∂x0)∆j

m+1|0 can be computed as (see [17])

ϕ
m+1|0
2j+1 = (∂x − ∂x0

)ν
m+1|0
2j+2 = d(m+ 1, j)

(x0 − x)

|x0 + x|m+1−2j
, j = 1, . . . , n,

where d(m+ 1, j) =
(−1)j+1Γ(m+1

2 −j)

22j+1π
m+1

2 Γ(j+1)
. Then, for any test function φ ∈ C∞0 (Rm) we obtain

Ij(x0) :=

∫
Rm

(
ϕ
m+1|0
2j+1 (x0, x)− ϕm+1|0

2j+1 (−x0, x)
)
φ(x) dVx = 2 d(m+ 1, j)x0

∫
Rm

φ(x)

|x0 + x|m+1−2j
dVx.
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If m + 1 − 2j < 0, it is immediately seen that lim
x0→0+

Ij(x0) = 0. On the other hand, if m + 1 − 2j ≥ 0,

we use the identity 1
|x0+x| ≤

1
|x| to show that

|Ij(x0)|
2 d(m+ 1, j)

≤ x0

∫
Rm

|φ(x)|
|x|m+1−2j

dVx = σm x0

∫ ∞
0

r2j−2 Σ [|φ|] (r) dr, (44)

Since Σ [|φ|] (r) = 1
σm

∫
Sm−1 |φ(rw)| dSw is clearly compactly supported, we have∫ ∞

0

r2j−2 Σ [|φ|] (r) dr <∞, for j = 1, . . . , n.

Hence, formula (44) yields lim
x0→0+

Ij(x0) = 0, which proves (40).

The proof of (41) follows immediately from (43). Indeed,

B.V.
[
ν
m+1|0
2j+2

]
(x) = c(m+ 1, j + 1) lim

x0→0+

(
|x0 + x|2j−m−1 − | − x0 + x|2j−m−1

)
= 0.

�

Remark 5. It is known that C∞0 (Rm) is dense in S(Rm), see e.g. [21, Lemma 7.1.8]. Thus, although
formula (38) was proven for actions on test functions in C∞0 (Rm), it can be extended by density to actions
on test functions in S(Rm).

Combining Theorems 2 and 3 we obtain the following plane wave decomposition for the delta distri-
bution in superspace. In appendix A we provide an alternative proof for this result, which follows from
the Funk-Hecke Theorem in superspace and that can be of independent interest.

Theorem 4. Let M + 1 /∈ −2N0, with M = m− 2n. Then

i) If M≥1,

δ(x) =
(−1)

M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw, for M even,

δ(x) =
(−1)

M−1
2

2(2π)M−1

∫
Sm−1,2n

δ(M−1)(〈x,w〉) dSw, for M odd.

ii) If M = −2k (m 6= 0),

δ(x) =
1

22k−1(k!)2 σ−2k+1
∆k

w

[
〈x,w〉2k

]
− (−1)k(4π2)k

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw.

iii) If M = −2n (m = 0),

δ(x̀) =
1

22n−1(n!)2 σ−2n+1
∆n
ẁ

[
〈x̀, ẁ〉2n

]
.

Proof. The theorem is proved by combining formula (38) with the plane wave decompositions of the
Cauchy kernel in Theorem 2.

Case i) M≥1. If M is even, we obtain

−δ(x) = − (−1)
M
2 (M − 1)!

2(2π)M

∫
Sm−1,2n

B.V.
[
sgn(x0)(〈x,w〉 − x0w)−M

]
dSw.

It is easily seen that

B.V.
[
sgn(x0)(〈x,w〉 − x0w)−M

]
= lim
x0→0+

(
〈x,w〉 − x0w

)−M
+
(
〈x,w〉+ x0w

)−M
= 2〈x,w〉−M ,
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where

〈x,w〉−M =

2n∑
j=0

(−1)j
〈x̀, ẁ〉j

j!

(M + j − 1)!

(M − 1)!
〈x,w〉−M−j ,

and the functionals 〈x,w〉−M−j are defined as in (9)-(10). We thus conclude that

δ(x) =
(−1)

M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw.

On the other hand, if M is odd we obtain

− δ(x) = − (−1)
M+1

2 (M − 1)!

2(2π)M

∫
Sm−1,2n

B.V.
[
(〈x,w〉 − x0w)−Mw

]
dSw. (45)

We recall that the Dirac delta distribution on the real line can be written as the boundary value of the
complex Cauchy kernel, i.e.

δ(a) =
−1

2πi
B.V.

[
1

z

]
= lim
b→0+

−1

2πi

[
1

a+ ib
− 1

a− ib

]
.

Differentiating (M − 1) times yields the identity

δ(M−1)(a) =
−(M − 1)!

2πi
B.V.

[
z−M

]
.

We may now make the identifications a 7→ 〈x,w〉, b 7→ x0, i 7→ −w
|w| and

1
i 7→

w
|w| and obtain

δ(M−1)(〈x,w〉) =
−(M − 1)!

2π
B.V.

[
w

|w|

(
〈x,w〉 − x0

w

|w|

)−M]
. (46)

Here δ(M−1)(〈x,w〉) is defined by means of the Taylor expansion (17) and
(
〈x,w〉 − x0

w
|w|

)−M
is defined

by (36) after taking g(z) = z−M and replacing x0 by
x0

|w|
, which yields the plane wave

g

(
〈x,w〉 − x0

w

|w|

)
= g1(〈x,w〉, x0)− w

|w|
g2(〈x,w〉, x0). (47)

On account of (19), and combining (45) with (46), we obtain

δ(x) =
(−1)

M+1
2 (M − 1)!

2(2π)M

∫
Sm−1,2n

B.V.

[
w

|w|

(
〈x,w〉 − x0

w

|w|

)−M]
dSw

=
(−1)

M−1
2

2(2π)M−1

∫
Sm−1,2n

δ(M−1)(〈x,w〉) dSw,

which proves the theorem for this case.

Case ii) M = −2k, m 6= 0. In this case, combining Theorem 2 with formula (38) yields

− δ(x) =
−1

4k(k!)2 σ−2k+1
∆k

w

[
B.V.

[
sgn(x0)(〈x,w〉 − x0w)2k

] ]
+

(−1)k(4π2)k

2

∫
Sm−1,2n

B.V.
[
sgn(x0)G2k (〈x,w〉 − x0w)

]
dSw. (48)

The first boundary value can be easily computed as B.V.
[
sgn(x0)(〈x,w〉 − x0w)2k

]
= 2〈x,w〉2k. In order

to compute the other boundary value, we first recall that

lim
b→0+

G2k(a± ib) =


a2k

(2k)! ln(a)− a2ka
2k, a > 0

a2k

(2k)! (ln(|a|)± iπ)− a2ka
2k, a < 0

= G2k(|a|)± a2k

(2k)!
iπH(−a),
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where H(a) =

{
1, a > 0

0, a ≤ 0,
is the Heaviside distribution. Then

lim
b→0+

G2k(a+ ib) +G2k(a− ib) = 2G2k(|a|),

and therefore, 2G2k(|a|) = B.V. [sgn(b)G2k(z)]. Under the same identifications as before, we thus obtain

B.V.
[
sgn(x0)G2k

(
〈x,w〉 − x0

w

|w|

)]
= 2G2k (|〈x,w〉|) ,

which according to (19) yields∫
Sm−1,2n

B.V.
[
sgn(x0)G2k (〈x,w〉 − x0w)

]
dSw = 2

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw.

Finally, substituting the above expressions for the two boundary values into (48), we obtain

δ(x) =
1

22k−1(k!)2 σ−2k+1
∆k

w

[
〈x,w〉2k

]
− (−1)k(4π2)k

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw,

which completes the proof in this case.

Case iii) M = −2n. In this case, we have

−δ(x̀) =
−1

4n(n!)2 σ−2n+1
∆n

w

[
B.V.

[
sgn(x0)(〈x̀, ẁ〉 − x0x̀)2n

] ]
,

and B.V.
[
sgn(x0)(〈x̀, ẁ〉 − x0x̀)2n

]
= 2〈x̀, ẁ〉2n. Combining these two equalities, we obtain the desired

result. �

6 Inversion formulas for the Radon transform
In this section, we use the previous plane wave decomposition of δ(x) to obtain explicit inversion formulas
for the Radon transform (26).

Theorem 5. Let M + 1 /∈ −2N0, with M = m− 2n, and φ ∈ S(Rm)⊗G2n. Then

i) If M≥1,

φ(y) =
(−1)

M
2

(2π)M

∫ ∞
−∞

1

p

(∫
Sm−1,2n

∂M−1
p Rm|2n[φ](w, p+ 〈y,w〉) dSw

)
dp, for M even,

φ(y) =
(−1)

M−1
2

2(2π)M−1

∫
Sm−1,2n

∂M−1
p Rm|2n[φ](w, p)

∣∣∣∣
p=〈y,w〉

dSw, for M odd.

ii) If M = −2k (m 6= 0),

φ(y) =
1

22k−1(k!)2 σ−2k+1

∫ ∞
−∞

p2k ∆k
wRm|2n[φ](w, p+ 〈y,w〉) dp

− (−1)k(4π2)k
∫ ∞
−∞

G2k(|p|)
(∫

Sm−1,2n

Rm|2n[φ](w, p+ 〈y,w〉) dSw

)
dp. (49)

iii) If M = −2n (m = 0),

φ(ỳ) =
1

22n−1(n!)2 σ−2n+1
∆n
ẁ

∫
B,x̀

〈x̀− ỳ, ẁ〉2nφ(x̀).
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Remark 6. The formula provided in iii) is an inversion formula for the fermionic integral transform

R† [φ](ẁ, p) =

∫
B,x̀

(〈x̀, ẁ〉 − p)2n
φ(x̀).

We recall that the Radon transform Rm|2n is not well-defined in the purely fermionic case m = 0, see Defi-
nition 3. In this case, the plane wave decomposition of the Dirac delta distribution δ(x̀)(Theorem 4) yields

an inversion formula for the transform R† instead, i.e. φ(ỳ) =
1

22n−1(n!)2 σ−2n+1
∆n
ẁ R

† [φ](ẁ, 〈ỳ, ẁ〉).

Proof.

Case i) M > 1. If M is even, Theorem 4 i) yields

φ(y) =

∫
Rm|2nx

δ(x− y)φ(x) =
(−1)

M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

(∫
Rm|2nx

〈x− y,w〉−Mφ(x)

)
dSw. (50)

From Corollary 1 ii) we obtain∫
Rm|2nx

(〈x,w〉 − 〈y,w〉)−M φ(x) =

∫ ∞
−∞

p−M Rm|2n[φ](w, p+ 〈y,w〉) dp,

while p−M = (−1)M−1

(M−1)! ∂M−1
p

[
p−1
]
in the distributional sense, see e.g. [16, Ch.1 - §3.3]. Hence,∫

Rm|2nx

〈x− y,w〉−Mφ(x) =
(−1)M−1

(M − 1)!

∫ ∞
−∞

∂M−1
p

[
p−1
]
Rm|2n[φ](w, p+ 〈y,w〉) dp

=
1

(M − 1)!

∫ ∞
−∞

p−1 ∂M−1
p Rm|2n[φ](w, p+ 〈y,w〉) dp.

Substituting this last formula into (50) yields the desired result.
On the other hand, if M is odd we obtain

φ(y) =

∫
Rm|2nx

δ(x− y)φ(x) =
(−1)

M−1
2

2(2π)M−1

∫
Sm−1,2n

(∫
Rm|2nx

δ(M−1)(〈x− y,w〉)φ(x)

)
dSw. (51)

Again, by Corollary 1 ii), we get∫
Rm|2nx

δ(M−1) (〈x,w〉 − 〈y,w〉) φ(x) =

∫ ∞
−∞

δ(M−1)(p) Rm|2n[φ](w, p+ 〈y,w〉) dp

= (−1)M−1 ∂M−1
p Rm|2n[φ](w, p)

∣∣∣
p=〈y,w〉

.

Substituting this last expression into (51) we obtain the assertion.

Case ii) M = −2k, m 6= 0. In this case we have from Theorem 4 ii) that

φ(y) =

∫
Rm|2nx

δ(x− y)φ(x)

=
1

22k−1(k!)2 σ−2k+1
∆k

w

∫
Rm|2nx

(〈x,w〉 − 〈y,w〉)2k
φ(x) (52)

− (−1)k(4π2)k
∫
Sm−1,2n

(∫
Rm|2nx

G2k (|〈x,w〉 − 〈y,w〉|)φ(x)

)
dSw.

Using Corollary 1 ii), we obtain

∆k
w

∫
Rm|2nx

(〈x,w〉 − 〈y,w〉)2k
φ(x) =

∫ +∞

−∞
p2k ∆k

wRm|2n[φ](w, p+ 〈y,w〉) dp,
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and ∫
Rm|2nx

G2k (|〈x,w〉 − 〈y,w〉|)φ(x) =

∫ +∞

−∞
G2k(|p|)Rm|2n[φ](w, p+ 〈y,w〉) dp.

Substituting these two formulas into (52), we obtain (49).
Note that the first summand in the right-hand side of (49) must be independent of the variables p and w.
The independence of p is clear since this term is an integral on the variable p. However, the independence
of w is not directly seen, but it can be verified using some properties of the Radon transform. Indeed,
from the shifting property and the action of the super Laplace operator (Proposition 2 ii) and iv)), we
obtain ∫ ∞

−∞
p2k ∆k

wRm|2n[φ](w, p+ 〈y,w〉) dp =

∫ ∞
−∞

p2k ∆k
wRm|2n [φ(x+y)] (w, p) dp

=

∫ ∞
−∞

p2k ∂2k
p Rm|2n

[
|x|2kφ(x+y)

]
(w, p) dp

Finally, using integration by parts and Corollary 1 i) we obtain∫ ∞
−∞

p2k ∆k
wRm|2n[φ](w, p+ 〈y,w〉) dp = (2k)!

∫ ∞
−∞

Rm|2n
[
|x|2kφ(x+y)

]
(w, p) dp

=

∫
Rm|2nx

|x|2kφ(x+y),

which is clearly independent of w.

Case iii) M = −2k, m 6= 0. The result in this case follows directly from Theorem 4 iii). �

7 Inversion formulas unified
In the purely bosonic case, Theorem 5 i) yields the inversion formulas for the classical Radon transform
in M = m dimensions. These formulas can be rewritten in an unified way, regardless of the parity of m,
as follows (see e.g. [19, 20]),

(−∆x)
m−1

2 R∗m|0Rm|0[φ] = 2mπm−1φ. (53)

Here, R∗m|0 denotes the so-called dual Radon transform, which to a continuous function ψ(w, p) on the
space Pm of all hyperplanes in Rm associates the function

R∗m|0[ψ](x) =

∫
Sm−1

ψ(w, 〈x,w〉) dSw.

For m even, the fractional power of the bosonic Laplacian (−∆x)
m−1

2 is defined by means of the Fourier
multiplier

F
[
(−∆x)sφ

]
= |ξ|2sF [φ], φ ∈ S(Rm), 2s > −m. (54)

In this section, we prove a similar unified inversion formula for the super Radon transform for all
values of the superdimension M ∈ Z. To that end, we shall first study in detail the fractional super
Laplace operator and construct a fundamental solution for it.

7.1 Fundamental solution of the fractional super Laplace operator.
First, let us recall that the definition (54) of (−∆x)s as a Fourier multiplier can be rewritten as (see [20,
Ch.1 - §2.8])

(−∆x)s[φ] = I−2s[φ], φ ∈ S(Rm),

where Iγ is the Riesz potential,

Iγ [φ](x) :=
1

Hm(γ)

∫
Rm
|x− y|γ−mφ(y) dVy, with Hm(γ) = 2γπ

m
2

Γ
(
γ
2

)
Γ
(
m−γ

2

) .
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Equivalently, we can write Iγ [φ](x) =
(
Km
γ ∗ φ

)
(x) where Km

γ (x) = Hm(γ)−1|x|γ−m is the corresponding
Riesz potential. Note that the poles of |x|γ−m are cancelled by the poles of Γ

(
γ
2

)
, so that Iγ [φ](x) extends

to a holomorphic function for all γ ∈ C such that γ−m /∈ 2N0. Thus the power of the Laplacian (−∆x)s

is well-defined if −2s−m /∈ 2N0.
An important property of the Riesz kernels is that (see [23, Ch.1 - §1])

Km
α ∗Km

β = Km
α+β , for Re(α+ β) < m, α−m, β −m /∈ 2N0.

Moreover, from (13) we have that

Km
0 (x) = Hm(γ)−1|x|γ−m

∣∣∣∣
γ=0

= δ(x).

In particular, these two properties imply that Km
γ ∗Km

−γ = δ(x) if ±γ −m /∈ 2N0. It thus follows that a
fundamental solution of (−∆x)s is

Km
2s(x) =

1

Hm(2s)
|x|2s−m, ±2s−m /∈ 2N0.

We also recall that the action of the bosonic Laplacian on the generalized function |x|λ is given by (see
e.g. [16, Ch.1 - §3.9]),

∆x

[
|x|λ+2

Γ
(
λ+m

2 + 1
)] = 2(λ+ 2)

|x|λ

Γ
(
λ+m

2

) ,
which is valid for the entire λ-plane. It is hence easily seen that

(−∆x)Km
γ = Km

γ−2. (55)

If m 6= 0, we may define real powers of the super Laplace operator by means of the following Taylor
expansion (see (15)),

(−∆x)s =

n∑
j=0

∆j
x̀

j!

Γ(−s+ j)

Γ(−s)
(−∆x)s−j , s ∈ R, −2s−M /∈ 2N0. (56)

We now construct a fundamental solution for this operator. We will follow a procedure similar to the
one used in [13], where fundamental solutions of the natural powers of the super Laplace operator were
computed.

Theorem 6. Let s ∈ R be such that ±2s−M /∈ 2N0. Then a fundamental solution of (−∆x)s is

KM
2s (x) =

1

HM (2s)
|x|2s−M =

1

4sπM/2Γ(s)

n∑
j=0

x̀ 2n−2j

(n− j)!
Γ
(m

2
− s− j

)
|x|2s+2j−m.

Proof. Note that the conditions −2s−M /∈ 2N0 and 2s−M /∈ 2N0 ensure that both (−∆x)s and KM
2s (x)

are well-defined. We begin by writing a fundamental solution of (−∆x)s in the following form

ρ =

n∑
j=0

aj (−∆x)n−j [φ] x̀ 2n−2j , (57)

where aj ∈ R and φ ∈ S ′(Rm) are (still) to be determined. Combining (56) and (57) we obtain,

(−∆x)s[ρ] =

n∑
`,j=0

aj
`!

Γ(−s+ `)

Γ(−s)
(−∆x)n−j+s−`[φ] ∆`

x̀

[
x̀ 2n−2j

]
.

The action ∆`
x̀

[
x̀ 2n−2j

]
can be computed directly from (6) and it is given by

∆`
x̀

[
x̀ 2n−2j

]
= 4`

(n− j)!
(n− j − `)!

(j + `)!

j!
x̀ 2n−2j−2`, for ` ≤ n− j.
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Obviously, ∆`
x̀

[
x̀ 2n−2j

]
= 0 if ` > n− j. Thus, we obtain

(−∆x)s[ρ] =

n∑
j=0

n−j∑
`=0

4`
aj
`!

(n− j)!
(n− j − `)!

(j + `)!

j!

Γ(−s+ `)

Γ(−s)
(−∆x)n−j+s−`[φ] x̀ 2n−2j−2`

=

n∑
j=0

n∑
`=j

4`−j
aj

(`− j)!
(n− j)!
(n− `)!

`!

j!

Γ(−s+ `− j)
Γ(−s)

(−∆x)n+s−`[φ] x̀ 2n−2`,

where we have replaced the index ` by `− j in the second equality. Changing the order of summation we
get,

(−∆x)s[ρ] =

n∑
`=0

x̀ 2n−2`

(n− `)!
(−∆x)n+s−`[φ]

∑̀
j=0

4`−j aj (n− j)!
(
`

j

)
Γ(−s+ `− j)

Γ(−s)


=

n∑
`=0

x̀ 2n−2`

(n− `)!
(−∆x)n+s−`[φ]

∑̀
j=0

4j a`−j (n− `+ j)!

(
`

j

)
Γ(−s+ j)

Γ(−s)

 ,

where we have now replaced the index j by `− j in the last equality.

From our assumption (−∆x)s[ρ] = δ(x) = δ(x)
πn

n!
x̀ 2n, we obtain for ` = 0 that

a0(−∆x)n+s[φ] =
πn

n!
δ(x), (58)

and for ` = 1, . . . , n that ∑̀
j=0

4j a`−j (n− `+ j)!

(
`

j

)
Γ(−s+ j)

Γ(−s)
= 0. (59)

From (58) we immediately have that a0 = πn

n! and φ(x) = Km
2s+2n(x). Indeed, ±2s −M /∈ 2N0 directly

implies that ±2(s+ n)−m /∈ 2N0, and therefore, Km
2s+2n(x) is a fundamental solution of (−∆x)n+s. On

the other hand, if we use the substitution

aj =
πn4j

(n− j)!
bj

Γ(s)
,

then (59) simplifies to ∑̀
j=0

b`−j

(
`

j

)
Γ(−s+ j)

Γ(−s)Γ(s)
= 0,

which has a solution given by bj = Γ(s + j), j = 0, . . . , n (see the subsequent Lemma 2). Hence we
conclude that a solution for the system (58)-(59) is

aj = πn
4j

(n− j)!
Γ(s+ j)

Γ(s)
.

Substituting this into (57), together with φ = Km
2s+2n, we obtain from (55) that

ρ =
πn

Γ(s)

n∑
j=0

4jΓ(s+ j)

(n− j)!
(−∆x)n−j

[
Km

2s+2n

]
x̀ 2n−2j

=
πn

Γ(s)

n∑
j=0

4jΓ(s+ j)

(n− j)!
Km

2s+2j x̀
2n−2j

=
πn

π
m
2 4sΓ(s)

n∑
j=0

Γ
(
m
2 − s− j

)
(n− j)!

|x|2s+2j−m x̀ 2n−2j

=
1

π
M
2 4sΓ(s)

n∑
j=0

x̀ 2j

j!
Γ

(
M

2
− s+ j

)
|x|2s−M−2j ,
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where we have replaced the index j by n − j in the last equality. Finally, using the definition of the
generalized superfunction |x|2s−M (see (16)), we obtain

ρ =
Γ
(
M
2 − s

)
π
M
2 4sΓ(s)

|x|2s−M = KM
2s (x),

which proves the result. �

We still need the following technical lemma regarding the solution of (59). We provide the proof due
to the lack of reference.

Lemma 2. The following identity holds for all s ∈ C and ` ∈ N

∑̀
j=0

(
`

j

)
Γ(s+ `− j)

Γ(s)

Γ(−s+ j)

Γ(−s)
= 0.

Proof. Recall that (−1)j Γ(s+1)
Γ(s−j+1) = Γ(−s+j)

Γ(−s) for all s ∈ C and j ∈ N0. Then

∑̀
j=0

(
`

j

)
Γ(s+ `− j)

Γ(s)

Γ(−s+ j)

Γ(−s)
=
∑̀
j=0

(−1)j
(
`

j

)
Γ(s+ `− j)

Γ(s)

Γ(s+ 1)

Γ(s− j + 1)

= s
∑̀
j=0

(−1)j
(
`

j

)
Γ(s+ `− j)
Γ(s− j + 1)

.

Hence, it suffices to prove that the following polynomial in the complex variable s is identically zero,

P (s) =
∑̀
j=0

(−1)j
(
`

j

)
Γ(s+ `− j)
Γ(s− j + 1)

=
∑̀
j=0

(−1)j
(
`

j

)
(s− j + 1)`−1,

where (q)` :=

{
1, ` = 0,

q(q + 1) · · · (q + `− 1), ` > 0,
is the rising Pochhammer symbol. Direct calculations

show that we can rewrite P (s) as the hypergeometric function

P (s) =
Γ(`+ s)

Γ(s+ 1)
2F1(−`,−s;−`− s+ 1, 1). (60)

From the Chu-Vandermonde identity for hypergeometric functions (see [1, Corollary 2.2.3]) it is known
that

2F1(−`, b; c, 1) =
(c− b)`

(c)`
, if Re(c) > Re(−`+ b).

Applying this result and the fact that (−` + 1)` = (−` + 1)(−` + 2) · · · (−` + 1 + ` − 1) = 0, we obtain
from (60) that

P (s) =
Γ(`+ s)

Γ(s+ 1)

(−`+ 1)`
(−`− s+ 1)`

= 0,

which completes the proof. �

7.2 Inversion formula
Given a superfunction ψ(w, p) of the supervector variable w and the commuting variable p, we define
the dual of the super Radon transform by

R∗m|2n[ψ](x) =

∫
Sm−1,2n

ψ(w, 〈x,w〉) dSw.

We shall now establish the following unified inversion formulas for the super Radon transform, extending
in this way formula (53) to the superspace setting.
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Theorem 7. Let m 6= 0, M = m− 2n, and φ ∈ S(Rm)⊗G2n. Then

(−∆x)
M−1

2 R∗m|2nRm|2n[φ](x) = 2MπM−1φ(x).

To begin with, observe that

R∗m|2nRm|2n[φ](x) =

∫
Sm−1,2n

Rm|2n[φ](w, 〈x,w〉) dSw

=

∫
Sm−1,2n

(∫
Rm|2ny

δ (〈y − x,w〉)φ(y)

)
dSw

=

∫
Rm|2ny

(∫
Sm−1,2n

δ (〈y − x,w〉) dSw

)
φ(y). (61)

Before proving Theorem 7, we will show first that the innermost integral in (61) is (up to a constant) the
plane wave decomposition of the super Riesz kernel KM

M−1(y − x) = HM (M − 1)−1|y − x|−1.

Theorem 8. Let m 6= 0 and M = m− 2n. Then∫
Sm−1,2n

δ (〈x,w〉) dSw = σM−1|x|−1,

where we recall that σM−1|x|−1 = 2π
M−1

2
|x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−1

is defined for all M ∈ Z, see Theorem 1.

Proof. We begin by recalling that∫
Sm−1,2n

δ (〈x,w〉) dSw =

2n∑
j=0

1

j!

(∫
Sm−1,2n

〈x̀, ẁ〉j δ(j)(〈x,w〉) dSw

)
=

2n∑
j=0

1

j!
Lj [δ

(j)](x), (62)

where we have introduced the notation

Lj [δ
(j)](x) =

∫
Sm−1,2n

〈x̀, ẁ〉j δ(j)(〈x,w〉) dSw, j = 0, . . . , 2n.

The above integrals can be computed as follows (see the subsequent Lemma 3 in the Appendix section
for a proof)

L2j+1[δ(2j+1)](x) = 0, j = 0, . . . , n− 1,

L2j [δ
(2j)](x) = 2(−1)j

Γ
(
j + 1

2

)
πn+ 1

2

x̀ 2j

∫
Rm

δ(n−j) (1− |w|2) δ(2j)(〈x,w〉) dVw j = 0, . . . , n.

Then (62) can be rewritten as∫
Sm−1,2n

δ (〈x,w〉) dSw =
2

πn+ 1
2

n∑
j=0

(−1)j
Γ
(
j + 1

2

)
(2j)!

x̀ 2j

∫
Rm

δ(n−j) (1− |w|2) δ(2j)(〈x,w〉) dVw. (63)

Let us now compute the distribution Ij :=
∫
Rm δ

(n−j) (1− |w|2) δ(2j)(〈x,w〉) dVw. Using spherical coor-
dinates w = tξ with t = |w| and ξ ∈ Sm−1, we obtain

Ij =

∫ ∞
0

∫
Sm−1

δ(n−j)(1− t2) δ(2j)(t〈x, ξ〉) tm−1 dSξ dt

=

(∫ ∞
0

δ(n−j)(1− t2)tm−2j−2 dt

)(∫
Sm−1

δ(2j)(〈x, ξ〉) dSξ
)
.
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To compute the first integral in the above formula, we take t = u1/2 and obtain∫ ∞
0

δ(n−j)(1− t2)tm−2j−2 dt =
1

2

∫ ∞
0

δ(n−j)(1− u)u
m−3

2 −j du

=
1

2

dn−j

dun−j

[
u
m−3

2 −j
] ∣∣∣∣
u=1

=
1

2

(
m− 1

2
− j − 1

)(
m− 1

2
− j − 2

)
· · ·
(
m− 1

2
− n

)
=

1

2

Γ
(
m−1

2 − j
)

Γ
(
m−1

2 − n
) .

Hence,

Ij =
1

2

Γ
(
m−1

2 − j
)

Γ
(
M−1

2

) ∫
Sm−1

δ(2j)(〈x, ξ〉) dSξ.

An explicit formula for the plane wave integral above can be obtained from combining (32) with (29).
Indeed, substituting (32) into (29) yields

(−1)jj!

π
m−1

2 (2j)!

∫
Sm−1

δ(2j)(〈x, ξ〉) dSξ =
2|x|λ

Γ
(
λ+m

2

) ∣∣∣∣
λ=−2j−1

. (64)

Using formula (13) we obtain

2|x|λ

Γ
(
λ+m

2

) ∣∣∣∣
λ=−2j−1

=


2|x|−2j−1

Γ
(
m−1

2 − j
) , m− 1− 2j /∈ −2N0,

(−1)
1−m

2 +jπ
m
2

2−m+2j Γ
(
j + 1

2

) ∆
1−m

2 +j
x δ(x), m− 1− 2j ∈ −2N0,

which gives the following when substituted in (64)

∫
Sm−1

δ(2j)(〈x, ξ〉) dSξ =


2(−1)jπ

m−1
2

(2j)!

j!

|x|−2j−1

Γ
(
m−1

2 − j
) , m− 1− 2j /∈ −2N0,

(−1)
1−m

2 πm−
1
2

2−m+2j Γ
(
j + 1

2

) (2j)!

j!
∆

1−m
2 +j

x δ(x) m− 1− 2j ∈ −2N0,

(65)

Hence, if M − 1 /∈ −2N0, we have that m− 1− 2j /∈ −2N0 for all j = 0, . . . , n, and therefore

Ij = (−1)j
π
m−1

2

Γ
(
M−1

2

) (2j)!

j!
|x|−2j−1

.

Substituting this formula into (63) and in virtue of (16), we obtain∫
Sm−1,2n

δ (〈x,w〉) dSw = σM−1

n∑
j=0

x̀ 2j

j!

Γ
(
j + 1

2

)
Γ( 1

2 )
|x|−1−2j

= σM−1|x|−1,

which proves the theorem for this case.
On the other hand, if M − 1 ∈ −2N0, i.e. m = 2n− 2k + 1 for some k ∈ N0 (k ≤ n), we have that

Γ
(
m−1

2 − j
)

Γ
(
m−1

2 − n
) =


(−1)n−j

k!

(k + j − n)!
, k + j ≥ n,

0, otherwise.

Hence Ij vanishes if k + j < n, while

Ij =
(−1)n−j

2

k!

(k + j − n)!

∫
Sm−1

δ(2j)(〈x, ξ〉) dSξ, if k + j ≥ n.
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The condition k + j ≥ n implies that m− 1− 2j = 2(n− k − j) ∈ −2N0. Then, from (65) we obtain

Ij =
(−1)k−j

22k+2j−2n

k!

(k + j − n)!

(2j)!

j!

πm−
1
2

Γ
(
j + 1

2

) ∆j+k−n
x δ(x).

Substituting this into (63) yields∫
Sm−1,2n

δ (〈x,w〉) dSw =
2(−1)k

πn+ 1
2

k!πm−
1
2

22k

n∑
j=n−k

x̀ 2j

j!

∆j+k−n
x δ(x)

22j−2n(k + j − n)!
.

=
2(−1)kk!

22k
πm−n−1

k∑
j=0

4j x̀ 2n−2j

(k − j)!(n− j)!
∆k−j
x δ(x),

where we have replaced the index j by n− j in the last equality. Using Theorem 1 i), we now obtain∫
Sm−1,2n

δ (〈x,w〉) dSw = 2πM−1 (−1)k

22k
∆k

xδ(x). (66)

Finally, since M − 1 = −2k, it is easily seen that

σM−1|x|−1 = 2π
M−1

2
|x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−1

= 2π
M−1

2
|x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−M−2k

.

Then, in virtue of Theorem 1 iii) we obtain

σM−1|x|−1 = 2π
M−1

2
(−1)kπ

M
2

22kΓ
(
M
2 + k

)∆k
xδ(x) = 2πM−1 (−1)k

22k
∆k

xδ(x),

which completes the proof when compared with (66). �

We now proceed with the proof of our main Theorem 7. From Theorem 8, we can rewrite (61) as

R∗m|2nRm|2n[φ](x) = 2π
M−1

2

∫
Rm|2ny

|y − x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−1

φ(y). (67)

We may now take s = M−1
2 in Theorem 6. Indeed, it is clear that ±2s−M = ±(M − 1)−M /∈ 2N0 for

all M ∈ Z. Thus Theorem 6 implies that

KM
M−1(x) =

1

HM (M − 1)
|x|−1 =

1

2M−1π
M−1

2

|x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−1

,

is a fundamental solution of (−∆x)
M−1

2 . Finally, the action of (−∆x)
M−1

2 on both sides of (67) yields,

(−∆x)
M−1

2 R∗m|2nRm|2n[φ](x) = 2π
M−1

2

∫
Rm|2ny

(−∆x)
M−1

2
|y − x|λ

Γ
(
M+λ

2

) ∣∣∣∣∣
λ=−1

φ(y)

= 2π
M−1

2 2M−1π
M−1

2

∫
Rm|2ny

δ(x− y)φ(y)

= 2MπM−1φ(x),

which completes the proof of Theorem 7.

The explicit inversion formulas obtained in Theorem 5 for M + 1 /∈ −2N0 are particular cases of the
general inversion formulas proved in Theorem 7 for allM ∈ Z. In a forthcoming paper, we shall study the
plane wave decomposition of δ(x) when M + 1 ∈ −2N0, which will complete the list of explicit inversion
formulas provided in Theorem 5.
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A Alternative proof of Theorem 4
In this appendix section, we derive from direct computations the plane wave decomposition formulas for
δ(x) obtained in Theorem 4. To that end, we need to gather a few preliminary results. We begin by the
following particular case of the Funk-Hecke theorem in superspace, see e.g. [9, 12, 17].

Theorem 9. [Funk-Hecke] Let x,w be independent super vector variables, j, ` ∈ N0, and let H` be a
harmonic polynomial homogeneous of degree `, i.e. ∆x[H`] = 0 and E[H`] = `H`. If m 6= 0, then∫

Sm−1,2n

〈x,w〉jH`(w) dSw = αM,`[t
j ] |x|j−`H`(x),

where αM,`[t
j ] =

 j!
(j−`)!

2π
M−1

2

2`
Γ( j−`+1

2 )
Γ(M+j+`

2 )
if j + ` even and j ≥ `,

0, otherwise.

Moreover, a similar result holds for the normalized integral defined in (21). If M = −2k (including the
case m = 0) and j + ` ≤ 2k + 1, then

1

σ−2k

∫
Sm−1,2n

〈x,w〉jH`(w) dSw = α∗M,`[t
j ]xj−`H`(x),

where α∗M,`[t
j ] =

 (−1)jπ−1/2

2`
(k− j+`2 )!

k!
j!

(j−`)!Γ
(
j−`+1

2

)
if j + ` even and j ≥ `,

0, otherwise.

As a consequence of this result we obtain the following technical Lemma.

Lemma 3. Given g ∈ S ′(R), consider the integrals L`[g](x) :=

∫
Sm−1|2n

〈x̀, ẁ〉`g(〈x,w〉) dSw, with ` =

0, 1, . . . , 2n. Then, for ` odd we have L2j+1[g](x) = 0, while for ` even

L2j [g](x) = 2(−1)j
Γ
(
j + 1

2

)
πn+ 1

2

x̀ 2j

∫
Rm

δ(n−j) (1− |w|2) g(〈x,w〉) dVw. (68)

Proof. Formula (18) yields

L`[g](x) = 2

∫
Rm

∫
B,ẁ

δ(1 + w2) 〈x̀, ẁ〉` g(〈x,w〉) dVw

= 2

n∑
p=0

(∫
B,ẁ

ẁ 2p

p!
〈x̀, ẁ〉`

)(∫
Rm

δ(p)
(
1− |w|2

)
g(〈x,w〉) dVw

)
.

If ` = 2j + 1, it is clear that
∫
B,ẁ

ẁ 2p

p! 〈x̀, ẁ〉
2j+1 = 0, and therefore, L2j+1[g](x) = 0. On the other hand,

if ` = 2j, we obtain

L2j [g](x) =
2

(n− j)!

(∫
B,ẁ

ẁ 2n−2j〈x̀, ẁ〉2j
)(∫

Rm
δ(n−j) (1− |w|2) g(〈x,w〉) dVw

)
=

2

(n− j)!
π−n

4nn!
∆n
ẁ

[
ẁ 2n−2j〈x̀, ẁ〉2j

](∫
Rm

δ(n−j) (1− |w|2) g(〈x,w〉) dVw
)
. (69)

Using the property (22) of the normalized integral (21) we obtain

(−1)n

4n(n!)2
∆n
ẁ

[
ẁ 2n−2j〈x̀, ẁ〉2j

]
=

1

σ−2n

∫
S−1,2n

ẁ 2n−2j〈x̀, ẁ〉2j dSẁ = (−1)n−j
1

σ−2n

∫
S−1,2n

〈x̀, ẁ〉2j dSẁ.

Moreover, the Funk-Hecke Theorem 9 for the normalized integral yields (see [12, 17]),

1

σ−2n

∫
S−1,2n

〈x̀, ẁ〉2j dSẁ =
(n− j)!
n!

Γ
(
j + 1

2

)
π

1
2

x̀ 2j .
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Thus

∆n
ẁ

[
ẁ 2n−2j〈x̀, ẁ〉2j

]
= (−1)j4nn!(n− j)!

Γ
(
j + 1

2

)
π

1
2

x̀ 2j .

Finally, substituting the latter into (69), we obtain (68). �

We now proceed to the proof of Theorem 4.

Case M > 1, even. In this case we must prove that

δ(x) =
(−1)

M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw.

We first recall that

〈x,w〉−M =

2n∑
j=0

(−1)j
〈x̀, ẁ〉j

j!

(M + j − 1)!

(M − 1)!
〈x,w〉−M−j .

Using Lemma 3 we have

(−1)
M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw

=
(−1)

M
2

(2π)M

n∑
j=0

(M + 2j − 1)!

(2j)!

∫
Sm−1,2n

〈x̀, ẁ〉2j 〈x,w〉−M−2j dSw

=
(−1)

M
2

(2π)M

n∑
j=0

(M + 2j − 1)!

(2j)!

(−1)j2

πn
Γ
(
j + 1

2

)
π

1
2

x̀ 2j

∫
Rm

δ(n−j) (1− |w|2) 〈x,w〉−M−2j dVw.

From the identity
Γ
(
j + 1

2

)
π

1
2 (2j)!

=
1

22jj!
we obtain

(−1)
M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw

=
2(−1)

M
2

2Mπm−n

n∑
j=0

(−1)j(M + 2j − 1)!

22jj!
x̀ 2j

∫
Rm

δ(n−j) (1− |w|2) 〈x,w〉−M−2j dVw

=
(−1)

M
2 2πn

2Mπm

n∑
j=0

(−1)n−j(m− 2j − 1)!

22n−2j(n− j)!
x̀ 2n−2j

∫
Rm

δ(j)
(
1− |w|2

)
〈x,w〉2j−m dVw.

(70)

Let us now compute the integrals

Ij :=

∫
Rm

δ(j)
(
1− |w|2

)
〈x,w〉2j−m dVw, j = 0, . . . , n.

Using spherical coordinates, i.e. w = rξ with r = |w| and ξ ∈ Sm−1, we obtain

Ij =

(∫
Sm−1

〈x, ξ〉2j−m dSξ
)(∫ +∞

0

δ(j)
(
1− r2

)
r2j−1 dr

)
=


1
2

∫
Sm−1〈x, ξ〉−m dSξ, j = 0,

0, j 6= 0.
(71)

Indeed, taking t = r2 we get∫ +∞

0

δ(j)
(
1− r2

)
r2j−1 dr =

1

2

∫ +∞

0

δ(j) (1− t) tj−1 dt =

{
1
2 , j = 0,

0, j 6= 0.
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Finally, substituting (71) into (70) yields

(−1)
M
2 (M − 1)!

(2π)M

∫
Sm−1,2n

〈x,w〉−M dSw =
(−1)

m
2 (m− 1)!

2mπm

(∫
Sm−1

〈x, ξ〉−m dSξ
)
πn

n!
x̀ 2n

= δ(x)
πn

n!
x̀ 2n,

where we have used the plane wave decomposition (34) of the Dirac delta distribution in Rm.

Case M > 1, odd. We now must show that

δ(x) =
(−1)

M−1
2

2(2π)M−1

∫
Sm−1,2n

δ(M−1)(〈x,w〉) dSw.

We recall that

δ(M−1)(〈x,w〉) =

2n∑
j=0

〈x̀, ẁ〉j

j!
δ(M+j−1)(〈x,w〉).

Lemma 3 now implies that

(−1)
M−1

2

2(2π)M−1

∫
Sm−1,2n

δ(M−1)(〈x,w〉) dSw

=
(−1)

M−1
2

2(2π)M−1

n∑
j=0

1

(2j)!

∫
Sm−1,2n

〈x̀, ẁ〉2j δ(M+2j−1)(〈x,w〉) dVw

=
(−1)

M−1
2

(2π)M−1πn

n∑
j=0

(−1)j x̀ 2j

22jj!

∫
Rm

δ(n−j) (1− |w|2) δ(M+2j−1)(〈x,w〉) dVw

=
(−1)

M−1
2

(2π)M−1 πn

n∑
j=0

(−1)n−j x̀ 2n−2j

22n−2j(n− j)!

∫
Rm

δ(j)
(
1− |w|2

)
δ(m−2j−1)(〈x,w〉) dVw. (72)

Similarly to the previous case, we now compute the integrals

Ij :=

∫
Rm

δ(j)
(
1− |w|2

)
δ(m−2j−1)(〈x,w〉) dVw, j = 0, . . . , n,

using spherical coordinates. We thus get

Ij =

∫ +∞

0

∫
Sm−1

δ(j)
(
1− r2

)
rm−1

δ(m−2j−1)(〈x, ξ〉)
rm−2j

dSξ dr

=

(∫
Sm−1

δ(m−2j−1)(〈x, ξ〉) dSξ
)(∫ +∞

0

δ(j)
(
1− r2

)
r2j−1 dr

)

=


1
2

∫
Sm−1 δ

(m−1)(〈x, ξ〉) dSξ, j = 0,

0, j 6= 0.

Substituting this into (72), and using formula (34), we obtain

(−1)
M−1

2

2(2π)M−1

∫
Sm−1,2n

δ(M−1)(〈x,w〉) dSw =
(−1)

M−1
2

(2π)M−1 πn
(−1)nx̀ 2n

22n+1n!

∫
Sm−1

δ(m−1)(〈x, ξ〉) dSξ

=
(−1)

m−1
2

2(2π)m−1

(∫
Sm−1

δ(m−1)(〈x, ξ〉) dSξ
)
πn

n!
x̀ 2n

= δ(x)
πn

n!
x̀ 2n,
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which proves the stament.
Before proceeding to the next case, we recall that a cornerstone in the proof of this result in Theorem

4 is formula (46). This formula was obtained from the identity

δ(M−1)(a) =
−(M − 1)!

2πi
B.V.

[
z−M

]
, z = a+ ib, a, b ∈ R

by means of the identifications a 7→ 〈x,w〉, b 7→ x0, i 7→ −w
|w| and

1
i 7→

w
|w| . We will now show that formula

(46) also follows from direct computations, which justifies the above identifications.

Lemma 4. Let ` ∈ N. Then

δ(`−1)(〈x,w〉) = (−1)`
(`− 1)!

2π
B.V.

[
w

|w|

(
〈x,w〉 − x0

w

|w|

)−`]
.

Proof. We begin by recalling the definition of g
(
〈x,w〉 − x0

w
|w|

)
, where g(z) = g1(a, b) + ig2(a, b) is a

complex holomorphic function in an open domain Ω ⊆ R2 ∼= C and (〈x,w〉, x0) ∈ Ω, see (47). Using the
Taylor expansion of the real and imaginary parts of g we have,

g

(
〈x,w〉 − x0

w

|w|

)
= g1(〈x,w〉, x0)− w

|w|
g2(〈x,w〉, x0)

=

2n∑
j=0

〈x̀, ẁ〉j

j!

[
∂jag1(〈x, y〉, x0)− w

|w|
∂jag2(〈x, y〉, x0)

]

=

2n∑
j=0

〈x̀, ẁ〉j

j!
g(j)

(
〈x,w〉 − x0

w

|w|

)
.

Thus, taking g(z) = z−` we obtain(
〈x,w〉 − x0

w

|w|

)−`
=

2n∑
j=0

(−1)j
〈x̀, ẁ〉j

j!

(`+ j − 1)!

(`− 1)!

(
〈x,w〉 − x0

w

|w|

)−`−j
. (73)

We now recall that δ(`−1)(a) =
(−1)`(`− 1)!

2πi
B.V.

[
z−`
]
for all ` ∈ N. Clearly, we can identify the complex

imaginary unit i with
−w
|w|

in this identity. Moreover, we can make the identifications a 7→ 〈x,w〉 and

b 7→ x0, which pose no problem because both are substitutions among real variables. Therefore we obtain

δ(`−1)(〈x,w〉) =
(−1)`(`− 1)!

2π
B.V.

[(
〈x,w〉 − x0

w

|w|

)−`
w

|w|

]
.

Substituting this identity into the definition of δ(M−1)(〈x,w〉) as a Taylor expansion (see Definition 2),
we get

δ(`−1)(〈x,w〉) =

2n∑
j=0

〈x̀, ẁ〉j

j!
δ(`−1+j)(〈x,w〉)

=

2n∑
j=0

(−1)`+j
〈x̀, ẁ〉j

j!

(`+ j − 1)!

2π
B.V.

[(
〈x,w〉 − x0

w

|w|

)−`−j
w

|w|

]

= (−1)`
(`− 1)!

2π

w

|w|
B.V.

 2n∑
j=0

(−1)j
〈x̀, ẁ〉j

j!

(`+ j − 1)!

(`− 1)!

(
〈x,w〉 − x0

w

|w|

)−`−j ,
which proves the result when combined with (73). �
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Case M = −2k, m 6= 0. In this case we need to show that

δ(x) =
1

22k−1(k!)2 σ−2k+1
∆k

w

[
〈x,w〉2k

]
− (−1)k(4π2)k

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw.

To that end, we first denote the right hand side of our statement by S, i.e.

S :=
1

22k−1(k!)2 σ−2k+1
∆k

w

[
〈x,w〉2k

]
− (−1)k(4π2)k

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw.

The first term in S can be computed using the Funk-Hecke Theorem 9 for the normalized integral. Indeed,

∆k
w

[
〈x,w〉2k

]
= (−1)k22k(k!)2 1

σ−2k

∫
Sm−1,2n

〈x,w〉2k dSw = (−1)k22kk!
Γ
(
k + 1

2

)
π

1
2

x2k.

Thus, using the fact that
Γ(−k + 1

2 )

π
1
2

Γ(k + 1
2 )

π
1
2

= (−1)k, we obtain

1

22k−1(k!)2 σ−2k+1
∆k

w

[
〈x,w〉2k

]
=

(−1)k

π−kk!

Γ(−k + 1
2 )

π
1
2

Γ(k + 1
2 )

π
1
2

x2k =
πk

k!
x2k,

and therefore

S =
πk

k!
x2k − (−1)k(4π2)k

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw. (74)

Let us now compute the integral
∫
Sm−1,2n G2k (|〈x,w〉|) dSw. To that end, we define the functions F`(x) =

G`(|x|), which are analytic functions in R \ {0}. Then the superfunction G2k (|〈x,w〉|) may be written as

G2k (|〈x,w〉|) =

2n∑
j=0

〈x̀, ẁ〉j

j!
F

(j)
2k (〈x,w〉).

By virtue of Lemma 3 we obtain∫
Sm−1,2n

G2k (|〈x,w〉|) dSw =

n∑
j=0

1

(2j)!

∫
Sm−1,2n

〈x̀, ẁ〉2jF (2j)
2k (〈x,w〉) dSw

=

n∑
j=0

2(−1)j

(2j)!πn
Γ
(
j + 1

2

)
π

1
2

x̀ 2j

∫
Rm

δ(n−j) (1− |w|2)F (2j)
2k (〈x,w〉) dVw

=
2

πn

n∑
j=0

(−1)n−j x̀ 2n−2j

22n−2j(n− j)!

∫
Rm

δ(j)
(
1− |w|2

)
F

(2n−2j)
2k (〈x,w〉) dVw, (75)

where we have again used the identity
Γ
(
j + 1

2

)
π

1
2 (2j)!

=
1

22jj!
and reversed the order of summation in the last

equality.
We now recall that the functions G` satisfy that G′`+1 = G` and G0(z) = ln(z). We thus obtain

F
(2j)
2k (x) = F2k−2j(x) = G2k−2j(|x|), j ≤ k,

F
(2k+j)
2k (x) = (−1)j−1(j − 1)! x−j , j ∈ N.

Substituting these formulas into (75), and using the fact that 2n− 2j = m+ 2k − 2j, we get

∫
Sm−1,2n

G2k (|〈x,w〉|) dSw =
2

πn

m
2 −1∑
j=0

(−1)n−j x̀ 2n−2j

22n−2j(n− j)!

∫
Rm

δ(j)
(
1− |w|2

)
F

(2n−2j)
2k (〈x,w〉) dVw

+
2

πn

n∑
j=m

2

(−1)n−j x̀ 2n−2j

22n−2j(n− j)!

∫
Rm

δ(j)
(
1− |w|2

)
G2j−m(|〈x,w〉|) dVw. (76)
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Let us now compute the integrals appearing in the above sum, which will be denoted by

Ij :=

∫
Rm

δ(j)
(
1− |w|2

)
F

(2n−2j)
2k (〈x,w〉) dVw, j = 0, . . . ,

m

2
− 1,

and

Jj :=

∫
Rm

δ(j)
(
1− |w|2

)
G2j−m(|〈x,w〉|) dVw, j =

m

2
, . . . , n,

respectively.
To compute Ij , we first observe that F

(2n−2j)
2k (〈x,w〉) = F

(2k+m−2j)
2k (〈x,w〉) = −(m−2j−1)!〈x,w〉−m+2j .

Using again spherical coordinates, i.e. w = rξ with r = |w| and ξ ∈ Sm−1, we obtain

Ij = −(m− 2j − 1)!

(∫
Sm−1

〈x, ξ〉−m+2j dSξ

)(∫ +∞

0

δ(j)
(
1− r2

)
r2j−1 dr

)

=


−(m−1)!

2

∫
Sm−1〈x, ξ〉−m dSξ, j = 0,

0, j 6= 0.
(77)

To compute Jj we also use spherical coordinates, which yields

Jj =

∫
Sm−1

(∫ +∞

0

δ(j)
(
1− r2

)
G2j−m(r|〈x, ξ〉|) rm−1 dr

)
dSξ.

By the definition (37) of the functions G`, we have

G2j−m(r|〈x, ξ〉|) = r2j−m

[
〈x, ξ〉2j−m

(2j −m)!

(
ln(|〈x, ξ〉|) + ln(r)

)
− a2j−m〈x, ξ〉2j−m

]

= r2j−mG2j−m(|〈x, ξ〉|) +
〈x, ξ〉2j−m

(2j −m)!
r2j−m ln(r).

Hence,

Jj =

(∫
Sm−1

G2j−m(|〈x, ξ〉|) dSξ
)(∫ +∞

0

δ(j)
(
1− r2

)
r2j−1 dr

)
+

(∫
Sm−1

〈x, ξ〉2j−m

(2j −m)!
dSξ

)(∫ +∞

0

δ(j)
(
1− r2

)
ln(r)r2j−1 dr

)
.

We now recall that
∫ +∞

0
δ(j)

(
1− r2

)
r2j−1 dr = 0 for j = m

2 , . . . , n. Then

Jj =

(∫
Sm−1

〈x, ξ〉2j−m

(2j −m)!
dSξ

)(∫ +∞

0

δ(j)
(
1− r2

)
ln(r)r2j−1 dr

)
.

Considering the change of coordinates r = t
1
2 , we obtain∫ +∞

0

δ(j)
(
1− r2

)
ln(r)r2j−1 dr =

1

4

∫ +∞

0

δ(j) (1− t) ln(t)tj−1 dt =
1

4

dj

dtj
[
tj−1 ln(t)

] ∣∣∣∣
t=1

.

By induction, it can be proven that

dj

dtj
[
tj−1 ln(t)

] ∣∣∣∣
t=1

= (j − 1)!.
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Indeed, for j = 1 one has d
dt [ln(t)]

∣∣
t=1

= 1, while the induction step follows from the identity

dj+1

dtj+1

[
tj ln(t)

]
=

dj

dtj

[
tj−1 ln(t) + t

(
tj−1 ln(t)

)′]
=

dj

dtj
[
tj−1 ln(t)

]
+
dj

dtj
[
(j − 1)tj−1 ln(t) + tj−1

]
= j

dj

dtj
[
tj−1 ln(t)

]
.

Thus,
∫ +∞

0

δ(j)
(
1− r2

)
ln(r)r2j−1 dr =

(j − 1)!

4
and therefore,

Jj =
(j − 1)!

4(2j −m)!

∫
Sm−1

〈x, ξ〉2j−m dSξ.

The Funk-Hecke Theorem 9 in the purely bosonic case (i.e. n = 0) now yields

Jj =
π
m−1

2

2(2j −m)!
Γ

(
j − m

2
+

1

2

)
|x|2j−m =

π
m
2

22j−m+1
(
j − m

2

)
!
|x|2j−m. (78)

Substituting (77) and (78) into (76) we obtain∫
Sm−1,2n

G2k (|〈x,w〉|) dSw

=
(−1)n+1(m− 1)!

22n n!πn
x̀ 2n

∫
Sm−1

〈x, ξ〉−m dSξ + 2−2kπ−k
n∑

j=m
2

(−1)n−j
x̀ 2n−2j

(n− j)!
|x|2j−m(
j − m

2

)
!

=
(−1)n+1(m− 1)!

22n n!πn
x̀ 2n

∫
Sm−1

〈x, ξ〉−m dSξ + (−1)k2−2kπ−k
k∑
j=0

x̀ 2k−2j

(k − j)!
x2j

j!

=
(−1)n+1(m− 1)!

22n n!πn
x̀ 2n

∫
Sm−1

〈x, ξ〉−m dSξ +
(−1)k2−2kπ−k

k!
x2k.

Finally, substituting this last expression into (74) gives

S =
πk

k!
x2k − (−1)k(4π2)k

[
(−1)n+1(m− 1)!

22n n!πn
x̀ 2n

∫
Sm−1

〈x, ξ〉−m dSξ +
(−1)k2−2kπ−k

k!
x2k

]
=

(−1)
m
2 (m− 1)!

2mπm

(∫
Sm−1

〈x, ξ〉−m dSξ
)
πn

n!
x̀ 2n,

which yields our assertion when combined with the plane wave decomposition (34).

Case M = −2n, i.e. m = 0. In this case we must show that

δ(x̀) =
1

22n−1(n!)2 σ−2n+1
∆n
ẁ

[
〈x̀, ẁ〉2n

]
.

This easily follows from the Funk-Hecke Theorem 9 for the nomalized integral in the purely fermionic
case. Indeed,

∆n
ẁ

[
〈x̀, ẁ〉2n

]
= (−1)n22n(n!)2 1

σ−2n

∫
S−1,2n

〈x̀, ẁ〉2n dSẁ = (−1)n22nn!
Γ
(
n+ 1

2

)
π

1
2

x̀2n.

Then

1

22n−1(n!)2 σ−2n+1
∆n
ẁ

[
〈x̀, ẁ〉2n

]
=

(−1)n

π−nn!

Γ(−n+ 1
2 )

π
1
2

Γ(n+ 1
2 )

π
1
2

x̀2n =
πn

n!
x̀2n = δ(x̀),

which proves the result.
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[4] F. Brackx, R. Delanghe, and F. Sommen. Clifford analysis, volume 76 of Research Notes in Mathe-
matics. Pitman (Advanced Publishing Program), Boston, MA, 1982.

[5] C. Carmeli, L. Caston, and R. Fioresi. Mathematical foundations of supersymmetry. EMS Series of
Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2011.

[6] K. Coulembier. The orthosymplectic superalgebra in harmonic analysis. J. Lie Theory, 23(1):55–83,
2013.

[7] K. Coulembier and H. De Bie. Conformal symmetries of the super Dirac operator. Rev. Mat.
Iberoam., 31(2):373–410, 2015.

[8] K. Coulembier, H. De Bie, and F. Sommen. Integration in superspace using distribution theory. J.
Phys. A, 42(39):395206, 23, 2009.

[9] K. Coulembier, H. De Bie, and F. Sommen. Orthosymplectically invariant functions in superspace.
J. Math. Phys., 51(8):083504, 23, 2010.

[10] H. De Bie. Fourier transform and related integral transforms in superspace. J. Math. Anal. Appl.,
345(1):147–164, 2008.

[11] H. De Bie and F. Sommen. A Clifford analysis approach to superspace. Ann. Physics, 322(12):2978–
2993, 2007.

[12] H. De Bie and F. Sommen. Spherical harmonics and integration in superspace. J. Phys. A,
40(26):7193–7212, 2007.

[13] H. De Bie and F. Sommen. Fundamental solutions for the super Laplace and Dirac operators and
all their natural powers. J. Math. Anal. Appl., 338(2):1320–1328, 2008.

[14] S. R. Deans. The Radon transform and some of its applications. A Wiley-Interscience Publication.
John Wiley & Sons, Inc., New York, 1983.

[15] B. DeWitt. Supermanifolds. Cambridge Monographs on Mathematical Physics. Cambridge Univer-
sity Press, Cambridge, 1984.

[16] I. M. Gel’fand and G. E. Shilov. Generalized functions. Vol. I: Properties and operations. Translated
by Eugene Saletan. Academic Press, New York-London, 1964.

[17] A. Guzmán Adán. Generalized Cauchy–Kovalevskaya extension and plane wave decompositions in
superspace. Annali di Matematica Pura ed Applicata (1923 -), 2020, https://doi.org/10.1007/s10231-
020-01043-9.

[18] A. Guzmán Adán and F. Sommen. Distributions and integration in superspace. J. Math. Phys.,
59(7):073507, 25, 2018.

37



[19] S. Helgason. The Radon transform, volume 5 of Progress in Mathematics. Birkhäuser, Boston,
Mass., 1980.

[20] S. Helgason. Groups and geometric analysis, volume 113 of Pure and Applied Mathematics. Academic
Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical
functions.

[21] L. Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics.
Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990)
edition [Springer, Berlin; MR1065993 (91m:35001a)].

[22] B. Kostant. Graded manifolds, graded Lie theory, and prequantization. Lect. Notes Math., 570:177–
306, 1977.

[23] N. S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York-Heidelberg,
1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen
Wissenschaften, Band 180.
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