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WELL-POSEDNESS FOR A NAVIER–STOKES–CAHN–HILLIARD SYSTEM

FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH SURFACTANT

ANDREA DI PRIMIO1, MAURIZIO GRASSELLI2, HAO WU3

Abstract

We investigate a diffuse-interface model that describes the dynamics of incompressible two-phase viscous
flows with surfactant. The resulting system of partial differential equations consists of a sixth-order Cahn–
Hilliard equation for the difference of local concentrations of the binary fluid mixture coupled with a fourth-
order Cahn–Hilliard equation for the local concentration of the surfactant. The former has a smooth po-
tential, while the latter has a singular potential. Both equations are coupled with a Navier–Stokes system
for the (volume averaged) fluid velocity. The evolution system is endowed with suitable initial conditions,
a no-slip boundary condition for the velocity field and homogeneous Neumann boundary conditions for the
phase functions as well as for the chemical potentials. We first prove the existence of a global weak solution,
which turns out to be unique in two dimensions. Stronger regularity assumptions on the initial data allow us
to prove the existence of a unique global (resp. local) strong solution in two (resp. three) dimensions. In the
two dimensional case, we can derive a continuous dependence estimate with respect to the norms controlled
by the total energy. Then we establish instantaneous regularization properties of global weak solutions for
t > 0. In particular, we show that the surfactant concentration stays uniformly away from the pure states 0
and 1 after some positive time.

Keywords. Two-phase flows with surfactant, Cahn–Hilliard equation, Navier–Stokes equations, well posed-
ness, regularity, strict separation property.
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1 Introduction

Surfactants are substances that can significantly alter the behavior of a fluid mixture, in particular, at the free
interfaces between two components. They can change (reduce) the interfacial tension and allow the mixing of
substances that are not able to blend under normal circumstances (e.g., water and oil). The gradients in surface

1Dipartimento di Matematica, Politecnico di Milano, Milano 20133, Italy. Email: andrea.diprimio@polimi.it
2Dipartimento di Matematica, Politecnico di Milano, Milano 20133, Italy. Email: maurizio.grasselli@polimi.it
3School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University,

Shanghai 200433, China. Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education,
Shanghai 200433, China. Email: haowufd@fudan.edu.cn, haowufd@yahoo.com

1

http://arxiv.org/abs/2201.09022v1


tension may also produce Marangoni flows, which are phenomenologically different from the temperature-driven
ones. The rich phenomena induced by surfactants have been exploited extensively in science and they have led
to a lot of applications in Engineering (see, e.g., [31]).

The dynamics of a binary fluid mixture in presence of a surfactant can be effectively modeled through the so-
called diffuse-interface (or phase-field) approach [3]. Within this framework, various models have been proposed
in the literature, which account for the rich microstructures in the mixture as well as complicated morphological
changes of the interfaces. The possibly first one among them, although neglecting hydrodynamical effects, dates
back to the work by Laradji et al. [27] (see also [26]), where the authors investigated the dynamics of phase
separation using an evolution system derived from a suitable Ginzburg–Landau free energy functional depending
on two order parameters: one for the difference in local concentrations of the two immiscible components
(denoted by φ) and the other one for the local concentration of the surfactant (denoted by ρ). The resulting
system consists of two (weakly) coupled Allen–Cahn type equations subject to thermal noises. However, in the
past years, the structure of the free energy functional has been debated and refined, leading to a variety of
descriptions.

In order to motivate our choice, we present a brief review of a number of models, without considering
hydrodynamical effects at first. Let Ω ⊂ R

d, d = 2, 3 be a bounded domain with smooth boundary ∂Ω. The
starting point is a coarse-grained model based on a two-component Ginzburg–Landau free energy functional of
possibly the simplest form:

E(φ, ρ) =

∫

Ω

(
k1|∇φ|2 + k2|∇ρ|2 + F0(φ) + F1(ρ) + Fint(φ, ρ)

)
dx,

where k1, k2 ≥ 0. In [27], the parameter k2 was taken to be zero as a physically reasonable approximation, since
the energy cost of the fluid-surfactant attachment is small (see also [25]). Besides, the potential energy densities
F0 and F1 are modeled by some double well polynomial functions of the concentrations, while the interaction
energy density is given by

Fint(φ, ρ) = −θρ|∇φ|2 + p(φ, ρ),

where θ > 0 is a given phenomenological parameter and p is a bivariate polynomial. The first coupling term
favors the surfactant to reside at the free interfaces between the two fluids, while p is suitably chosen to penalize
the presence of free surfactant in the domain. Nonetheless, as mentioned in [20] (see also [25]), the energy
functional proposed in [27] may not be well defined, since it is not bounded from below for large values of the
surfactant concentration ρ at the interfaces. For this reason, in [25] the authors proposed a slight modification
of the energy E (with k2 = 0) by including a regularizing term, namely,

E(φ, ρ) =

∫

Ω

(
k1|∇φ|2 + k3|∆φ|2 + F0(φ) + F1(ρ) + Fint(φ, ρ)

)
dx,

where k3 > 0 and F0, Fint are the same as those in [27], except that p ≡ 0. The additional term k3|∆φ|2
corresponds to the second-order term in the expansion of a free energy density in the region of nonuniform
composition for a binary mixture (see e.g., [7]). In particular, the potential F1 takes the form F1(ρ) = ρ2(ρ−1)2,
where the minimum state ρ = 0 means that the interfacial layer is occupied by the two-component mixture and
there is no surfactant in the local volume, while the normalised state ρ = 1 indicates that the interface is fully
saturated with the surfactant. On the other hand, in [37], the authors did not add any higher-order regularizing
term in the energy functional, but for the surfactant they chose an entropy term

F1(ρ) = c1 [ρ ln ρ+ (1 − ρ) ln(1 − ρ)] , for some c1 > 0.

Besides, the potentials F0 and Fint were kept almost unchanged with respect to [27] with p(φ, ρ) = 1
2Wρφ2

(for some W > 0), which counteracts the occurrence of free surfactant and serves as an enthalpic contribution
for numerical reasons. The entropy term has the advantage that it guarantees the order parameter ρ for the
surfactant will take its values in the physically relevant interval [0, 1]. However, it has been pointed out in
[10] that when k2 = 0, it may exist a relevant set of initial data for which the resulting problem is ill-posed.
Moreover, therein the authors suggested replacing the entropy term by the Flory–Huggins type potential (see
e.g., [11, 23]). Therefore F1 becomes

F1(ρ) = c1 [ρ ln ρ+ (1 − ρ) ln(1 − ρ)] + c2ρ(1 − ρ) + c3|∇ρ|2,

for some c2 ∈ R and c3 > 0. We note that the choice c3 > 0 is equivalent to assume k2 > 0. This term fits with
the classical diffuse-interface description of binary mixtures [7, 8, 32].

The phase-field model can further include hydrodynamical effects through a suitable coupling with a system
of Navier–Stokes equations for the (volume) averaged velocity u of the fluid mixture. To this end, one can add
a term related to the kinetic energy ∫

Ω

k4|u|2 dx,
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for some k4 > 0, into the energy functional E(φ, ρ). Then the full hydrodynamical coupled system of evolutionary
partial differential equations can be derived via a variational method. It consists of two convective Cahn–Hilliard
type equations and the Navier–Stokes system subject to capillary forces, see, for instance, [33] and also [10] for
the case k3 = 0.

In light of the above considerations, throughout of this paper, we shall work with the following energy
functional for the binary fluid-surfactant system

Etot(u, φ, ρ) =

∫

Ω

(
1

2
|u|2 +

α

2
|∆φ|2 +

1

2
|∇φ|2 + Sφ(φ) +

β

2
|∇ρ|2 + Sρ(ρ) − θ

2
ρ|∇φ|2

)
dx, (1.1)

where α, β, θ are positive constants. The potential function Sφ for φ is assumed to be a regular one with
double-well structure, whose typical form is

Sφ(s) =
1

4
(s2 − 1)2, s ∈ R, (1.2)

while the surfactant potential Sρ is assumed to be a singular one. For instance it can be the Flory–Huggins
potential

Sρ(s) =
θ1
2

[s ln s+ (1 − s) ln(1 − s)] +
θ2
2
s(1 − s), s ∈ (0, 1), (1.3)

where θ1 > 0 and θ2 ∈ R. In (1.1), we simply set the coupling polynomial p to zero, since from the mathematical
point of view, those physically interesting cases considered in [10, 27, 37] can be easily controlled by the potential
functions Sφ and Sρ.

The double-well regular potential (1.2) is a well-known approximation of the Flory–Huggins potential. This
does not ensure that φ takes values in its physical range [−1, 1] due to the loss of maximum principle for the
higher-order parabolic equation. Yet, in models as well as in numerical simulations of immiscible fluids, this
approximation is easy to handle and has been widely used. Then a natural question is: why we do not assume
a Flory–Huggins type potential for φ as well ? Our consideration is as follows. Observe that the evolution
of φ is described by a sixth-order Cahn–Hilliard equation (see (1.4)). However, this kind of equation with a
singular potential is rather difficult to handle. Indeed, even the existence of a weak solution in the usual sense
remains an open problem (see Remark 3.3). Only the existence of a weaker solution has been established by
replacing the equation with a suitable variational inequality [28] (see also [35, 36] for the analysis of some other
sixth-order Cahn–Hilliard type equations with singular potentials). On the other hand, one might think to take
α = 0 and use a singular potential for φ. Then the problem is to take care of the nonlinear coupling due to
the term (θ/2)ρ|∇φ|2, which is highly nontrivial (see Remark 2.2 and [34] for a related problem). The system
with a singular potential for φ is interesting and will be the subject of a further investigation. Therefore, in this
work, we confine ourselves to the case with a regular potential for φ, which seems a reasonable choice in order
to prove a number of theoretical results (see also [37] for remarks about modeling).

All the phase-field models mentioned above have gained particular interest as far as numerical simulations
are concerned. For example, the models with regular potentials have been numerically investigated in [41,
42, 43, 44]. However, it was also noted in [41] that even this modification does not simplify a rigorous proof
that the resulting energy functional is bounded from below. This problem is left unanswered, and the authors
chose to introduce an artificial modification to the regularizing higher-order term, in order to provide a simple,
yet rigorous, proof that the energy functional is bounded from below (provided that some solution exists).
Instead, as we shall prove rigorously in this paper, the fact that ρ takes its values within the physical range
[0, 1] guarantees the boundedness from below of the energy functional (1.1).

On account of (1.1), assuming the two-phase flow to be isothermal and incompressible with matched densities,
the system we want to analyze here, on some time interval [0, T ], T > 0, is the following





∂tu + (u · ∇)u−∇ · (ν(φ, ρ)Du) + ∇π = µ∇φ+ ψ∇ρ in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

∂tφ+ u · ∇φ = ∆µ in Ω × (0, T ),

µ = α∆2φ− ∆φ + S′
φ(φ) + θ∇ · (ρ∇φ) in Ω × (0, T ),

∂tρ+ u · ∇ρ = ∆ψ in Ω × (0, T ),

ψ = −β∆ρ+ S′
ρ(ρ) − θ

2
|∇φ|2 in Ω × (0, T ),

(1.4)

System (1.4) is subject to the following boundary and initial conditions:





u = 0 on ∂Ω × (0, T ),

∂nφ = ∂n∆φ = ∂nµ = 0 on ∂Ω × (0, T ),

∂nρ = ∂nψ = 0 on ∂Ω × (0, T ),

u|t=0 = u0, φ|t=0 = φ0, ρ|t=0 = ρ0, in Ω,

(1.5)
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where the vector n = n(x) denotes the unit outer normal to ∂Ω. We recall that φ = φ(x, t) stands for the
difference in local concentrations of the two immiscible fluid components and ρ = ρ(x, t) denotes the local
surfactant concentration. The velocity field u = u(x, t) is taken as the volume-averaged velocity of the binary
fluid mixture, which is equivalent to the mass-averaged velocity since we only consider the case with matched
densities here. The symmetric tensor Du = 1

2 (∇u + (∇u)T) denotes the strain rate and the scalar function
π = π(x, t) stands for the (modified) pressure. The latter can be viewed as a Lagrange multiplier corresponding
to the incompressibility condition ∇ ·u = 0 for the fluid. The chemical potentials corresponding to φ and ρ are
denoted by µ = µ(x, t) and ψ = ψ(x, t), respectively, which can be obtained as variational derivatives of the free
energy functional. We note that when the parameter θ 6= 0, the homogeneous Neumann boundary conditions
for µ (resp. ψ) is not equivalent to ∂n∆2φ = 0 (resp. ∂n∆ρ = 0) on ∂Ω. For the sake of simplicity, the density
as well as the mobilities and other physical constants are assumed to be equal to one, but we allow the binary
fluid mixture to have an unmatched kinematic viscosity ν = ν(φ, ρ). As we shall see, even if the potential Sφ is
regular, the higher-order regularizing term in the energy functional entails the global boundedness of φ (albeit
not necessarily by 1).

Our goal is to provide a first-step theoretical analysis of the initial boundary value problem (1.4)–(1.5).
More precisely, we first prove the existence of a global weak solution in both two and three dimensions and this
solution is indeed unique in dimension two (see Theorem 2.1). Then we establish the existence of a (unique)
strong solution, which is local in time in dimension three and global in time in dimension two (see Theorem 2.2).
Further results can be obtained in dimension two. First, we derive a continuous dependence estimate for strong
solutions (u, φ, ρ) with respect to the norms in L2(Ω)×H2(Ω)×H1(Ω), which are corresponding to the energy
norms associated with (1.1) (see Theorem 2.3). Next, we show that every global weak solution regularizes in
finite time and the strict separation property holds for the surfactant concentration ρ (see Theorem 2.4). The
latter implies that ρ stays uniformly away from the pure states 0 and 1 for positive time (cf. [17, 30], see
also [18, 19, 22]). This also holds for the strong solution on [0,+∞) (see Proposition 5.1). For the proof, we
shall take advantage of what has been done in [19] for the Navier–Stokes–Cahn–Hilliard system with singular
potential (see also [1, 22]). Nevertheless, extra efforts are required to overcome those mathematical difficulties
due to the complicated nonlinear coupling structure of problem (1.4)–(1.5).

Theoretical analysis of fluid-surfactant type systems (yet different from the one of interest in this paper)
have been conducted, starting from sharp interface models (see e.g., [16, 38]), typically investigating only the
existence of weak solutions (see [2] and references therein). It is also worth mentioning that other phase-field
models for mixtures with surfactant have been analyzed theoretically or numerically (see, for instance, [12] for
a stationary model and [45, 46] for hydrodynamic problems involving moving contact lines and non-constant
density).

Besides the possibility of considering a Flory–Huggins potential also for φ (see above), other interesting future
issues include, for instance, long-time behavior of global weak/strong solutions (existence of global/exponential
attractors and convergence to a single equilibrium as t → +∞), rigorous mathematical analysis of extended
systems with non-constant (or even degenerate) mobilities, dynamic boundary conditions (moving contact lines)
as well as non-constant densities. Also, suitable optimal control problems could be formulated and analyzed.

Plan of the paper. In Section 2, we first introduce some notations and the functional setting. Subsection
2.2 is devoted to illustrating the weak formulation of problem (1.4)–(1.5) and to stating the main results.
Proofs of well-posedness results are given in Section 3 (existence of global weak solutions and uniqueness of
weak solutions in dimension two) and Section 4 (existence and uniqueness of strong solutions). In the final
Section 5, when d = 2, we derive a continuous dependence estimate for strong solutions in the norms controlled
by (1.1) and then establish the regularization property for weak solutions. In particular, we show the validity
of the strict separation property for ρ.

2 Preliminaries and Main Results

2.1 Preliminaries

We first introduce the function spaces and recall some known results in functional analysis. Let X be a (real)
Banach space. Its dual space is denoted by X∗, and the duality pairing between X and X∗ will be denoted by
〈·, ·〉X∗,X . Given an interval I of R, we introduce the function space Lp(I;X) with p ∈ [1,+∞], which consists
of Bochner measurable p-integrable functions with values in the Banach space X . The boldface letter X denotes
the vector-valued (resp. matrix-valued) space Xd (resp. Xd×d) endowed with the corresponding norms.

For the standard Lebesgue and Sobolev spaces, we use the notations Lp := Lp(Ω) and W k,p := W k,p(Ω)
for any p ∈ [1,+∞] and k > 0, equipped with the norms ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω). When p = 2, we denote

Hk(Ω) := W k,2(Ω) and the norm ‖ · ‖Hk(Ω). The norm and inner product on L2(Ω) are simply denoted by ‖ · ‖
and (·, ·), respectively. The spaces H2

N (Ω) and H4
N (Ω) consisting of functions subject to homogeneous Neumann
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boundary conditions are defined as

H2
N (Ω) =

{
u ∈ H2(Ω) : ∂nu = 0 a.e. on ∂Ω

}
,

H4
N (Ω) =

{
u ∈ H4(Ω) : ∂nu = ∂n∆u = 0 a.e. on ∂Ω

}
.

For every f ∈ (H1(Ω))∗, we denote by f its generalized mean value over Ω such that f = |Ω|−1〈f, 1〉(H1)∗, H1 .

If f ∈ L1(Ω), then its mean value is simply given by f = |Ω|−1
∫
Ω f dx. In the subsequent analysis, we will use

the well-known Poincaré–Wirtinger inequality

‖f − f‖ ≤ CP ‖∇f‖, ∀ f ∈ H1(Ω), (2.1)

where CP is a constant depending only on Ω. We introduce the space L2
0(Ω) := {f ∈ L2(Ω) : f = 0} and

V0 = H1(Ω) ∩ L2
0(Ω) = {u ∈ H1(Ω) : u = 0}, V ∗

0 = {u ∈ (H1(Ω))∗ : u = 0}.

Then we see that f 7→ (‖∇f‖2 + |f |2)
1
2 is an equivalent norm on H1(Ω) while f 7→ ‖∇f‖ is an equivalent norm

on V0. Besides, we recall the following elliptic estimates.

Lemma 2.1. Let Ω be a bounded domain with a C4-boundary. The following estimates hold:

‖u‖H2(Ω) ≤ C‖∆u‖, ∀u ∈ H2
N (Ω) ∩ L2

0(Ω),

‖u‖H3(Ω) ≤ C‖∇∆u‖, ∀u ∈ H3(Ω) ∩H2
N (Ω) ∩ L2

0(Ω),

‖u‖H4(Ω) ≤ C‖∆2u‖, ∀u ∈ H4
N (Ω) ∩ L2

0(Ω).

In all cases, the constant C > 0 only depends on Ω, d, but is independent of u.

Consider now the realization of −∆ with homogeneous Neumann boundary condition, that is, the linear
operator AN ∈ L(H1(Ω), H1(Ω)∗) defined by

〈ANu, v〉(H1)∗,H1 :=

∫

Ω

∇u · ∇v dx, for u, v ∈ H1(Ω).

Then the restriction of AN from the linear space V0 onto V ∗
0 is an isomorphism. In particular, AN is positively

defined on V0 and self-adjoint. We denote its inverse map by N = A−1
N : V ∗

0 → V0. Note that for every f ∈ V ∗
0 ,

u = Nf ∈ V0 is the unique weak solution of the Neumann problem

{
−∆u = f, in Ω,

∂nu = 0, on ∂Ω.

It is straightforward to verify that

〈ANu,N g〉V ∗

0
,V0

= 〈g, u〉(H1)∗,H1 , ∀u ∈ H1(Ω), ∀ g ∈ V ∗
0 ,

〈g,Nf〉V ∗

0
,V0

= 〈f,N g〉V ∗

0
,V0

=

∫

Ω

∇(N g) · ∇(Nf) dx, ∀ g, f ∈ V ∗
0 .

Also, we have the chain rule

〈∂tu(t),Nu(t)〉V ∗

0
,V0

=
1

2

d

dt
‖∇Nu‖2, a.e. in (0, T ),

for any u ∈ H1(0, T ;V ∗
0 ). For any f ∈ V ∗

0 , we set ‖f‖V ∗

0
= ‖∇Nf‖. It is well-known that f 7→ ‖f‖V ∗

0
and

f 7→ (‖f − f‖2V ∗

0
+ |f |2)

1
2 are equivalent norms on V ∗

0 and (H1(Ω))∗, respectively.

Concerning the Navier–Stokes equations, we introduce the spaces (see, for instance, [15])

Hσ := {u ∈ [C∞
0 (Ω)]d : ∇ · u = 0 in Ω}[L

2(Ω)]d

, Vσ := {u ∈ [C∞
0 (Ω)]d : ∇ · u = 0 in Ω}[H

1(Ω)]d

.

endowing the former with the L2(Ω)-Hilbert structure, whereas for the latter we set

(u,v)Vσ
:= (∇u,∇v), ‖u‖Vσ

:= (∇u,∇u)
1
2 .

The latter is a norm equivalent to the canonical one because of Korn’s inequality and

‖∇u‖ ≤
√

2‖Du‖ ≤
√

2‖∇u‖, ∀u ∈ Vσ.
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Next, we consider the Stokes operator A : Vσ → V∗
σ, which is the Riesz isomorphism between Vσ and its

topological dual, that is,

〈Au,v〉V∗

σ ,Vσ
=

∫

Ω

∇u : ∇v dx.

Here, we have adopted the notation M1 : M2 = trace(M1M
T
2 ) for two arbitrary d × d matrices M1,M2. The

inverse of A is denoted by A−1. In a similar fashion to what has been carried out for the operator AN , we can
define the equivalent norm ‖u‖V∗

σ
:= ‖∇A−1u‖ in V∗

σ. Besides, the following chain rule holds

〈∂tf(t),A−1f(t)〉V∗

σ ,Vσ
=

1

2

d

dt
‖∇A−1f‖2, a.e. t ∈ (0, T ),

for any f ∈ H1(0, T ;V∗
σ). Next, we define the space Wσ := H2(Ω) ∩ Vσ and recall the following regularity

result for Stokes operator (see e.g., [19, Appendix B]):

Lemma 2.2. Let d = 2, 3. For any f ∈ Hσ, there exists a unique u ∈ Wσ and q ∈ H1(Ω) ∩ L2
0(Ω) such that

−∆u + ∇q = f a.e. in Ω, that is, u = A−1f . Moreover, we have

‖u‖H2 + ‖∇q‖ ≤ C‖f‖,
‖q‖ ≤ C‖f‖ 1

2 ‖∇A−1f‖ 1
2 ,

where C is a positive constant that may depend on Ω, d, but is independent of f .

Then it follows that the norm ‖u‖Wσ
:= ‖Au‖ is equivalent to the standard H2-norm in Wσ.

For the sake of convenience, below we report the Ladyzhenskaya and Agmon inequalities (see e.g., [39])

‖f‖L4(Ω) ≤ C‖f‖1−d
4 ‖f‖

d
4

H1(Ω), ∀ f ∈ H1(Ω), if d = 2, 3, (2.2)

‖f‖L∞(Ω) ≤ C‖f‖ 1
2 ‖f‖

1
2

H2(Ω), ∀ f ∈ H2(Ω), if d = 2, (2.3)

‖f‖L∞(Ω) ≤ C‖f‖
1
2

V ‖f‖
1
2

H2(Ω), ∀ f ∈ H2(Ω), if d = 3, (2.4)

and the Gagliardo–Nirenberg inequality

‖Djf‖Lp(Ω) ≤ C‖f‖1−a
Lq(Ω)‖f‖aWm,r(Ω), ∀ f ∈Wm,r(Ω) ∩ Lq(Ω), (2.5)

where Djf denotes the j-th weak partial derivatives of f , j,m are arbitrary integers satisfying 0 ≤ j < m and
j
m

≤ a ≤ 1, and 1 ≤ q, r ≤ +∞ such that

1

p
− j

d
= a

(
1

r
− m

d

)
+

1 − a

q
.

If 1 < r < +∞ and m − j − n
r

is a nonnegative integer, then the above inequality holds only for j
m

≤ a < 1.
The above inequalities will be frequently used in the subsequent analysis.

In the remaining part of this paper, the letters C, Ci will denote genetic positive constants possibly depending
on the domain Ω, the coefficients of the system as well as on the boundary and initial data at most. These
constants may vary in the same line in the subsequent estimates and their special dependence will be pointed
out explicitly in the text, if necessary.

2.2 Main results

We first state the following assumptions that will be needed in our analysis.

(H1) ν ∈ C2(R2) and there exist two positive constants ν∗ and ν∗ such that

0 < ν∗ ≤ ν(s1, s2) ≤ ν∗, ∀ (s1, s2) ∈ R
2.

(H2) Sφ ∈ C2(R) satisfies

S′′
φ(s) ≥ −c0, c0 ≥ 0, ∀ s ∈ R,

S′
φ(s)s ≥ c1Sφ(s) − c2, Sφ(s) ≥ c3s

4 − c4, for some c1, c3 > 0, c2, c4 ≥ 0, ∀ s ∈ R,

|S′
φ(s)| ≤ εSφ(s) + cε, ∀ ε > 0, s ∈ R,

where cε > 0 depends on ε.
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(H3) Sρ can be written as follows

Sρ(s) = Ŝρ(s) +Rρ(s),

where Ŝρ : [0, 1] → R satisfies Ŝρ ∈ C0([0, 1]) ∩ C2((0, 1)). We make the extension by (right or left)

continuity at the endpoints 0, 1 and then over the whole real line with Ŝρ(s) = +∞ whenever s /∈ [0, 1].
Moreover, it holds

lim
s→0+

Ŝ′
ρ(s) = −∞, lim

s→1−
Ŝ′
ρ(s) = +∞, lim

s→0+
Ŝ′′
ρ (s) = +∞, lim

s→1−
Ŝ′′
ρ (s) = +∞,

and there exists a small ǫ1 ∈ (0, 1) such that Ŝ′′
ρ is nondecreasing in [1− ǫ1, 1) and nonincreasing in (0, ǫ1].

Moreover, we suppose Rρ ∈ C2(R) is such that

|R′′
ρ(s)| ≤ L1, ∀ s ∈ R,

with L1 > 0 being a certain given constant.

(H4) α, β and θ are given positive constants.

Remark 2.1. It is easy to see that the fourth-order polynomial (1.2) fulfills (H2). Besides, for the physically
relevant potential (1.3), we can simply take

Ŝρ(s) =
θ1
2

[s ln s+ (1 − s) ln(1 − s)] , s ∈ (0, 1),

and Rρ(s) =
θ2
2
s(1 − s) so that (H3) is satisfied.

Remark 2.2. We do not impose any restriction on the size of the parameters α, β and θ in (H4). Thus, the
higher-order term α∆2φ is necessary to guarantee the well-posedness of the system. Without this regularization,
the term −∆φ+θ∇·(ρ∇φ) = (−1+θρ)∆φ+θ∇ρ ·∇φ may lead to certain backward diffusion when the coupling
parameter θ > 0 is such that −1 + θρ > 0 (see [8, 32] for the classical Cahn–Hilliard equation).

Let us introduce the notion of finite energy weak solution to the initial boundary value problem (1.4)–(1.5).

Definition 2.1. Assume that Ω ⊂ R
d, d = 2, 3 is a smooth bounded domain and p denotes an exponent

such that p > 2 if d = 2 and 2 < p ≤ 6 if d = 3. Let u0 ∈ Hσ, φ0 ∈ H2
N (Ω), ρ0 ∈ H1(Ω). Suppose that

Sρ(ρ0) ∈ L1(Ω) and ρ0 ∈ (0, 1). Given T > 0, a quintuplet (u, φ, ρ, µ, ψ) is called a weak (or finite energy)
solution to problem (1.4)–(1.5) on [0, T ], if

(i) u ∈ L∞(0, T ;Hσ) ∩ L2(0, T ;Vσ) ∩W 1, 4
d (0, T ;V∗

σ);

(ii) φ ∈ L∞(0, T ;H2
N(Ω)) ∩ L2(0, T ;H5(Ω) ∩H4

N (Ω)) ∩H1(0, T ; (H1(Ω))∗);

(iii) ρ ∈ L∞(0, T ;H1(Ω)) ∩ L4(0, T ;H2
N(Ω)) ∩ L2(0, T ;W 2,p(Ω)) ∩H1(0, T ; (H1(Ω))∗);

(iv) µ, ψ ∈ L2(0, T ;H1(Ω));

(v) ρ ∈ L∞(Ω × (0, T )) and 0 < ρ(x, t) < 1 for a.a. (x, t) ∈ Ω × (0, T );

(vi) (u, φ, ρ) satisfies the weak formulation





〈∂tu,v〉V∗

σ ,Vσ
+ ((u · ∇)u,v) + (ν(φ, ρ)Du, Dv)

= (µ∇φ,v) + (ψ∇ρ,v) ∀ v ∈ Vσ, a.e. in (0, T ),

〈∂tφ, v〉(H1(Ω))∗,H1(Ω) + (u · ∇φ, v) + (∇µ,∇v) = 0 ∀ v ∈ H1(Ω), a.e. in (0, T ),

µ = α∆2φ− ∆φ+ S′
φ(φ) + θ∇ · (ρ∇φ) a.e. in Ω × (0, T ),

〈∂tρ, v〉(H1(Ω))∗,H1(Ω) + (u · ∇ρ, v) + (∇ψ,∇v) = 0 ∀ v ∈ H1(Ω), a.e. in (0, T ),

ψ = −β∆ρ+ S′
ρ(ρ) − θ

2
|∇φ|2 a.e. in Ω × (0, T );

(2.6)

(vii) the initial conditions u|t=0 = u0, φ|t=0 = φ0, ρ|t=0 = ρ0 in Ω are fulfilled.

Remark 2.3. The properties φ ∈ L2(0, T ;H5(Ω)) and ∂tφ ∈ L2(0, T ; (H1(Ω))∗) entail that φ ∈ C0([0, T ];H2(Ω)).
Similarly, we have ρ ∈ C0([0, T ];L2(Ω)) and ρ ∈ C0

w([0, T ];H1(Ω)), where the subscript “w” stands for weak
continuity (in time). In addition, in light of the regularity of u and its time derivative, it follows that u ∈
C0([0, T ];Hσ) when d = 2 and u ∈ C0

w([0, T ];Hσ) when d = 3. A pressure π ∈ W−1,∞(0, T ;L2(Ω)) can also be
recovered, up to a constant, through the classical De Rham theorem (see, for instance, [6, Section V.1.5], see
also [40]).
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Remark 2.4. On account of the global boundedness of ρ and the L∞(0, T ;H2(Ω))-regularity of φ, it holds that
the weak solutions satisfy φ, ρ ∈ L∞(0, T ;Lp(Ω)) for every p ≥ 1. In particular, the mapping t 7→ ‖ρ(t)‖L∞ is
measurable and essentially bounded (see [14, Remark 3.3]).

Now we are in a position to state the main results of this paper. The first result concerns the existence of a
global weak solution.

Theorem 2.1 (Global weak solutions). Let (H1)–(H4) hold. For any given T > 0, Problem (1.4)–(1.5)
admits at least one global weak solution in the sense of Definition 2.1. Moreover, every weak solution satisfies
the following energy inequality

Etot(u(t), φ(t), ρ(t)) +

∫ t

0

‖
√
ν(φ(τ), ρ(τ))Du(τ)‖2 + ‖∇µ(τ)‖2 + ‖∇ψ(τ)‖2 dτ ≤ Etot(u0, φ0, ρ0), (2.7)

for every t ∈ (0, T ], where Etot is given by (1.1). If d = 2, then the global weak solution (u, φ, ρ, µ, ψ) is unique
and (2.7) becomes an equality.

Remark 2.5. Since T > 0 is arbitrary, Theorem 2.1 and its proof below entail that the global weak solution
(u, φ, ρ, µ, ψ) is indeed defined on [0,+∞) with

u ∈ L∞(0,+∞;Hσ) ∩ L2(0,+∞;Vσ) ∩W 1, 4
d

loc (0,+∞;V∗
σ),

φ ∈ L∞(0,+∞;H2
N(Ω)) ∩ L2

loc(0,+∞;H5(Ω) ∩H4
N (Ω)) ∩H1

loc(0,+∞; (H1(Ω))∗),

ρ ∈ L∞(0,+∞;H1(Ω)) ∩ L4
loc(0,+∞;H2

N(Ω)) ∩ L2
loc(0,+∞;W 2,p(Ω)) ∩H1

loc(0,+∞; (H1(Ω))∗),

µ, ψ ∈ L2
loc(0,+∞;H1(Ω)),

ρ ∈ L∞(Ω × (0,+∞)) and 0 < ρ(x, t) < 1 for a.a. (x, t) ∈ Ω × (0,+∞).

Remark 2.6. In order to ensure that the initial energy Etot(u0, φ0, ρ0) is finite, instead of Sρ(ρ0) ∈ L1(Ω), we
can alternatively assume that 0 ≤ ρ0 ≤ 1 a.e. in Ω. Besides, the assumption ρ0 ∈ (0, 1) implies that the initial
state of the surfactant phase ρ cannot be a pure state, namely, ρ0 is not identically equal to 0 or 1 over Ω.

Concerning the strong solutions, we suppose in addition that

(H2)′ Sφ ∈ C3(R);

(H3)′ Ŝρ ∈ C3((0, 1)), Rρ ∈ C3(R).

The above assumptions combined with more regular initial data allow us to establish the existence and unique-
ness of a local strong solution to problem (1.4)–(1.5) in three dimensions (global if d = 2).

Theorem 2.2 (Strong solutions). Let (H1)–(H4) as well as (H2)′–(H3)′ hold . For any u0 ∈ Vσ, φ0 ∈
H5(Ω) ∩H4

N (Ω), ρ0 ∈ H1(Ω) satisfying 0 ≤ ρ0 ≤ 1 a.e. in Ω, ρ0 ∈ (0, 1), and ψ̂0 := −∆ρ0 + Ŝ′
ρ(ρ0) ∈ H1(Ω),

there exists a time T ∗ > 0 such that problem (1.4)–(1.5) admits a unique local strong solution (u, φ, ρ, µ, ψ) on
[0, T ∗] satisfying

u ∈ L∞(0, T ∗;Vσ) ∩ L2(0, T ∗;Wσ) ∩H1(0, T ∗;Hσ),

φ ∈ L∞(0, T ∗;H5(Ω) ∩H4
N (Ω)) ∩H1(0, T ∗;H2(Ω)),

ρ ∈ L∞(0, T ∗;W 2,p(Ω)) ∩H1(0, T ∗;H1(Ω)),

µ ∈ L∞(0, T ∗;H1(Ω)) ∩ L2(0, T ∗;H4(Ω) ∩H2
N (Ω)),

ψ ∈ L∞(0, T ∗;H1(Ω)) ∩ L2(0, T ∗;H3(Ω) ∩H2
N (Ω)),

with a pressure π ∈ L2(0, T ∗;H1(Ω)) uniquely defined up to a constant, where the exponent p satisfies p ≥ 2 if
d = 2, 2 ≤ p ≤ 6 if d = 3. Moreover, the strong solution is global if d = 2.

In the two dimensional case we are able to say more. Let us introduce a further assumption on the singular
potential

(H5) there exists C > 0 such that

Ŝ′′
ρ (s) ≤ CeC|Ŝ′

ρ(s)|, ∀ s ∈ (0, 1).

This property is fulfilled by the mixing entropy term in (1.3). It enables us to derive estimates for the singular

terms Ŝ′
ρ(ρ) as well as Ŝ′′

ρ (ρ), which further entails higher-order regularity of the solution ρ. Besides, it plays a
role in establishing the strict separation property for ρ in dimension two (see [17, Section 5], see also [30]).

First of all, a continuous dependence estimate with respect to the norms in L2(Ω) × H2(Ω) × H1(Ω) (i.e.
controlled by (1.1)) can be obtained for strong solutions in dimension two. This will be useful, for instance, in
the analysis of suitable optimal control problems. More precisely, we have

8



Theorem 2.3 (Continuous dependence in dimension two). Let d = 2. Suppose that the assumptions of Theorem
2.2 hold and (H5) is satisfied. For every pair of strong solutions (u1, φ1, ρ1, µ1, ψ1) and (u2, φ2, ρ2, µ2, ψ2) orig-
inating from the admissible initial data (u01, φ01, ρ01) and (u02, φ02, ρ02), the following continuous dependence
estimate holds

‖u1(t) − u2(t)‖ + ‖φ1(t) − φ2(t)‖H2(Ω) + ‖ρ1(t) − ρ2(t)‖H1(Ω)

≤ CT

(
‖u01 − u02‖ + ‖∆(φ01 − φ02)‖ + ‖∇(ρ01 − ρ02)‖ + |φ01 − φ02| + |ρ01 − ρ02|

)
,

for every t ∈ [0, T ]. Here, CT > 0 is a constant depending on ‖u0i‖Vσ
, ‖φ0i‖H5(Ω), ‖ρ0i‖H1(Ω), ‖ψ̂0i‖H1(Ω),

i = 1, 2, coefficients of the system, Ω and T .

Next, we prove that the global weak solution regularizes in finite time, namely,

Theorem 2.4 (Regularity of weak solutions in dimension two). Let d = 2. Assume that (H1)–(H5) and
(H2)′–(H3)′ hold. Suppose that p ≥ 2, K > 0, m1 ∈ R, m2 ∈ (0, 1) and δ > 0 are given. For any
u0 ∈ Hσ, φ0 ∈ H2

N (Ω), ρ0 ∈ H1(Ω) be such that Sρ(ρ0) ∈ L1(Ω) and φ0 = m1, ρ0 = m2, Etot(u0, φ0, ρ0) ≤ K,
let (u, φ, ρ, µ, ψ) be the unique global weak solution to problem (1.4)–(1.5) originating from the initial data
(u0, φ0, ρ0). Then there exists C1 > 0 depending on K, p,m1,m2 and δ such that

‖u(t)‖Vσ
+ ‖φ(t)‖H5(Ω) + ‖ρ(t)‖W 2,p(Ω) + ‖µ(t)‖H1(Ω) + ‖ψ(t)‖H1(Ω) ≤ C1, ∀ t ≥ δ. (2.8)

Besides, there exists η ∈ (0, 1/2] such that

η ≤ ρ ≤ 1 − η, for all x ∈ Ω, t ≥ δ. (2.9)

Moreover, there exists C2 > 0 depending on K,m1,m2 and δ such that

‖∂tu(t)‖ + ‖∂tφ(t)‖H2(Ω) + ‖∂tρ(t)‖H1(Ω) ≤ C2, (2.10)

‖∂tu‖L2(t,t+1;Vσ) + ‖∂tφ‖L2(t,t+1;H5(Ω)) + ‖∂tρ‖L2(t,t+1;H3(Ω)) ≤ C2, (2.11)

‖u(t)‖Wσ
+ ‖µ(t)‖H4(Ω) + ‖ψ(t)‖H2(Ω) + ‖φ(t)‖H6(Ω) + ‖ρ(t)‖H4(Ω) ≤ C2, (2.12)

hold for every t ≥ 2δ. In particular, any weak solution becomes strong for t > 0.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 consists of several steps. The first ingredient is the following

Proposition 3.1. Let (u, φ, ρ, µ, ψ) be a sufficiently smooth solution to problem (1.4)–(1.5) on [0, T ]. Then we
have

d

dt

∫

Ω

φ(t) dx =
d

dt

∫

Ω

ρ(t) dx = 0, ∀ t ∈ (0, T ), (3.1)

d

dt
Etot(u(t), φ(t), ρ(t)) + ‖

√
ν(φ(t), ρ(t))Du(t)‖2 + ‖∇µ(t)‖2 + ‖∇ψ(t)‖2 = 0, ∀ t ∈ (0, T ), (3.2)

where Etot(u(t), φ(t), ρ(t)) is defined as in (1.1).

Proof. To deduce (3.1), we simply test the Cahn–Hilliard type equations in (1.4) by 1 and integrate over Ω.
Then (3.1) follows through an integration by parts, thanks to the homogeneous Neumann boundary conditions
for µ, ψ, the no-slip boundary condition for u and the incompressibility condition ∇·u = 0. The energy identity
(3.2) can be obtained by testing the first, third, fourth, fifth and sixth equations in (1.4) by u, µ, ∂tφ, ψ and ∂tρ,
respectively, integrating over Ω and using the incompressibility condition as well as the boundary conditions for
(u, φ, ρ). We thus get

1

2

d

dt
‖u‖2 +

∫

Ω

ν(φ, ρ)|Du|2 dx = −
∫

Ω

(u · ∇)u · u dx−
∫

Ω

∇π · u dx+

∫

Ω

(µ∇φ+ ψ∇ρ) · u dx

=

∫

Ω

(µ∇φ + ψ∇ρ) · u dx,

∫

Ω

∂tφµ dx+

∫

Ω

(u · ∇φ)µ dx = −‖∇µ‖2,
∫

Ω

µ∂tφdx =

∫

Ω

(
α∆2φ− ∆φ+ S′

φ(φ) + θ∇ · (ρ∇φ)
)
∂tφdx
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=
d

dt

∫

Ω

(
α

2
|∆φ|2 +

1

2
|∇φ|2 + Sφ(φ)

)
dx− θ

2

∫

Ω

ρ∂t|∇φ|2 dx,

∫

Ω

∂tρψ dx+

∫

Ω

(u · ∇ρ)ψ dx = −‖∇ψ‖2,
∫

Ω

ψ∂tρ dx =

∫

Ω

(
−β∆ρ+ S′

ρ(ρ) − θ

2
|∇φ|2

)
∂tρ dx

=
d

dt

∫

Ω

(
β

2
|∇ρ|2 + Sρ(ρ)

)
dx− θ

2

∫

Ω

|∇φ|2∂tρ dx.

Collecting the above identities together, we easily conclude (3.2).

Remark 3.1. Integrating (3.1) and (3.2) with respect to time, we find that

∫

Ω

φ(t) dx =

∫

Ω

φ0 dx,

∫

Ω

ρ dx =

∫

Ω

ρ0 dx, ∀ t ∈ [0, T ],

Etot(u(t), φ(t), ρ(t)) +

∫ t

0

(
‖
√
ν(φ(t), ρ(t))Du(t)‖2 + ‖∇µ(t)‖2 + ‖∇ψ(t)‖2

)
dτ

= Etot(u0, φ0, ρ0), ∀ t ∈ (0, T ]. (3.3)

Identity (3.3) shows that, physically as well as mathematically, Etot must be bounded from below. The singular
potential Sρ (formally) implies that

0 ≤ ρ ≤ 1, for a.e. (x, t) ∈ Ω × (0, T ). (3.4)

Thus, we can directly infer from (3.4) that

∫

Ω

−θ
2
ρ|∇φ|2 dx ≥ −θ

2

∫

Ω

|∇φ|2 dx =
θ

2

∫

Ω

φ∆φdx ≥ −α
4
‖∆φ‖2 − θ2

4α
‖φ‖2. (3.5)

The first term can be easily controlled by the higher-order term α
2 ‖∆φ‖2 in Etot. Concerning the second term,

without making any assumption on the size of the positive parameters α, θ, it can still be handled thanks to
the coercivity of Sφ. Indeed, from (H2) and Young’s inequality, we have

∫

Ω

Sφ(φ) dx ≥ c3

∫

Ω

|φ|4 dx− c4|Ω| ≥ c3
2

∫

Ω

|φ|4 dx+
θ2

4α
‖φ‖2 −

(
c4 +

θ4

32α2c3

)
|Ω|.

Therefore, the bound (3.4) of ρ plays a crucial role. However, when we prove the existence of weak solutions
to problem (1.4)–(1.5) we need to introduce a suitable regularization of the singular potential Sρ (see (3.9)
below) and (3.4) can no longer be guaranteed due to the lack of maximum principle for the fourth order Cahn–
Hilliard equation. This is the reason why we have to introduce a further penalization term in the approximating
problem (see (3.6) below, see also [41] for a similar strategy in a numerical context). Note that the presence
of the second-order term in the energy Etot would not play any role in proving its boundedness from below
provided that θ ∈ (0, 1) (see Remark 3.3).

3.1 A regularized problem

In view of Remark 3.1, we consider the penalized energy

Eω(u, φ, ρ) :=

∫

Ω

(
1

2
|u|2 +

α

2
|∆φ|2 +

1

2
|∇φ|2 + Sφ(φ) +

β

2
|∇ρ|2 + Sρ(ρ) − θ

2
ρ|∇φ|2 +

ω

4
|∇φ|4

)
dx, (3.6)

where ω ∈ (0, 1] is a given parameter. Correspondingly, the initial boundary value problem associated to the
perturbed energy functional Eω is the following





∂tu + (u · ∇)u−∇ · (ν(φ, ρ)Du) + ∇π = µ∇φ+ ψ∇ρ in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

∂tφ+ u · ∇φ = ∆µ in Ω × (0, T ),

µ = α∆2φ− ∆φ+ S′
φ(φ) + θ∇ · (ρ∇φ) − ω∇ · (|∇φ|2∇φ) in Ω × (0, T ),

∂tρ+ u · ∇ρ = ∆ψ in Ω × (0, T ),

ψ = −β∆ρ+ S′
ρ(ρ) − θ

2
|∇φ|2 in Ω × (0, T ),

(3.7)
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subject to the boundary and initial conditions





u = 0 on ∂Ω × (0, T ),

∂nφ = ∂n∆φ = ∂nµ = 0 on ∂Ω × (0, T ),

∂nρ = ∂nψ = 0 on ∂Ω × (0, T ),

u|t=0 = u0(x), φ|t=0 = φ0(x), ρ|t=0 = ρ0(x), in Ω.

(3.8)

To prove the existence of a global weak solution to problem (3.7)–(3.8), we introduce a suitable approximation
of the singular potential Sρ, dependent on some (small) parameter ε > 0 in such a way that the original potential
is recovered in the limit ε → 0+. More precisely, following [13] (see also [9]), we consider a family of regular

potentials based upon the second-order Taylor’s expansion of Ŝρ. Recalling (H3), for any sufficiently small

ε ∈ (0, ǫ1), let Ŝρ,ε : R → R be a globally defined approximation of Ŝρ given by

Ŝρ,ε(s) =





2∑

i=0

Ŝ
(i)
ρ (ε)

i!
(s− ε)i if s ≤ ε,

Ŝρ(s) if ε < s < 1 − ε,
2∑

i=0

Ŝ
(i)
ρ (1 − ε)

i!
[s− (1 − ε)]i if s ≥ 1 − ε.

(3.9)

Set
Sρ,ε(s) := Ŝρ,ε(s) +Rρ(s), ∀ s ∈ R. (3.10)

Then for any ε ∈ (0, ǫ1), there exist constants γ1, γ2, γ3 > 0 such that

Ŝρ,ε(s) ≥ −γ1, −γ2 ≤ Ŝ′′
ρ,ε(s) ≤ γ3, ∀ s ∈ R, (3.11)

where γ1, γ2 are independent of ε, while the upper bound γ3 may depend on ε.
Our strategy is as follows. We first find a global weak solution to a regularized system of problem (3.7)–(3.8)

with Sρ replaced by the regularized potential (3.10). Then we derive uniform estimates and pass to the limit first
as ε→ 0+ to obtain a solution to the penalized problem (3.7)–(3.8). Finally, we will get rid of the penalization
term by letting also ω → 0+.

3.2 The Galerkin scheme

Let us consider the regularized system





∂tu + (u · ∇)u−∇ · (ν(φ, ρ)Du) + ∇π = µ∇φ+ ψ∇ρ in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

∂tφ+ u · ∇φ = ∆µ in Ω × (0, T ),

µ = α∆2φ− ∆φ+ S′
φ(φ) + θ∇ · (ρ∇φ) − ω∇ · (|∇φ|2∇φ) in Ω × (0, T ),

∂tρ+ u · ∇ρ = ∆ψ in Ω × (0, T ),

ψ = −β∆ρ+ S′
ρ,ε(ρ) − θ

2
|∇φ|2 in Ω × (0, T ),

(3.12)

subject to the boundary and initial conditions (3.8). Its weak formulation reads essentially the same as (2.6) in
Definition 2.1 with obvious modifications. Observe that system (3.12) is associated with the following energy
functional

Eω,ε(u, φ, ρ) :=

∫

Ω

(
1

2
|u|2 +

α

2
|∆φ|2 +

1

2
|∇φ|2 + Sφ(φ) +

β

2
|∇ρ|2 + Sρ,ε(ρ) − θ

2
ρ|∇φ|2 +

ω

4
|∇φ|4

)
dx. (3.13)

The existence of a global weak solution to the regularized problem (3.12) with (3.8) can be proved by using a
suitable Galerkin approximation scheme. Recall the countably many eigencouples of the (negative) Neumann–
Laplace operator, denoted by (ηn, wn) ∈ R×L2(Ω), n ∈ Z

+. We note that {wn} forms an orthonormal basis of
L2(Ω) and is also an orthogonal basis of H2

N (Ω). Analogously, we set (ζn,wn) ∈ R ×Hσ to be the countably
many eigencouples of the Stokes operator A and {wn} forms an orthonormal basis of Hσ and also an orthogonal
basis of Wσ. We set Wn := span{w1, ..., wn} ⊂ H2

N (Ω), Wn := span{w1, ...,wn} ⊂ Wσ, with corresponding
orthogonal projections Πn : L2(Ω) → Wn (with respect to the inner product in L2(Ω)) and Pn : Hσ → Wn

(with respect to the inner product in Hσ). Then we consider the following Galerkin scheme that depends on
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three approximating parameters n, ε and ω. Namely, for ω ∈ (0, 1], ε ∈ (0, ǫ1) and n ∈ Z
+, we look for functions

(un,ε
ω , φn,εω , ρn,εω , µn,ε

ω , ψn,ε
ω ) of the form:

φn,εω (t) =

n∑

i=1

ai(t)wi, ρn,εω (t) =

n∑

i=1

bi(t)wi,

µn,ε
ω (t) =

n∑

i=1

ci(t)wi, ψn,ε
ω (t) =

n∑

i=1

di(t)wi,

un,ε
ω (t) =

n∑

i=1

ei(t)wi,

which solve the following problem:





〈∂tun,ε
ω ,v〉

V∗

σ ,Vσ
+ ((un,ε

ω · ∇)un,ε
ω ,v) + (ν(φn,εω , ρn,εω )Dun,ε

ω , Dv)

= (µn,ε
ω ∇φn,εω ,v) + (ψn,ε

ω ∇ρn,εω ,v) ∀ v ∈ Wn, a.e. in (0, T ),

〈∂tφn,εω , v〉V ∗,V + (un,ε
ω · ∇φn,εω , v) + (∇µn,ε

ω ,∇v) = 0 ∀ v ∈ Wn, a.e. in (0, T ),

µn,ε
ω = Πn

(
α∆2φn,εω − ∆φn,εω + S′

φ(φn,εω ) + θ∇ · (ρn,εω ∇φn,εω )
)

−Πn

(
ω∇ ·

(
|∇φn,εω |2∇φn,εω

))
a.e. in Ω × (0, T ),

〈∂tρn,εω , v〉V ∗,V + (un,ε
ω · ∇ρn,εω , v) + (∇ψn,ε

ω ,∇v) = 0 ∀ v ∈ Wn, a.e. in (0, T ),

ψn,ε
ω = Πn

(
− β∆ρn,εω + S′

ρ,ε(ρ
n,ε
ω ) − θ

2
|∇φn,εω |2

)
a.e. in Ω × (0, T ),

un,ε
ω (·, 0) = Pn(u0) =: un

0 in Ω,

φn,εω (·, 0) = Πn(φ0) =: φn0 , ρn,εω (·, 0) = Πn(ρ0) =: ρn0 in Ω.

(3.14)

Inserting the expressions of those approximate solutions into the above weak formulation, we arrive at a sys-
tem consisting of 5n ordinary differential equations in the unknowns

(
ai(t), bi(t), ci(t), di(t), ei(t)

)
, i = 1, ..., n.

Recalling the assumptions (H1)–(H4), an application of the Cauchy–Lipschitz theorem entails

Proposition 3.2. For any positive integer n, there exists Tn ∈ (0, T ] such that problem (3.14) admits a unique
local solution (un,ε

ω , φn,εω , ρn,εω , µn,ε
ω , ψn,ε

ω ) on [0, Tn], which is given by the functions ai, bi, ci, di, ei ∈ C1([0, Tn]),
i = 1, . . . , n.

3.3 Uniform estimates

Here we proceed to derive some bounds of the local approximating solutions that are uniform with respect to
n, ε, and ω. The first one is the following energy estimate (cf. Proposition 3.1)

Lemma 3.1. For every t ∈ (0, Tn], it holds

Eω,ε(u
n,ε
ω (t), φn,εω (t), ρn,εω (t)) +

∫ t

0

‖
√
ν(φn,εω (τ), ρn,εω (τ))Dun,ε

ω (τ)‖2 + ‖∇µn,ε
ω (τ)‖2 + ‖∇ψn,ε

ω (τ)‖2 dτ ≤ C1,

and

Eω,ε(u
n,ε
ω (t), φn,εω (t), ρn,εω (t)) ≥ 1

2
‖un,ε

ω (t)‖2 +
α

4
‖∆φn,εω (t)‖2 +

1

2
‖∇φn,εω (t)‖2 +

β

2
‖∇ρn,εω (t)‖2

+
c3
2
‖φn,εω (t)‖4L4(Ω) +

ω

8
‖∇φn,εω (t)‖4

L4(Ω) − C2,

where C1 > 0 is independent of n and ω, while C2 > 0 is independent of n, ε, and ω.

Proof. Arguing as in the proof of Proposition 3.1, in (3.14) we can take the test functions v = un,ε
ω , v = µn,ε

ω and
v = ψn,ε

ω in the equations for un,ε
ω , φn,εω and ρn,εω , respectively, while multiplying the equations for the chemical

potentials by ∂tφ
n,ε
ω and ∂tρ

n,ε
ω accordingly. Combining all the resulting equalities, we find

d

dt
Eω,ε(u

n,ε
ω , φn,εω , ρn,εω ) + ‖

√
ν(φn,εω , ρn,εω )Dun,ε

ω ‖2 + ‖∇µn,ε
ω ‖2 + ‖∇ψn,ε

ω ‖2 = 0, ∀ t ∈ (0, Tn).

For any t ∈ (0, Tn], integrating the above identity over [0, t], we obtain

Eω,ε(u
n,ε
ω (t), φn,εω (t), ρn,εω (t)) +

∫ t

0

‖
√
ν(φn,εω (τ), ρn,εω (τ))Dun,ε

ω (τ)‖2 + ‖∇µn,ε
ω (τ)‖2 + ‖∇ψn,ε

ω (τ)‖2 dτ

= Eω,ε(u
ε
ω(0), φn,εω (0), ρn,εω (0)). (3.15)
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Concerning the initial energy, we have

Eω,ε(u
n,ε
ω (0), φn,εω (0), ρn,εω (0)) = Eω,ε(u

n
0 , φ

n
0 , ρ

n
0 )

=

∫

Ω

(
1

2
|un

0 |2 +
α

2
|∆φn0 |2 +

1

2
|∇φn0 |2 + Sφ(φn0 ) +

β

2
|∇ρn0 |2 + Ŝρ,ε(ρ

n
0 ) +Rρ(ρn0 )

−θ
2
ρn0 |∇φn0 |2 +

ω

4
|∇φn0 |4

)
dx.

We easily obtain the bounds

‖un
0‖2 ≤ ‖u0‖2, ‖∇φn0 ‖2 ≤ ‖φn0‖2H1(Ω) ≤ ‖φ0‖2H1(Ω) , ‖∇ρn0‖2 ≤ ‖ρn0‖2H1(Ω) ≤ ‖ρ0‖2H1(Ω) .

Moreover, we notice that since φn0 → φ0 in H2(Ω), there exists n∗ ∈ N such that for all n > n∗

‖∆φn0 ‖2 ≤ ‖φn0‖2H2(Ω) ≤ C
(
1 + ‖φ0‖2H2(Ω)

)
,

where C is independent of n. Also, we infer from (H3) and (3.9) that

Ŝρ,ε(s) ≤ C(ε)
(
1 + s2

)
and |Rρ(s)| ≤ CR(1 + s2), ∀ s ∈ R,

where C(ε) > 0 may depend on ε and CR > 0 is a constant only depending on Rρ(0), R′
ρ(0) and L1. On account

of (H2), we deduce that

∣∣∣∣
∫

Ω

Sφ(φn0 ) + Ŝρ,ε(ρ
n
0 ) +Rρ(ρn0 ) dx

∣∣∣∣ ≤ C(‖φn0 ‖H2(Ω)) + C(ε)(‖ρn0 ‖2 + 1)

≤ C(‖φ0‖H2(Ω)) + C(ε)(‖ρ0‖2 + 1), (3.16)

where we have also used the Sobolev embedding H2(Ω) →֒ L∞(Ω) (d = 2, 3). The symbol C(‖φ0‖H2(Ω)) denotes
a positive constant depending on ‖φ0‖H2(Ω) and Ω but not on n, ω, ε, while C(ε) is independent of n and ω.
The remaining two terms in the approximate initial energy are treated by using the Cauchy–Schwarz as well as
Young’s inequalities:

∣∣∣∣
∫

Ω

−θ
2
ρn0 |∇φn0 |2 +

ω

4
|∇φn0 |4 dx

∣∣∣∣ ≤
1

2
‖ρn0‖2 +

(
ω

4
+
θ2

8

)∫

Ω

|∇φn0 |4 dx

≤ C
(
‖∇φn0 ‖4L4(Ω) + ‖ρn0‖2

)
≤ C

(
‖φn0‖4H2(Ω) + ‖ρn0‖2

)

≤ C
(
‖φ0‖4H2(Ω) + ‖ρ0‖2

)
,

where we have also used the Sobolev embedding H2(Ω) →֒ W 1,4(Ω) (d = 2, 3). Collecting the above estimates,
we obtain the required upper bound by choosing a suitable constant C1 > 0 depending on ε, ‖u0‖, ‖φ0‖H2(Ω),
‖ρ0‖H1(Ω) and Ω, but independent of n and ω.

Concerning the lower bound, we exploit some observations made in [13, 41]. Consider the energy functional
for the approximate solution (recall (3.13))

Eω,ε(u
n,ε
ω , φn,εω , ρn,εω ) =

1

2
‖un,ε

ω ‖2 +
α

2
‖∆φn,εω ‖2 +

1

2
‖∇φn,εω ‖2 +

β

2
‖∇ρn,εω ‖2

+

∫

Ω

(
Sφ(φn,εω ) + Ŝρ,ε(ρ

n,ε
ω ) +Rρ(ρn,εω ) − θ

2
ρn,εω |∇φn,εω |2 +

ω

4
|∇φn,εω |4

)
dx.

From (H2) we infer that

∫

Ω

Sφ(φn,εω ) dx ≥ c3

∫

Ω

|φn,εω |4 dx− c4|Ω|.

Set
Ω1 = {x ∈ Ω : 0 < ρn,εω (x) < 4} and Ω2 = Ω\Ω1.

Then we find
∫

Ω

Rρ(ρn,εω ) dx ≥ −CR

(
|Ω| + ‖ρn,εω ‖2

)

= −CR|Ω| − CR

∫

Ω1

|ρn,εω |2 dx− CR

∫

Ω2

|ρn,εω |2 dx
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≥ −17CR|Ω| − CR

∫

Ω2

|ρn,εω |2 dx.

Next, using the Cauchy–Schwarz inequality, Hölder’s inequality and Young’s inequality, we infer that

− θ

2

∫

Ω

ρn,εω |∇φn,εω |2 dx

= −θ
2

∫

Ω1

ρn,εω |∇φn,εω |2 dx− θ

2

∫

Ω2

ρn,εω |∇φn,εω |2 dx

≥ −2θ‖∇φn,εω ‖2 − ω

8

∫

Ω2

|∇φn,εω |4 dx− θ2

2ω

∫

Ω2

|ρn,εω |2 dx

= 2θ

∫

Ω

φn,εω ∆φn,εω dx− ω

8

∫

Ω2

|∇φn,εω |4 dx− θ2

2ω

∫

Ω2

|ρn,εω |2 dx

≥ −α
4
‖∆φn,εω ‖2 − 4θ2

α
‖φn,εω ‖2 − ω

8

∫

Ω

|∇φn,εω |4 dx− θ2

2ω

∫

Ω2

|ρn,εω |2 dx

≥ −α
4
‖∆φn,εω ‖2 − c3

2

∫

Ω

|φn,εω |4 dx− 8θ4

c3α2
|Ω| − ω

8

∫

Ω

|∇φn,εω |4 dx− θ2

2ω

∫

Ω2

|ρn,εω |2 dx.

Therefore, from the above estimates we deduce that

Eω,ε(u
n,ε
ω , φn,εω , ρn,εω ) ≥ 1

2
‖un,ε

ω ‖2 +
α

4
‖∆φn,εω ‖2 +

1

2
‖∇φn,εω ‖2 +

β

2
‖∇ρn,εω ‖2 +

c3
2

∫

Ω

|φn,εω |4 dx

+

∫

Ω

ω

8
|∇φn,εω |4 dx−

(
c4 + 17CR +

8θ4

c3α2

)
|Ω| −

(
CR +

θ2

2ω

)∫

Ω2

|ρn,εω |2 dx

+

∫

Ω

Ŝρ,ε(ρ
n,ε
ω ) dx.

Recalling now (3.9) and (H3), we see that Ŝ′
ρ(ε) < 0, Ŝ′

ρ(1− ε) > 0, Ŝ′′
ρ (ε) > 0, Ŝ′′

ρ (1− ε) > 0, when ε ∈ (0, ǫ2),
for some sufficiently small ǫ2 ∈ (0, 1). Then we have

Ŝρ,ε(s) ≥ Ŝρ,ε(ε) +
Ŝ′′
ρ (ε)

2
(s− ε)2, ∀ s ≤ ε,

which implies

Ŝρ,ε(s) ≥ −γ1 +
Ŝ′′
ρ (ε)

2
s2, ∀ s ≤ 0.

On the other hand, we have

Ŝρ,ε(s) ≥ Ŝρ,ε(1 − ε) +
Ŝ′′
ρ (1 − ε)

2
[s− (1 − ε)]2, ∀ s ≥ 1 − ε,

so that

Ŝρ,ε(s) ≥ −γ1 +
Ŝ′′
ρ (1 − ε)

2
(s− 1)2, ∀ s ≥ 1.

Observing that

(s− 1)2 =
1

2
s2 +

1

2
(s− 2)2 − 1 ≥ 1

2
s2, ∀ s ≥ 2 +

√
2,

we then obtain

Ŝρ,ε(s) ≥ −γ1 +
Ŝ′′
ρ (1 − ε)

4
s2, ∀ s ≥ 4.

From the above observations and (H3), we conclude that there exists k1 > 0 depending on ε such that for any
ε ∈ (0, ǫ2)

∫

Ω

Ŝρ,ε(ρ
n,ε
ω ) dx =

∫

Ω1

Ŝρ,ε(ρ
n,ε
ω ) dx+

∫

Ω2

Ŝρ,ε(ρ
n,ε
ω ) dx

≥ −γ1|Ω| + k1

∫

Ω2

|ρn,εω |2dx.

The constant k1 = k1(ε) can be taken arbitrarily large, as long as ǫ2 is sufficiently small. Thus, by choosing
0 < ǫ2 = ǫ2(ω) << 1 such that

k1 −
(
CR +

θ2

2ω

)
≥ 0, ε ∈ (0, ǫ2),
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we infer that

Eω,ε(u
n,ε
ω , φn,εω , ρn,εω ) ≥ 1

2
‖un,ε

ω ‖2 +
α

4
‖∆φn,εω ‖2 +

1

2
‖∇φn,εω ‖2 +

β

2
‖∇ρn,εω ‖2 +

c3
2

∫

Ω

|φn,εω |4 dx

+

∫

Ω

ω

8
|∇φn,εω |4 dx−

(
c4 + 17CR +

8θ4

c3α2
+ γ1

)
|Ω|

+

[
k1 −

(
CR +

θ2

2ω

)]∫

Ω2

|ρn,εω |2 dx

≥ 1

2
‖un,ε

ω ‖2 +
α

4
‖∆φn,εω ‖2 +

1

2
‖∇φn,εω ‖2 +

β

2
‖∇ρn,εω ‖2 +

c3
2

∫

Ω

|φn,εω |4 dx

+
ω

8

∫

Ω

|∇φn,εω |4 dx− C2,

for all ε ∈ (0,min(ǫ1, ǫ2)), where C2 =
(
c4 + 17CR + 8θ4

c3α2 + γ1
)
|Ω| is independent of n, ε, and ω.

The proof is complete.

We can now obtain some uniform estimates for the approximate solutions (un,ε
ω , φn,εω , ρn,εω , µn,ε

ω , ψn,ε
ω ).

Lemma 3.2. The sequence {un,ε
ω } is uniformly bounded in L∞(0, Tn;Hσ)∩L2(0, Tn;Vσ). The sequence {φn,εω }

is uniformly bounded in L∞(0, Tn;H2(Ω)). The sequence {ρn,εω } is uniformly bounded in L∞(0, Tn;H1(Ω)). The
bounds are independent of ω and n, but may depend on ε.

Proof. It follows from Lemma 3.1 that

C3

(
‖un,ε

ω (t)‖2 + ‖∆φn,εω (t)‖2 + ‖∇φn,εω (t)‖2 + ‖∇ρn,εω (t)‖2
)
≤ Eω,ε(u

n,ε
ω (t), φn,εω (t), ρn,εω (t)) + C2. (3.17)

where C3 = 1
8 min{1, α, β, c3} > 0. Besides, we note that the averages of φn,εω and ρn,εω are independent of n

and t (by orthogonality of the eigenvectors), that is,
∫

Ω

φn,εω (x, t) dx =

∫

Ω

φn0 (x) dx =

∫

Ω

φ0(x) dx,

∫

Ω

ρn,εω (x, t) dx =

∫

Ω

ρn0 (x) dx =

∫

Ω

ρ0(x) dx, ∀ t ∈ [0, Tn].

Therefore, by the triangle inequality and the Poincaré–Wirtinger inequality, we have

‖φn,εω ‖2 ≤ 2‖φn,εω − φn,εω ‖2 + 2‖φn,εω ‖2 ≤ C‖∇φn,εω ‖2 + C|φn,εω |2 = C
(
‖∇φn,εω ‖2 + |φ0|2

)
,

since φn,εω ∈ H1(Ω). Thus, a uniform bound of φn,εω in L∞(0, Tn;H1(Ω)) is obtained. The L∞(0, Tn;H2(Ω))-
bound then follows from the standard elliptic regularity theory. A similar argument yields a bound for ρn,εω in
L∞(0, Tn;H1(Ω)). Concerning the velocity field un,ε

ω , it follows from (3.17), Lemma 3.1 and Korn’s inequality
that ∫ t

0

‖
√
ν(φn,εω (τ), ρn,εω (t))Dun,ε

ω (t)‖2 dτ ≥
∫ t

0

ν∗
2
‖∇un,ε

ω (τ)‖2 dτ, ∀ t ∈ (0, Tn].

The proof is complete.

We now prove a priori bounds for the chemical potentials.

Lemma 3.3. The sequences {µn,ε
ω } and {ψn,ε

ω } are uniformly bounded in L2(0, Tn;H1(Ω)). The bounds are
independent of ω, n, but may depend on ε.

Proof. From Lemma 3.1 we infer that

∫ t

0

(
‖∇µn,ε

ω (τ)‖2 + ‖∇ψn,ε
ω (τ)‖2

)
dτ ≤ C1 + C2, ∀ t ∈ (0, Tn].

Let us first consider the estimate for {µn,ε
ω }. Since µn,ε

ω ∈ H1(Ω), then arguing as in the proof of Lemma 3.2,
we obtain

‖µn,ε
ω ‖2 ≤ 2‖µn,ε

ω − µn,ε
ω ‖2 + 2‖µn,ε

ω ‖2 ≤ C
(
‖∇µn,ε

ω ‖2 + |µn,ε
ω |2

)
.

Then it remains to provide a uniform control of |µn,ε
ω |. From the third equation in (3.14), we see that

|µn,ε
ω | =

∣∣∣∣Πn

(
α∆2φn,εω − ∆φn,εω + S′

φ(φn,εω ) + θ∇ · (ρn,εω ∇φn,εω ) − ω∇ · (|∇φn,εω |2∇φn,εω )
)∣∣∣∣

=
1

|Ω|
∣∣(1,Πn

(
α∆2φn,εω − ∆φn,εω + S′

φ(φn,εω ) + θ∇ · (ρn,εω ∇φn,εω ) − ω∇ · (|∇φn,εω |2∇φn,εω )
))∣∣

=
1

|Ω|
∣∣(1, α∆2φn,εω − ∆φn,εω + S′

φ(φn,εω ) + θ∇ · (ρn,εω ∇φn,εω ) − ω∇ · (|∇φn,εω |2∇φn,εω )
)∣∣ .
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Thanks to the homogeneous Neumann boundary conditions ∂nφ
n,ε
ω = ∂n∆φn,εω = 0 on ∂Ω, using integration by

parts, we find

|µn,ε
ω | =

1

|Ω|
∣∣(1, S′

φ(φn,εω )
)∣∣ .

From Lemma 3.2 and the embedding H2(Ω) →֒ L∞(Ω) (d = 2, 3) we obtain that φn,εω ∈ L∞(0, Tn;L∞(Ω)).
Then by (H2) we get

sup
t∈[0,Tn]

|µn,ε
ω (t)| ≤ C,

where C is independent of ω and n, but it may depend on ε. As a consequence, we have

∫ t

0

‖µn,ε
ω (τ)‖2H1(Ω) dt ≤ C

∫ t

0

‖∇µn,ε
ω (τ)‖2 dt+ C

∫ t

0

|µn,ε
ω (τ)|2 dt ≤ C(1 + Tn) ≤ C(1 + T ),

for all t ∈ (0, Tn].
In a similar manner, for ψn,ε

ω we have

|ψn,ε
ω | =

1

|Ω|

∣∣∣∣
(

1, Ŝ′
ρ,ε(ρ

n,ε
ω ) +R′

ρ(ρn,εω ) − θ

2
|∇φn,εω |2

)∣∣∣∣

≤ 1

|Ω| ‖S
′
ρ,ε(ρ

n,ε
ω )‖L1(Ω) +

1

|Ω| ‖R
′
ρ(ρn,εω )‖L1(Ω) +

θ

2|Ω|‖∇φ
n,ε
ω ‖2

≤ 1

|Ω| ‖S
′
ρ,ε(ρ

n,ε
ω )‖L1(Ω) + C

(
1 + ‖φn,εω ‖2H1(Ω)

)
.

We recall a well-known result for the approximating potential Ŝρ,ε (see e.g., [24, 30]), namely, there exists C > 0
independent of ε, such that

‖S′
ρ,ε(ρ

n,ε
ω )‖L1(Ω) ≤ C

∫

Ω

(ρn,εω − ρn0 )
(
S′
ρ,ε(ρ

n,ε
ω ) − S′

ρ,ε(ρ
n,ε
ω )
)

dx+ C. (3.18)

Then, choosing ρn,εω − ρn0 as a test function in the equation for ψn,ε
ω in (3.14), we get

β‖∇ρn,εω ‖2 +
(
S′
ρ,ε(ρ

n,ε
ω ), ρn,εω − ρn0

)
= (ψn,ε

ω − ψn,ε
ω , ρn,εω − ρn0 ) +

θ

2
(|∇φn,εω |2, ρn,εω − ρn0 ).

It follows from (3.18), using the Poincaré–Wirtinger and the Cauchy–Schwarz inequalities, that

‖S′
ρ,ε(ρ

n,ε
ω )‖L1(Ω) ≤ C

(
‖∇ψn,ε

ω ‖‖∇ρn,εω ‖ + ‖|∇φn,εω |2‖‖∇ρn,εω ‖ + 1
)
≤ C

(
‖∇ψn,ε

ω ‖ + 1
)
,

where we recall that ‖|∇φn,εω |2‖ ≤ C‖∇φn,εω ‖2
L4(Ω) ≤ C thanks to Lemma 3.2. Hence, we deduce that

‖ψn,ε
ω ‖H1(Ω) ≤ C

(
‖∇ψn,ε

ω ‖ + |ψn,ε
ω (τ)|

)
≤ C

(
‖∇ψn,ε

ω ‖ + 1
)
, (3.19)

which implies

∫ t

0

‖ψn,ε
ω (τ)‖2H1(Ω) dt ≤ C

∫ t

0

‖∇ψn,ε
ω (τ)‖2 dt+ C

∫ t

0

|ψn,ε
ω (τ)|2 dt ≤ C(1 + Tn) ≤ C(1 + T ),

for all t ∈ (0, Tn].
The proof is complete.

The estimates obtained in Lemma 3.2 and Lemma 3.3 allow us to extend the local solution {ai, bi, ci, di, ei}ni=1

to the full time interval [0, T ]. As a consequence, the approximate solution (un,ε
ω , φn,εω , ρn,εω , µn,ε

ω , ψn,ε
ω ) is well

defined in [0, T ].
We now need to derive some uniform estimates on the time derivatives of the approximate solutions in order

to apply a compactness argument.

Lemma 3.4. The sequence {∂tun,ε
ω } is uniformly bounded in L

4
d (0, T ;V∗

σ), d = 2, 3. The sequences {∂tφn,εω },
{∂tρn,εω } are uniformly bounded in L2(0, T ; (H1(Ω))∗). The bounds are independent of ω, n, but may depend on
T and ε.

Proof. Consider the first equation in (3.14) and let w ∈ Vσ be such that ‖w‖Vσ
= 1. On account of Lemmas

3.2 and 3.3, we find that
∣∣∣〈∂tun,ε

ω ,w〉
V∗,V

∣∣∣ ≤ |(un,ε
ω · ∇)un,ε

ω ,w)| + |(ν(φn,εω , ρn,εω )Dun,ε
ω , Dw)| + |(µn,ε

ω ∇φn,εω ,w)|
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+ |(ψn,ε
ω ∇ρn,εω ,w)|

≤ |(un,ε
ω · ∇)w,un,ε

ω )| + ν∗‖Dun,ε
ω ‖‖Dw‖ + ‖µn,ε

ω ‖‖∇φn,εω ‖L4(Ω)‖w‖L4(Ω)

+ ‖ψn,ε
ω ‖L4(Ω)‖∇ρn,εω ‖‖w‖L4(Ω)

≤ ‖un,ε
ω ‖2

L4(Ω) + C (‖un,ε
ω ‖Vσ

+ ‖∇µn,ε
ω ‖ + ‖∇ψn,ε

ω ‖ + 1)

≤ ‖un,ε
ω ‖

d
2

Vσ
‖un,ε

ω ‖2−d
2 + C (‖un,ε

ω ‖Vσ
+ ‖∇µn,ε

ω ‖ + ‖∇ψn,ε
ω ‖ + 1)

≤ C
(
‖un,ε

ω ‖
d
2

Vσ
+ ‖un,ε

ω ‖Vσ
+ ‖∇µn,ε

ω ‖ + ‖∇ψn,ε
ω ‖ + 1

)
. (3.20)

From (3.20), taking the supremum over all functions w, raising the inequality to the 4
d
-th power and integrating

on [0, T ], we obtain the desired bound.
We now perform a comparison argument in the second and fourth equations in (3.14). Let w ∈ H1(Ω) such

that ‖w‖H1(Ω) = 1 be given. Using Lemmas 3.2 and 3.3, we get

{
| 〈∂tφn,εω , w〉(H1(Ω))∗,H1(Ω) | ≤ C (‖∇µn,ε

ω ‖ + ‖∇un,ε
ω ‖) ,

| 〈∂tρn,εω , w〉(H1(Ω))∗,H1(Ω) | ≤ C (‖∇ψn,ε
ω ‖ + ‖∇un,ε

ω ‖) .
(3.21)

where we have used the following estimate

|(un,ε
ω · ∇φn,εω , w)| = |(un,ε

ω · ∇w, φn,εω )| ≤ C‖un,ε
ω ‖L4(Ω)‖φn,εω ‖L4(Ω) ≤ C‖∇un,ε

ω ‖‖φn,εω ‖H1(Ω),

and a similar one for ρn,εω . Taking the supremum over all functions w, squaring the inequality and integrating
in [0, T ], we arrive at the desired bound thanks to Lemma 3.2.

The proof is complete.

Finally, some additional estimates for φn,εω and ρn,εω can also be deduced, that is,

Lemma 3.5. The sequence {φn,εω } is uniformly bounded in L2(0, T ;H4(Ω)). The sequence {ρn,εω } is uniformly
bounded in L4(0, T ;H2(Ω)). The bounds are independent of ω, n, but may depend on T and ε.

Proof. Let us first consider ρn,εω . Multiplying the equation for ψn,ε
ω by −∆ρn,εω and integrating over Ω, we find

(ψn,ε
ω ,−∆ρn,εω ) = β‖∆ρn,εω ‖2 +

(
S′′
ρ,ε(ρ

n,ε
ω )∇ρn,εω ,∇ρn,εω

)
+
θ

2
(|∇φn,εω |2,∆ρn,εω ).

Recalling (3.11) and using Hölder’s as well as Young’s inequalities, we get

β‖∆ρn,εω ‖2 ≤ ‖∇ψn,ε
ω ‖‖∇ρn,εω ‖ + γ2‖∇ρn,εω ‖2 + C‖∇φn,εω ‖2

L4(Ω)‖∆ρn,εω ‖

≤ C
(
‖∇ψn,ε

ω ‖ + 1
)

+ C‖∇φn,εω ‖
3
2

H1(Ω)‖∇φn,εω ‖
1
2

L2(Ω)‖∆ρn,εω ‖
≤ C

(
‖∇ψn,ε

ω ‖ + 1
)

+ C
(
‖∆φn,εω ‖ 3

2 + 1
)
‖∆ρn,εω ‖

≤ β

2
‖∆ρn,εω ‖2 + C(‖∇ψn,ε

ω ‖ + 1),

which implies

β‖∆ρn,εω ‖2 ≤ C(‖∇ψn,ε
ω ‖ + 1). (3.22)

From the above estimate, the elliptic regularity theory and Lemma 3.3, we get ρn,εω ∈ L4(0, T ;H2(Ω)).
Concerning φn,εω , we multiply the equation for µn,ε

ω by ∆2φn,εω , integrating over Ω. This yields

(µn,ε
ω ,∆2φn,εω ) = α‖∆2φn,εω ‖2 + ‖∇∆φn,εω ‖2 − (S′′

φ(φn,εω )∇φn,εω ,∇∆φn,εω ) + θ(ρn,εω ∆φn,εω ,∆2φn,εω )

+ θ(∇ρn,εω · ∇φn,εω ,∆2φn,εω ) − ω(∇ ·
(
|∇φn,εω |2∇φn,εω

)
,∆2φn,εω ).

Exploiting the fact that φn,εω ∈ L∞(0, T ;L∞(Ω)) and Hölder’s inequality, we infer that

α‖∆2φn,εω ‖2 + ‖∇∆φn,εω ‖2
≤ |(∇µn,ε

ω ,∇∆φn,εω )| + ‖S′′
φ(φn,εω )‖L∞(Ω)‖∇φn,εω ‖‖∇∆φn,εω ‖

+ C‖ρn,εω ‖L∞(Ω)‖∆φn,εω ‖‖∆2φn,εω ‖ + C‖∇ρn,εω ‖L3(Ω)‖∇φn,εω ‖L6(Ω)‖∆2φn,εω ‖
+ C‖∇ ·

(
|∇φn,εω |2∇φn,εω

)
‖‖∆2φn,εω ‖.

Exploiting the Cauchy–Schwarz and Young inequalities, as well as the embeddings H1(Ω) →֒ L6(Ω) and
H2(Ω) →֒ L∞(Ω) (d = 2, 3), we have

|(∇µn,ε
ω ,∇∆φn,εω )| + ‖S′′

φ(φn,εω )‖L∞(Ω)‖∇φn,εω ‖‖∇∆φn,εω ‖
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+ C‖ρn,εω ‖L∞(Ω)‖∆φn,εω ‖‖∆2φn,εω ‖ + C‖∇ρn,εω ‖L3(Ω)‖∇φn,εω ‖L6(Ω)‖∆2φn,εω ‖

≤ α

4
‖∆2φn,εω ‖2 +

1

2
‖∇∆φn,εω ‖2 + C

(
1 + ‖∇µn,ε

ω ‖2 + ‖ρn,εω ‖2L∞(Ω) + ‖∇ρn,εω ‖2
L3(Ω)

)

≤ α

4
‖∆2φn,εω ‖2 +

1

2
‖∇∆φn,εω ‖2 + C

(
1 + ‖∇µn,ε

ω ‖2 + ‖ρn,εω ‖2H2(Ω)

)
.

Next, it follows from Hölder’s, Agmon’s and Young’s inequalities that

‖∇ ·
(
|∇φn,εω |2∇φn,εω

)
‖‖∆2φn,εω ‖ ≤ C

(
‖|∇φn,εω |2∆φn,εω ‖ + ‖∇(|∇φn,εω |2) · ∇φn,εω ‖

)
‖∆2φn,εω ‖

≤ C‖∇φn,εω ‖2
L∞(Ω)

(
‖∆φn,εω ‖ + ‖φn,εω ‖H2(Ω)

)
‖∆2φn,εω ‖

≤ C‖∇φn,εω ‖2
L∞(Ω)‖∆2φn,εω ‖

≤ C‖∇φn,εω ‖H1(Ω)‖∇φn,εω ‖H2(Ω)‖∆2φn,εω ‖
≤ C‖φn,εω ‖H3(Ω)‖∆2φn,εω ‖
≤ C

(
‖∆φn,εω ‖H1(Ω) + ‖φn,εω ‖

)
‖∆2φn,εω ‖

≤ C
(
‖∆2φn,εω ‖ 1

2 ‖∆φn,εω ‖ 1
2 + ‖φn,εω ‖H2(Ω)

)
‖∆2φn,εω ‖

≤ α

4
‖∆2φn,εω ‖ + C.

As a consequence, it holds

α‖∆2φn,εω ‖2 + ‖∇∆φn,εω ‖2 ≤ α

2
‖∆2φn,εω ‖2 +

1

2
‖∇∆φn,εω ‖2 + C

(
1 + ‖∇µn,ε

ω ‖2 + ‖ρn,εω ‖2H2(Ω)

)
,

which implies

α‖∆2φn,εω ‖2 + ‖∇∆φn,εω ‖2 ≤ C
(
1 + ‖∇µn,ε

ω ‖2 + ‖ρn,εω ‖2H2(Ω)

)
.

From (3.22), the elliptic regularity theory and Lemma 3.3, we can conclude that φn,εω ∈ L2(0, T ;H4(Ω)).
The proof is complete.

3.4 Existence of weak solutions for the penalized problem

We can now prove the existence of a global weak solution to the penalized problem (3.7)–(3.8) on [0, T ].
Let us first pass to the limit as n→ +∞. In view of Lemmas 3.2–3.5, for fixed ω ∈ (0, 1], ε ∈ (0,min(ǫ1, ǫ2)),

we have proved that

un,ε
ω is uniformly bounded in L∞(0, T ;Hσ) ∩ L2(0, T ;Vσ) ∩W 1, 4

d (0, T ;V∗
σ),

φn,εω is uniformly bounded in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)) ∩H1(0, T ; (H1(Ω))∗),

ρn,εω is uniformly bounded in L∞(0, T ;H1(Ω)) ∩ L4(0, T ;H2(Ω)) ∩H1(0, T ; (H1(Ω))∗),

µn,ε
ω is uniformly bounded in L2(0, T ;H1(Ω)),

ψn,ε
ω is uniformly bounded in L2(0, T ;H1(Ω)).

Besides the obvious weak and weak star convergence (up to a subsequence), the above uniform bounds and the
Aubin–Lions lemma allow us to find (uε

ω, φ
ε
ω, ρ

ε
ω, µ

ε
ω, ψ

ε
ω) such that, up to subsequences (not relabelled hereafter)

un,ε
ω → uε

ω, strongly in L2(0, T ;H1−r(Ω)),

φn,εω → φεω, strongly in C([0, T ];H2−r(Ω)) ∩ L2(0, T ;H4−r(Ω)),

ρn,εω → ρεω, strongly in C([0, T ];H1−r(Ω)) ∩ L4(0, T ;H2−r(Ω)),

for r ∈ (0, 1/2), which further imply the a.e. convergence of (un,ε
ω , φn,εω , ρn,εω ) in Ω× (0, T ). Then we can deduce

the further convergences

(
ν(φn,εω , ρn,εω )

)s
Dun,ε

ω →
(
ν(φεω , ρ

ε
ω)
)s
Duε

ω weakly in L2(0, T ;L2(Ω)), s =
1

2
, 1,

µn,ε
ω ∇φn,εω → µε

ω∇φεω , weakly in L2(0, T ;L
3
2 (Ω)),

ψn,ε
ω ∇ρn,εω → ψε

ω∇ρεω, weakly in L2(0, T ;L
3
2 (Ω)),

∇ · (ρn,εω ∇φn,εω ) → ∇ · (ρεω∇φεω), weakly in L2(0, T ;L2(Ω)).
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Thus, using well-known arguments (see e.g., [1, 5]), we can show that (uε
ω , φ

ε
ω, ρ

ε
ω, µ

ε
ω, ψ

ε
ω) is a global weak

solution to the penalized system (3.12) with the regularized potential Sρ,ε subject to (3.8). Moreover, using
the weak and weak-∗ lower semicontinuity of the norms, from (3.15) we also deduce

Eω,ε(u
ε
ω(t), φεω(t), ρn,εω (t)) +

∫ t

0

‖
√
ν(φεω(τ), ρεω(τ))Duε

ω(τ)‖2 + ‖∇µε
ω(τ)‖2 + ‖∇ψε

ω(τ)‖2 dτ

≤ Eω,ε(u0, φ0, ρ0), ∀ t ∈ (0, T ]. (3.23)

Next, we pass to the limit as ε→ 0+. We can still use the a priori bounds obtained in the Galerkin scheme
except (3.16). Concerning this bound, on account of (H3), arguing as in [13] (see also [18, Lemma 3.1]) we find

Ŝρ,ε(s) ≤ Ŝρ(s) ≤ C, ∀ s ∈ [0, 1]. (3.24)

Thus the updated estimate (3.16) for the weak solution yields a bound that is independent of ε. More precisely,
we have

Lemma 3.6. For any fixed ω ∈ (0, 1] and ε ∈ (0,min(ǫ1, ǫ2)) (recall that ǫ2 depends on ω), let (uε
ω, φ

ε
ω, ρ

ε
ω,

µε
ω , ψ

ε
ω) be a global weak solution solving system (3.12) with the regularized potential Sρ,ε subject to (3.8) on

[0, T ]. Then, for every t ∈ (0, T ], we have

Eω,ε(u
ε
ω(t), φεω(t), ρεω(t)) +

∫ t

0

‖
√
ν(φεω(τ), ρεω(τ))Duε

ω(t)‖2 + ‖∇µε
ω(τ)‖2 + ‖∇ψε

ω(τ)‖2 dτ ≤ C4,

and

Eω,ε(u
ε
ω(t), φεω(t), ρεω(t)) ≥ 1

2
‖uε

ω(t)‖2 +
α

4
‖∆φεω(t)‖2 +

1

2
‖∇φεω(t)‖2 +

β

2
‖∇ρεω(t)‖2

+
c3
2
‖φεω(t)‖4L4(Ω) +

ω

8
‖∇φεω(t)‖4

L4(Ω) − C5,

where C4, C5 > 0 are independent of ω, ε, and T .

Proof. Recalling the energy inequality (3.23) for the approximate solution (uε
ω , φ

ε
ω, ρ

ε
ω, µ

ε
ω, ψ

ε
ω), we can obtain

the lower bound with a constant C5 > 0 that is independent of ε following the same argument as in Lemma
3.1. In order to find C4, we just need to observe that (see also (3.24))

Eω,ε(φ0, ρ0,u0) ≤ C
(
‖u0‖, ‖φ0‖H2(Ω), ‖ρ0‖H1(Ω),

∫

Ω

Sρ(ρ0) dx,Ω, α, β, θ
)
,

thanks to the Sobolev embeddings H2(Ω) →֒ L∞(Ω), H2(Ω) →֒ W 1,4(Ω) (d = 2, 3), (3.24) and the fact that
0 ≤ ρ0 ≤ 1 almost everywhere in Ω (cf. Remark 2.6).

The proof is complete.

On account of Lemma 3.6, we can now argue as in the proofs of Lemmas 3.2–3.5 to deduce a series of uniform
estimates with respect to ε for the approximate solution (uε

ω, φ
ε
ω , ρ

ε
ω, µ

ε
ω, ψ

ε
ω). The main novelty with respect to

the Galerkin scheme is the following estimate which can be deduced from (3.7)6 (see, for instance, [29, Section
3])

‖Ŝ′
ρ,ε(ρ

ε
ω)‖L2(0,T ;L2(Ω)) ≤ C (3.25)

for some C > 0 independent of ε. These bounds combined with compactness arguments (see e.g., [29]) allow us
to find (uω, φω , ρω, µω, ψω) which is a global weak (or finite energy) solution to the penalized problem (3.7)–(3.8).
More precisely, we have

Proposition 3.3. Let (H1)–H4 hold and ω ∈ (0, 1] be given. Then, for any u0 ∈ Hσ, φ0 ∈ H2
N (Ω), ρ0 ∈ H1(Ω)

be such that Sρ(ρ0) ∈ L1(Ω) and ρ0 ∈ (0, 1), problem (3.7)–(3.8) admits at least one global weak solution (uω,
φω, ρω, µω, ψω) satisfying

uω ∈ L∞(0, T ;Hσ) ∩ L2(0, T ;Vσ) ∩W 1, 4
d (0, T ;V∗

σ),

φω ∈ L∞(0, T ;H2
N(Ω)) ∩ L2(0, T ;H4

N(Ω)) ∩H1(0, T ; (H1(Ω))∗),

ρω ∈ L∞(0, T ;H1(Ω)) ∩ L4(0, T ;H2
N(Ω)) ∩H1(0, T ; (H1(Ω))∗),

µω, ψω ∈ L2(0, T ;H1(Ω)),

ρω ∈ L∞(Ω × (0, T )), and 0 < ρω(x, t) < 1, for a.a. (x, t) ∈ Ω × (0, T ),

19



and the initial conditions. Moreover, the following energy inequality holds

Eω(φω(t), ρω(t),uω(t)) +

∫ t

0

‖
√
ν(φω(τ), ρω(τ))Duω(τ)‖2 + ‖∇µω(τ)‖2 + ‖∇ψω(τ)‖2 dτ

≤ Eω(φ0, ρ0,u0), (3.26)

for every t ∈ (0, T ].

Remark 3.2. Observe that 0 < ρω(x, t) < 1 almost everywhere in Ω × (0, T ) can be achieved by means of an
argument based on (3.25) (see, for instance, [13, 30]). Recalling Remark 2.4, we also have ‖ρω‖L∞(0,T ;L∞(Ω)) ≤ 1.
On the other hand, the same property cannot be deduced for φω. However, the regularity φω ∈ L∞(0, T ;H2(Ω))
ensures that φω ∈ L∞(0, T ;L∞(Ω)) thanks to the embedding H2(Ω) →֒ L∞(Ω).

3.5 Existence of weak solutions to the original problem

The final step is based on uniform estimates that are independent of ω ∈ (0, 1]. First, we have energy bounds

Lemma 3.7. For every ω ∈ (0, 1], let (uω , φω, ρω, µω, ψω) be a global weak solution solving the penalized problem
(3.7)–(3.8). Then, for every t ∈ (0, T ], we have

Eω(uω(t), φω(t), ρω(t)) +

∫ t

0

‖
√
ν(φω(τ), ρω(τ))Duω(t)‖2 + ‖∇µω(τ)‖2 + ‖∇ψω(τ)‖2 dτ ≤ C6,

and

Eω(uω(t), φω(t), ρω(t)) ≥ 1

2
‖uω(t)‖2 +

α

4
‖∆φω(t)‖2 +

1

2
‖∇φω(t)‖2 +

β

2
‖∇ρω(t)‖2

+
c3
2
‖φω(t)‖4L4(Ω) − C7,

where C6, C7 > 0 do not depend on ω and T .

Proof. The upper bound is straightforward (cf. the proof of Lemma 3.6). Concerning the lower bound, we shall
essentially make use of the estimate ‖ρω‖L∞(0,T ;L∞(Ω)) ≤ 1. Recalling (H2), (H3) and arguing as in Remark
3.1, we can achieve the conclusion by noting that the perturbation involving ω is nonnegative.

The proof is complete.

Thanks to Lemma 3.7 and reasoning as above, we can derive a number of uniform estimates that are
independent of ω. In particular we find again (see (3.25))

‖Ŝ′
ρ(ρω)‖L2(0,T ;L2(Ω)) ≤ C (3.27)

for some C > 0 independent of ω. This is enough to find, through compactness arguments by taking ω → 0+ (up
to a convergent subsequence), a quintuplet (u, φ, ρ, µ, ψ) which is a global weak solution to problem (1.4)–(1.5)
in the sense of Definition 2.1, provided we establish some additional spatial regularity. First, we show that
ρ ∈ L2(0, T ;W 2,p(Ω)) for every finite p > 2 if d = 2 and for every 2 < p ≤ 6 if d = 3. To this end, we observe
that ρ solves the semilinear problem with a singular nonlinearity




−β∆ρ+ Ŝ′

ρ(ρ) = ψ +
θ

2
|∇φ|2 −R′

ρ(ρ) a.e. in Ω,

∂nρ = 0 a.e. on ∂Ω.
(3.28)

We know that ψ ∈ L2(0, T ;H1(Ω)). Moreover, we have

‖|∇φ|2‖H1(Ω) ≤ C‖φ‖W 1,4(Ω)‖φ‖W 2,4(Ω) ≤ C‖φ‖H2(Ω)‖φ‖H3(Ω)

and
‖R′

ρ(ρ)‖H1(Ω) ≤ C(1 + ‖ρ‖H1(Ω)).

Thus the right-hand side of (3.28) belongs to L2(0, T ;H1(Ω)). Therefore, recalling [1, Theorem 6] (see also [19,
Theorem A.2]) , we conclude that ρ ∈ L2(0, T ;W 2,p(Ω)). Consider now the elliptic problem

{
α∆2φ = µ+ ∆φ− S′

φ(φ) − θ∇ · (ρ∇φ) a.e. in Ω,

∂nφ = 0 a.e. on ∂Ω.
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A well-known elliptic estimate yields

‖φ‖H5(Ω) ≤ C(‖µ+ ∆φ− S′
φ(φ) − θ∇ · (ρ∇φ)‖H1(Ω) + ‖φ‖)

≤ C
(
‖µ‖H1(Ω) + ‖φ‖H3(Ω) + ‖∇ · (ρ∇φ)‖H1(Ω)

)
.

On the other hand, we have

‖∇ · (ρ∇φ)‖H1(Ω) ≤ C
(
‖ρ‖W 2,4(Ω)‖φ‖W 1,4(Ω) + ‖ρ‖H1(Ω)‖φ‖W 2,∞(Ω) + ‖ρ‖L∞(Ω)‖φ‖H3(Ω)

)

≤ C
(
‖ρ‖W 2,4(Ω)‖φ‖H2(Ω) + ‖ρ‖H1(Ω)‖φ‖H4(Ω) + ‖φ‖H3(Ω)

)
,

and recalling that φ ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)) and ρ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;W 2,4(Ω)), we
infer that φ ∈ L2(0, T ;H5(Ω)).

Finally, through a semicontinuity argument applied to (3.26), we can also recover the energy inequality (2.7).
If d = 2, the regularity of weak solutions allow us to derive an energy equality by arguing as in the proof of
Proposition 3.1 (see also [1]).

The existence part of Theorem 2.1 is now proved. �

Remark 3.3. As we mentioned in the Introduction, it would be physically reasonable to take a Flory–Huggins
potential for φ as well. From the mathematical point of view, this case is highly non-trivial since φ satisfies
a sixth order Cahn–Hilliard type equation with a singular potential (cf. [28]). In the approximation scheme,
the essential bound (3.27) (see also (3.25)) cannot be recovered anymore because of the fourth-order term in
the chemical potential. Thus it is not clear how to establish the existence of a weak solution in the usual
sense. On one hand, maybe one could show the existence of a weaker solution like the one obtained for a single
Cahn–Hilliard equation in [28]. See also [35, 36] for alternative approaches to handle singular potentials. On
the other hand, one may want to consider a standard fourth-order Cahn–Hilliard equation for φ (i.e., taking
α = 0 in (1.1)). In this case, the existence of a weak solution might be provable provided that θ ∈ (0, 1) (see
(3.5)). However, other results (e.g., uniqueness and regularity in two dimensions) could be rather challenging
because of the couplings between the two Cahn–Hilliard equations.

3.6 Uniqueness of weak solutions when d = 2

Suppose that (u0, φ0, ρ0) ∈ Hσ ×H2
N (Ω)×H1(Ω) is a set of initial data satisfying the assumptions of Theorem

2.1. Denote by (u1, φ1, ρ1) and (u2, φ2, ρ2) two global weak solutions to problem (1.4)–(1.5) departing from
(u0, φ0, ρ0), with corresponding chemical potentials µi and ψi, for i = 1, 2. Set (see Remark 2.3 for pressures)





u = u1 − u2, π = π1 − π2,

φ = φ1 − φ2, ρ = ρ1 − ρ2,

µ = µ1 − µ2, ψ = ψ1 − ψ2.

(3.29)

Writing down (formally) the system for (u, φ, ρ), we get





∂tu + (u1 · ∇)u1 − (u2 · ∇)u2 −∇ · (ν(φ1, ρ1)Du1 − ν(φ2, ρ2)Du2) + ∇π
= µ1∇φ1 − µ2∇φ2 + ψ1∇ρ1 − ψ2∇ρ2,

∇ · u = 0,

∂tφ+ u1 · ∇φ + u · ∇φ2 = ∆µ,

µ = α∆2φ− ∆φ + S′
φ(φ1) − S′

φ(φ2) + θ∇ · (ρ1∇φ+ ρ∇φ2),

∂tρ+ u1 · ∇ρ+ u · ∇ρ2 = ∆ψ,

ψ = −β∆ρ+ S′
ρ(ρ1) − S′

ρ(ρ2) − θ

2
|∇φ1|2 +

θ

2
|∇φ2|2,

(3.30)

in Ω × (0, T ), with 



u = 0 on ∂Ω × (0, T ),

∂nφ = ∂n∆φ = ∂nµ = 0 on ∂Ω × (0, T ),

∂nρ = ∂nψ = 0 on ∂Ω × (0, T ),

u|t=0 = 0, φ|t=0 = 0, ρ|t=0 = 0, in Ω.

(3.31)

In the subsequent analysis, on account of [19], we derive a differential inequality for problem (3.30)–(3.31)
involving weaker norms with respect to the energy ones (cf. (1.1)). The proof consists of several steps. We
indicate by C a generic positive constant depending on known quantities.

Step 1. Testing the evolution equation for φ in (3.30) by φ, using integration by parts, we get

〈∂tφ, φ〉H1(Ω))∗,H1(Ω) − (φu1,∇φ) − (φ2u,∇φ) = −(∇µ,∇φ).
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Using the equation for µ and a further integration by parts, we obtain

1

2

d

dt
‖φ‖2 + α‖∇∆φ‖2 + ‖∆φ‖2 = I1 + I2 + I3, (3.32)

where

I1 := (φu1,∇φ) + (φ2u,∇φ) ,

I2 :=
(
S′
φ(φ1) − S′

φ(φ2),∆φ
)
,

I3 := θ (∇ · (ρ1∇φ),∆φ) + θ (∇ · (ρ∇φ2),∆φ) .

Concerning I1, observe that (φu1,∇φ) = 0 since ∇ · u1 = 0 and ‖∇φ‖2 = −(∆φ, φ). Thus we have

I1 = (φ2u,∇φ) ≤ ‖φ2‖L∞(Ω)‖u‖‖∇φ‖
≤ C‖u‖‖φ‖ 1

2 ‖∆φ‖ 1
2

≤ 1

18
‖∆φ‖2 +

ν∗
20

‖u‖2 + C‖φ‖2. (3.33)

Next, for I2 it holds

I2 =
(
S′
φ(φ1) − S′

φ(φ2),∆φ
)

≤
∣∣∣∣
(∫ 1

0

S′′
φ(τφ1 + (1 − τ)φ2)φdτ, ∆φ

)∣∣∣∣

≤ C

∥∥∥∥
∫ 1

0

S′′
φ(τφ1 + (1 − τ)φ2) dτ

∥∥∥∥
L∞(Ω)

‖φ‖‖∆φ‖

≤ 1

18
‖∆φ‖2 + C‖φ‖2. (3.34)

Finally, owing to standard Sobolev embeddings, the Poincaré–Wirtinger inequality and the elliptic estimate, we
have

I3 = θ(ρ1∆φ,∆φ) + θ(ρ∆φ2,∆φ) + θ(∇ρ1 · ∇φ,∆φ) + θ(∇ρ · ∇φ2,∆φ)

≤ C‖∆φ‖L3(Ω)

(
‖ρ1‖L6(Ω)‖∆φ‖ + ‖ρ‖L6(Ω)‖∆φ2‖ + ‖∇ρ1‖‖∇φ‖L6(Ω) + ‖∇ρ‖‖∇φ2‖L6(Ω)

)

≤ C‖φ‖ 2
9 ‖∇∆φ‖ 7

9 (‖∆φ‖ + ‖∇ρ‖)

≤ 1

18
‖∆φ‖2 +

α

6
‖∇∆φ‖2 +

β

12
‖∇ρ‖2 + C‖φ‖2. (3.35)

Collecting the estimates (3.33)–(3.35), we deduce from (3.32) that

1

2

d

dt
‖φ‖2 +

5α

6
‖∇∆φ‖2 +

5

6
‖∆φ‖2 ≤ ν∗

20
‖u‖2 +

β

12
‖∇ρ‖2 + C‖φ‖2. (3.36)

Step 2. We now apply a similar argument for ρ, but the presence of the singular potential forces us to take
Nρ ∈ V0 as test function in (3.30). This yields

〈∂tρ,Nρ〉H1(Ω))∗,H1(Ω) − (ρu1,∇Nρ) − (ρ2u,∇Nρ) = −(ψ, ρ).

Like in Step 1, we compute the last scalar product using the equation for ψ and obtain

1

2

d

dt
‖ρ‖2V ∗

0
+ β‖∇ρ‖2 + I4 = I5 + I6, (3.37)

where

I4 :=
(
S′
ρ(ρ1) − S′

ρ(ρ2), ρ
)
,

I5 := (ρu1,∇Nρ) + (ρ2u,∇Nρ) ,

I6 :=
θ

2

(
∇φ · (∇φ1 + ∇φ2), ρ

)
.

Recalling (H3), we easily obtain

I4 ≥ −L1‖ρ‖2 ≥ − β

12
‖∇ρ‖2 − C‖ρ‖2V ∗

0
. (3.38)
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Arguing as for I1, we get

I5 ≤ ‖ρ‖L6(Ω)‖u1‖L3(Ω)‖ρ‖V ∗

0
+ ‖ρ2‖L∞(Ω)‖u‖‖ρ‖V ∗

0

≤ β

12
‖∇ρ‖2 +

ν∗
20

‖u‖2 + C
(
1 + ‖u1‖2L3(Ω)

)
‖ρ‖2V ∗

0
. (3.39)

Then, Sobolev embeddings and the Poincaré–Wirtinger inequality give

I6 ≤
(
‖∇φ1‖L4(Ω) + ‖∇φ2‖L4(Ω)

)
‖∇φ‖‖ρ‖L4(Ω)

≤ C‖∇φ‖‖ρ‖L4(Ω)

≤ C‖φ‖ 1
2 ‖∆φ‖ 1

2 ‖∇ρ‖

≤ β

12
‖∇ρ‖2 +

1

18
‖∆φ‖2 + C‖φ‖2. (3.40)

Thus, we can conclude from estimates (3.39)–(3.40) and (3.37) that

1

2

d

dt
‖ρ‖2V ∗

0
+

3β

4
‖∇ρ‖2 ≤ ν∗

20
‖u‖2 +

1

18
‖∇φ‖2 + C

(
1 + ‖u1‖2L3(Ω)

)
‖ρ‖2V ∗

0
+ C‖φ‖2. (3.41)

Step 3. Now we consider the Navier–Stokes system. For the sake of convenience, we make use of the
vectorial identity

(ui · ∇)ui = ∇ · (ui ⊗ ui), i = 1, 2,

which holds thanks to ∇ · ui = 0. Besides, we recast the Korteweg forces by using the equations for µi, ψi,
i = 1, 2, and we write

µi∇φi + ψi∇ρi = ∇
(

1

2
(1 − θρi)|∇φi|2 +

β

2
|∇ρi|2 + Sφ(φi) + Sρ(ρi)

)

−∇ ·
(
(1 − θρi)∇φi ⊗∇φi + β∇ρi ⊗∇ρi − α∇∆φi ⊗∇φi

)

− α(∇∆φi · ∇)∇φi.

In this way, we get rid of the chemical potentials by considering extra pressure terms. After introducing these
modifications, we test the equation for u by A−1u ∈ Wσ, which yields

1

2

d

dt
‖u‖2

V∗

σ
+ (ν(φ1, ρ1)Du,∇A−1u) =

13∑

j=7

Ij , (3.42)

where we set (using integrations by parts and adding/subtracting suitable quantities)

I7 := (u1 ⊗ u,∇A−1u) + (u⊗ u2,∇A−1u)

I8 := (∇φ1 ⊗∇φ,∇A−1u) + (∇φ ⊗∇φ2,∇A−1u),

I9 := β(∇ρ1 ⊗∇ρ,∇A−1u) + β(∇ρ⊗∇ρ2,∇A−1u),

I10 := −θ(ρ1∇φ1 ⊗∇φ,∇A−1u) − θ(ρ1∇φ⊗∇φ2,∇A−1u) − θ(ρ∇φ2 ⊗∇φ2,∇A−1u),

I11 := −α(∇∆φ1 ⊗∇φ,∇A−1u) − α(∇∆φ ⊗∇φ2,∇A−1u),

I12 := −α
(
(∇∆φ1 · ∇)∇φ,A−1u

)
− α

(
(∇∆φ · ∇)∇φ2,A−1u

)
,

I13 := −
(
(ν(φ1, ρ1) − ν(φ2, ρ2))Du2,∇A−1u

)
.

We analyze the remainder terms on the left-hand side of (3.42) by using the argument in [19]. Since ∇ ·∇uT =
∇∇ · u = 0, we deduce that

(
ν(φ1, ρ1)Du,∇A−1u

)
=
(
ν(φ1, ρ1)Du, DA−1u

)

=
(
∇u, ν(φ1, ρ1)DA−1u

)

= −
(
u,∇ · [ν(φ1, ρ1)DA−1u]

)

= −
(
u, DA−1u∇ν(φ1, ρ1)

)
− 1

2

(
u, ν(φ1, ρ1)∆A−1u

)
. (3.43)

From the definition of the Stokes operator, we find that there exists q ∈ L2(0, T ;H1(Ω)) satisfying −∆A−1u+
∇q = u almost everywhere in Ω × (0, T ) (cf. Lemma 2.2). Moreover, it holds

‖q‖ ≤ C‖∇A−1u‖ 1
2 ‖u‖ 1

2 , ‖∇q‖ ≤ C‖u‖. (3.44)
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Therefore, the second term on the right-hand side of (3.43) can be estimated as follows:

−1

2

(
u, ν(φ1, ρ1)∆A−1u

)
=

1

2

(
u, ν(φ1, ρ1)u

)
− 1

2

(
u, ν(φ1, ρ1)∇q

)

≥ ν∗
2
‖u‖2 − 1

2

(
u, ν(φ1, ρ1)∇q

)
.

Setting

I14 :=
(
u, DA−1u∇ν(φ1, ρ1)

)
, I15 :=

1

2

(
u, ν(φ1, ρ1)∇q

)
,

we then recast (3.42) as

1

2

d

dt
‖u‖2V∗

σ
+
ν∗
2
‖u‖2 ≤

15∑

j=7

Ij . (3.45)

Next, we estimate all the Ij terms defined above. Using the Ladyzhenskaya inequality (2.2) and Young’s
inequality, we can deduce that (see [19])

I7 ≤
(
‖u1‖L4(Ω) + ‖u2‖L4(Ω)

)
‖u‖‖∇A−1u‖

≤ C
(
‖u1‖

1
2 ‖u1‖

1
2

Vσ
+ ‖u2‖

1
2 ‖u2‖

1
2

Vσ

)
‖u‖

1
2

V∗

σ
‖u‖ 3

2

≤ ν∗
20

‖u‖2 + C
(
‖u1‖2Vσ

+ ‖u2‖2Vσ

)
‖u‖2

V∗

σ
, (3.46)

I8 ≤
(
‖∇φ1‖L∞(Ω) + ‖∇φ2‖L∞(Ω)

)
‖∇φ‖‖∇A−1u‖

≤ 1

18
‖∆φ‖2 + C‖φ‖2 + C

(
‖∇φ1‖2L∞(Ω) + ‖∇φ2‖2L∞(Ω)

)
‖u‖2

V∗

σ
, (3.47)

I9 ≤
(
‖∇ρ1‖L∞(Ω) + ‖∇ρ2‖L∞(Ω)

)
‖∇ρ‖‖∇A−1u‖

≤ β

12
‖∇ρ‖2 + C

(
‖∇ρ1‖2L∞(Ω) + ‖∇ρ2‖2L∞(Ω)

)
‖u‖2V∗

σ
. (3.48)

The estimate for I10 is slightly more involved. Indeed we have

I10 ≤ C‖ρ1‖L∞(Ω)

(
‖∇φ1‖L∞(Ω) + ‖∇φ2‖L∞(Ω)

)
‖∇φ‖‖∇A−1u‖

+ C‖ρ‖L4(Ω)‖∇φ2‖L4(Ω)‖∇φ2‖L∞(Ω)‖∇A−1u‖
≤ C

(
‖∇φ1‖L∞(Ω) + ‖∇φ2‖L∞(Ω)

)
‖∆φ‖ 1

2 ‖φ‖ 1
2 ‖∇A−1u‖

+ C‖∇ρ‖ 3
4 ‖ρ‖

1
4

V ∗

0
‖∇φ2‖L∞(Ω)‖∇A−1u‖

≤ 1

18
‖∆φ‖2 +

β

12
‖∇ρ‖2 + C

(
‖∇φ1‖2L∞(Ω) + ‖∇φ2‖2L∞(Ω)

)
‖u‖2V∗

σ
+ C

(
‖φ‖2 + ‖ρ‖2V ∗

0

)
. (3.49)

Using now Sobolev embeddings, we deduce that

I11 ≤ C
(
‖∇∆φ1‖L4(Ω)‖∇φ‖L4(Ω)‖∇A−1u‖ + ‖∇∆φ‖‖∇φ2‖L∞(Ω)‖∇A−1u‖

)

≤ α

6
‖∇∆φ‖2 +

1

18
‖∆φ‖2 + C

(
‖∇∆φ1‖2L4(Ω) + ‖∇φ2‖2L∞(Ω)

)
‖u‖2V∗

σ
. (3.50)

Recalling that Vσ →֒ Lr(Ω) for every r > 0, we find

I12 ≤ C
(
‖∇∆φ1‖L4(Ω)‖φ‖H2(Ω)‖A−1u‖L4(Ω) + ‖∇∆φ‖‖φ2‖W 2,4(Ω)‖A−1u‖L4(Ω)

)

≤ α

6
‖∇∆φ‖2 +

1

18
‖∆φ‖2 + C

(
‖∇∆φ1‖2L4(Ω) + ‖φ2‖2W 2,4(Ω)

)
‖u‖2V∗

σ
. (3.51)

Let us now handle the terms involving viscosity. Consider I13. Making use of Agmon’s inequality (2.3), the
Poincaré–Wirtinger inequality and [19, Proposition C.1], we obtain

I13 = −((ν(φ1, ρ1) − ν(φ1, ρ2))Du2,∇A−1u) − ((ν(φ1, ρ2) − ν(φ2, ρ2))Du2,∇A−1u)

= −
(∫ 1

0

∂ρν(φ1, sρ1 + (1 − s)ρ2)ρ dsDu2,∇A−1u

)

−
(∫ 1

0

∂φν(sφ1 + (1 − s)φ2, ρ2)φ dsDu2,∇A−1u

)
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≤ C‖Du2‖‖ρ∇A−1u‖ + C‖Du2‖‖φ‖L∞(Ω)‖∇A−1u‖

≤ C‖Du2‖‖∇ρ‖‖u‖V∗

σ

[
ln

(
e‖∇A−1u‖H1(Ω)

‖u‖V∗

σ

)] 1
2

+
1

18
‖∆φ‖2 + C‖φ‖2 + ‖Du2‖2‖u‖2V∗

σ
. (3.52)

Next, we see that

I14 ≤ C
(
‖∇φ1‖L∞(Ω) + ‖∇ρ1‖L∞(Ω)

)
‖u‖‖DA−1u‖

≤ ν∗
20

‖u‖2 + C
(
‖∇φ1‖2L∞(Ω) + ‖∇ρ1‖2L∞(Ω)

)
‖u‖2V∗

σ
, (3.53)

and exploiting (2.2) and (2.3), jointly with (3.44), we get

I15 = −1

2
(u · ∇ν(φ1, ρ1), q)

≤ C
(
‖∇φ1‖L4(Ω) + ‖∇ρ1‖L4(Ω)

)
‖u‖‖q‖L4(Ω)

≤ C
(
‖φ1‖H2(Ω) + ‖ρ1‖

1
2

L∞(Ω)‖ρ1‖
1
2

H2(Ω)

)
‖u‖‖q‖ 1

2 ‖q‖
1
2

H1(Ω)

≤ C
(
1 + ‖ρ1‖

1
2

H2(Ω)

)
‖u‖ 7

4 ‖∇A−1u‖ 1
4

≤ ν∗
20

‖u‖2 + C
(

1 + ‖ρ1‖4H2(Ω)

)
‖u‖2

V∗

σ
. (3.54)

Collecting the estimates (3.43)–(3.54), we infer from (3.45) that

1

2

d

dt
‖u‖2V∗

σ
+

7ν∗
20

‖u‖2 ≤ α

3
‖∇∆φ‖2 +

5

18
‖∆φ‖2 +

β

6
‖∇ρ‖2 + C

(
‖φ‖2 + ‖ρ‖2V ∗

0

)

+ H‖u‖2V∗

σ
+ C‖Du2‖‖∇ρ‖‖u‖V∗

σ

[
ln

(
e‖∇A−1u‖H1(Ω)

‖u‖V∗

σ

)] 1
2

, (3.55)

where we set

H(t) := C
(

1 + ‖u1(t)‖2Vσ
+ ‖u2(t)‖2Vσ

+ ‖∇φ1(t)‖2
L∞(Ω) + ‖∇φ2(t)‖2

L∞(Ω) + ‖∇∆φ1‖2L4(Ω)

+‖φ2‖2W 2,4(Ω) + ‖∇ρ1(t)‖2
L∞(Ω) + ‖∇ρ2(t)‖2

L∞(Ω) + ‖ρ1(t)‖4H2(Ω)

)
. (3.56)

Step 4. Collecting (3.36), (3.41) and (3.55), we arrive at the differential inequality

dY
dt

+
ν∗
2
‖u‖2 + α‖∇∆φ‖2 + ‖∆φ‖2 + β‖∇ρ‖2

≤ HY + C‖Du2‖‖∇ρ‖‖u‖V∗

σ

[
ln

(
e‖∇A−1u‖H1(Ω)

‖u‖V∗

σ

)] 1
2

,

where

Y(t) := ‖u(t)‖2
V∗

σ
+ ‖φ(t)‖2 + ‖ρ(t)‖2V ∗

0
,

and the function H is given by (3.56) with a suitably enlarged C > 0.
We now analyze the logarithmic term on the right-hand side by using the fact that on any interval (0,M ]

the function s ln
(
C
s

)
is increasing provided that C > eM . Recalling that ‖u‖L∞(0,T ;Hσ), ‖φ‖L∞(0,T ;H2(Ω)) and

‖ρ‖L∞(0,T ;H1(Ω)) are bounded, we have
‖Y‖L∞(0,T ) ≤ K1,

where the constant K1 > 0 depends on norms of the initial data, Ω, T , and coefficients of the system. Let K2

be a sufficiently large constant that may depend on K1. Then we deduce that

‖Du2‖‖∇ρ‖‖u‖V∗

σ

[
ln

(
e‖∇A−1u‖H1(Ω)

‖u‖V∗

σ

)] 1
2

≤ ‖Du2‖‖∇ρ‖Y(t)
1
2

[
ln

(
K

1
2

2

Y(t)
1
2

)] 1
2

≤ β

2
‖∇ρ‖2 + C‖Du2‖2Y(t) ln

(
K2

Y(t)

)
.

As a consequence, we obtain

dY
dt

+
ν∗
2
‖u‖2 + α‖∇∆φ‖2 + ‖∆φ‖2 +

β

2
‖∇ρ‖2 ≤ HY ln

(
K2

Y

)
, (3.57)
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where, again, we possibly enlarge C in H. Integrating (3.57) on [0, t] ⊂ [0, T ], we get

Y(t) ≤ Y(0) +

∫ t

0

H(τ)Y(τ) ln

(
K2

Y(τ)

)
dτ, for a.a. t ∈ [0, T ]. (3.58)

Since H ∈ L1(0, T ) and Y(0) = 0, from (3.58) and using the Osgood lemma (see, e.g., [4, Lemma 3.4]), we can
conclude that Y(t) = 0 for all t ∈ [0, T ]. Hence, the global weak solution to problem (1.4)–(1.5) is unique.

This completes the proof of Theorem 2.1. �

Remark 3.4. If Y(0) > 0, the inequality (3.58) yields a continuous dependence estimate with respect to the
initial data (cf. [19, 21]). Indeed, choosing a sufficiently large K2 in order to have

ln

[
ln

(
K2

Y(0)

)]
≥
∫ T

0

H(t) dt,

we infer from (3.58) and the Osgood lemma [4, Lemma 3.4] that

ln

[
ln

(
K2

Y(0)

)]
−
∫ t

0

H(τ) dτ ≤ ln

[
ln

(
K2

Y(t)

)]
, ∀ t ∈ [0, T ].

Thus, after taking the double exponential, we find

Y(t) ≤ K2

(Y(0)

K2

)exp(−
∫

t

0
H(τ) dτ)

, ∀ t ∈ [0, T ].

Nevertheless, in the above argument, we should assume that either the initial data for ρ have the same mean
value, or take N (ρ− ρ) as a test function in Step 2.

4 Proof of Theorem 2.2

In this section, we prove the existence of strong solutions to problem (1.4)–(1.5). Following the approach devised
in [19], we first construct a proper approximation of the initial datum ρ0 (which is indeed not necessary for the
logarithmic potential (1.3) when d = 2, as pointed out in [22]). Then, using the same approximating scheme
as in Section 3, we derive higher-order uniform bounds which allow us to pass to the limit with respect to the
approximation parameters.

4.1 The approximating scheme

Approximating ρ0. Recalling [19, Section 4] (see also [17]), we consider the family of cutoff functions hk :
R → R, k ∈ N, defined by

hk(s) :=





−k, s < −k,
s, |s| ≤ k,

k, s > k.

Observe that hk is globally Lipschitz continuous. For ψ̂0 := −∆ρ0 + Ŝ′
ρ(ρ0) ∈ H1(Ω), we have ψ̂0,k := hk ◦ ψ̂0 ∈

H1(Ω) for any k ∈ N. Moreover, the weak chain rule implies ∇ψ̂0,k = ∇ψ0 · χ[−k,k](ψ̂0), and thus

‖ψ̂0,k‖H1(Ω) ≤ ‖ψ̂0‖H1(Ω). (4.1)

We now approximate the initial condition ρ0 ∈ H2(Ω). For any k ∈ N, consider the following elliptic problem

{
−β∆ρ0,k + Ŝ′

ρ(ρ0,k) = ψ̂0,k a.e. in Ω,

∂nρ0,k = 0, a.e. on ∂Ω,

which admits a unique solution ρ0,k ∈ H2
N (Ω) satisfying

‖ρ0,k‖H2(Ω) + ‖Ŝ′
ρ(ρ0,k)‖ ≤ C

(
1 + ‖ψ̂0,k‖

)
≤ C

(
1 + ‖ψ̂0‖

)
. (4.2)

Besides, owing to the strong convergence ψ̂0,k → ψ̂0 in L2(Ω), it holds ρ0,k → ρ0 in H1(Ω), see [19, Lemma
A.1]. Then there exists some m1 ∈ (0, 1/2) independent of k and some k∗ ∈ N such that for every k > k∗

‖ρ0,k‖H1(Ω) ≤ 1 + ‖ρ0‖H1(Ω), m1 ≤ ρ0,k ≤ 1 −m1. (4.3)
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Moreover, a regularity estimate (see [19, Theorem A.2]) implies that

‖Ŝ′
ρ(ρ0,k)‖L∞(Ω) ≤ ‖ψ̂0,k‖L∞(Ω) ≤ k,

and thus the approximated initial data sequence is strictly separated from the pure states 0, 1, namely, there
exists η̃ = η̃(k) ∈ (0, 1/2) such that

η̃ ≤ ‖ρ0,k‖L∞(Ω) ≤ 1 − η̃.

Hence, it holds Ŝ′
ρ(ρ0,k) ∈ H1(Ω) and furthermore ρ0,k ∈ H3(Ω).

The Galerkin scheme. For the approximating system, we carry over the notation of Subsection 3.2 with
the additional modification of the initial datum ρ0,k. However, for ease of notation, instead of fn,ε

ω,k we only
write fn,ε

ω . We look for functions

φn,εω (t) =

n∑

i=1

ai(t)wi, ρn,εω (t) =

n∑

i=1

bi(t)wi,

µn,ε
ω (t) =

n∑

i=1

ci(t)wi, ψn,ε
ω (t) =

n∑

i=1

di(t)wi,

un,ε
ω (t) =

n∑

i=1

ei(t)wi,

that solve the following problem





〈∂tun,ε
ω ,v〉

V∗

σ ,Vσ
+ ((un,ε

ω · ∇)un,ε
ω ,v) + (ν(φn,εω , ρn,εω )Dun,ε

ω , Dv)

= (µn,ε
ω ∇φn,εω ,v) + (ψn,ε

ω ∇ρn,εω ,v) ∀ v ∈ Wn, a.e. in (0, T ),

〈∂tφn,εω , v〉V ∗,V + (un,ε
ω · ∇φn,εω , v) + (∇µn,ε

ω ,∇v) = 0 ∀ v ∈Wn, a.e. in (0, T ),

µn,ε
ω = Πn

(
α∆2φn,εω − ∆φn,εω + S′

φ(φn,εω ) + θ∇ · (ρn,εω ∇φn,εω )
)

−Πn

(
ω∇ ·

(
|∇φn,εω |2∇φn,εω

) )
a.e. in Ω × (0, T ),

〈∂tρn,εω , v〉V ∗,V + (un,ε
ω · ∇ρn,εω , v) + (∇ψn,ε

ω ,∇v) = 0 ∀ v ∈Wn, a.e. in (0, T ),

ψn,ε
ω = Πn

(
− β∆ρn,εω + S′

ρ,ε(ρ
n,ε
ω ) − θ

2
|∇φn,εω |2

)
a.e. in Ω × (0, T ),

un,ε
ω (·, 0) = Pn(u0) =: un

0 in Ω,

φn,εω (·, 0) = Πn(φ0) =: φn0 , ρn,εω (·, 0) = Πn(ρ0,k) =: ρn0,k in Ω.

(4.4)

Since the singular and regular potentials coincide on compact subsets of the interval (0, 1), we notice that the
following bound holds

‖ − β∆ρ0,k + Ŝ′
ρ,ε(ρ0,k)‖H1(Ω) = ‖ − β∆ρ0,k + Ŝ′

ρ(ρ0,k)‖H1(Ω) ≤ ‖ψ̂0‖H1(Ω), (4.5)

for sufficiently small ε ∈ (0, ǫ3], where ǫ3 = min{ 1
2 η̃(k), ǫ1, ǫ2}. For the definition of ǫ2, we recall the proof of

Lemma 3.1.
Let us clarify how the parameters work. We fix ω ∈ (0, 1], then for any k > k∗ we take ε ∈ (0, ǫ3(k)) so

that (3.11), (4.3) and (4.5) hold. Since ρn0,k → ρ0,k in H3(Ω) as n → +∞ and thus in L∞(Ω), there exist
m2 ∈ (0,m1) independent of k and some n∗ = n∗(k) ∈ N such that

m2 < ρn0,k < 1 −m2,
η̃

2
≤ ‖ρn0,k‖L∞(Ω) ≤ 1 − η̃

2
, ∀n > n∗.

We can now apply the Cauchy–Lipschitz theorem to the Cauchy problem for the above system of 5n ordinary
differential equations in the unknowns ai(t), bi(t), ci(t), di(t) and ei(t). This gives

Proposition 4.1. Let ω, k, ε be fixed as specified above. For any positive integer n > n∗(k), there exists Tn > 0
such that problem (3.14) admits a unique local solution (un,ε

ω , φn,εω , ρn,εω , µn,ε
ω , ψn,ε

ω ) in [0, Tn], which is given by
the functions ai, bi, ci, di, ei ∈ C1([0, Tn]), i = 1, . . . , n.

4.2 Uniform estimates

We now show uniform estimates with respect to the approximating parameters ω, k, ε and n.

Lower order estimates. The presence of the additional parameter k does not introduce any technical
difficulty. Mimicking the proof of Lemma 3.1 and using (3.24) we deduce that
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Lemma 4.1. For every t ∈ (0, Tn], it holds

Eω,ε(u
n,ε
ω (t), φn,εω (t), ρn,εω (t)) +

∫ t

0

‖
√
ν(φn,εω (τ), ρn,εω (τ))Dun,ε

ω (t)‖2 + ‖∇µn,ε
ω (τ)‖2 + ‖∇ψn,ε

ω (τ)‖2 dτ ≤ C8,

and

Eω,ε(u
n,ε
ω (t), φn,εω (t), ρn,εω (t)) ≥ 1

2
‖un,ε

ω (t)‖2 +
α

4
‖∆φn,εω (t)‖2 +

1

2
‖∇φn,εω (t)‖2 +

β

2
‖∇ρn,εω (t)‖2

+
c3
2
‖φn,εω (t)‖4L4(Ω) +

ω

8
‖∇φn,εω (t)‖4

L4(Ω) − C9,

where the constant C8, C9 > 0 are independent of n, ω, k and ε.

Then, we can follow line by line all the proofs of Lemmas 3.2–3.5 to derive uniform estimates for the
approximate solutions with respect to ω, n, k and ε. In particular, we have Tn = T and

un,ε
ω is uniformly bounded in L∞(0, T ;Hσ) ∩ L2(0, T ;Vσ) ∩W 1, 4

d ([0, T ];V∗
σ),

φn,εω is uniformly bounded in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)) ∩H1(0, T ; (H1(Ω))∗),

ρn,εω is uniformly bounded in L∞(0, T ;H1(Ω)) ∩ L4(0, T ;H2(Ω)) ∩H1(0, T ; (H1(Ω))∗),

µn,ε
ω is uniformly bounded in L2(0, T ;H1(Ω)),

ψn,ε
ω is uniformly bounded in L2(0, T ;H1(Ω)).

The existence of strong solutions depends on higher-order estimates. The situation is different according to the
spatial dimension.

Higher-order estimates in two dimensions. We have

Lemma 4.2. Let d = 2. The sequences {µn,ε
ω } and {ψn,ε

ω } are uniformly bounded in L∞(0, T ;H1(Ω)). The
sequence {un

ω} is uniformly bounded in L∞(0, T ;Vσ) ∩ L2(0, T ;Wσ).

Proof. The proof consists of several steps.
Step 1. As in [19], taking ∂tψ

n,ε
ω as a test function in (4.4)2 yields

1

2

d

dt
‖∇ψn,ε

ω ‖2 + (∂tψ
n,ε
ω , ∂tρ

n,ε
ω ) + (un,ε

ω · ∇ρn,εω , ∂tψ
n,ε
ω ) = 0. (4.6)

Then, recalling (3.11) and the fact that ∂tρ
n,ε
ω (t) = 0, we arrive at

(∂tψ
n,ε
ω , ∂tρ

n,ε
ω ) = β(−∆∂tρ

n,ε
ω , ∂tρ

n,ε
ω ) + (S′′

ρ,ε(ρ
n,ε
ω )∂tρ

n,ε
ω , ∂tρ

n,ε
ω ) − θ

2
(∂t|∇φn,εω |2, ∂tρn,εω )

≥ β‖∇∂tρn,εω ‖2 − C‖∂tρn,εω ‖2 − θ|(∇∂tφn,εω · ∇φn,εω , ∂tρ
n,ε
ω )|

≥ β‖∇∂tρn,εω ‖2 − C‖∂tρn,εω ‖2 − C‖∇φn,εω ‖L4(Ω)‖∇∂tφn,εω ‖‖∂tρn,εω ‖L4(Ω)

≥ β‖∇∂tρn,εω ‖2 − C‖∂tρn,εω ‖2 − 1

16
‖∇∂tφn,εω ‖2 − C‖∂tρn,εω ‖2L4(Ω)

≥
(
β − β

12

)
‖∇∂tρn,εω ‖2 − 1

16
‖∇∂tφn,εω ‖2 − C‖∂tρn,εω ‖2

≥
(
β − β

6

)
‖∇∂tρn,εω ‖2 − 1

16
‖∇∂tφn,εω ‖2 − C‖∂tρn,εω ‖2V ∗

0
, (4.7)

whereas

(un,ε
ω · ∇ρn,εω , ∂tψ

n,ε
ω ) =

d

dt
(un,ε

ω · ∇ρn,εω , ψn,ε
ω ) − (∂tu

n,ε
ω · ∇ρn,εω , ψn,ε

ω ) − (un,ε
ω · ∇∂tρn,εω , ψn,ε

ω ). (4.8)

Moreover, recalling (3.19), we have

(un,ε
ω · ∇∂tρn,εω , ψn,ε

ω ) = (un,ε
ω · ∇∂tρn,εω , ψn,ε

ω − ψn,ε
ω )

≤ ‖un,ε
ω ‖L3(Ω)‖∇∂tρn,εω ‖‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω)

≤ β

12
‖∇∂tρn,εω ‖2 + C‖un,ε

ω ‖2
L3(Ω)‖∇ψn,ε

ω ‖2. (4.9)

Thus, from (4.6) and the estimates (4.7)–(4.9), we infer that

d

dt

(
1

2
‖∇ψn,ε

ω ‖2 + (un,ε
ω · ∇ρn,εω , ψn,ε

ω )

)
+

3β

4
‖∇∂tρn,εω ‖2 − 1

16
‖∇∂tφn,εω ‖2
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≤ (∂tu
n,ε
ω · ∇ρn,εω , ψn,ε

ω ) + C
(
‖∂tρn,εω ‖2V ∗

0
+ ‖un,ε

ω ‖2
L3(Ω)‖∇ψn,ε

ω ‖2
)
. (4.10)

Step 2. Analogously, we take ∂tµ
n,ε
ω as a test function for (4.4)2 and obtain

1

2

d

dt
‖∇µn,ε

ω ‖2 + (∂tµ
n,ε
ω , ∂tφ

n,ε
ω ) + (un,ε

ω · ∇φn,εω , ∂tµ
n,ε
ω ) = 0. (4.11)

Recalling that S′′
φ(s) ≥ −c0 for every s ∈ R and using

−ω(∂t∇ · (|∇φn,εω |2∇φn,εω ), ∂tφ
n,ε
ω ) = ω

(
∂t
(
|∇φn,εω |2∇φn,εω

)
,∇∂tφn,εω

)

= ω

∫

Ω

|∇φn,εω |2|∇∂tφn,εω |2 dx+ 2ω‖∇φn,εω · ∇∂tφn,εω ‖2 ≥ 0,

we get

(∂tµ
n,ε
ω , ∂tφ

n,ε
ω ) ≥ α‖∆∂tφ

n,ε
ω ‖2 + ‖∇∂tφn,εω ‖2 − c0‖∂tφn,εω ‖2 + θ

(
∂t(ρ

n,ε
ω ∆φn,εω ), ∂tφ

n,ε
ω

)

+ θ
(
∂t(∇ρn,εω · ∇φn,εω ), ∂tφ

n,ε
ω

)
. (4.12)

The last two terms on the right-hand side of (4.12) can be controlled as follows

∣∣θ
(
∂t(ρ

n,ε
ω ∆φn,εω ), ∂tφ

n,ε
ω

)∣∣
≤ θ|(∂tρn,εω ∆φn,εω , ∂tφ

n,ε
ω )| + θ|(ρn,εω ∆∂tφ

n,ε
ω , ∂tφ

n,ε
ω )|

≤ C‖∂tρn,εω ‖L4(Ω)‖∆φn,εω ‖‖∂tφn,εω ‖L4(Ω) + C‖ρn,εω ‖L4(Ω)‖∆∂tφ
n,ε
ω ‖‖∂tφn,εω ‖L4(Ω)

≤ β

12
‖∇∂tρn,εω ‖2 +

1

8
‖∇∂tφn,εω ‖2 + C‖∂tρn,εω ‖2 + C‖∂tφn,εω ‖2 +

α

4
‖∆∂tφ

n,ε
ω ‖2

≤ β

6
‖∇∂tρn,εω ‖2 +

3

16
‖∇∂tφn,εω ‖2 +

α

4
‖∆∂tφ

n,ε
ω ‖2 + C‖∂tρn,εω ‖2V ∗

0
+ C‖∂tφn,εω ‖2V ∗

0
, (4.13)

and

∣∣θ
(
∂t(∇ρn,εω · ∇φn,εω ), ∂tφ

n,ε
ω

)∣∣
≤ θ|(∇∂tρn,εω · ∇φn,εω , ∂tφ

n,ε
ω )| + θ|(∇ρn,εω · ∇∂tφn,εω , ∂tφ

n,ε
ω )|

≤ C‖∇∂tρn,εω ‖‖∇φn,εω ‖L4(Ω)‖∂tφn,εω ‖L4(Ω) + C‖∇ρn,εω ‖‖∇∂tφn,εω ‖L4(Ω)‖∂tφn,εω ‖L4(Ω)

≤ β

12
‖∇∂tρn,εω ‖2 +

1

8
‖∇∂tφn,εω ‖2 + C‖∂tφn,εω ‖2 + C‖∇∂tφn,εω ‖2

L4(Ω)

≤ β

12
‖∇∂tρn,εω ‖2 +

1

8
‖∇∂tφn,εω ‖2 + C‖∂tφn,εω ‖2 + C‖∂tφn,εω ‖ 1

2 ‖∆∂tφ
n,ε
ω ‖ 3

2

≤ β

12
‖∇∂tρn,εω ‖2 +

α

4
‖∆∂tφ

n,ε
ω ‖2 +

3

16
‖∇∂tφn,εω ‖2 + C‖∂tφn,εω ‖2V ∗

0
. (4.14)

Furthermore, the remaining term can be treated as in Step 1, namely,

(un,ε
ω · ∇φn,εω , ∂tµ

n,ε
ω ) =

d

dt
(un,ε

ω · ∇φn,εω , µn,ε
ω ) − (∂tu

n,ε
ω · ∇φn,εω , µn

ω) − (un,ε
ω · ∂t∇φn,εω , µn,ε

ω ). (4.15)

Then, recalling again (3.19), we get

(un,ε
ω · ∇∂tφn,εω , µn,ε

ω ) = (un,ε
ω · ∇∂tφn,εω , µn,ε

ω − µn,ε
ω )

≤ ‖un,ε
ω ‖L3(Ω)‖∇∂tφn,εω ‖‖µn,ε

ω − µn,ε
ω ‖L6(Ω)

≤ 1

16
‖∇∂tφn,εω ‖2 + C‖un,ε

ω ‖2
L3(Ω)‖∇µn,ε

ω ‖2. (4.16)

Collecting the estimates (4.12)–(4.16), we infer from (4.11) that

d

dt

(
1

2
‖∇µn,ε

ω ‖2 + (un,ε
ω · ∇φn,εω , µn,ε

ω )

)
+
α

2
‖∆∂tφ

n,ε
ω ‖2 +

9

16
‖∇∂tφn,εω ‖2 − β

4
‖∇∂tρn,εω ‖2

≤ (∂tu
n,ε
ω · ∇φn,εω , µn,ε

ω ) + C
(
‖∂tφn,εω ‖2V ∗

0
+ ‖un,ε

ω ‖2
L3(Ω)‖∇µn,ε

ω ‖2
)
. (4.17)

Step 3. Testing (4.4)1 by ∂tu
n,ε
ω , we get

‖∂tun,ε
ω ‖2 +

(
(un,ε

ω · ∇)un,ε
ω , ∂tu

n,ε
ω

)
+
(
∇ · (ν(φn,εω , ρn,εω )Dun,ε

ω ), ∂tu
n,ε
ω

)

= (µn,ε
ω ∇φn,εω , ∂tu

n,ε
ω ) + (ψn,ε

ω ∇ρn,εω , ∂tu
n,ε
ω ). (4.18)
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The following estimates can be derived arguing as in [19, Section 4]:

∣∣((un,ε
ω · ∇)un,ε

ω , ∂tu
n,ε
ω

)∣∣ ≤ ‖un,ε
ω ‖L4(Ω)‖∇un,ε

ω ‖L4(Ω)‖∂tun,ε
ω ‖

≤ C‖∇un,ε
ω ‖‖Aun,ε

ω ‖ 1
2 ‖∂tun,ε

ω ‖

≤ 1

10
‖∂tun,ε

ω ‖2 + C
(
‖Aun,ε

ω ‖2 + ‖∇un,ε
ω ‖4

)
, (4.19)

∣∣(∇ · (ν(φn,εω , ρn,εω )Dun,ε
ω ), ∂tu

n,ε
ω

)∣∣

=

∣∣∣∣
1

2

(
ν(φn,εω , ρn,εω )∆un,ε

ω , ∂tu
n,ε
ω

)
+
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ), ∂tu
n,ε
ω

)∣∣∣∣
≤ C‖Aun,ε

ω ‖‖∂tun,ε
ω ‖ + C

(
‖∇φn,εω ‖L4(Ω) + ‖∇ρn,εω ‖L4(Ω)

)
‖Dun,ε

ω ‖L4(Ω)‖∂tun,ε
ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2 + C‖Aun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖H2(Ω)

)
‖∇un,ε

ω ‖‖Aun,ε
ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2 + C‖Aun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖2H2(Ω)

)
‖∇un,ε

ω ‖2. (4.20)

Concerning the Korteweg forces, we have

(µn,ε
ω ∇φn,εω , ∂tu

n,ε
ω ) + (ψn,ε

ω ∇φn,εω , ∂tu
n,ε
ω )

=
(
(µn,ε

ω − µn,ε
ω )∇φn,εω , ∂tu

n,ε
ω

)
+
(
(ψn,ε

ω − ψn,ε
ω )∇φn,εω , ∂tu

n,ε
ω

)

≤ ‖µn,ε
ω − µn,ε

ω ‖L6(Ω)‖∇φn,εω ‖L3(Ω)‖∂tun,ε
ω ‖ + ‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω)‖∇ρn,εω ‖L3(Ω)‖∂tun,ε

ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2 +C
(
1 + ‖ρn,εω ‖2H2(Ω)

)(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.21)

On account of (4.19)–(4.21), from (4.18) we deduce

‖∂tun,ε
ω ‖2 ≤ C10‖Aun,ε

ω ‖2 +C‖∇un,ε
ω ‖4 + C

(
1 + ‖ρn,εω ‖2H2(Ω)

)(
‖∇un,ε

ω ‖2 + ‖∇µn,ε
ω ‖2 + ‖∇ψn,ε

ω ‖2
)
. (4.22)

Step 4. We now take Aun,ε
ω ∈ L2(0, T ;Hσ) as test function in (4.4)1. This gives

1

2

d

dt
‖∇un,ε

ω ‖2 +
(
(un,ε

ω · ∇)un,ε
ω ,Aun,ε

ω

)
−
(
∇ · (ν(φn,εω , ρn,εω )Dun,ε

ω ),Aun,ε
ω

)

= (µn,ε
ω ∇φn,εω ,Aun,ε

ω ) + (ψn,ε
ω ∇ρn,εω ,Aun,ε

ω ). (4.23)

The trilinear form can be controlled as follows

∣∣((un,ε
ω · ∇)un,ε

ω ,Aun,ε
ω

)∣∣ ≤ ‖un,ε
ω ‖L4(Ω)‖∇un,ε

ω ‖L4(Ω)‖Aun,ε
ω ‖

≤ C‖∇un,ε
ω ‖‖Aun,ε

ω ‖ 3
2

≤ ν∗
16

‖Aun,ε
ω ‖2 + C‖∇un,ε

ω ‖4. (4.24)

Following [19] once more, we find that there exists a qn,εω ∈ L2(0, T ;H1(Ω)) such that −∆un,ε
ω +∇qn,εω = Aun,ε

ω

almost everywhere in Ω × (0, T ). Thus we obtain

−
(
∇ · (ν(φn,εω , ρn,εω )Dun,ε

ω ),Aun,ε
ω

)

= −1

2

(
ν(φn,εω , ρn,εω )∆un,ε

ω ,Aun,ε
ω

)
−
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ),Aun
ω

)

=
1

2

(
ν(φn,εω , ρn,εω )Aun,ε

ω ,Aun,ε
ω

)
− 1

2

(
ν(φn,εω , ρn,εω )∇qn,εω ,Aun,ε

ω

)

−
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ),Aun
ω

)

≥ ν∗
2
‖Aun,ε

ω ‖2 +
1

2

(
qn,εω ∇ν(φn,εω , ρn,εω ),Aun

ω

)
−
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ),Aun
ω

)
, (4.25)

where the two terms on the right-hand side can be estimated in the following way

∣∣∣∣
1

2

(
qn,εω ∇ν(φn,εω , ρn,εω ),Aun

ω

)
−
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ),Aun
ω

)∣∣∣∣
≤ C

(
‖∇φn,εω ‖L4(Ω) + ‖∇ρn,εω ‖L4(Ω)

)(
‖qn,εω ‖L4(Ω) + ‖Dun,ε

ω ‖L4(Ω)

)
‖Aun,ε

ω ‖

≤ C
(
1 + ‖ρn,εω ‖

1
2

H2(Ω)

)(
‖qn,εω ‖ 1

2 ‖qn,εω ‖
1
2

H1(Ω) + ‖∇un,ε
ω ‖ 1

2 ‖Aun,ε
ω ‖ 1

2

)
‖Aun,ε

ω ‖
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≤ C
(
1 + ‖ρn,εω ‖

1
2

H2(Ω)

)(
‖∇un,ε

ω ‖ 1
4 ‖Aun,ε

ω ‖ 3
4 + ‖∇un,ε

ω ‖ 1
2 ‖Aun,ε

ω ‖ 1
2

)
‖Aun,ε

ω ‖

≤ ν∗
16

‖Aun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖4H2(Ω)

)
‖∇un,ε

ω ‖2. (4.26)

Besides, we have

(µn,ε
ω ∇φn,εω ,Aun,ε

ω ) + (ψn,ε
ω ∇ρn,εω ,Aun,ε

ω )

=
(
(µn,ε

ω − µn,ε
ω )∇φn,εω ,Aun,ε

ω ) +
(
(ψn,ε

ω − ψn,ε
ω )∇ρn,εω ,Aun,ε

ω

)

≤ ‖µn,ε
ω − µn,ε

ω ‖L6(Ω)‖∇φn,εω ‖L3(Ω)‖Aun,ε
ω ‖ + ‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω)‖∇ρn,εω ‖L3(Ω)‖Aun,ε

ω ‖
≤ ν∗

16
‖Aun,ε

ω ‖2 +C
(
1 + ‖ρn,εω ‖2H2(Ω)

)(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.27)

Combining (4.25)–(4.27), from (4.23) we deduce that

1

2

d

dt
‖∇un,ε

ω ‖2 +
5ν∗
16

‖Aun,ε
ω ‖2

≤ C‖∇un,ε
ω ‖4 + C

(
1 + ‖ρn,εω ‖4H2(Ω)

)(
‖∇un,ε

ω ‖2 + ‖∇µn,ε
ω ‖2 + ‖∇ψn,ε

ω ‖2
)
. (4.28)

Step 5. We can now estimate the two scalar products on the right-hand side of (4.10) and (4.17) as follows

(∂tu
n,ε
ω · ∇ρn,εω , ψn,ε

ω ) + (∂tu
n,ε
ω · ∇φn,εω , µn,ε

ω )

= (∂tu
n,ε
ω · ∇ρn,εω , ψn,ε

ω − ψn,ε
ω ) + (∂tu

n,ε
ω · ∇φn,εω , µn,ε

ω − µn,ε
ω )

≤ ‖∂tun,ε
ω ‖‖∇ρn,εω ‖L3(Ω)‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω) + ‖∂tun,ε

ω ‖‖∇φn,εω ‖L3(Ω)‖µn,ε
ω − µn,ε

ω ‖L6(Ω)

≤ ν∗
64C10

‖∂tun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖2H2(Ω)

)(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.29)

Besides, we observe that

|(un,ε
ω · ∇φn,εω , µn,ε

ω ) + (un,ε
ω · ∇ρn,εω , ψn,ε

ω )|
≤ |(un,ε

ω · ∇φn,εω , µn,ε
ω − µn,ε

ω )| + |(un,ε
ω · ∇ρn,εω , ψn,ε

ω − ψn,ε
ω )|

≤ ‖un,ε
ω ‖L4(Ω)‖∇φn,εω ‖‖µn,ε

ω − µn,ε
ω ‖L4(Ω) + ‖un,ε

ω ‖L4(Ω)‖∇ρn,εω ‖‖ψn,ε
ω − ψn,ε

ω ‖L4(Ω)

≤ C‖un,ε
ω ‖ 1

2 ‖un,ε
ω ‖

1
2

Vσ
‖∇µn,ε

ω ‖ + C‖un,ε
ω ‖ 1

2 ‖un,ε
ω ‖

1
2

Vσ
‖∇ψn,ε

ω ‖

≤ 1

4
‖∇un,ε

ω ‖2 +
1

4
‖∇µn,ε

ω ‖2 +
1

4
‖∇ψn,ε

ω ‖2 + C11‖un,ε
ω ‖2, (4.30)

where C11 > 0 only depends on Ω. Set now

Λ(t) :=
1

2
‖∇un,ε

ω (t)‖2 +
1

2
‖∇µn,ε

ω (t)‖2 +
1

2
‖∇ψn,ε

ω (t)‖2 + (un,ε
ω (t) · ∇φn,εω (t), µn,ε

ω (t))

+ (un,ε
ω (t) · ∇ρn,εω (t), ψn,ε

ω (t)) +C11‖un,ε
ω ‖2,

G(t) :=
ν∗

32C10
‖∂tun,ε

ω (t)‖2 +
ν∗
4
‖Aun,ε

ω (t)‖2 +
α

2
‖∆∂tφ

n,ε
ω (t)‖2 +

1

2
‖∇∂tφn,εω (t)‖2 +

β

2
‖∇∂tρn,εω (t)‖2,

for all t ∈ [0, T ]. Therefore, we have

Λ(t) ≤ 3

4
‖∇un,ε

ω ‖2 +
3

4
‖∇µn,ε

ω ‖2 +
3

4
‖∇ψn,ε

ω ‖2 + 2C11‖un,ε
ω ‖2,

Λ(t) ≥ 1

4
‖∇un,ε

ω ‖2 +
1

4
‖∇µn,ε

ω ‖2 +
1

4
‖∇ψn,ε

ω ‖2 ≥ 0.

By Young’s inequality, we get

C11
d

dt
‖un,ε

ω ‖2 ≤ 2C11‖∂tun,ε
ω ‖‖un,ε

ω ‖ ≤ ν∗
64C10

‖∂tun,ε
ω ‖2 +

64

ν∗
C10C

2
11‖un,ε

ω ‖2. (4.31)

Collecting (4.10), (4.17), (4.28), (4.31) and (4.22) multiplied by
ν∗

16C10
, and taking (3.21), (3.22) and (4.29)

into account, we arrive at the differential inequality

dΛ

dt
+ G ≤ C12(1 + Λ)Λ.
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Since ∫ T

0

Λ(t) dt ≤ C13,

where the constant C13 > 0 does not depend on n, k, ε and Ω, an application of Gronwall’s lemma yields

Λ(t) ≤ Λ(0)eC12C13 + C12e
C12C13T, ∀ t ∈ [0, T ].

As a consequence, we also have

∫ t

0

G(τ) dτ ≤ Λ(0) + C12

∫ t

0

(1 + Λ(τ))Λ(τ) dτ

≤ Λ(0) + 2C12T + 2C12T
(
Λ(0)eC12C13 + C12e

C12C13T
)2
, ∀ t ∈ [0, T ].

We are left to control the initial quantity Λ(0). To this end, we observe that, owing to (4.3),

Λ(0) =
1

2
‖∇un

0‖2 +
1

2
‖∇µn,ε

ω (0)‖2 +
1

2
‖∇ψn,ε

ω (0)‖2 + (un
0 · ∇φn0 , µn,ε

ω (0)) + (un
0 · ∇ρn0,k, ψn,ε

ω (0))

+ C11‖un
0‖2

≤ 1

2
‖∇un

0‖2 +
1

2
‖∇µn,ε

ω (0)‖2 +
1

2
‖∇ψn,ε

ω (0)‖2

+ ‖un
0‖L3(Ω)

(
‖φn0‖L6(Ω)‖µn,ε

ω (0)‖ + ‖ρn0,k‖L6(Ω)‖ψn,ε
ω (0)‖

)
+ C11‖un

0‖2

≤ C‖u0‖2Vσ
+ C

(
1 + ‖φ0‖2H1(Ω) + ‖ρ0‖2H1(Ω)

)(
‖µn,ε

ω (0)‖2H1(Ω) + ‖ψn,ε
ω (0)‖2H1(Ω)

)
. (4.32)

Moreover, we have

‖µn,ε
ω (0)‖H1(Ω) = ‖Πn

(
α∆2φn0 − ∆φn0 + S′

φ(φn0 ) + ∇ · (ρn0,k∇φn0 ) − ω∇ ·
(
|∇φn0 |2∇φn0

))
‖H1(Ω)

≤ ‖α∆2φn0 − ∆φn0 + S′
φ(φn0 ) + ∇ · (ρn0,k∇φn0 ) − ω∇ ·

(
|∇φn0 |2∇φn0

)
‖H1(Ω)

≤ C‖φn0‖H5(Ω) + ‖S′
φ(φn0 )‖H1(Ω) + ‖∇ · (ρn0,k∇φn0 )‖H1(Ω) + ω‖|∇φn0 |2∇φn0 ‖H2(Ω). (4.33)

Observe that

‖∇ · (ρn0,k∇φn0 )‖H1(Ω) ≤ ‖ρn0,k∆φn0 ‖H1(Ω) + ‖∇ρn0,k · ∇φn0 ‖H1(Ω),

where

‖ρn0,k∆φn0 ‖H1(Ω) ≤ ‖ρn0,k∆φn0 ‖ + ‖∇ρn0,k∆φn0 ‖ + ‖ρn0,k∇∆φn0 ‖
≤ ‖ρn0,k‖L∞(Ω) (‖∆φn0 ‖ + ‖∇∆φn0‖) + ‖∇ρn0,k‖L4(Ω)‖∆φn0‖L4(Ω)

≤ C
(
‖ρn0,k‖2H2(Ω) + ‖φn0 ‖2H3(Ω)

)
,

and

‖∇ρn0,k · ∇φn0‖H1(Ω) ≤ ‖∇ρn0,k‖L4(Ω)‖∇φn0‖L4(Ω) + ‖ρn0,k‖H2(Ω)‖∇φn0 ‖L∞(Ω) + ‖∇ρn0,k‖L4(Ω)‖φn0‖W 2,4(Ω)

≤ C
(
‖ρn0,k‖2H2(Ω) + ‖φn0‖2H3(Ω)

)
.

Therefore, exploiting (4.2), in light of the above controls, from (4.33) and Young’s inequality we infer that

‖µn,ε
ω (0)‖H1(Ω) ≤ C‖φn0 − φ0‖3H5(Ω) + ‖S′

φ(φn0 ) − S′
φ(φ0)‖H1(Ω) + ‖S′

φ(φ0)‖H1(Ω)

+ C‖ρn0,k − ρ0,k‖2H2(Ω) + C(1 + ‖φ0‖3H5(Ω) + ‖ψ̂0‖2). (4.34)

Recalling now (4.5), we find

‖ψn,ε
ω (0)‖H1(Ω) =

∥∥∥∥Πn

(
−β∆ρn0,k + S′

ρ,ε(ρ
n
0,k) − θ

2
|∇φn0 |2

)∥∥∥∥
H1(Ω)

≤
∥∥∥∥−β∆ρn0,k + Ŝ′

ρ,ε(ρ
n
0,k) +R′

ρ(ρn0,k) − θ

2
|∇φn0 |2

∥∥∥∥
H1(Ω)

≤ β‖ρn0,k − ρ0,k‖H3(Ω) + ‖Ŝ′
ρ,ε(ρ

n
0,k) − Ŝ′

ρ,ε(ρ0,k)‖H1(Ω) + ‖ψ̂0‖H1(Ω)

+ ‖R′
ρ(ρn0,k)‖H1(Ω) +

θ

2

∥∥|∇φn0 |2
∥∥
H1(Ω)

. (4.35)
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Assumption (H3) and Hölder’s inequality entail that

‖R′
ρ(ρn0,k)‖H1(Ω) ≤ C

(
1 + ‖ρn0,k‖H1(Ω)

)
,

θ

2

∥∥|∇φn0 |2
∥∥
H1(Ω)

≤ C
(
‖∇φn0‖2L4(Ω) + ‖φn0‖W 2,4(Ω)‖∇φn0‖L4(Ω)

)
≤ C‖φn0‖2H3(Ω).

Therefore, on account of (4.3), from (4.35) we deduce that

‖ψn,ε
ω (0)‖H1(Ω) ≤ C‖ρn0,k − ρ0,k‖H3(Ω) + ‖Ŝ′

ρ,ε(ρ
n
0,k) − Ŝ′

ρ,ε(ρ0,k)‖H1(Ω) + ‖ψ̂0‖H1(Ω)

+ C‖φn0 − φ0‖2H3(Ω) + C
(
1 + ‖φ0‖2H3(Ω) + ‖ρ0‖H1(Ω)

)
. (4.36)

Exploiting the strong convergences φn0 → φ0 and ρn0,k → ρ0,k in H5(Ω) and H3(Ω), respectively, we can find
n∗∗(k) > n∗(k) such that, for all n > n∗∗(k) and k > k∗, it holds

‖φn0 − φ0‖H5(Ω) ≤ 1, ‖ρn0,k − ρ0,k‖H3(Ω) ≤ 1. (4.37)

Thanks to (H3)′, arguing line by line exactly as in [19, (4.39)], we have

‖Ŝ′
ρ,ε(ρ

n
0,k) − Ŝ′

ρ,ε(ρ0,k)‖H1(Ω) ≤ C‖ρn0,k − ρ0,k‖H1(Ω), (4.38)

where C > 0 may depend on k. In a similar manner, thanks to (H2)′ and (4.37), we get

‖S′
φ(φn0 ) − S′

φ(φ0)‖H1(Ω)

≤ ‖S′
φ(φn0 ) − S′

φ(φ0)‖ + ‖S′′
φ(φn0 )∇(φn0 − φ0)‖ + ‖(S′′

φ(φn0 ) − S′′
φ(φ0))∇φ0‖

≤ C‖φn0 − φ0‖H1(Ω).

From the above estimates, we infer from (4.34) and (4.36) that for every fixed k > k∗, for any ω ∈ (0, 1],
ε ∈ (0, ǫ3(k)), n > n∗∗(k), it holds

‖µn,ε
ω (0)‖H1(Ω) + ‖ψn,ε

ω (0)‖H1(Ω) ≤ C
(

1 + ‖φ0‖2H5(Ω) + ‖ρ0‖2H1(Ω) + ‖ψ̂0‖2H1(Ω)

)
,

where C > 0 may depend on ‖φ0‖H2(Ω) and the right-hand side is independent of the parameters n, ω as well
as ε, but may depend on k. We can thus conclude that

Λ(t) +

∫ t

0

G(τ) dτ ≤ C, ∀ t ∈ (0, T ],

where C depends on T and the initial conditions, but not on n, ω and ε, however it may depend on k. From
the definitions of Λ and G, we arrive at the expected conclusion.

Higher-order estimates in three dimensions. The difference with respect to the previous argument is
mainly in the usage of Sobolev embeddings and interpolation inequalities.

Lemma 4.3. Let d = 3. There exists a time T ∗ ∈ (0, T ] independent of ω, n, k, ε such that the sequences
{µn,ε

ω } and {ψn,ε
ω } are uniformly bounded in L∞(0, T ∗;H1(Ω)) and the sequence {un,ε

ω } is uniformly bounded in
L∞(0, T ∗;Vσ) ∩ L2(0, T ∗;Wσ).

Proof. For the sake of brevity, we only report the main differences with respect to the proof of Lemma 4.2.
First, using interpolation inequalities in three dimensions, we can still recover the differential inequalities for
ψn,ε
ω and µn,ε

ω , namely,

d

dt

(
1

2
‖∇ψn,ε

ω ‖2 + (un,ε
ω · ∇ρn,εω , ψn,ε

ω )

)
+

3β

4
‖∇∂tρn,εω ‖2 − 1

16
‖∇∂tφn,εω ‖2

≤ (∂tu
n,ε
ω · ∇ρn,εω , ψn,ε

ω ) +C
(
‖∂tρn,εω ‖2V ∗

0
+ ‖un,ε

ω ‖2
L3(Ω)‖∇ψn,ε

ω ‖2
)
, (4.39)

and

d

dt

(
1

2
‖∇µn,ε

ω ‖2 + (un,ε
ω · ∇φn,εω , µn,ε

ω )

)
+
α

2
‖∆∂tφ

n,ε
ω ‖2 +

9

16
‖∇∂tφn,εω ‖2 − β

4
‖∇∂tρn,εω ‖2

≤ (∂tu
n,ε
ω · ∇φn,εω , µn,ε

ω ) + C
(
‖∂tφn,εω ‖2V ∗

0
+ ‖un,ε

ω ‖2
L3(Ω)‖∇µn,ε

ω ‖2
)
. (4.40)

Concerning the estimates for un,ε
ω , a number of modifications are needed. Some computations can be borrowed

from [19]. For instance,

(
(un

ω · ∇)un,ε
ω , ∂tu

n,ε
ω

)
≤ ‖un,ε

ω ‖L6(Ω)‖∇un,ε
ω ‖L3(Ω)‖∂tun,ε

ω ‖

33



≤ C‖∇un,ε
ω ‖ 3

2 ‖Aun,ε
ω ‖ 1

2 ‖∂tun,ε
ω ‖

≤ 1

10
‖∂tun,ε

ω ‖2 + C
(
‖Aun,ε

ω ‖2 + ‖∇un,ε
ω ‖6

)
, (4.41)

(
∇ · (ν(φn,εω , ρn,εω )Dun,ε

ω ), ∂tu
n,ε
ω

)

=
1

2

(
ν(φn,εω , ρn,εω )∆un,ε

ω , ∂tu
n,ε
ω

)
+
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ), ∂tu
n,ε
ω

)

≤ C‖Aun,ε
ω ‖‖∂tun,ε

ω ‖ + C
(
‖∇φn,εω ‖L6(Ω) + ‖∇ρn,εω ‖L6(Ω)

)
‖Dun,ε

ω ‖L3(Ω)‖∂tun,ε
ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2 + C‖Aun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖2H2(Ω)

)
‖∇un,ε

ω ‖‖Aun,ε
ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2 + C‖Aun,ε
ω ‖2 + C

(
1 + ‖ρn,εω ‖4H2(Ω)

)
‖∇un,ε

ω ‖2, (4.42)

and

(µn,ε
ω ∇φn,εω , ∂tu

n,ε
ω ) + (ψn,ε

ω ∇ρn,εω , ∂tu
n,ε
ω )

=
(
(µn,ε

ω − µn,ε
ω )∇φn,εω , ∂tu

n,ε
ω

)
+
(
(ψn,ε

ω − ψn,ε
ω )∇ρn,εω , ∂tu

n,ε
ω

)

≤ ‖µn,ε
ω − µn,ε

ω ‖L6(Ω)‖∇φn,εω ‖L3(Ω)‖∂tun,ε
ω ‖ + ‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω)‖∇ρn,εω ‖L3(Ω)‖∂tun,ε

ω ‖

≤ 1

5
‖∂tun,ε

ω ‖2+C
(
1 + ‖∇ρn,εω ‖2

L3(Ω))
(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.43)

On account of estimates (4.41)–(4.43), from (4.18) we infer that

‖∂tun,ε
ω ‖2 ≤ C14‖Aun,ε

ω ‖2+C‖∇un,ε
ω ‖6 + C

(
1 + ‖ρn,εω ‖4H2(Ω)

)(
‖∇un,ε

ω ‖2 + ‖∇µn,ε
ω ‖2 + ‖∇ψn,ε

ω ‖2
)
. (4.44)

Consider now the terms in (4.23). We have

∣∣((un,ε
ω · ∇)un,ε

ω ,Aun,ε
ω

)∣∣ ≤ ‖un,ε
ω ‖L6(Ω)‖∇un,ε

ω ‖L3(Ω)‖Aun,ε
ω ‖

≤ C‖∇un,ε
ω ‖ 3

2 ‖Aun,ε
ω ‖ 3

2

≤ ν∗
16

‖Aun,ε
ω ‖2 + C‖∇un,ε

ω ‖6, (4.45)

∣∣∣∣
1

2

(
qn,εω ∇ν(φn,εω , ρn,εω ),Aun

ω

)
−
(
Dun,ε

ω ∇ν(φn,εω , ρn,εω ),Aun
ω

)∣∣∣∣
≤ C

(
‖∇φn,εω ‖L6(Ω) + ‖∇ρn,εω ‖L6(Ω)

)(
‖qnω‖L3(Ω) + ‖Dun,ε

ω ‖L3(Ω)

)
‖Aun,ε

ω ‖

≤ C
(
1 + ‖ρn,εω ‖H2(Ω)

)(
‖qn,εω ‖ 1

2 ‖qn,εω ‖
1
2

H1(Ω) + ‖∇un,ε
ω ‖ 1

2 ‖Aun,ε
ω ‖ 1

2

)
‖Aun,ε

ω ‖
≤ C

(
1 + ‖ρn,εω ‖H2(Ω)

)(
‖∇un,ε

ω ‖ 1
4 ‖Aun,ε

ω ‖ 3
4 + ‖∇un,ε

ω ‖ 1
2 ‖Aun,ε

ω ‖ 1
2

)
‖Aun,ε

ω ‖
≤ ν∗

16
‖Aun,ε

ω ‖2 + C
(
1 + ‖ρn,εω ‖8H2(Ω)

)
‖∇un,ε

ω ‖2, (4.46)

and

(µn,ε
ω ∇φn,εω ,Aun,ε

ω ) + (ψn,ε
ω ∇ρn,εω ,Aun,ε

ω )

=
(
(µn,ε

ω − µn,ε
ω )∇φn,εω ,Aun,ε

ω

)
+
(
(ψn,ε

ω − ψn,ε
ω )∇ρn,εω ,Aun,ε

ω

)

≤ ‖µn,ε
ω − µn,ε

ω ‖L6(Ω)‖∇φn,εω ‖L3(Ω)‖Aun,ε
ω ‖ + ‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω)‖∇ρn,εω ‖L3(Ω)‖Aun,ε

ω ‖
≤ ν∗

16
‖Aun,ε

ω ‖2 +C
(
1 + ‖∇ρn,εω ‖2

L3(Ω)

)(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.47)

Thus from (4.23) we obtain

1

2

d

dt
‖∇un,ε

ω ‖2 +
5ν∗
16

‖Aun,ε
ω ‖2

≤ C‖∇un
ω‖6 + C

(
1 + ‖ρn,εω ‖8H2(Ω)

)
(‖∇un,ε

ω ‖2 + ‖∇µn
ω‖2 + ‖∇ψn,ε

ω ‖2
)
. (4.48)

The controls on the leftover terms in (4.39) and (4.40) are similar to their two-dimensional counterpart, namely,

(∂tu
n,ε
ω · ∇ρn,εω , ψn,ε

ω ) + (∂tu
n,ε
ω · ∇φn,εω , µn,ε

ω )

≤ ‖∂tun,ε
ω ‖‖∇ρn,εω ‖L3(Ω)‖ψn,ε

ω − ψn,ε
ω ‖L6(Ω) + ‖∂tun,ε

ω ‖‖∇φn,εω ‖L3(Ω)‖µn,ε
ω − µn,ε

ω ‖L6(Ω)
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≤ ν∗
32C14

‖∂tun,ε
ω ‖2 + C

(
1 + ‖∇ρn,εω ‖2

L3(Ω)

)(
‖∇µn,ε

ω ‖2 + ‖∇ψn,ε
ω ‖2

)
. (4.49)

Defining the quantities Λ and G as in Lemma 4.2, we still have that Λ is bounded from above and from
below. Indeed, we have

|(un,ε
ω · ∇ρn,εω , ψn,ε

ω ) + (un,ε
ω · ∇φn,εω , µn,ε

ω )|
≤ ‖un,ε

ω ‖L3(Ω)‖∇ρn,εω ‖‖ψn,ε
ω − ψn,ε

ω ‖L6(Ω) + ‖un,ε
ω ‖L3(Ω)‖∇φn,εω ‖‖µn,ε

ω − µn,ε
ω ‖L6(Ω)

≤ C‖un,ε
ω ‖ 1

2 ‖un,ε
ω ‖

1
2

Vσ
‖ψn,ε

ω ‖H1(Ω) + C‖un,ε
ω ‖ 1

2 ‖un,ε
ω ‖

1
2

Vσ
‖µn,ε

ω ‖H1(Ω)

≤ 1

4
‖∇un,ε

ω ‖2 +
1

4
‖∇µn,ε

ω ‖2 +
1

4
‖∇ψn,ε

ω ‖2 + C′
11‖un,ε

ω ‖2,

where C′
11 > 0 only depend on Ω. Then, recalling the estimates (3.21), (3.22), we can derive the following

differential inequality
dΛ

dt
+ G ≤ C(1 + Λ2)Λ.

The quantity Λ(0) can be controlled in a similar manner for the two dimensional case. Therefore, we conclude
that there exists some T ∗ ∈ (0, T ] depending on the initial conditions (but not on n, k, ε) such that

Λ(t) +

∫ t

0

G(τ) dτ ≤ C, ∀ t ∈ (0, T ∗],

where C depends on T ∗ and the initial data only. This easily yields the conclusion of this lemma.

4.3 Existence of strong solutions

We are now in a position to prove the existence of strong solutions. Let us consider the two dimensional case
first. From Lemma 4.2 and mimicking the proof of Lemma 3.5, we can deduce that

Lemma 4.4. Let d = 2. The sequence {φn,εω } is uniformly bounded in L∞(0, T ;H4(Ω)) and the sequence {ρn,εω }
is uniformly bounded in L∞(0, T ;H2(Ω)).

Summing up, Lemmas 4.2 and 4.4 say that for every fixed k > k∗,

un,ε
ω is uniformly bounded in L∞(0, T ;Vσ) ∩ L2(0, T ;Wσ) ∩H1(0, T ;Hσ),

φn,εω is uniformly bounded in L∞(0, T ;H4(Ω)) ∩H1(0, T ;H2(Ω)),

ρn,εω is uniformly bounded in L∞(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)),

µn,ε
ω is uniformly bounded in L∞(0, T ;H1(Ω)),

ψn,ε
ω is uniformly bounded in L∞(0, T ;H1(Ω)),

with respect to the parameters ω, n, ε, provided that ω ∈ (0, 1], ε ∈ (0, ǫ3(k)), and n > n∗∗(k).
A standard compactness argument allows us to pass to the limit first as n → +∞, then we let ε → 0+

and, finally, k → +∞ (see [19]). We note that in the last limit procedure associated with k, (4.38) is no longer
necessary so that the resulting estimates are indeed independent of k. In this way, for any ω ∈ (0, 1], we find a
quintuplet (uω, φω , ρω, µω, ψω) which preserves the regularity properties of the approximating sequence and
solves the penalized problem (3.7)–(3.8).

In order to take the limit ω → 0+, we once again rely on the fact that ρω ∈ L∞(Ω×(0, T )), and, in particular,
0 ≤ ρω ≤ 1 almost everywhere in Ω× (0, T ), just like in the proof for weak solutions. Then, we obtain the same
energy estimates as in Lemma 3.7 that are independent of ω. In this way, repeating the previous argument, we
are able to get further estimates that are independent of ω. Hence, the usual compactness argument lets us get
a quintuplet (u, φ, ρ, µ, ψ) as ω → 0+, which is a weak solution to the original problem (1.4)–(1.5) according to
Definition 2.1 and has the following additional properties

u ∈ L∞(0, T ;Vσ) ∩ L2(0, T ;Wσ) ∩H1(0, T ;Hσ),

φ ∈ L∞(0, T ;H4
N(Ω)) ∩H1(0, T ;H2(Ω)),

ρ ∈ L∞(0, T ;H2
N(Ω)) ∩H1(0, T ;H1(Ω)),

µ ∈ L∞(0, T ;H1(Ω)),

ψ ∈ L∞(0, T ;H1(Ω)).

Then it is straightforward to check that u · ∇φ ∈ L2(0, T ;H2(Ω)), u · ∇ρ ∈ L2(0, T ;H1(Ω)). Also, by standard
elliptic regularity estimates, we deduce that µ ∈ L2(0, T ;H4(Ω) ∩H2

N (Ω)) and ψ ∈ L2(0, T ;H3(Ω) ∩H2
N (Ω)).
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Therefore, we see that the solution (u, φ, ρ, µ, ψ) is indeed a strong one, which satisfies the equations almost
everywhere. In addition, using the same argument as in the proof of Theorem 2.1, we can deduce that ρ ∈
L∞(0, T ;W 2,p(Ω)) for every p ≥ 2 if d = 2 and φ ∈ L∞(0, T ;H5(Ω)). The pressure π ∈ L∞(0, T ;H1(Ω)) can
be recovered, up to a constant, through the De Rham theorem (see, for instance, [6, 40]).

Existence of strong solutions in the three dimensional case can be proved by arguing as in the two dimensional
case. The only difference is that the higher-order estimates in Lemma 4.3 are only local in time so that the
strong solution is local in time as well, as expected. Besides, we can show ρ ∈ L∞(0, T ∗;W 2,p(Ω)) only for
p ∈ [2, 6].

The existence part of Theorem 2.2 is now proved. �

4.4 Uniqueness of strong solutions

On account of Theorem 2.1, we only need to consider the three dimensional case. Below we present some easy
modifications of the argument in Subsection 3.6, taking full advantage of the higher-order regularity properties
of the strong solution. To this end, suppose that (u0, φ0, ρ0) is an admissible set of initial data in the statement
of Theorem 2.2. Then let (u1, φ1, ρ1) and (u2, φ2, ρ2) be two local strong solutions to problem (1.4)–(1.5)
defined in some time interval [0, T ∗] and both originating from (u0, φ0, ρ0). Denoting by µi, ψi, πi, i = 1, 2, the
corresponding chemical potentials and pressures, we set the differences by

u = u1 − u2, π = π1 − π2, φ = φ1 − φ2,

ρ = ρ1 − ρ2, µ = µ1 − µ2, ψ = ψ1 − ψ2.

Using the Gagliardo–Nirenberg inequality in three dimensions (see (2.5)), we modify the estimate for I3 (cf.
(3.35)) as follows

I3 ≤ C‖∆φ‖L3(Ω)

(
‖∆φ‖ + ‖ρ‖L6(Ω) + ‖∇φ‖L6(Ω) + ‖∇ρ‖

)

≤ C‖φ‖ 1
6 ‖∇∆φ‖ 5

6 (‖∆φ‖ + ‖∇ρ‖)

≤ 1

18
‖∆φ‖2 +

α

6
‖∇∆φ‖2 +

β

12
‖∇ρ‖2 + C‖φ‖2. (4.50)

The final result still reads as (3.36), that is,

1

2

d

dt
‖φ‖2 +

5α

6
‖∇∆φ‖2 +

5

6
‖∆φ‖2 ≤ ν∗

20
‖u‖2 +

β

12
‖∇ρ‖2 + C‖φ‖2. (4.51)

In a similar manner, we can derive (cf. (3.41))

1

2

d

dt
‖ρ‖2V ∗

0
+

3β

4
‖∇ρ‖2 ≤ ν∗

20
‖u‖2 +

1

18
‖∇φ‖2 + C

(
‖φ‖2 + ‖ρ‖2V ∗

0

)
. (4.52)

The estimate for I7 is revised as follows (cf. (3.46))

I7 ≤
(
‖u1‖L6(Ω) + ‖u2‖L6(Ω)

)
‖u‖‖∇A−1u‖L3(Ω)

≤ C‖u‖
1
2

V∗

σ
‖u‖ 3

2

≤ ν∗
20

‖u‖2 + C‖u‖2
V∗

σ
,

while for I13, we write (cf. (3.52))

I13 ≤ C‖Du2‖L3(Ω)‖∇A−1u‖
(
‖ρ‖L6(Ω) + ‖φ‖L6(Ω)

)

≤ β

6
‖∇ρ‖2 +

1

18
‖∆φ‖2 + C‖Du2‖2L3(Ω)‖u‖2V∗

σ
.

Finally, for I15, we have (cf. (3.54))

I15 ≤ C
(
‖∇φ1‖L6(Ω) + ‖∇ρ1‖L6(Ω)

)
‖u‖‖q‖L3(Ω)

≤ C‖u‖‖q‖ 1
2 ‖q‖

1
2

H1(Ω)

≤ C‖u‖ 7
4 ‖∇A−1u‖ 1

4

≤ ν∗
20

‖u‖2 + C‖u‖2V∗

σ
.

Using the estimates for strong solution in higher norms on [0, T ∗], we arrive at (cf. (3.55))

1

2

d

dt
‖u‖2V∗

σ
+

7ν∗
20

‖u‖2 − α

3
‖∇∆φ‖2 − 5

18
‖∆φ‖2 − β

3
‖∇ρ‖2
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≤
(
1 + ‖Du2‖2L3(Ω)

)
‖u‖2

V∗

σ
+ C

(
‖φ‖2 + ‖ρ‖2V ∗

0

)
. (4.53)

Collecting (4.51), (4.52), and (4.53), we get the differential inequality

dỸ
dt

≤ H̃Ỹ , for a.a. t ∈ (0, T ∗),

where

Ỹ(t) := ‖u(t)‖2
V∗

σ
+ ‖φ(t)‖2 + ‖ρ(t)‖2V ∗

0
,

H̃(t) := C
(
1 + ‖Du2(t)‖2

L3(Ω)

)
.

Since Ỹ(0) = 0 and H̃ ∈ L1(0, T ∗), an application of Gronwall’s lemma easily implies that Ỹ(t) ≡ 0 for all
t ∈ [0, T ∗]. That is, the local strong solution to problem (1.4)–(1.5) in three dimensions is unique.

The proof of Theorem 2.2 is complete. �

5 Further Results in Two Dimensions

Throughout this section we assume d = 2. An important consequence of the additional assumption (H5) is the
strict separation property for the strong solution component ρ which is given by

Proposition 5.1. Let d = 2. In addition to the assumptions in Theorem 2.2, assume that (H5) is satisfied.
Then for the global strong solution ρ, there exists η ∈ (0, 1/2] such that

η ≤ ρ(x, t) ≤ 1 − η, for all x ∈ Ω, t ≥ 0. (5.1)

Proof. In Theorem 2.2, we have shown that in two dimensions, φ ∈ L∞(0,+∞;H5(Ω)), ψ ∈ L∞(0,+∞;H1(Ω)),
whose corresponding norms are uniformly bounded in time. Besides, we have ρ ∈ C([0,+∞);H1−r(Ω)), r ∈
(0, 1/2), which implies ρ ∈ C([0,+∞); C(Ω)) thanks to the Sobolev embedding theorem in two dimensions.
Observe that

‖∆|∇φ|2‖ ≤ C‖φ‖2W 3,4(Ω),

where the constant C only depends on Ω. Thus, ∆|∇φ|2 ∈ L∞(0,+∞;L2(Ω)) is uniformly bounded. Thus, it
follows that the source term on the right-hand side in (3.28) belongs to L∞(0,+∞;H1(Ω)). This fact and the
assumption (H5) enable us to apply [22, Lemma 3.2] and conclude that

‖Ŝ′
ρ(ρ)‖L∞(0,+∞;W 1,p(Ω)) ≤ C, ∀ p ∈ [2,+∞),

where C > 0 is independent of t (cf. [17, 19], where the argument therein requires the source term on the right-
hand side in (3.28) to be in L∞(0,+∞;H2(Ω))). Then the above estimate implies η ≤ ‖ρ‖L∞(0,+∞;L∞(Ω)) ≤ 1−η
for some η ∈ (0, 1/2], which combined with the continuity of ρ yield the strict separation property (5.1). We
note that under the additional assumption (H5), the initial datum ρ0 is already strictly separated from the
pure states 0 and 1.

5.1 Continuous dependence estimate for strong solutions

Proof of Theorem 2.3. Let us consider two sets of admissible initial data (φ01, ρ01,u01), (φ02, ρ02,u02) in
H5(Ω)×H2(Ω)×Vσ (namely, complying with the hypotheses of Theorem 2.2). Let (φ1, ρ1,u1) and (φ2, ρ2,u2)
be the corresponding strong solutions to problem (1.4)–(1.5), with chemical potentials µi and ψi for i = 1, 2,
accordingly. Recalling (3.29), we consider again the system (3.30) equipped with





u = 0 a.e. on ∂Ω × (0, T ),

∂nφ = ∂n∆φ = ∂nµ = 0 a.e. on ∂Ω × (0, T ),

∂nρ = ∂nψ = 0 a.e. on ∂Ω × (0, T ),

u|t=0 = u0, φ|t=0 = φ0, ρ|t=0 = ρ0 a.e. in Ω,

where
u0 = u01 − u02, φ0 = φ01 − φ02, ρ0 = ρ01 − ρ02.

Taking advantage of higher regularity of strong solutions (recall Theorem 2.2), we proceed to estimate their
difference in stronger norms (cf. the argument in Subsection 3.6). Besides, in the present case we have to take
care of the fact that the initial data are no longer null.
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Step 1. Testing the evolution equation for φ in (3.30) by ∆2φ, we have

(∂tφ,∆
2φ) + (u1 · ∇φ,∆2φ) + (u · ∇φ2,∆2φ) = (∆µ,∆2φ).

Using the expression of µ and integration by parts, we get

1

2

d

dt
‖∆φ‖2 + α‖∇∆2φ‖2 + ‖∆2φ‖2 = J1 + J2 + J3 + J4, (5.2)

where we have set

J1 := −(u1 · ∇φ,∆2φ) − (u · ∇φ2,∆2φ)

J2 := −
(
∇(S′

φ(φ1) − S′
φ(φ2)),∇∆2φ

)

J3 := −θ
(
∇(∇ · (ρ1∇φ)),∇∆2φ

)

J4 := −θ
(
∇(∇ · (ρ∇φ2)),∇∆2φ

)
.

By the Gagliardo–Nirenberg inequality (2.5) and elliptic estimates, we deduce that

J1 ≤ ‖u1‖L6(Ω)‖∇φ‖L3(Ω)‖∆2φ‖ + ‖∇φ2‖L∞(Ω)‖u‖‖∆2φ‖
≤ C‖∇φ‖H1(Ω)‖∆φ‖ 1

3 ‖∇∆2φ‖ 2
3 + C‖u‖‖∆φ‖ 1

3 ‖∇∆2φ‖ 2
3

≤ α

6
‖∇∆2φ‖2 + C

(
‖u‖2 + ‖∆φ‖2

)
. (5.3)

In the above estimates, we have used the mass conservation property such that

φ(t) = φ0, ∀ t ≥ 0,

and the elliptic estimate given by Lemma 2.1. Next, thanks to the regularity of Sφ, we get

J2 ≤
∣∣(∇(S′

φ(φ1) − S′
φ(φ2)),∇∆2φ

)∣∣

≤
∣∣∣∣
(∫ 1

0

S′′
φ(τφ1 + (1 − τ)φ2)∇φdτ, ∇∆2φ

)∣∣∣∣

+

∣∣∣∣
(∫ 1

0

S′′′
φ (τφ1 + (1 − τ)φ2)∇(τφ1 + (1 − τ)φ2)φdτ, ∇∆2φ

)∣∣∣∣
≤ C‖∇φ‖‖∇∆2φ‖ + C‖φ‖‖∇∆2φ‖
≤ α

6
‖∇∆2φ‖2 + C‖φ‖2H1(Ω)

≤ α

6
‖∇∆2φ‖2 + C(‖∆φ‖2 + |φ|2), (5.4)

whereas for J3, applications of Hölder’s inequality and Young’s inequality entail

J3 ≤ C‖ρ1∇φ‖H2(Ω)‖∇∆2φ‖
≤ C‖ρ1‖L∞(Ω)‖∇φ‖H2(Ω)‖∇∆2φ‖ + C‖ρ1‖H2(Ω)‖∇φ‖L∞(Ω)‖∇∆2φ‖
≤ C‖∇φ‖H2(Ω)‖∇∆2φ‖
≤ C‖∆φ‖ 2

3 ‖∇∆2φ‖ 4
3

≤ α

12
‖∇∆2φ‖2 + C‖∆φ‖2. (5.5)

In a similar manner, using that mass conservation property such that

ρ(t) = ρ0, ∀ t ≥ 0,

we have

J4 ≤ C‖ρ∇φ2‖‖∇∆2φ‖
≤ C‖ρ‖L∞(Ω)‖∇φ2‖H2(Ω)‖∇∆2φ‖ + C‖ρ‖H2(Ω)‖∇φ2‖L∞(Ω)‖∇∆2φ‖
≤ C(‖∆ρ‖ + |ρ|)‖∇∆2φ‖

≤ α

12
‖∇∆2φ‖2 +

β

12
‖∇∆ρ‖2 + C

(
‖∇ρ‖2 + |ρ|2

)
. (5.6)
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On account of estimates (5.3)–(5.5), from (5.2) and the Poincaré–Wirtinger inequality we deduce that

1

2

d

dt
‖∆φ‖2 +

α

2
‖∇∆2φ‖2 + ‖∆2φ‖2 − β

12
‖∇∆ρ‖2 ≤ C

(
‖u‖2 + ‖∆φ‖2 + ‖∇ρ‖2 + |φ|2 + |ρ|2

)
. (5.7)

Step 2. Taking −∆ρ as a test function in (3.30) yields

(∂tρ,−∆ρ) − (u1 · ∇ρ,∆ρ) − (u · ∇ρ2,∆ρ) = −(∆ψ,∆ρ).

Using the expression of ψ and integration by parts, we get

1

2

d

dt
‖∇ρ‖2 + β‖∇∆ρ‖2 = J5 + J6 + J7, (5.8)

where

J5 := (u1 · ∇ρ,∆ρ) + (u · ∇ρ2,∆ρ),

J6 :=
(
∇(S′

ρ(ρ1) − S′
ρ(ρ2)),∇∆ρ

)
,

J7 := −θ
2

(∇(∇(φ1 + φ2) · ∇φ),∇∆ρ).

For J5, we have

J5≤ ‖u1‖L4(Ω)‖∇ρ‖L4(Ω)‖∆ρ‖ + ‖∇ρ2‖L4(Ω)‖u‖‖∆ρ‖L4(Ω)

≤ C‖∇ρ‖ 5
4 ‖∇∆ρ‖ 3

4 + C‖u‖‖∇ρ‖ 1
4 ‖∇∆ρ‖ 3

4

≤ β

12
‖∇∆ρ‖2 + C

(
‖u‖2 + ‖∇ρ‖2

)
, (5.9)

Next, using the strict separation property (5.1) for ρ1, ρ2, we can deduce that

J6 =

(
∇
∫ 1

0

S′′
ρ (sρ1 + (1 − s)ρ2)ρ ds,∇∆ρ

)

≤
∣∣∣∣
(∫ 1

0

S′′
ρ (sρ1 + (1 − s)ρ2) ds∇ρ,∇∆ρ

)∣∣∣∣

+

∣∣∣∣
(∫ 1

0

S′′′
ρ (sρ1 + (1 − s)ρ2)∇(sρ1 + (1 − s)ρ2) dsρ,∇∆ρ

)∣∣∣∣
≤ C‖ρ‖H1(Ω)‖∇∆ρ‖

≤ β

12
‖∇∆ρ‖2 + C(‖∇ρ‖2 + |ρ|2). (5.10)

Finally, for J7, it holds

J7 ≤ C
(
‖∇φ1‖L∞(Ω) + ‖∇φ2‖L∞(Ω)

)
‖∇φ‖H1(Ω)‖∇∆ρ‖

+ C
(
‖φ1‖W 2,∞(Ω) + ‖φ2‖W 2,∞(Ω)

)
‖∇φ‖‖∇∆ρ‖

≤ β

12
‖∇∆ρ‖2 + C(‖∆φ‖2 + |φ|2). (5.11)

Thus, estimates (5.9)–(5.11) combined with (5.8) give

1

2

d

dt
‖∇ρ‖2 +

3β

4
‖∇∆ρ‖2 ≤ C

(
‖u‖2 + ‖∆φ‖2 + ‖∇ρ‖2 + |φ|2 + |ρ|2

)
. (5.12)

Step 3. We get rid of the chemical potentials exactly as in Step 3 of the uniqueness proof of Theorem 2.1.
This procedure yields

1

2

d

dt
‖u‖2 + (ν(φ1, ρ1)Du, Du) =

14∑

k=8

Jk, (5.13)

where we have set

J8 := −((u · ∇)u2,u)

J9 := (∇φ1 ⊗∇φ,∇u) + (∇φ⊗∇φ2,∇u),

J10 := β(∇ρ1 ⊗∇ρ,∇u) + β(∇ρ⊗∇ρ2,∇u),
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J11 := −θ(ρ1∇φ1 ⊗∇φ,∇u) − θ(ρ1∇φ ⊗∇φ2,∇u) − θ(ρ∇φ2 ⊗∇φ2,∇u),

J12 := α(∇∆φ1 ⊗∇φ,∇u) + α(∇∆φ ⊗∇φ2,∇u),

J13 := −α((∇∆φ1 · ∇)∇φ,u) − α((∇∆φ · ∇)∇φ2,u),

J14 := −((ν(φ1, ρ1) − ν(φ2, ρ2))Du2,∇u).

We now provide controls for each of the terms defined above. Using the Hölder inequality and the embedding
Vσ →֒ L6(Ω)

J8 ≤ ‖u‖‖∇u2‖L3(Ω)‖u‖L6(Ω) ≤
ν∗
24

‖∇u‖2 + C‖∇u2‖2L3(Ω)‖u‖2, (5.14)

whereas,

J9 ≤
(
‖∇φ1‖L∞(Ω) + ‖∇φ2‖L∞(Ω)

)
‖∇φ‖‖∇u‖

≤ ν∗
24

‖∇u‖2 + C‖∇φ‖2

≤ ν∗
24

‖∇u‖2 + C
(
‖∆φ‖2 + |φ|2

)
. (5.15)

The term J10 can be treated in a similar way,

J10 ≤
(
‖∇ρ1‖L4(Ω) + ‖∇ρ2‖L4(Ω)

)
‖∇ρ‖L4(Ω)‖∇u‖

≤ ν∗
24

‖∇u‖2 + C‖∇ρ‖‖∆ρ‖

≤ ν∗
24

‖∇u‖2 +
β

12
‖∇∆ρ‖2 + C‖∇ρ‖2. (5.16)

Also for J11, it holds

J11 ≤ ν∗
24

‖∇u‖2 + C‖ρ1‖2L∞(Ω)

(
‖∇φ1‖2L∞(Ω) + ‖∇φ2‖2L∞(Ω)

)
‖∇φ‖2 + C‖ρ‖2‖∇φ2‖4L∞(Ω)

≤ ν∗
24

‖∇u‖2 + C
(
‖∇φ‖2 + ‖ρ‖2

)

≤ ν∗
24

‖∇u‖2 + C
(
‖∆φ‖2 + ‖∇ρ‖2 + |ρ|2

)
. (5.17)

As far as J12 and J13 are concerned, we have

J12 ≤ C‖∇∆φ1‖L∞‖∇φ‖‖∇u‖ + C‖∇∆φ‖‖∇φ2‖L∞(Ω)‖∇u‖
≤ C‖∆φ‖‖∇u‖ + C‖∆φ‖ 1

2 ‖∆2φ‖ 1
2 ‖∇u‖

≤ ν∗
24

‖∇u‖2 +
1

4
‖∆2φ‖2 + C‖∆φ‖2, (5.18)

J13 ≤ C‖∇∆φ1‖L∞‖∇φ‖H1(Ω)‖u‖ + C‖∇∆φ‖‖∇φ2‖W1,∞(Ω)‖u‖
≤ C‖∆φ‖‖u‖ + C‖∆φ‖ 1

2 ‖∆2φ‖ 1
2 ‖u‖

≤ 1

4
‖∆2φ‖2 + C(‖u‖2 + ‖∆φ‖2). (5.19)

Finally, for J14, we have

J14 ≤ C
(
‖φ‖L∞(Ω)‖Du2‖‖∇u‖ + ‖ρ‖L∞(Ω)‖Du2‖‖∇u‖

)

≤ ν∗
24

‖∇u‖2 + C
(
‖φ‖2H2(Ω) + ‖ρ‖2H2(Ω)

)

≤ ν∗
24

‖∇u‖2 + C
(
‖∆φ‖2 + ‖∆ρ‖2 + |φ|2 + |ρ|2

)

≤ ν∗
24

‖∇u‖2 +
β

12
‖∇∆ρ‖2 + C

(
‖∆φ‖2 + ‖∇ρ‖2 + |φ|2 + |ρ|2

)
. (5.20)

Thus, collecting the results (5.14)–(5.20), from (5.13) we infer that

1

2

d

dt
‖u‖2 +

ν∗
4
‖∇u‖2 − 1

2
‖∆2φ‖2 − β

6
‖∇∆ρ‖2

≤ C
(
1 + ‖∇u2‖2L3(Ω)

)(
‖u‖2 + ‖∆φ‖2 + ‖∇ρ‖2

)
+ C

(
|φ|2 + |ρ|2

)
. (5.21)

Step 4. Set

Z(t) := ‖u(t)‖2 + ‖∆φ(t)‖2 + ‖∇ρ(t)‖2,
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W(t) :=
ν∗
2
‖∇u(t)‖2 + α‖∇∆2φ(t)‖2 + ‖∆2φ‖2 + β‖∇∆ρ(t)‖2.

Collecting (5.7), (5.12), and (5.21), we arrive at

dZ
dt

+ W ≤ C
(
1 + ‖∇u2‖2L3(Ω)

)
Z + C

(
|φ0|2 + |ρ0|2

)
,

where we have used again the mass conservation property for φ and ρ. Noticing that ‖∇u2‖2L3(Ω) ∈ L1(0, T ),
therefore, an application of Gronwall’s lemma implies that

‖u(t)‖2 + ‖φ(t)‖2H2(Ω) + ‖ρ(t)‖2H1(Ω) +

∫ t

0

W(τ) dτ ≤ CT

(
‖u0‖2 + ‖∆φ0‖2 + ‖∇ρ0‖2 + |φ0|2 + |ρ0|2

)
, (5.22)

for any t ∈ [0, T ], where CT > 0 is a constant depending on ‖u0i‖Vσ
, ‖φ0i‖H5(Ω), ‖ρ0i‖H2(Ω), ‖ψ0i‖H1(Ω),

i = 1, 2, coefficients of the system, Ω and T .
The proof of Theorem 2.3 is complete. �

5.2 Instantaneous regularization of weak solutions

We now establish the instantaneous regularization property of global weak solutions in dimension two. In
particular, we show that every weak solution becomes a strong one as long as t > 0.

Proof of Theorem 2.4. Let δ > 0 be an arbitrary but fixed constant. Consider the global weak solution
(u, φ, ρ, µ, ψ) defined on [0,+∞) (see Remark 2.5). Owing to the regularity properties provided in Theorem
2.1, as well as the dissipative nature of the system (see (2.7)), we can infer the existence of some Lebesgue
point ξ ∈ (δ/2, δ) such that, taking (u(ξ), φ(ξ), ρ(ξ)) as initial data, the hypotheses of Theorem 2.2 are satisfied.
Thus, we can infer the existence of a strong solution on the time interval [ξ, T ], for any given T > ξ. Then the
uniqueness result implies that the strong and weak solutions coincide on [ξ, T ] so that the global weak solution
constructed above is indeed a strong one on [ξ,+∞).

Next, we prove some uniform in time estimates for t ≥ δ. The proof relies on computations that are parallel
to those performed in the proof of Lemma 4.2. Hence, we just sketch the main steps.

Following the argument in the proof of Lemma 4.2, we set

Λ̃(t) :=
1

2
‖∇u(t)‖2 +

1

2
‖∇µ(t)‖2 +

1

2
‖∇ψ(t)‖2 + (u(t) · ∇ρ(t), ψ(t)) + (u(t) · ∇φ(t), µ(t))+C̃11‖u(t)‖2,

G̃(t) :=
ν∗

32C̃10

‖∂tu(t)‖2 +
ν∗
4
‖Au(t)‖2 +

α

2
‖∆∂tφ(t)‖2 +

1

2
‖∇∂tφ(t)‖2 +

β

2
‖∇∂tρ(t)‖2,

for some C̃10 > 0 depending on the initial energy, Ω and coefficients of the system, C̃11 > 0 depending only on
Ω. Then it is straightforward to check that an inequality similar to (4.30) holds for Λ̃ with C11 replaced by C̃11.
Moreover, we obtain

dΛ̃

dt
+ G̃ ≤ C̃12

(
1 + Λ̃

)
Λ̃, (5.23)

for a.a. t ∈ (ξ,+∞). Since δ > 0 can be arbitrary small, (5.23) holds for a.a. t ∈ (0,+∞). Then, recalling
Remark 3.1, from the energy inequality (2.7) we deduce that

∫ t+1

t

‖
√
ν(φ(τ), ρ(τ))Du(τ)‖2 + ‖∇µ(τ)‖2 + ‖∇ψ(τ)‖2 dτ ≤ C,

for every t ≥ 0, where the constant C is independent of t. This fact together with an analogue of (4.30) for Λ̃
yields that ∫ t+1

t

Λ̃(τ) dτ ≤ C,

for every t ≥ 0, where the constant C is again independent of t. Hence, we can apply the uniform Gronwall
lemma (see e.g., [39, Chapter III, Lemma 1.1]), choosing r = δ therein, to obtain the estimate Λ̃(t) ≤ C, for all
t ≥ δ, where C > 0 depends on K, m1, m2, δ, coefficients of the system Ω, but not on t. Hence, we get

‖u(t)‖Vσ
+ ‖µ(t)‖H1(Ω) + ‖ψ(t)‖H1(Ω) ≤ C, ∀ t ≥ δ. (5.24)

Integrating (5.23) over [t, t+ 1] yields, by definition of G̃, the following

‖u‖L2(t,t+1;Wσ) + ‖∂tu‖L2(t,t+1;Hσ) + ‖∂tφ‖L2(t,t+1;H2(Ω)) + ‖∂tρ‖L2(t,t+1;H1(Ω)) ≤ C, (5.25)
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for all t ≥ δ. The estimate (5.24) further implies that

‖φ(t)‖H5(Ω) + ‖ρ(t)‖W 2,p(Ω) ≤ C, ∀ t ≥ δ, (5.26)

for any p ∈ [2,+∞). Moreover, thanks to Proposition 5.1, we have

η ≤ ρ(x, t) ≤ 1 − η, for all x ∈ Ω, t ≥ δ, (5.27)

for some η ∈ (0, 1/2], depends on K, m1, m2, δ, coefficients of the system Ω, but not on t. Hence, the estimates
(2.8) and (2.9) are proved.

Higher-order estimate can be derived by using the method of difference quotients (cf. [19]). Given any
function f : [a,+∞) → X , with X being a Banach space, we define

∂ht f :=
f(t+ h) − f(t)

h

for any h > 0 and t ∈ [a,+∞). Arguing as in Subsection 5.1, we can derive a system for the difference quotients.
Performing the same computations as in the proof of Theorem 2.3 (that is, for differences of two solutions) and
setting

Ẑ(t) := ‖∂ht u(t)‖2 + ‖∆∂ht φ(t)‖2 + ‖∇∂ht ρ(t)‖2,
Ŵ(t) :=

ν∗
2
‖∇∂ht u(t)‖2 + α‖∇∆2∂ht φ(t)‖2 + ‖∆2∂ht φ(t)‖2 + β‖∇∆∂ht ρ(t)‖2,

we deduce that
dẐ
dt

+ Ŵ ≤ C
(
1 + ‖∇u(t+ h)‖2

L3(Ω)

)
Ẑ,

where we recall that by conservation of mass ∂ht φ = ∂ht ρ = 0 for every t ≥ 0 and h > 0. Owing to (5.24), (5.25)
and the standard estimate ‖∂ht f‖L2(t,t+1;L2(Ω)) ≤ ‖∂tf‖L2(t,t+2;L2(Ω)), it holds that

∫ t+1

t

(
Ẑ(τ) + ‖u(τ)‖2

W1,3(Ω)

)
dτ ≤ C,

for every t ≥ δ. Moreover, the constant C is independent of h. A further application of the uniform Gronwall
lemma with r = δ and then letting h→ 0+ yields the following estimates

‖∂tu(t)‖ + ‖∂tφ(t)‖H2(Ω) + ‖∂tρ(t)‖H1(Ω) ≤ C, ∀ t ≥ 2δ, (5.28)

and
‖∂tu‖L2(t,t+1;Vσ) + ‖∂tφ‖L2(t,t+1;H5(Ω)) + ‖∂tρ‖L2(t,t+1;H3(Ω)) ≤ C, ∀ t ≥ 2δ.

Namely, the estimates (2.10) and (2.11) are obtained.
Consider the Navier–Stokes system written as follows





−div(ν(φ, ρ)Du) + ∇π = µ∇φ+ ψ∇ρ− ∂tu− (u · ∇)u, in Ω × (2δ,+∞),

∇ · u = 0 in Ω × (2δ,+∞),

u = 0 in ∂Ω × (2δ,+∞).

(5.29)

Using the estimates (5.24), (5.26) and (5.28) we can apply the regularity theory for the Stokes problem [1,
Theorem 4] with a bootstrap argument like in [19, Theorem 4.3], to show that the source term in (5.29) belongs
to L∞(2δ,+∞;L2(Ω)) and thus

u ∈ L∞(2δ,+∞;Wσ) (5.30)

is uniformly bounded. It also holds that π ∈ L∞(2δ,+∞;H1(Ω)). As a consequence, from (5.26), (5.28) and
(5.30), we further infer that

∂tφ+ u · ∇φ ∈ L∞(2δ,+∞;H2(Ω)), ∂tρ+ u · ∇ρ ∈ L∞(2δ,+∞;H1(Ω)),

which yield
∆µ ∈ L∞(2δ,+∞;H2(Ω)), ∆ψ ∈ L∞(2δ,+∞;H1(Ω)).

Using the elliptic estimate like in Subsection 4.3, we find that

µ ∈ L∞(2δ,+∞;H4(Ω)), ψ ∈ L∞(2δ,+∞;H2(Ω))

are uniformly bounded.
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Thanks to (5.27), Ŝ′
ρ can be considered as globally Lipschitz since ρ only takes its values in a compact subin-

terval of [0, 1], everywhere in Ω× [2δ,+∞). From (H3)′, we conclude that actually Ŝ′
ρ(ρ) ∈ L∞(2δ,+∞;H2(Ω))

and thus elliptic regularity theory applied to (3.28) implies that ρ ∈ L∞(2δ,+∞;H4(Ω)). Then, in a similar
fashion, we observe that φ is solution to the Poisson problem

{
−∆φ = f in Ω,

∂nφ = 0 on ∂Ω,
(5.31)

satisfying φ = φ0, where f solves the linear boundary value problem

{
−α∆f + f = µ− S′

φ(φ) −∇ · (ρ∇φ) in Ω,

∂nf = 0 on ∂Ω.
(5.32)

Notice that, by the Lax–Milgram theorem, (5.32) has a unique weak solution in H1(Ω), which coincides
with −∆φ almost everywhere in Ω × [2δ,+∞). Thanks to (H2)′ and (5.26), we easily infer that S′

φ(φ) ∈
L∞(2δ,+∞;H2(Ω)). For the coupling term, it follows that

‖∇ · (ρ∇φ)‖H2(Ω) ≤ C
(
‖ρ‖L∞(Ω)‖∆φ‖H2(Ω) + ‖ρ‖H2(Ω)‖∆φ‖L∞(Ω)

)

+ C
(
‖∇ρ‖L∞(Ω)‖∇φ‖H2(Ω) + ‖∇ρ‖H2(Ω)‖∇φ‖L∞(Ω)

)

≤ C
(
‖ρ‖H2(Ω)‖φ‖H4(Ω) + ‖ρ‖H3(Ω)‖φ‖H3(Ω)

)
,

which implies ∇ · (ρ∇φ) ∈ L∞(2δ,+∞;H2(Ω)). As a consequence, f ∈ L∞(2δ,+∞;H4(Ω)). Applying the
elliptic estimate for problem (5.31), we find that φ ∈ L∞(2δ,+∞;H6(Ω)) is uniformly bounded. Hence, the
estimate (2.12) follows.

The proof of Theorem 2.4 is complete. �
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for phase change problems (Óbidos, 1988). Vol. 88. Internat. Ser. Numer. Math. Birkhäuser, Basel, 1989,
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