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Abstract: Urban air mobility (UAM) is a transformative mode of air transportation system technology
that is targeted to carry passengers and goods in and around urban areas using electric vertical take-off
and landing (eVTOL) aircraft. UAM operations are intended to be conducted in low altitudes where
microscale turbulent wind flow conditions are prevalent. This introduces flight testing, certification,
and operational complexities. To tackle these issues, the UAM industry, aviation authorities, and
research communities across the world have provided prescriptive ways, such as the implementation
of dynamic weather corridors for safe operation, classification of atmospheric disturbance levels
for certification, etc., within the proposed concepts of operation (ConOps), certification standards,
and guidelines. However, a notable hindrance to the efficacy of these solutions lies in the scarcity
of operational UAM and observational wind data in urban environments. One way to address
this deficiency in data is via microscale wind modelling, which has been long established in the
context of studying atmospheric dynamics, weather forecasting, turbine blade load estimation, etc.
Thus, this paper aims to provide a critical literature review of a variety of wind flow estimation and
forecasting techniques that can be and have been utilized by the UAM community. Furthermore, a
compare-and-contrast study of the commonly used wind flow models employed within the wind
engineering and atmospheric science domain is furnished along with an overview of the urban wind
flow conditions.

Keywords: urban air mobility; urban wind flow modelling; urban wind forecasting; urban wind
data; eVTOL certification; UAM operation

1. Introduction

According to the European Union Aviation Safety Agency (EASA), “urban air mobility
(UAM) is a new air transportation system for passengers and cargo in and around densely populated
and built-up environments, made possible by vertical take-off and landing electric aircraft (eVTOL)
equipped with new technologies, such as enhanced battery technologies and electric propulsion.
These aircraft will have a pilot on board or be remotely piloted” [1]. The same definition for UAM
is read slightly differently by the Federal Aviation Administration (FAA) and National
Aeronautics and Space Administration (NASA), as follows: “UAM enables highly automated,
cooperative, passenger or cargo-carrying air transportation services in and around urban areas” [2].
It can be noted that, unlike the EASA, the FAA and NASA are not specific about the aircraft
type and include terms like highly automated within their definition. Thus, to set the scope
and avoid confusion, the term UAM in this article refers to the air transportation system
that can carry passengers and goods in and around urban cities through low-altitude
operations, where the presence of obstructions (buildings, towers, etc.) cause frictional
effects and force wind flow to lose its momentum, ultimately generating turbulence and
microscale weather conditions. The terms UAM aircraft, UAM vehicles, and eVTOLs in this
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paper refer to small uncrewed aerial vehicle systems (sUAS) and light passenger-carrying
electrically powered aircraft, which can take off and land vertically with a maximum takeoff
weight of less than 3175 kg as per [3]. The term air transportation system signifies UAM
aircraft systems; vertiports [4], and UAM traffic management systems. Similarly, weather
in general comprises conditions such as wind, rain, fog, snow, storm, hail, etc. However,
this paper refers only to the wind as weather. This is because, in a way, wind flow is the
cause of precipitation and other large-scale weather conditions like storms, etc.

Unlike traditional rotorcraft and aircraft, UAM vehicles come in multiple different
sizes, have an unconventional design configuration, are lighter in weight, have increased
automation for command and control, are propelled by distributed electric propulsion
units, etc. [5]. These UAM characteristics coupled with the microscale winds in urban
environments introduce significantly more operational safety risks such as trajectory de-
viation, loss of or difficulty in control, rapid deterioration of battery charge [6], increased
operational delays [7], decreased passenger comfort, and other uncertain ground and flight
risks that are currently unknown to the aviation sector. This rise in safety challenges due
to the inevitable microwind conditions in the urban environment increases flight testing
complexity and extends the duration of the aircraft certification process. Ultimately, this
may lead to possible financial loss for investors and UAM manufacturers, which might
potentially halt or altogether prevent the emergence of UAM. Weather would be the most
constant naturally occurring phenomenon that would confront UAM. This fact is also em-
phasized in [8], where the weather is identified as both a near- and far-term technological
and nontechnological challenge among several aspects that were analyzed as a hindrance
to the realization of UAM. Thus, to improve the safety and simplify the integration of UAM
operations and vehicles in the urban airspace, aviation authorities, UAM manufacturers,
and research communities across the world have put forth several Concepts of Operations
(ConOps), certification standards, risk assessment methods, flight testing guidelines, etc.,
that attempt to address ways to prescriptively tackle the microwind-pertinent challenges.

The existing UAM ConOps [2,9–13] suggest the integration of real-time microwind
data provided by a centralized or an external weather data service supplier to develop
dynamic 4D geofences or corridors and weather-aware decision support systems such
as weather alerts and warnings, etc., within the UAM traffic or operations management
system. Similarly, within the UAM vehicle airworthiness certification domain, the EASA
has introduced the Modified Handling Qualities Rating Method (MHQRM) in the Means of
Compliance for Special Condition Vertical Take-off and Landing (MOC SC-VTOL) aircraft
standards document [14]. MHQRM is used to assess certain special condition vertical
take-off and landing (SC-VTOL) aircraft [3] airworthiness standard requirements that need
the determination of handling qualities. Within this document, atmospheric disturbance
(AD) is classified into light, moderate, and severe. However, the definitions of the moderate
and severe disturbance levels are not explicit, and nor is their corresponding probability of
occurrence (see Table 1). Moreover, the certification authority has left it to the applicant
or UAM manufacturer to provide and demonstrate a credible approach to characterize
the different disturbance levels for their UAM aircraft, as the effects of microscale winds
would vary with the aircraft configuration, flight phase, and flight envelope. For instance,
the takeoff, transition, landing, and final approach phases would be more crucial due to
their closer proximity to the building structures and reduced airspeed operation. Similarly,
a sUAS system would be more susceptible to wind conditions in the urban environment
than a UAM aircraft that is meant to carry passengers. Certification of an autonomous
UAM aircraft may have to assess the time taken by the controllers to respond to wind
disturbance and so forth.

While these strategic plans are viable for enhancing the robustness of UAM aircraft
and operational safety, they lack comprehensiveness due to the absence of microscale wind
data and operational UAM flight test data [14]. One way to overcome this microwind
data deficiency for UAM applications is through wind flow modelling. The literature on
the microscale wind flow conditions in the urban environment and wind modelling are
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long established; however, these studies are aimed at the dynamics of the atmosphere
or aerodynamic loads on turbine and propeller blades, pedestrian comfort, etc., and so
are not always appropriate in the context of UAM. Therefore, as a first step in the venture
to close the gap caused by the insufficiency in urban wind data for UAM development,
a comprehensive literature review was performed to identify the wind modelling and
forecasting techniques that have been exercised in the UAM community from 2011 (this
cutoff is based on the reemergence of on-demand UAM services in 2010 [15]) to 2023 with
the help of Scopus Search API [16] and web scraping. Web scraping is a process used to
extract data from a website. For the present work, two Python libraries (requests and bs4
or Beautiful Soup 4) were used to extract the underlying HTML data from Google Scholar
web page search results for the listed keywords. The HTML data were then parsed and
reformatted into a .csv file for further analysis. A total of 42 out of 186 publications were
found that specifically discussed urban wind modelling techniques and their effects on the
realization of UAM for the following keywords: drones + wind, drones + turbulence, Urban
Air Mobility + Urban weather, Urban Air Mobility + wind, Urban Air Mobility + Turbulence,
Wind modelling UAM, and Wind modelling aviation.

Table 1. Atmospheric disturbance (AD) level classification provided in MOC SC-VTOL [14].

Atmospheric Disturbance Notes Probability XAD

Light
No appreciable turbulence and steady-
state winds less than 3 knots with no ap-
preciable gusts.

100

Moderate
Light to moderate turbulence. Changes
in altitude and/or attitude occur. Usually
causes variations in indicated airspeed.

TBD

Severe

Turbulence that causes large, abrupt de-
viations in altitude and/or attitude. Usu-
ally causes large variations in indicated air-
speed.

TBD

Figure 1 provides an overview of the number of published papers found for each year.
It can be noted that the publication pattern has seen an increase since 2019, indicating the
rapid growth of the UAM sector and, subsequently, the increasing concerns about urban
weather effects on the progress of UAM.
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Figure 1. Histogram of the number of publications discussing wind flow modelling in the context of
UAM development from 2011 to 2023.

This paper is divided into five main sections. Section 2 is aimed at providing an
understanding of the wind flow characteristics in urban environments. Section 3 includes
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a brief review of the commonly used wind models within the wind engineering and
atmospheric science domain. Then, in Section 4, a compare-and-contrast study is performed
in light of the UAM requisite for fast and accurate weather forecasts to determine UAM
operational guidelines and certification standards. Section 5 aims to lay out the critical
review of the 42 identified papers. Furthermore, in the concluding Section 6, a summary of
the identified gaps is furnished along with some suggestions.

2. Wind Flow in Urban Environments

The fundamental conception of UAM technology is the execution of flight operations
in and around urban landscapes. This means UAM aircraft will operate closer to the ground
(compared to conventional rotorcraft and fixed-wing aircraft) and likely take off/land on
vertiports, which are meant to be emplaced at ground levels, on elevated structures, or on
building rooftops [4,17]. Hence, it is of utmost importance to be cognizant of the weather
and wind flow around buildings in an urban environment for the safe realization of UAM.
This section is dedicated to laying out the basic concepts of wind flow, boundary layers,
and turbulence.

2.1. Wind Flow

In general, wind flow is caused by the movement of air particles in the atmosphere
due to differences in pressure distribution coupled with the diurnal temperature variations,
seasonal effects, and Coriolis force exerted by the rotation of Earth. Thus, the character-
istics and direction of wind flow can be estimated by simply observing the pressure and
temperature distribution of air particles in an area. However, this may be valid only for
forecasting wind flow in higher altitudes and not be so accurate for lower altitudes. Factors
like surface roughness and topography of an area, which dictate the amount of frictional
force and shear stress exerted on the moving air particles, also significantly influence the
wind flow conditions within the low-altitude atmosphere.

2.2. Boundary Layers and Atmospheric Turbulence in Urban Environments

A typical urban environment boasts buildings, towers, poles, trees, etc., of all shapes
and sizes along with constant dynamic factors such as vehicle and human movements.
These built structures and dynamic features are considered obstacles to the wind flow in
the urban environment, which increases the surface roughness and the complexity of the
terrain. Hence, when the wind flows over the surface of an urban landscape, a boundary
layer is formed, namely, the urban boundary layer (UBL), also known as the atmospheric
boundary layer (ABL) or planetary boundary layer (PBL) for contexts not specific to the
urban environment. The UBL is the lowest part of Earth’s atmosphere and typically extends
from the surface of Earth to a distance where the wind is no longer influenced by surface
roughness. The region within the UBL is further divided into three major sublayers [18],
as depicted in Figure 2, to better understand and distinguish the wind flow nature and
corresponding velocity profiles.

In the urban canopy layer (UCL), wind flow conditions are affected by the immediate
surroundings, and the expanse of the UCL is up to the roof of the tallest building in an
urban setting, whereas the roughness sublayer stretches a few meters beyond the UCL,
and the wind flow conditions within this layer could be best described as “still adapting to
the obstacles”. The region beyond the roughness sublayer to the top of the UBL is where
the wind flow conditions have fully adapted to the surface beneath, and it is called the
inertial sublayer. There are no quantitative definitions for the boundaries of these sublayers;
however, as depicted in Figure 3, wind flow velocity is always minimal on or near the
surface of the ground due to surface roughness compared to the flow velocity at the top
of the UBL, where wind speed is often equivalent to the geostrophic wind speed [19].
Furthermore, flow within the UBL region is often turbulent [20] due to flow distortions,
surface temperature variations, etc. Therefore, to precisely predict or estimate the wind
flow characteristics, it is essential to understand atmospheric turbulence.
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Urban Canopy Layer (UCL)
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Figure 2. Depiction of urban wind flow and UBL sublayers. Adapted from [18].
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Figure 3. Velocity profile changes for different sublayers in UBL. Adapted from [19,21].

Atmospheric turbulence is inhomogeneous, anisotropic, three-dimensional, nonuni-
form, and shaped by vortexes of diverse length and temporal scales, i.e., Taylor microscale,
integral and Kolmogorov length, velocity, and time scale [22]. Eddies or vortexes of integral
length and time scale are responsible for the transport of momentum and energy and are
restricted by the flow boundaries, while the smaller eddies, identified by the Kolmogorov
length and temporal scale, are dominated by the dissipation rate and viscosity. In aviation,
especially within UAM, both large- and small-scale turbulence affect the dynamic behavior,
structural integrity, and safety of aircraft [23].

As per aviation meteorologists, there are four main causes of turbulence [24]:

1. Topography, uneven surface, and human-made obstacles (mechanical turbulence),
2. Uneven ground surface temperatures that are typically caused in the summer (thermal

or convective turbulence),
3. Friction between the warm and cold front (frontal turbulence),
4. Wind shear.

While there are no definitions for turbulence, it can be described by observing the wind
flow properties such as the 3D wind velocity, its corresponding fluctuation components,
and fluctuation variance [25]. Similarly, a flow could be identified as turbulent if the
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dimensionless Reynolds number is greater than 2000 and relative Rayleigh’s number is
greater than or equal to 65.4 [25].

2.3. Wind Flow around a Single Building

Buildings come in all shapes and sizes, so, for simplification, this section will provide
a summary of wind flow only around a cubical building.

As previously mentioned, wind flow in an urban environment is complex and turbu-
lent due to the presence of many obstacles (e.g., buildings). When the steady flowing air
particles impinge on a built surface in a normal direction, the flow is redirected, as shown
in Figure 4, forming various flow patterns and regions around the building. This is due
to the high-pressure stagnation point on the windward surface of the building elevation.
The position of the stagnation point, which is estimated to be at two-thirds of the building’s
frontal elevation, is dependent on factors like the building frontal aspect ratio, the ratio
of building and UBL height, and the surface roughness upwind of the building [26,27].
Starting from the stagnation point, the flow deflects to the lower-pressure regions such as
the top, sides, and downward surface of the windward region of the building.

Figure 4. Flow around an isolated building with a perpendicular inflow wind incidence angle.
Taken from [28].

At the windward front of the building, a reverse flow occurs when the flow deflects
downwards from the stagnation point to the ground, forming a detached zone with a
vortex near the surface. A separation bubble is generated on the roof or top of the building
that may reattach depending on the upstream surface roughness and top aspect ratio [29].
The flow downwind or on the leeward and lateral sides of the building is the wake region.
Here, there are pronounced vortexes that are characterized by low-velocity distribution
with high turbulent intensities. In the wake region, the flow recirculates for 10 to 13 widths
downstream, making it highly unsteady [30]. Figure 5 provides a 2D view of the mean
velocity variation at different places downstream of the leeward face or the wake region
of a building.

In contrast to the steady inflow, when a building is placed in turbulent inflow condi-
tions with equal average velocity, two effects eventuate: (1) eddies or vortexes are deflected,
reducing the turbulent velocity component in the flow direction and intensifying in the
perpendicular direction, and (2) the eddies are stretched, amplifying the turbulent veloc-
ity component in the flow direction and reducing in the perpendicular direction. Out
of these two effects, the dominating one is usually dictated by the relative scale of the
building to the inflow turbulence. As an example, for larger buildings, the second effect is
more pronounced [30].
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1 Width Upwind 3 Widths Downwind 15 Widths Downwind

Figure 5. Two-dimensional representation of mean wind velocity component at various downstream
positions for a flow over a cubical building. Adapted from [30].

2.4. Wind Flow around a Group of Buildings

Flow fields around multiple buildings are much more difficult to model and compre-
hend compared to isolated buildings. Similarly, wind flow in and over a UCL with random
roughness (i.e., with several building shapes and sizes) is more complex than the wind flow
over a canopy region with buildings of similar height. In ref. [31], where uniformly placed
and randomly sized arrays of cubical blocks representing buildings are used to study the
flow characteristics, the authors claim that it is complicated to determine the flow details
within the UCL as they greatly depend on the building arrangement and height. The paper
also claims that the tallest building produces more drag, setting the largest turbulent kinetic
energy (TKE) as shown in Figure 6.

Figure 6. TKE at Z = 0.5hm plane (hm is the mean height of the buildings, white squares repre-
sent buildings, and the numbers printed within the white squares denote the actual height of the
buildings) [31].

Overall, the streamlines around multiple buildings are more convoluted as they
depend on multiple factors such as inflow wind incidence angle [32], size of the buildings,
building surface roughness, etc. Thus, most papers investigating the flow around a group
of buildings within the canopy region caution that the data produced by one specific study
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might not be extrapolated in another. However, a common pattern within the UCL is the
strong downward flow between the gaps or streets.

3. Overview of Wind Flow Modelling in Urban Environment

Atmospheric wind flow modelling is a vast discipline with several simulation and
forecasting methods that are either prognostic or diagnostic in nature. These methods could
be categorized based on the type of technique employed for the prediction and mapped to
different spatial resolution [33] and temporal classes [34], as shown in Figure 7.

Atmospheric modelling
(Atmospheric wind forecasting)

Ultra short term (s – mins)

Microscale (2 mm – 2km)

Mesoscale (2 km – 2000 km)

Synoptic scale (500 – 10000
km)

Planetary scale (>10,000 km)

Molecular (<< 2 mm)

short term (mins – hrs)

Long term (weeks)

Medium term (hrs – days)

Classification based on prediction
resolution (spatial)

Classification based on prediction
time (temporal)

Categorization based on prediction or
forecasting technique

Experimental

Computational Fluid
Dynamics (CFD) based

Spectral

Semi-empirical

Statistical

Hybrid

Figure 7. Atmospheric wind flow modelling methods categorized and grouped based on prediction
type, prediction resolution, and time.

This section will provide an overview of the commonly used wind flow modelling
techniques that are employed by (i) atmospheric scientists to understand the dynamics of
the low-altitude atmosphere, (ii) wind engineers to determine the emplacement of wind
turbines in cities, (iii) civil engineers to understand wind comfort in pedestrian lanes,
and (iv) environmental scientists to study pollution dispersion.

3.1. Experimental Method

Wind tunnel tests are one of the most widely utilized experimental techniques to
simulate and study wind flow characteristics and pollution dispersion within the UCL.



Drones 2024, 8, 147 9 of 24

One of the main advantages of wind tunnel studies is the ability to control the parameters
that affect the flow such as the building height, aspect ratios, roof design, surface roughness,
etc., for replicating the near-realistic wind conditions of the UCL in a test environment [35].
Wind tunnel test data are often used for validating numerically simulated wind data due to
their ability to produce pragmatic results. However, wind tunnels have their drawbacks
such as scaling effects, measurement errors, wall effects, and Reynolds effects (lack of
large-scale turbulence within a controlled environment) [36]. Experimental approaches of
this type are also widely used to characterize other complex flow conditions that affect
rotorcraft flights, such as those related to the analysis of ship helicopter operational limits
(SHOL) [37,38].

3.2. Computational Fluid Dynamics (CFD)-Based Methods

CFD is the wind simulation technique most commonly used by atmospheric scientists,
civil engineers, and environmental scientists to study the flow patterns within the UCL.
There are many CFD models; however, the most repetitively used are based on large eddy
simulations (LES) and Reynolds-Averaged Navier–Stokes (RANS) equations.

• LES (Large Eddy Simulation)
LES is one of the most popular methods in CFD for studying the fluid transport
process in the ABL (i.e., turbulent flows) [39], pollution dispersion, wind flow in urban
areas or near obstacles, and wake interactions [31,40]. Low-pass filters are employed
within LES models to solve the Navier–Stokes equations. Unlike direct numerical
simulation (DNS), where the flow energy is studied by modelling for all scales of fluid
motion, LES filters and models only a small scale of motions to investigate the energy
spectrum of turbulent eddies [41]. This comparatively reduces the computational
power and time required by producing results that are close to DNS data and more
accurate than RANS. However, LES still falls into the medium- or long-term temporal
class. Thus, there have been several efforts made to speed up the computation speed
of LES, for example, there is the research group that is working on the parallelized
LES model (PALM) software 6.0 framework. PALM is being developed for simulating
wind flow in the urban canopy with grid sizes of less than 1 m [42].

• RANS (Reynolds-averaged Navier–Stokes)
RANS is a numerical method that averages Navier–Stokes equations to model tur-
bulent flows. This method is primarily based on Reynolds decomposition, where
the flow quantities are broken into their time-averaged mean flow and fluctuating
components, generating unknown Reynolds stresses. Hence, to solve these unknowns,
which vary in both space and time, turbulence closure models such as k-ε, k-ω, SST
k-ω, etc., [32,43,44] are typically employed.
RANS is often considered an industry standard CFD model to study turbulence. It
has been used commonly to model wind flow within an urban environment and for
pollution dispersion studies. Moreover, RANS, through an accuracy trade-off, seems
to be considered a valid alternative to eddy-resolving CFD methods like DNS and
LES, which are computationally expensive and less time-efficient [45]. However, like
every other CFD model, RANS comes with its drawbacks, and one of the limitations
of employing RANS to ABL flows is the misrepresentation of stream-wise gradients
in the vertical mean wind speed profiles and turbulence quantities due to improper
selection of boundary layers [45]. Likewise, Denise et al. [46] state that the accuracy of
RANS is comparable to the LES data only above the urban canopy layer (UCL).

3.3. Spectral Methods

Spectral methods are diagnostic, that is, these methods are derived from the experi-
mental observations of the isotropic turbulent energy spectrum. Spectral turbulence models
are low-order modelling techniques, which are computationally less expensive and faster
compared to the many CFD models. von Kármán and Dryden are two spectral models for
the generation of continuous gusts that have been widely used by the aviation community
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and are even standardized by the FAA/EASA for flight tests, assessments of flying qualities
of piloted aircraft [47], and aircraft certification. However, these are not the only spectral
models that can be used for gust and turbulence modelling. There are other models like
Kaimal, Mann, and discrete gust models such as sharp-edged gust, 1-cosine, etc., which are
utilized to model low-altitude gusts.

Both the von Kármán and Dryden models use a two-equation approach. The first
equation is used to describe the turbulent kinetic energy while the second denotes the dissi-
pation. Both models specify the power spectral density (PSD) for the velocity components
and take white noise as input. A difference between the two models is the characterization
of PSD, rational for Dryden and irrational for von Kármán. Contrary to von Kármán and
Dryden, Kaimal and Mann gust models are widely used and standardized to evaluate
design loads on wind turbines. The wind disturbance in the Kaimal model is described
as 1-D spectral for turbulent velocity fluctuations, whereas Mann’s model is a spectral
tensor model based on von Kármán’s model [48]. The main difference between Mann’s
and Kaimal’s models is the presence of correlation between the wind velocity components,
where the former is with correlation and the latter is without. However, almost all of the pa-
pers found for this literature review employed Kaimal and Mann only for the determination
of wind turbine loads.

Unlike continuous gusts, discrete gusts are isolated flow structures that may take
several forms. This unsteady aerodynamics, such as discrete gusts of step, ramp, and
sinusoidal or 1-cosine shape, are often modelled in a single dimension through classical
state-of-the-art processes [49].

3.4. Semi-Empirical Methods

There have been many attempts to define a simple and fast computing empirical model for
urban microclimate simulation by the atmospheric science community since the 1960s for the
study of pollution dispersion and wind speed estimation. A steady vertical profile of the wind
conditions can be modelled by logarithmic (or power law) models or graphical methods for
an urban area [50]. These methods are straightforward, and the wind speed can be estimated
with simple calculations. However, they cannot predict the wind field between the buildings
or estimate the turbulence produced by the obstacles (buildings). Two additional, and equally
famous, dispersion modelling techniques used are the Lagrangian and Eulerian dispersion
models. These models date back to the 1980s and 1990s and have since been adopted for the
development of various fast urban wind modelling software programs such as QES winds,
QUICUrb, and URock [51–53]. Both Eulerian and Lagrangian approaches are based on
the conservation of mass. The former is often rejected due to the appearance of artificial
diffusion, whereas the latter is computationally expensive as trajectories of several thousand
fluid particles are to be calculated for small consecutive time steps based on the grid size.

Weather Research and Forecasting (WRF) is another popular diagnostic software
system that was built by NOAA and NCAR for meteorological research and weather
prediction [54]. The software uses mesoscale weather observation data to predict the
weather at different altitudes and resolutions. It is a fully compressible and nonhydrostatic
dynamic framework that allows nested domain simulations. However, WRF is meant
primarily for mesoscale weather predictions, and it is also computationally expensive
compared to the other semi-empirical models listed in this section.

3.5. Statistical Methods

Statistical methods usually require historical or synthetic weather data for prediction.
Such methods are often adopted from the artificial intelligence (AI) and machine learning
(ML) domains. The primary reason for their usage is the ease of modelling and faster
computation time. Many ML algorithms such as autoregressive (AR), autoregressive
moving average (ARMA), autoregressive integrated moving average (ARIMA), Bayesian
approach, etc., have been investigated within the wind engineering field for forecasting
wind speed estimation [55]. In [56], the authors employ a convolutional neural network



Drones 2024, 8, 147 11 of 24

(CNN) and long short-term memory (LSTM) to predict and increase the accuracy of wind
based on a measured 10 min average wind speed data. The paper claims that the models
have a strong learning ability for new data with increased accuracy. However, it is important
to note that although these statistical methods reduce the computation time by several
orders of magnitude when compared to CFD models, they rely heavily on training data,
making them a long-term solution for an initial phase of wind forecasting due to urban
wind data insufficiency.

3.6. Hybrid Methods

Coupled wind field simulation techniques are innovated primarily to overcome the
existing challenges in low-altitude atmospheric modelling such as high computation cost,
high computational time for higher accuracy, etc. Mi et al. [57] integrated RANS with WRF–
Building Effect Parameterizations (BEP) to simulate urban wind flow with high accuracy
and spatial resolution to determine the apt locations (places with low turbulence intensities)
for microwind turbine installation. However, this multiscale simulation methodology
seems to come with a high computational demand. CFD and on-site observational data
have also been combined to perform dynamic wind resource assessments [58]. It was
observed that many papers analyzed for this literature review utilized a hybrid model
of CFD + WRF. There have also been coupled CFD models based on RANS + LES for
more accuracy in the prediction of lower-altitude wind field [59]. Such hybridization has
been explored to bridge the gap in precisely modelling flow separation and attachment
zones in the urban environment. Furthermore, reduced order models (ROMs) such as
proper orthogonal decomposition (POD) and principal component analysis (PCA) have
been seen to be employed in correlation with CFD for optimizing the order and complexity
of turbulence modelling for the urban environment [60]. For example, PCA has been used
to define the leading large-scale urban weather components and K-means clustering to
define an optimum classification as a means of CFD + statistical method coupling for fast
estimation of flow over a wind farm [61,62].

4. Compare-and-Contrast Analysis

A compare-and-contrast study of the widely used wind flow models (listed in the previ-
ous section) is performed in the context of UAM applications. The analysis hinges on the fol-
lowing qualities of the wind model: time, resolution, and prediction accuracy (see Table 2).
The prime reason for selecting these specific qualities is the UAM requisites—i.e., the need
for faster weather forecasts, as a typical UAM flight would only last for a few minutes
initially due to the present battery limitations, and the dire need for fast computing models
which can accurately generate urban wind data for different conditions (cities, flow pa-
rameters, etc.) to determine performance-based UAM aircraft certification standards and
operational guidelines.

Table 2. Commonly used wind flow models in the context of UAM applications.

Model Type Simulation
Time Resolution Accuracy Remarks

Experimental methods

Wind tunnel - - High
• Expensive.
• Cannot produce high-intensity large-scale turbulence.
• Test model scaling effects.

CFD-based methods

LES Hours–days Micro-/meso-
scale High

• Initial and boundary conditions must be correctly defined or else the
results would vary widely.

• The higher the resolution, the higher the computational cost.

RANS Hours Micro-/meso-
scale Medium

• RANS misrepresent the stream-wise gradients of vertical velocity profile
and turbulence parameters.
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Table 2. Cont.

Model Type Simulation
Time Resolution Accuracy Remarks

Spectral methods

von Kármán,
Dryden,
Kaimal,
Mann

Seconds–
minutes Mesoscale Low

• Not widely used to study urban wind flow, although Kaimal’s and
Mann’s models are used to study low-altitude wind flow.

• Does not describe various separation and vortex regions within the
UCL.

Semi-empirical methods

Lagrangian,
Eulerian

Seconds–
minutes

Micro-/meso-
scale

Low com-
pared to
CFD-based
methods

• Lagrangian models are computationally expensive compared to Eule-
rian models.

• Do not capture all the wind flow characteristics in the urban environ-
ment.

• Widely used as an alternative to CFD-based models for urban wind
flow studies.

WRF Minutes–
hours Mesoscale

High com-
pared to
other semi-
empirical
methods

• Computationally expensive compared to other semi-empirical models.
• Requires nesting of domains of different sizes.
• Prediction accuracy is usually higher for mesoscale forecasting com-

pared to microscale.

Statistical methods

Machine learn-
ing, Artificial
Intelligence-
based

Depends on
the samples
used for
training

Depends on
the samples
used for
training

As accurate as
the training
samples

• Capable of real-time forecasting.
• The quality of the forecast would highly depend on the data used for

training the ML model.

Hybrid methods

CFD + semi-
empirical,
CFD + statisti-
cal

Hours–days Micro-/meso-
scale High

• ROMs are used to reduce CFD computational time.
• Mesoscale weather data (e.g., from WRF) used as initial and boundary

conditions for CFD models to improve accuracy.
• Often, coupling is not straightforward.

5. Wind Flow Modelling for UAM Development

A simple analysis was performed to cluster the 42 papers based on the categories listed
in Table 3 to identify the most researched wind modelling technique exercised for UAM
applications by far. Figure 8 is a pie chart representing the distribution of the 42 papers
under the different clusters.

Table 3. Paper clustering and categorization.

S. No. Category Category Description Papers

Cluster 1 Hybrid Papers that utilize a combination of atmospheric wind mod-
elling types. [63–73]

Cluster 2 Historical
weather data

Papers that use historical weather observation data from satel-
lites, sensors, etc. [74–80]

Cluster 3 Experimental Papers that generate data through experimental techniques such
as wind tunnel, etc. [81–86]

Cluster 4 CFD Papers that employ CFD models to simulate wind data. [87–90]

Cluster 5 Spectral Papers that compute wind data based on spectral methods like
von Kármán, Dryden, etc. [91,92]

Cluster 6 Semi-
empirical

Papers that exploit Eulerian/Lagrangian semi-empirical ap-
proaches to simulate wind fields. [93]

Cluster 7 Miscellaneous Literature review papers, papers that suggest novel nontechni-
cal ideas, etc. [94–104]
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Cluster 2: Historical weather data, 7

Cluster 3: Experimental, 6

Cluster 4: CFD, 4

Cluster 1: Hybrid, 11

Cluster 5: Spectral, 2

Cluster 6: Semi-empirical, 1

Cluster 7: Miscellaneous , 11

Figure 8. Clustering of 42 identified papers on wind modelling techniques in the context of UAM.

5.1. Cluster 1: Hybrid

The majority of the papers in this category exploit CFD in combination with historical
weather or experimental measurement data or statistical or semi-empirical methods in
one of the processes depicted in Figure 9.

Mandar et al. [63] utilize a multiscale methodology to generate a wind flow atlas for
the urban environment by employing three different models: HARMONIE, SIMRA, and a
super-microscale CFD method (see Figure 10). HARMONIE is a numerical weather predic-
tor (NWP) that utilizes ECMWF (European Centre for Medium-Range Weather Forecasts)
data. It is operated at 2.5 km × 2.5 km horizontal resolution, and the resultant data are
used to set the boundary conditions for SIMRA (Semi IMplicity Reynolds Averaged model),
which is a prognostic CFD-based solver that relies on RANS and k-ε turbulence closure
equations with orthogonal structured meshes. SIMRA is operated at a grid resolution of
112 m × 112 m for an efficient and coarse microscale wind simulation. The outputs from
SIMRA are used as input to an OpenFOAM-based super-microscale model that utilizes
nonorthogonal meshes of 0.15 m grid size to solve the realizable k-ε turbulence closure
equations for a finer prediction of wind flow around buildings and structures. This complex
model may have factored in multiple meteorological parameters from different scales to cre-
ate a wind atlas. However, the prediction accuracy has not been validated, not to mention
the fact that this nested solver may also be less efficient with respect to the computation
time. Similarly, in [64], an unsteady RANS and k-ε-based CFD model is nested within
two mesoscale wind models for the development of a real-time turbulence alert system for
an area surrounding a Norwegian airport. Authors in [65] use hourly data from WRF to
dictate the initial and boundary conditions of a CFD model that is based on LES-filtered
equations for replicating wind conditions over a downtown area in Oklahoma, United
States. Four WRF schemes, which are diversified based on the simulation domain size
(3 km, 1 km, and 400 m) and UBL model, and two coupled WRF+LES schemes each with
different coupling methods are compared to the Micronet (weather) station observation
data. It has been identified that coupled WRF+LES schemes perform better than the stan-
dalone WRF schemes. The paper also states that the employed method does not resolve
turbulent motions of urban wind because of terrain topography uncertainties, as only a
little difference is observed in the estimated values of a 1 km and 400 m WRF domain.
This behavior is reasoned to be because of the coarse and insufficient LES assumptions
of vertical transport and wind gusts. Two additional papers that explore the use of CFD
nested within WRF are [66,67]. In [68], the author uses a data assimilation approach where
LES-based synthetic observation data are accumulated and assimilated to improve a RANS
model for the generation of wind data. The paper claims that this approach reduces the
model discrepancies from 15 to 3% and states that the mean error decreases from 54% at
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the analysis time to 10% for a simulated 400th of a second. However, it has to be noted
that the process of using synthetic observation data would ultimately compel the results to
carry the uncertainties of the synthetic model. Nevertheless, the data assimilation approach
is a wise idea for populating or creating a wind atlas or a database.

CFD

Historical Observation
Data from GFS,

ECMWF, METAR,
Ground-based

Remote sensors or
Weather Stations

Mesoscale semi-
empirical models (eg.

WRF)

OR
Statistical method

Predicted Wind flow
data

Microscale data or model

Database

Trained Wind flow
forecast

Train data

Initial and boundary
conditions

Statistical method
(ROMs)

Reduce no.
of simulation
parameters

Mesoscale data or model

UAM applications

Real-time or Near real-time forecasts

Mesoscale data or model + CFD Mesoscale data or model + CFD => Database

Mesoscale data or model + ROMs + CFD => Database + ML or AI Mesoscale data or model + CFD => Database + ML or AI

LEGEND

Figure 9. Overall depiction of the hybrid modelling processes observed within the 11 found papers.

In refs. [69,70], LES performed for neutral and dry atmospheric conditions, is coupled
with statistical machine learning methods such as reduced order modelling and recurrent
neural networks (RNNs) to simulate wind conditions around a cubical building for the
safe operation of sUAS (small unmanned aerial systems). Specifically, the paper exploits
proper orthogonal decomposition (POD) as the ROM technique to reduce the number of
modal coefficients of the mean fluctuation flow field, obtained from the LES snapshots.
Later, the RNN algorithm, long short-term memory (LSTM), is trained on specific modal
coefficients to predict the flow field for future snapshots. The authors claim that the
predicted results match the trained samples and encounter only a slight deviation when
the prediction period is increased. However, this method employs simplification strategies
like the consideration of a smaller domain and horizontal wind velocity component alone
for the prediction, thereby making this wind data generation technique rely on the training
sample assumption and accuracy.

HARMONIE
Weather forecasting model

Domain size: 1875km×2400km×16km

SIMRA
Terrain induced turbulence 

Domain size: 18km×18km×4km

OpenFOAM RANS
Building induced turbulence 

Domain size: 760m×660m×357m

Figure 10. Multiscale wind modelling methodology from [63].



Drones 2024, 8, 147 15 of 24

In [71], PALM is utilized in combination with historical weather data to resolve
turbulent flow across an urban landscape by conducting several simulations, which are
variegated by key parameters such as domain size, number of grid points, grid spacing,
atmospheric stability, magnitude and direction of the geostrophic wind, surface heat
flux, and simulation time. It was identified that the results are sensitive to the initial
wind direction, and the approach is ineffectual for operational forecasts due to longer
computation time. Therefore, the authors stressed the need for the generation of a database
and careful selection of simulation parameters to decrease the overall simulation time.
Similarly, ref. [72] uses historical data in combination with a RANS CFD solver to study the
wind field of an area in Toronto City and generate historical real-time forecasts with the
help of an application programming interface (API). The authors also validate the results
by comparing them to local weather station measurement data. The paper claims that 85%
of the modelled data contain an error of only 8–12%. However, this approach also suffers
from longer computation time (54 h for simulating wind field for 36 wind directions with
12 million grid cells and 128 h for 32 million cells). With time for convergence being the
biggest challenge with CFD-based hybrid models, the authors in ref. [73] explore the use of
a fast-computing wind flow solver called QUIC-CFD to determine performance-efficient
quadrotor flight trajectory within the UBL. QUIC-CFD is based on RANS CFD models
and historical weather data and was built by the Los Alamos National Laboratory for the
determination of pollution dispersion in an urban environment. The results obtained from
the QUIC-CFD model were validated through comparison of sensor data, and about 81%
of modelled data seemed to show errors of less than 50% of the measured data. However,
the simulation was performed under the assumption that turbulence is only a form of
uncertainty for a steady incoming flow under neutral atmospheric stability, which is not
the case in reality.

5.2. Cluster 2: Historical Weather Data

Papers identified in this category extrapolate historical weather observation data to
predict the wind and gust characteristics for UAM applications.

METAR (Meteorological Terminal Aviation Routine) wind and gust data from airports are
collected for a certain period of time and extrapolated to achieve the following: 1. Evaluate the
wind impacts on vertiport operations and drone deliveries. 2. Determine the runway orienta-
tions for short take-off and landing (STOL) aircraft in the context of Sub-Urban Air Mobility.
3. Test and develop new software frameworks that analyze weather data for improving BVLOS
(beyond visual line of sight) UAS operation safety [74–77]. Likewise, mesoscale satellite
weather data obtained from the ECMWF (European Centre for Medium-Range Weather
Forecasts) and GFS (Global Forecast System) are used to define energy-efficient flight
routes [78]. Historical data from weather stations are used to identify weather-related oper-
ational risk levels and ideal weather conditions for safe drone operations through statistical
and qualitative approaches such as pattern analysis and Beaufort wind scales [79,80].

This straightforward approach of using observation data would eliminate the need for
complex wind modelling, but the prediction may not sustain accuracy for wider areas. This
is due to the fact that extrapolating data from METAR, ECMWF, GFS, and weather stations
does not take into account the topographical changes and corresponding ramifications to
the wind flow.

5.3. Cluster 3: Experimental

There are many ways to obtain urban wind field data experimentally, and so far, the
UAM community has utilized wind tunnels, experimental flight tests, and novel wind
simulator facilities like WindShape, which is developed and utilized to conduct free drone
flight tests under various atmospheric conditions in a controlled environment [81,82].
WindShape employs multifan technology (refer to Figure 11), where multiple fans are
stacked on top of each other in an arbitrary array, and each fan can be independently
controlled, allowing for faster changes and reproduction of high-intensity gusts and wind
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shear; while such technology can be used to test the integrity of the UAM aircraft structure
and system performance, it may not be enough to exactly replicate wind flow for an
urban environment.

Figure 11. (Left) WindShape technology consisting of multiple fans [82] and (Right) WindShape
technology facility setup [81].

ABL wind tunnel tests are conducted on a 1:400 scale urban landscape model to
identify the areas with severe flow conditions for UAM applications [83] and to support a
case study that is focused on determining vertiport operation interruptions by unfavorable
weather conditions [84]. The test conditions are diversified with respect to wind direction,
and the data are measured using probes at 36 select locations across the down-scaled model.
The wind tunnel results prove that the wind speed in an urban environment varies widely,
along with altitude and wind direction, when compared to local weather station reports,
establishing the fact that atmospheric wind modelling for urban environments is a complex
and onerous process.

In [85], a low-speed gust wind tunnel is employed to emulate two types of gust
response, isolated 1-cosine shape and continuous gust, and to perform free-flight tests with
the help of a motion capture sensor system for evaluating the gust response of a prototype
small UAS. However, wind tunnel tests are quite expensive, despite their ability to produce
near-realistic urban conditions. Thus, operational or test flights could be another way
of conveniently collecting wind data for the urban environment. For example, in [86],
the authors perform live UAS flight tests in authorized airspace to characterize the effects
of adverse weather on flight performance through the data obtained from onboard sensors.
The study states that sudden bursts of gusts were prevalent throughout the testing phase.
However, one of the major disadvantages of such flight tests would be the operational risks
involved and the strict need for the careful fabrication of robust risk mitigation procedures.

5.4. Cluster 4: CFD

CFD models, in general, trade-off between computation time, expense, and accuracy.
That is, a model that predicts wind flow field for an urban environment with increased
accuracy will usually have a higher computational expense and time, and vice versa.

In [87], Joint Outdoor–Indoor Urban Large Eddy Simulation (JOULES), a GPU-enabled
LES-based CFD solver that can predict urban wind fields 150 times faster than the tradi-
tional LES model for a resolution of 0.3 m, is assessed for suitability to be applied within the
UAM domain. Likewise, ref. [88] compares two CFD techniques, steady-state RANS and
unsteady IDDES (Improved Delayed Detached Eddy Simulation) against static anemometer
observations and drone-gathered weather measurements. The paper claims that RANS
provides an accurate and informative model when compared to averaged observation data,
while IDDES poses as a suitable model representing the turbulent leeward side when the
comparison is made with the drone-gathered data. JOULES, RANS, IDDES, and LES can
all produce wind flow fields for UAM applications. But CFD models take more than an
hour (or even days) to attain convergence and hence cannot be used for routine UAM
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usage [89]. This is due to the computing capacity limitations. However, this issue can be
partially solved by the generation of a database or wind atlas. In fact, one of the oldest
papers (published in 2011) found for this review article, focusing on the modelling of wind
fields for unmanned rotorcraft flight in an urban setting, uses a “Wind Simulation Database
(WSD)”, which contains data from RANS and k-ε-based CFD simulations for different
building geometries [90].

5.5. Cluster 5: Spectral

Several papers that investigate gust loads on UAM aircraft were seen to use the
traditional von Kármán and Dryden models for simulating gusts; however, the urban built
environment would violate many core assumptions made within these models [94,105].
Thus, low-altitude turbulence flow field generating software such as TurbSim is seen
to be used to assess flight responses of different-sized quadcopters [91]. TurbSim is a
stochastic inflow turbulence generator that allows the user to choose a range of spectral
methods like Kaimal, Risø smooth terrain model, etc., to produce time series data of the
3D turbulence velocity components [106]. Furthermore, in [92], a novel spectral method is
developed based on Taylor’s frozen turbulence hypothesis and von Kármán’s turbulence
model with third and fourth order shaping filters to study rotorcraft pilot workload for
operations in low-altitude atmospheric turbulence. The authors use pre-warped Tustin’s
transformation to discretize the shaping filters and obtain the 3D turbulence components
within a specific frequency range for more accuracy in turbulence modelling. It is claimed
that this innovative method can generate high-intensity turbulence by also considering
the terrain roughness. However, it is still unclear how accurately this method can imitate
urban atmospheric wind conditions.

5.6. Cluster 6: Semi-Empirical

Researchers from MIT use WRF models for predicting the wind conditions for an area
in Dallas–Fort Worth to evaluate the wind constraints in the AAM operating airspace [93].
Three domains with different sizes, i.e., 2.5 km, 500 m, and 100 m, are nested within the
WRF model. Data from HRRR (High-Resolution Rapid Refresh) are used to set the initial
and boundary conditions of the 2.5 km domain. WRF is a mesoscale model, but the authors
state that WRF could be a good starting point for increased weather awareness for AAM
operations, nonetheless.

5.7. Cluster 7: Miscellaneous

This section provides a list of papers that are based on extensive literature reviews,
including novel nontechnical ideas and measurement suitability assessments.

Refs. [95–97] are literature review papers that discuss the following: 1. wind sensing
and simulation techniques; 2. effects of urban wind flow on UAS operations; and 3. UAM
sectors focus on now-casting techniques like data assimilation, machine-learning algo-
rithms, and variational and time-series analysis in combination with CFD techniques to
estimate urban wind parameters accurately and efficiently. Likewise, ref. [94] provides a
detailed description of the effects of gusts on fixed-wing UAVs operating close to obstacles,
and a case study of the effects of gusts on UAM operations with the help of a CFD-based
wind model from [59].

Refs. [98,99] advocate for a crowdsourcing approach to collect weather data for UAM
applications by introducing a “crowdsensing” model that the authors define as a “cyber-
physical urban meteorological observational system”. The overall idea of the paper is to
collect quality dynamic urban weather data from mobile phone apps, passive IoT devices with
sensors, etc. This could be a smart idea; however, there will be a need for the involvement
and agreement of many stakeholders for the successful enforcement of such models.

In [100], the authors explore three turbulence models, von Kármán, Kaimal, and LES,
to model low-altitude atmospheric turbulence as part of an investigation to determine the
dynamic response of a flexible aircraft. The paper assumes a neutral atmospheric boundary
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layer and flat surface with three different roughness values defining three flow conditions
for a robust comparison of results from the three wind models. The authors claim that
Kaimal and LES agree well with the vertical mean velocity profiles, whereas von Kármán
performs poorly beyond the reference altitude. In the same suitability assessment category,
NASA researchers compare LiDAR- and SoDAR-based wind measurement data with
onboard IMU data of UAS [101]. The paper discusses the advantages and disadvantages of
each system and concludes by stating that the usage of a combination of wind measurement
techniques should be considered for enhancing the safety of UAV operations in urban
environments. Another paper that discusses the development of ground-based remote
sensing systems using a combination of Doppler weather radars and wind LiDARs is [102]
by TruWeather Solutions (TWS), a microweather analytics and technology company that
collaborates with NASA and other field players like DM-AirTech and ResilienX to develop
weather solutions for the development of AAM.

Lastly, in [103,104], high-fidelity LES data of over an hour are integrated into an
additional “wind module” within the AirSim simulator’ however, since the papers are
mainly focused on developing and validating a simulator user interface that displays the
wind data, there is not much information provided on how the wind is modelled within
the “wind module”.

6. Summary and Remarks

The extensive body of research on urban wind flow reveals that a multitude of factors,
including diurnal variations, the Coriolis effect, altitude changes, geographic positioning,
topography, surface roughness, flow incidence angle, building and street configurations,
building aspect ratios, roof shapes, and building heights, collectively shape the wind flow
characteristics within the UBL. As a result, the wind velocity and fluctuation components
within the UBL exhibit frequent spatio-temporal variations and complex flow patterns
or regions that are distinct from those encountered at high altitudes where traditional
aircraft typically operate for most of their flight duration. This underscores the necessity
to evaluate and integrate the low-altitude urban microscale wind data within the UAM
system design, development, and testing to ensure the safe operations of UAM. Moreover,
it can be said that these convoluted flow features and variations contribute significantly to
the scarcity of observational wind data for urban environments, as observing or recording
such highly dynamic flows would require the emplacement of multiple sensors at different
altitudes and sides of the building, street, etc.

The general review of the wind models used for weather forecasting, pollution disper-
sion, etc., unveiled that the atmospheric wind simulations can be differentiated into spatial
and temporal classifications based on the prediction resolution and time. To establish
a more structured approach and analysis for this paper, these simulations were initially
segmented into six categories, following the modelling techniques (refer to Figure 7), be-
fore being distinguished under the different spatial and temporal classes. The analysis
indicated that high-fidelity CFD methods like LES or RANS, semi-empirical mesoscale
models like WRF, and weather satellite-based observation data are commonly employed
for weather forecasting, pollution dispersion, and pedestrian comfort estimation by atmo-
spheric scientists. On the contrary, spectral models like Kaimal, Mann, etc., and statistical
methods like machine learning and AI were observed to be used for the determination
of wind turbine loads and wind power generation forecasts within the wind engineering
community. Furthermore, it was noted that the prediction resolution depended on the
nature of the application, the type of research, and the results sought, while the accuracy
and prediction time were directly proportional to the prediction resolution—i.e., realistic
models or models that employed finer grids were seen to generate accurate predictions
but take a longer time, and simplified models were noted to produce less accurate results
for a shorter time. To overcome this setback in simulation, many papers that are in the
context of the atmospheric science discipline suggest dimensionality reduction for wind
modelling. However, there is still a lot of information disparity within the existing research
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on the parameters that highly affect and influence the urban wind flow to enable this
solution. Similarly, an alternative option, which is discerned to be trending among the
recent publications on wind modelling, is the use of hybrid models that encompass two or
more wind modelling types and assimilation techniques. This rising trend is also visible
within the UAM sector.

The majority of the current research that discusses the effects of wind on UAM aircraft
controls, rotor performance, etc., seems to delve into the utilization of standardized von
Kármán and Dryden wind turbulence models, which represent the turbulence scale as a
constant value, in contradiction to the reality of urban wind flow conditions. Moreover,
only 42 publications were found to be disseminated, from 2011 to 2023, with regard to the
incorporation and representation of low-altitude urban wind data in the context of UAM
applications. This denotes that there remains a notable lack of research and awareness
within the UAM community about the effects of low-altitude urban microscale wind
conditions on the safety of UAM.

The 42 identified papers were grouped into seven clusters, as described in Table 3, for
comprehensive literary analysis, and the following points provide a summary of deductions
drawn from this review:

1. About 26% of the 42 papers explore the potential of hybrid models in estimating urban
wind fields for UAM. These models integrate WRF, historical weather data, ML, or
AI with CFD to generate accurate results with less computational time and expense.
However, it was observed that the prediction accuracy and time varied depending on
the selection of coupled models. That is, a hybrid model that nested CFD methods
like RANS within a WRF mesoscale domain had a computation time of more than
a few hours for increased accuracy, in contrast to an ML + CFD based model that
had a comparatively shorter prediction time. Thus, the choice of the models to be
combined must be carefully considered, as overly simplified models lack accuracy,
CFD-based models have a higher convergence time, and ML- or AI-based model
accuracy depends on the training data.

2. All the papers included in this review consistently emphasize the discordant UAM
demand for faster and more accurate wind forecasting models. However, the existing
ConOps, or the certification standards, do not specify how accurate and fast these
wind forecasts or models should be, —i.e., there are no requirements that quantify the
maximum and minimum expected uncertainties, latency, etc.— nor do they specify
which wind parameters to use and how the wind data must be dispensed by the
weather service providers. Moreover, the interpretation of the terms “faster” and
“accurate” may vary depending on the context of the application. For example, precise
real-time weather forecasts are vital during landing, approach, cruise, hover, and tran-
sitional flight phases to enable timely decision making for in-flight safety systems and
for enhancing operational safety management. Conversely, near-real-time forecasts
might suffice for the takeoff phase to strategically postpone, reject, or reschedule
flight operations if adverse wind conditions are detected at the touchdown and lift-off
(TLOF) and final approach and takeoff (FATO) areas. Similarly, wind modelling for
urban wind database generation to determine the certification standards and oper-
ational guidelines could slightly trade prediction time for accuracy. On the whole,
these deductions indicate that there is still ambiguity in determining the weather
requirement standards.

3. Current research on wind modelling for UAM applications is limited, as around
48% of the papers that discuss microscale wind modelling for UAM from a generic
standpoint suggest the use of CFD, but it is evident from the review in Section 3 that
there are wind modelling systems, like QES-winds, Quic-Urb, URock, etc., that use
highly parameterized methods for ultrafast wind prediction. Similarly, turbulence
models like Kaimal, Mann, etc., used within the wind engineering domain to depict
low-altitude wind conditions may also be applicable and efficient for use within the
UAM sector.
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4. With regard to the varying accuracy and prediction time of the wind models, it can
be inferred that the technique used for generating microscale wind data would vary
depending on the UAM application scenario. For example, LES and DNS are not
applicable for UAM operational forecasts; however, the data from these methods could
be used for validating wind data from low-fidelity simulators. RANS could be used to
simulate wind fields for multiple scenarios and test conditions, and the data generated
from these tests could be stored in a database to define AD levels for different flight
phases and UAM configurations. Similarly, an initial high-level qualitative suitability
and efficiency evaluation of other microscale wind field simulators can be performed
for diverse UAM applications as shown in Table 4.

Table 4. Qualitative analysis of wind model suitability for different UAM application scenarios.

Wind Model Type
UAM Application Scenarios a

1 2 3 4 5 6

Wind tunnel tests ✓ ✓ ✓
WindShape ✓
DNS ✓
LES ✓
RANS ✓ ✓
WRF ✓
Kaimal, Mann ✓
Historical data ✓
WRF + CFD ✓ ✓ ✓
Highly parameterized models b ✓ ✓ ✓ ✓ ✓
CFD ROMs ✓ ✓
ML + CFD ✓ ✓ ✓
von Kármán, Dryden ✓

a 1—UAM operational forecasts; 2—synthetic wind database generation (for determining certification standards,
operational guidelines, operational wind thresholds, performance-based risks, etc.); 3—vehicle simulation testing
and research of weather impact on UAM system; 4—wind data validation; 5—in-flight safety management
systems or services (dynamic rerouting, constraint management, trajectory optimization, collision avoidance,
etc.); 6—initial research or analyses of weather impacts on UAM operations or vertiports. Please note that the
application scenarios and wind modelling methods are non-exhaustive. b QES-Winds, Quic-Urb, URock, etc.

Furthermore, this research could be expanded to quantitatively assess the effectiveness
of highly parameterized wind models, like QES-winds, Quic-Urb, or URock, for UAM
applications through replication of high-fidelity wind simulations (such as wind tunnel
tests, DNS, or LES simulations) and results comparison. This would facilitate the estimation
and analysis of wind model uncertainties, identification of the underlying physical reasons
for uncertainty, and refinement of wind models for UAM applications. Moreover, the quan-
tification of wind prediction uncertainties would aid in incorporating sufficient safety
buffers within the UAM certification standards and operational guidelines. Additionally,
hybrid models that comprise numerical weather predictors like WRF, highly parameterized
systems, and low-altitude turbulence generators like TurbSim should be developed and
explored to generate and forecast data for UAM certification and routine operations.

Overall, this manuscript cataloged several microscale wind models which can be
used to generate synthetic wind data for diverse UAM applications. The insights from
this literature review can assist the UAM community in making well-informed decisions
regarding the selection of appropriate wind models for specific UAM research and needs.
Additionally, the information contained within this article can serve as a first step to solve
some of the larger UAM hindrances, like the identification of exhaustive weather data re-
quirements for UAM operations; specification of standards for designing weather geofences
and in-flight safety management system services such as alerts and warnings, dynamic
rerouting, collision avoidance, etc.; determination of vertiport emplacements within the
city; design of TLOF and FATO zones; and assessment of UAM aircraft operational limits
for different atmospheric disturbance levels.
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