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Abstract
Background: Total marrow (lymphoid) irradiation (TMI/TMLI) is a radiother-
apy treatment used to selectively target the bone marrow and lymph nodes in
conditioning regimens for allogeneic hematopoietic stem cell transplantation.
A complex field geometry is needed to cover the large planning target volume
(PTV) of TMI/TMLI with volumetric modulated arc therapy (VMAT). Five isocen-
ters and ten overlapping fields are needed for the upper body, while, for patients
with large anatomical conformation, two specific isocenters are placed on the
arms.The creation of a field geometry is clinically challenging and is performed
by a medical physicist (MP) specialized in TMI/TMLI.
Purpose: To develop convolutional neural networks (CNNs) for automatically
generating the field geometry of TMI/TMLI.
Methods: The dataset comprised 117 patients treated with TMI/TMLI between
2011 and 2023 at our Institute. The CNN input image consisted of three chan-
nels, obtained by projecting along the sagittal plane: (1) average CT pixel
intensity within the PTV; (2) PTV mask; (3) brain, lungs, liver, bowel, and bladder
masks. This “averaged” frontal view combined the information analyzed by the
MP when setting the field geometry in the treatment planning system (TPS).Two
CNNs were trained to predict the isocenters coordinates and jaws apertures for
patients with (CNN-1) and without (CNN-2) isocenters on the arms. Local opti-
mization methods were used to refine the models output based on the anatomy
of the patient.Model evaluation was performed on a test set of 15 patients in two
ways: (1) by computing the root mean squared error (RMSE) between the CNN
output and ground truth; (2) with a qualitative assessment of manual and gen-
erated field geometries—scale: 1 = not adequate, 4 = adequate—carried out
in blind mode by three MPs with different expertise in TMI/TMLI. The Wilcoxon
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signed-rank test was used to evaluate the independence of the given scores
between manual and generated configurations (p < 0.05 significant).
Results: The average and standard deviation values of RMSE for CNN-
1 and CNN-2 before/after local optimization were 15 ± 2/13 ± 3 mm and
16 ± 2/18 ± 4 mm, respectively. The CNNs were integrated into a planning
automation software for TMI/TMLI such that the MPs could analyze in detail
the proposed field geometries directly in the TPS. The selection of the CNN
model to create the field geometry was based on the PTV width to approximate
the decision process of an experienced MP and provide a single option of field
configuration.We found no significant differences between the manual and gen-
erated field geometries for any MP, with median values of 4 versus 4 (p = 0.92),
3 versus 3 (p = 0.78), 4 versus 3 (p = 0.48), respectively. Starting from October
2023, the generated field geometry has been introduced in our clinical practice
for prospective patients.
Conclusions: The generated field geometries were clinically acceptable and
adequate,even for an MP with high level of expertise in TMI/TMLI. Incorporating
the knowledge of the MPs into the development cycle was crucial for optimizing
the models, especially in this scenario with limited data.

KEYWORDS
autoplanning, deep learning, total marrow irradiation

1 INTRODUCTION

Total marrow irradiation (TMI) and total marrow lym-
phoid irradiation (TMLI) are recent radiotherapy (RT)
treatments used as conditioning regimen for allo-
geneic hematopoietic stem cell transplantation in acute
leukemia.1 Over the past two decades, TMI and TMLI
have been developed to selectively target the bone mar-
row and lymph nodes, while reducing the exposure of
normal tissues and the late toxicities associated to tradi-
tional total body irradiation (TBI), where the whole body
is irradiated.2

Several authors have conducted studies investigat-
ing the clinical feasibility of TMI/TMLI with intensity-
modulated techniques, including intensity-modulated
radiation therapy (IMRT), tomotherapy, and volumet-
ric modulated arc therapy (VMAT). These studies
have consistently shown that these techniques provide
adequate target coverage and reduce doses to nor-
mal tissues, without compromising treatment delivery
efficiency.3–6

Phase I/II clinical trials have been or currently are
under investigation to improve disease control with
acceptable toxicity.1 Although there is a growing clin-
ical interest in TMI/TMLI worldwide,7 its widespread
implementation is hindered by technological gaps dur-
ing the RT process. Manual contouring of target and
normal tissues can take up to 16 h,8 while plan optimiza-
tion requires prolonged computation time and extensive
work by an experienced medical physicist (MP).

Recent studies have shown the successful application
of artificial intelligence (AI) algorithms for automating
the treatment planning of TMI/TMLI. Watkins et al.

evaluated an AI segmentation software for total body
contouring of 27 organs at risk (OARs) and four plan-
ning target volumes (PTVs), finding good spatial and
dosimetric agreement with manual contours.9 Ahn et al.
developed an AI-based model for plan optimization
of VMAT-TMI, which improved dosimetric quality while
reducing dependence on planner experience.10

However, other technological difficulties remain unan-
swered. To cover the large target volume of TMI/TMLI
with VMAT, typically five isocenters and ten overlapping
fields are needed for the upper body. For patients with
large anatomical conformation, two specific isocenters
are placed on the arms. Therefore, the positioning of
isocenters and jaws apertures requires a complex field
geometry designed by an MP with high level of expertise
in TMI/TMLI.

A few authors have explored optimization methods for
determining the isocenter location and jaws apertures
in radiosurgeries, prostate, and rectal cases.11–15 In
these studies, researchers employed brute-force meth-
ods, similarity scores based on the patient’s anatomy,
and AI algorithms,such as k-means clustering and deep
learning (DL), to find the optimal solution.

Recently, two studies have reported the automa-
tion of field geometry for TBI delivered with VMAT
using heuristic rules based on structures volumes
and distances.16,17 Although this approach can find
near-optimal solutions, it might not be fully adequate
to generate complex field geometries required for
TMI/TMLI.

To address this clinical challenge, we developed
DL-based models to automatically optimize the field
geometry—that is, isocenters positions and jaws
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apertures—of TMI/TMLI. To the best of our knowledge,
this is the first study presenting the application of
DL methods for generating a field configuration in a
multi-isocentric VMAT setting.

2 MATERIALS AND METHODS

2.1 Dataset

In this study, 117 patients treated with TMI/TMLI at
our Institute from 2011 to 2023 were retrospectively
selected. All patients signed an informed consent
in accordance with the Declaration of Helsinki and
approved by the Institutional Ethics Committee of
IRCCS Humanitas Research Hospital (ID 2928,January
26, 2021 - ClinicalTrials.gov identifier: NCT04976205).

Computed tomography (CT) images used for simu-
lation were acquired on a CT Big Bore (Philips Health-
care, Best, Netherlands) and on a SOMATOM go.Sim
(Siemens Healthcare GmbH, Erlangen, Germany) for
107 and 10 patients, respectively. The resolution of the
images was heterogeneous. Specifically, the pixel spac-
ing was 1.17 mm for 98 cases, while it ranged between
1.31 and 1.37 mm for the remaining 17 cases. The slice
thickness was 2.5, 3, 5, and 7.5 mm for, respectively, 2, 5,
109,and 1 CT series.All acquisitions had the same num-
ber of pixels, 512 × 512, with different number of slices,
from 184 to 534, depending on the patient’s height and
slice thickness.

Treatment planning was conducted using the Eclipse
(Varian Medical Systems, Palo Alto, CA, USA) treat-
ment planning system (TPS). All plans were delivered
with VMAT on a TrueBeam (Varian Medical Systems,
Palo Alto, CA, USA) equipped with a Millennium mul-
tileaf collimator. We refer to our previous studies for a
detailed description of the protocol followed to delineate
the PTV.18,19

The field geometry was created by an experienced
MP by positioning five isocenters—two full-arc fields per
isocenter with collimator angle set at 90◦—along the
body of the patient. For each field, asymmetric jaw set-
tings were used to guarantee a field overlap for at least
2 cm on each side, such that differences between the
planned and delivered dose due to small patient mis-
alignments were minimized.18 Isocenters locations and
jaws apertures were decided by taking into considera-
tion the specific anatomy of the patient.20 In particular,
the MP maximized the freedom of motion of the multi-
leaf collimator for each field aperture. Notably, the most
critical region was the abdomen, where fields could not
include the ribs and iliac crests within the same beam’s
eye view (BEV) to avoid overexposing normal tissue.

For patients with large anatomical conformation, the
maximum jaw aperture (40 cm) was not sufficient to
provide an adequate target coverage.Using only isocen-
ters along the body, the BEVs would contain the arms

mostly during a limited portion of the gantry rotation
and from a lateral direction, with consequent unnec-
essary irradiation of medial healthy tissues. Therefore,
in these cases, two specific isocenters—each with one
field—were placed on the arms, while only four isocen-
ters were used on the body to maintain a reasonable
treatment time. This configuration allowed to extend
the anterior/posterior BEVs on the arms, ensuring safe
irradiation with no OARs overlap. Figure 1 shows two
representative cases of field configuration with and
without isocenters on the arms.

Since 2021, a different configuration of the collima-
tor angle was introduced for the pelvic fields, where
the collimator angle was changed from 90◦ to 5◦/355◦

to align the fields along the femurs and irradiate one
leg at a time. However, to homogeneize the data and
reduce the degrees of freedom,the collimator angle was
set to 90◦ for all cases and the jaws apertures were
adjusted accordingly (see Section S1 and Figure S1 of
the Supporting Information).21

Table S1 provides a complete description of the
dataset in terms of acquisition specifications and field
geometry.

2.2 Preprocessing

For each patient, the CT, RT structure set, and RT plans
were exported in DICOM format.A three-channel image
was constructed by projecting along the sagittal plane:
(1) average CT pixel intensity within the PTV; (2) PTV
mask; (3) brain, lungs, liver, bowel, and bladder masks.
This “averaged” frontal view was built to aggregate the
information analyzed by the MP when setting the field
geometry in the TPS.

To facilitate the model training, a min-max normal-
ization was applied to rescale the first channel of the
images (CT pixel intensities) in the range [0, 1]:

x′ =
x − min (x)

max (x) − min (x)

where the minimum and maximum were computed for
each image.

The masks of the PTV and OARs were weighted
by 0.3, and 0.5, respectively, except for the intestine,
with a weight of 1. This decision was made to increase
the pixel intensities between the most caudal ribs and
the iliac crests, where the positioning of isocenters and
jaws apertures was crucial to obtain an acceptable field
geometry according to the anatomy of the patient (see
Section 2.1).

The field geometries were extracted from the RT plans
and matched to the pixel space of the images by trans-
forming isocenters coordinates and jaws apertures from
the DICOM patient coordinate system to the DICOM
voxel coordinate system.
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F IGURE 1 Field geometry designed by an expert MP for patients with (A) and without (B) isocenters on the arms. For case (A), the
maximum jaw aperture (40 cm) cannot adequately cover the entire PTV. MP, medical physicist; PTV, planning target volume.

F IGURE 2 (A) Preprocessing pipeline implemented to create a raw image, with the associated ground truth field geometry. (B) Model
diagram of the CNN used for predicting isocenters positions and jaws apertures for patients without isocenters on the arms. Dots and
rectangles on the images denote isocenters positions and jaws apertures, respectively. Fields belonging to the same isocenters group are
represented using the same color. CNN, convolutional neural network.

Figure 2A shows the pipeline implemented for pre-
processing the dataset. By construction, the raw images
were rectangular with resolution given by the pixel
spacing and slice thickness of the acquisition, with hor-
izontal patient orientation. To standardize their shape
and achieve a vertical patient orientation as seen by the
MP in the TPS, the images were resized to 512 × 512
and rotated 90◦ counterclockwise.

The same transformations were applied also to
the coordinates of the isocenters—landmarks on the
images—to preserve the correct field geometries. The
jaws apertures, instead, were only resized, being the

rotation an isometry. Finally, the isocenters coordi-
nates and jaws apertures were scaled by the image
width to constrain the model output to values less
than 1.

2.3 Deep learning models

In this study, two convolutional neural networks (CNNs)
were implemented to predict the field geometry for
patients with (CNN-1) and without (CNN-2) isocenters
on the arms.Both models were trained using 2D images
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of shape (3x)512 × 512 representing the frontal view
of the patients’ anatomy. Among the 117 patients, 31
and 86 were planned with and without isocenters on
the arms. These subgroups were split into training, val-
idation, and test sets comprising 22/69, 3/8, and 6/9
patients, respectively.

To increase the number of examples in the training set
and improve model regularization, the raw images were
augmented without major alterations to the patients’
anatomy, as it is tightly coupled to the corresponding
field geometry. The following transformations, each one
having a 70% chance of occurrence, were applied in
sequence:horizontal flip, translation,elastic deformation,
and cutout. We refer to Table S2 for a comprehensive
description of the parameters used for data augmen-
tation. The training sets for CNN-1 and CNN-2 were
increased by 100% and 50% in size using augmentation.
These ratios were selected after several experiments
as the models performance reached a plateau beyond
these values.

Figure 2B shows the architecture implemented for
CNN-2: four convolutional layers to extract relevant pat-
terns from the input, a max pooling layer to downsample
the feature maps and summarize information,and a fully
connected head to perform the regression of isocen-
ters coordinates and jaws apertures.The dimensionality
of the output was reduced from 60 to 25 by exploit-
ing the symmetry of the field geometry. The same
architecture was used also for CNN-1, with the only dif-
ference on the output shape, equal to 30. The detailed
description is provided in Section S3 of the Supporting
Information.

For training, a weighted mean squared error (MSE)
was used as loss function:

lossCNN =
1
N

N∑
i

wi(xi − yi)
2

where N is the dimensionality of the output, wi is a
weight factor to penalize the CNN prediction xi , and
yi is the target value. The weights wi were assigned
a value of 3 for the pelvis and abdomen isocenters
coordinates, critical for a correct field geometry on the
ribs and iliac crests, and set to 1 for the remaining
terms.

The Adam algorithm was used to optimize the
CNN parameters, with a learning rate of 0.00001,
and momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999.
A scheduler was employed to reduce the learning
rate by a factor of 10 when the training loss did
not decrease once in 3 epochs. The training loop
was run with a batch size of 10, using an early
stopping criterion which monitored the MSE loss cal-
culated on the validation set with a patience of 7
epochs.

2.4 Local optimization

The models were not able to consistently create an
optimal field geometry on the abdomen which did not
include the most caudal ribs and iliac crests within the
same BEV to avoid overexposing normal tissue. There-
fore, a local optimization approach was applied to find
the positions of the most caudal ribs and iliac crests
along the cranial caudal (CC) axis and to adjust the
field geometry predicted by the CNNs. Figure 3 shows
a representative example where the field geometry was
suboptimal in the abdominal region and the final field
geometry obtained with local optimization.

The predicted location of the abdominal isocenter
was used as reference to define two patches,P1 and P2,
over the PTV mask image (see Figure 3B). The search
space consisted of the x-pixel indices spanning through
these patches, as knowing the x-pixel location is suffi-
cient to adjust the jaws apertures along the CC axis. For
each patch, a parallel tempering algorithm was used to
maximize the following loss function:

loss = 𝛼
∑

y ∈ P
xiliac ≤ x ≤ xribs

f (x, y) + 𝛽
∑

y ∈ P
x = {xiliac, xribs}

g (x, y)

where xiliac and xribs are the candidate x-pixel indices
for iliac crests and ribs at the current step of the opti-
mization, P denotes either P1 or P2, while 𝛼 and 𝛽 are
coefficients which were set to 2 and 60, respectively.The
functions f (x, y) and g(x, y) are defined as:

f (x, y) =

{
−1, (x, y) ∈ PTV

1, otherwise
g (x, y) =

{
0, (x, y) ∈ PTV

1, otherwise

The first term of the loss computes the number of
background pixels minus the number of pixels inside
the PTV mask within the subset of P where xiliac ≤ x ≤

xribs, that is, it maximizes the background while simul-
taneously minimizing the PTV included between two
candidate ribs and iliac crests positions. The second
term computes the number of background pixels along
the y-axis at fixed xiliac and xribs pixel locations, that is, it
ensures that the ribs and iliac crests positions are found
adjacent to the maximum extent of the PTV mask.

The optimization was performed for P1 and P2 sepa-
rately to account for potential asymmetrical locations of
ribs and iliac crests between the patches.The final posi-
tions x∗iliac and x∗ribs were selected by taking, respectively,
the minimum and maximum value between the locations
of iliac crests and ribs found with the local optimization
on P1 and P2.

After altering the isocenter position and jaws aper-
tures on the abdomen according to the optimal positions
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F IGURE 3 (A) Field geometry predicted by CNN-2 with suboptimal configuration on the abdomen: the ribs and iliac crests are under the
same BEV of the jaw aperture denoted with the yellow dashed line. (B) Patches P1 and P2 defined over the PTV mask to search for the x-pixel
indices of most caudal ribs and iliac crests. The red dashed lines denote the best locations found by the local optimization. (C) Final field
geometry with adjusted isocenters and jaws apertures: ribs and iliac crests are under a single BEV. BEV, beam’s eye view.

x∗iliac and x∗ribs, additional changes based on geometric
rules were used to adjust the overall configuration.

2.5 Field geometry evaluation

The quality of the generated field geometry was evalu-
ated by computing the root mean squared error (RMSE)
between the predicted and ground truth isocenters
positions and jaws apertures of the test patients:

RMSE =
1
M

M∑
j

√√√√ 1
N

N∑
i

(
x(j)

i − y(j)
i

)2

where N is the dimensionality of the output and M the
number of patients. A channel-wise ablation study was
performed by switching off one channel at a time of the
input image to investigate its effect on the CNNs error,
and to interpret the importance of each channel for the
CNNs predictions.

The quantitative assessment of the generated field
geometry can be challenging to interpret as slight
changes in configuration may still be acceptable. There-
fore, a qualitative evaluation was performed by three
MPs with different experience with TMI/TMLI. The MPs
were asked to blindly inspect, for each test patient, two
candidate field geometries,one which was created by an
expert MP, and a second one generated by either CNN-
1 or CNN-2, based on the width of the PTV. In case the
PTV was larger than 47.5 cm, then CNN-1 was used.

This approach was employed to approximate the deci-
sion process of an experienced MP and simulate what
would happen in clinical practice, where, for edge cases,
the use of isocenters on the arms is subject to the MP’s
experience. Furthermore, this method provided a single
option of field configuration which avoided ambiguity in
case the MP was not an expert in TMI/TMLI.

The MPs assigned to each field geometry a score
from 1, that is, not adequate for planning and to be
recreated from scratch, to 4, that is, adequate for plan-
ning without further modifications.The evaluations were
performed directly in the Eclipse TPS, such that the
MPs could analyze in detail the proposed field geome-
tries. For this purpose, the CNNs were integrated into a
planning automation software for TMI/TMLI presented
in our previous study.22 The Wilcoxon signed-rank
test was used to evaluate for each MP the inde-
pendence of the given scores between manual and
generated configurations, with significance level set
at p < 0.05.

2.6 Software

The code used in this study was written in Python
3.11.1 and is publicly available at https://github.
com/nlambriICH/tmi-isocenter. The main libraries used
for preprocessing, model training and optimization
were imgaug-0.4.0, pytorch-2.0.1, lightning-2.0.1, and
gradient-free-optimizers-1.3.0, while the statistical anal-
ysis was performed with scipy-1.8.1.
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TABLE 1 Quantitative evaluation for CNN-1 and CNN-2 on the test set, before and after the local optimization, and for the channel-wise
ablation study (without local optimization).

RMSE [mm]

Model Target
Before local
optimization

After local
optimization Ablated channel 1

Ablated
channel 2

Ablated
channel 3

CNN-1 Isocenters coordinates 18 ± 5 17 ± 5 18 ± 5 46 ± 10 16 ± 6

Jaws apertures 13 ± 2 11 ± 3 12 ± 2 27 ± 5 13 ± 3

Overall field geometry 15 ± 2 13 ± 3 15 ± 3 35 ± 6 15 ± 3

CNN-2 Isocenters coordinates 19 ± 5 22 ± 7 22 ± 8 21 ± 6 29 ± 13

Jaws apertures 13 ± 2 15 ± 3 15 ± 3 14 ± 3 21 ± 6

Overall field geometry 16 ± 2 18 ± 4 18 ± 4 17 ± 3 25 ± 5

Note: Results are reported for isocenters coordinates and jaws apertures separately, and for the overall field geometry. Channels were obtained by projecting along
the sagittal plane: (1) average CT pixel intensity within the PTV; (2) PTV mask; (3) OARs masks.
Abbreviations: CNN, convolutional neural network; OAR, organ at risk; PTV, planning target volume; RMSE, root mean squared error.

3 RESULTS

The training and validation lossCNN for CNN-1 and
CNN-2 are provided in Figure S2. Both training curves
reached a value of ≈ 2 × 10−6 before early stopping was
triggered. Due to the smaller dataset, the validation loss
of CNN-1 reached soon a plateau at ≈ 9 × 10−4, com-
pared with a value of ≈ 3 × 10−4 for CNN-2.Accordingly,
the training took 35 and 64 min for CNN-1 and CNN-2,
respectively.

Table 1 reports the models RMSE obtained on the
test set before and after local optimization, and RMSE
from the channel-wise ablation study, without local opti-
mization. The errors were computed separately for
isocenters coordinates, jaws apertures, and overall field
geometry.

For CNN-1, the local optimization slightly decreased
the average error (15 ± 2 mm vs. 13 ± 3 mm), while
an opposite trend was observed for CNN-2 (16 ± 2 mm
vs. 18 ± 4 mm). The removal of channel 1 had the low-
est impact on the models error, where, for the overall
field geometry,we did not observe any relevant changes
(CNN-1:15± 2 mm vs.15± 3 mm;CNN-2:16± 2 mm vs.
18 ± 4).The ablation of channel 2 and channel 3 greatly
affected the precision of CNN-1 and CNN-2, respec-
tively,with a percentage increase in RMSE for the overall
field geometry of 133% (CNN-1,ablated channel 2) and
56% (CNN-2, ablated channel 3). In particular, we found
the greatest loss in performance for CNN-1 on isocen-
ters positioning, for which the RMSE increased from
18 ± 5 mm to 46 ± 10 mm. By inspecting the predicted
field geometry, we observed that the largest contribution
to the model error was due to incorrectly predicted posi-
tions of the isocenters on the arms. On the other hand,
the decrease in performance of CNN-2 with the removal
of channel 3 resulted from a decay in the overall quality
of the generated field geometry. Figure S3 and Figure
S4 provide two representative cases of field geome-
try predicted by CNN-1 and CNN-2 after channel-wise
ablation.

Figure 4 shows two representative cases of local opti-
mization of unacceptable (a) and near optimal (b) field
geometry predicted by the CNNs. In the former case, the
lower (red) jaw aperture of the abdominal isocenter cov-
ered both ribs and iliac crests, while in the latter case
the upper (blue) jaw aperture of the abdominal isocenter
exceeded on the ribs for a few millimeters.

Figure 5 shows the scores given by the three MPs for
the fifteen test patients.MP 1 was an expert in TMI/TMLI,
MP 2 had intermediate experience, and MP 3 had little
to no experience with TMI/TMLI planning. The evalua-
tors were free to change between the proposed field
geometries and employ all available views in the TPS
(frontal, transversal, sagittal, and 3D) with no restric-
tions. MP 3, being the least experienced with TMI/TMLI,
was briefly instructed before the start of the assessment
regarding the overall field configuration they would have
encountered.

We found no significant differences between man-
ual and generated field geometries for any MP, with
median scores of 4 versus 4 (MP 1, p = 0.92), 3 vs.
3 (MP 2, p = 0.78), and 4 vs. 3 (MP 3, p = 0.48),
respectively. Out of 15 patients, the three MPs eval-
uated the generated field geometry to be at least as
adequate as the manual counterpart for 12 (MP 1), 9
(MP 2), and 8 (MP 3) instances. None of the auto-
matic configurations was rated “not adequate” (i.e.,
score = 1). Table S3 reports the complete evalua-
tions for each patient, while Figure S5 provides two
representative cases of generated field geometries as
shown within the Eclipse TPS. The pipeline for field
geometry generation took a total of 56.2 s, allocated
as follows: contours extraction (27.4 s), preprocessing
(27.6 s), model inference (0.1 s), and local optimization
(1.1 s).

Starting from October 2023, the CNN models have
been introduced in our clinical practice for prospective
patients. After 6 months of clinical implementation,
CNN-1 was found less robust and requiring more cor-
rections than CNN-2. Based on our internal preliminary
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DL-BASED OPTIMIZATION OF FIELD GEOMETRY 4409

F IGURE 4 Representative cases of local optimization of unacceptable (A) and near optimal (B) field geometry predicted by the CNNs. Dots
and rectangles denote isocenters positions and jaws apertures, respectively. Fields belonging to the same isocenters group are shown with the
same color, using dashed and solid lines for the upper and lower jaws apertures, respectively. CNN, convolutional neural network.

F IGURE 5 Results of the qualitative evaluations performed by the three MPs for the 15 test patients. Scale: 1 = not adequate, 2 = major
changes, 3 = minor changes, 4 = adequate. MP, medical physicist.

assessments, the efficiency gains for an MP expert in
TMI/TMLI planning amount to a few minutes, increasing
to tens of minutes for less experienced MPs.

4 DISCUSSION

In this study, we developed CNN models able to gener-
ate a clinically acceptable field geometry for TMI/TMLI
delivered with VMAT. Incorporating the knowledge of the

MPs was fundamental to achieve results which were
comparable in quality to those crafted manually by an
MP expert in TMI/TMLI planning. Specifically, the infor-
mation analyzed by the MP during the creation of the
field geometry was captured in the input image using
a frontal view projection of the patient’s anatomy, while
a local optimization refined the predictions near crit-
ical regions—ribs and iliac crests—as performed by
an expert MP. The local optimization did not introduce
any relevant changes in the RMSE of the models,
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4410 DL-BASED OPTIMIZATION OF FIELD GEOMETRY

suggesting the solutions generated by the CNNs
required little tweaking to reach an optimal field geome-
try.

The performance of CNN-1 and CNN-2 on the test set
was similar, with RMSE of 15 ± 2 mm and 16 ± 2 mm,
respectively. The local optimization produced opposite
effects on the error of the models, reducing the error
of CNN-1 (13 ± 3 mm) and increasing that of CNN-
2 (18 ± 4 mm). We hypothesize such difference was
due to the limited degrees of freedom available for
positioning the isocenters along the body once two
isocenters were used specifically for the arms. As a
result, the field geometries created by the MP were more
uniform among cases, and the local optimization was
likely to produce minor changes in the field geome-
try generated by CNN-1. Nonetheless, we highlight that
the objective of the local optimization was not to min-
imize the RMSE. This metric was evaluated to ensure
that the procedure did not introduce relevant changes.
Thus, despite the potential increase in RMSE, local opti-
mization remains crucial if the generated configurations
are utilized directly for dose optimization without prior
scrutiny by the planner.

The ablation study revealed the model predictions
were mostly driven by the channels containing the
masks of the PTV and relevant OARs. Although chan-
nel 1 (i.e., CT pixel intensity) contained the richest
information regarding the anatomy of the patient, its
removal had almost no impact on the models error.
On the other hand, the mask of the PTV was crucial
for CNN-1 to accurately position the isocenters on the
arms (see Figure S3). This dependence supports our
approach, employed during the qualitative evaluation, to
approximate the decision process of an expert MP for
generating a field geometry with isocenters on the arms
based on the patient’s PTV width.

The aim of this study was to automatically opti-
mize the field geometry of TMI/TMLI based our decade
experience. The models were trained to generate con-
figurations consistent with our internal approach for
TMI/TMLI planning, which, although common, might dif-
fer from other Institutions’ practice. Nonetheless, three
MPs validated all the generated field geometries by con-
sidering them acceptable for planning, indicating that the
models could be beneficial in case of clinical use by
planners with varying levels of experience.

We did not compare the dose distributions between
manual and generated field geometries because of two
limitations: TMI/TMLI optimization is a time consum-
ing process which takes 4–8 h using all computational
resources of a TPS, and it requires high expertise to
perform. As the manual and generated field geometries
were similar in quality, the resulting dose distributions
would have been planner dependent more than field
configuration dependent.

A few studies have investigated the optimization of
field geometry for site specific treatments. Salter et al.

quantified the impact of isocenter location on treat-
ment plan quality for intensity-modulated stereotactic
radiosurgery (SRS).11 Authors conducted an exhaustive
search of the optimal isocenter location by consider-
ing more than 3400 configurations of 18 clinical plans,
using three different TPSs and collimators. Huang et al.
applied a similar strategy to find the optimal jaw aper-
ture for rectal cases treated with VMAT using one full
arc.12 Almost 600 configurations were automatically cre-
ated starting from 10 clinical plans. Schreibmann and
Fox implemented a feature selection search engine to
generate a near-optimal plan configuration for prostate
cancer.15 A similarity score based on geometrical mea-
sures was used to search the best matching case
among 83 VMAT plans. The retrieved plan was then
used to suggest isocenter, arc directions, MLC patterns,
and optimization constraints. Yock and Kim applied
k-means clustering on 30 patients to determine the
number and position of isocenters in SRS for multiple
metastases.13 More recently,Berdyshev et al.developed
a DL model for isocenter selection in SRS delivered with
Gamma Knife (Elekta, Stockholm, Sweden).14 Authors
trained a ResNet on tumor shape descriptors of 533
plans to predict isocenter locations as a 3D heatmap.

Approaching the field geometry optimization of
TMI/TMLI with an exhaustive search would have been
unfeasible. AI algorithms allowed to optimize the field
geometry based on past experience without the need
of exploring all possible configurations. Despite the typi-
cal requirement for large datasets in training DL models,
both Berdyshev et al. and the present study showed
that satisfactory performance could be achieved even
with datasets considerably smaller than the norm for DL
models. In our case, given the limited data availability,
local optimization methods were essential for refining
the models output.

Although we did not perform a systematic evaluation
of the models generalizability, we were able to test them
on two external cases from City of Hope. The resulting
field geometries, shown in Figure S6, were considered
adequate according to our procedure, suggesting the
broader applicability of the models to other patient
cohorts.Furthermore,we highlight that our methodology
can be reproduced locally with site-specific data, poten-
tially resulting in the development of more specialized
models.

The combination of DL and local optimization tech-
niques with their respective strengths was crucial to
reach our goal. Although there exist some general rules
for the design of the field geometry of TMI/TMLI accord-
ing to our procedure, their implementation would have
been challenging to achieve.Even for an MP specialized
in TMI/TMLI, it proved difficult to precisely explain the
requirements and the logical steps involved in designing
a field geometry from scratch. Thus, producing a config-
uration of comparable quality to that of the DL models
was non-trivial, especially when placing the isocenters,
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as their positions are interrelated. After the DL models
provided a good starting point for the field geometry, we
could establish well-defined rules for refining the field
geometry through local optimization methods.

In this study, the CNNs were trained using a projected
frontal view of the patients, aiming to closely mirror the
planner’s strategy in optimizing geometric parameters.
The isocenters coordinate along the anterior/posterior
direction was set to the anterior/posterior barycenter
of the PTV for all cases, +4 cm toward the anterior
for the isocenters on the arms. This decision allowed
to reduce the complexity of the models by decreasing
the number of degrees of freedom and focus on the
patient view which was more relevant for the over-
all geometry. Importantly, we found this approach to
be effective in all evaluated cases. Nonetheless, we
acknowledge the possibility of introducing other patient
views, especially in case of different approaches
to the field geometry employing oblique beam
angles.

This study was part of the AuToMI project, whose aim
is to increase the accessibility of TMI/TMLI in clinical
practice through process automation and implementa-
tion of AI algorithms.19,21–23 To this aim, the planning
automation software we use in our clinic (a binary plug-
in script based on the Eclipse Scripting API—ESAPI)
is publicly available at https://github.com/nlambriICH/
TMIAutomation. We underline that the application of
these models resembles that of DL segmentation, in
which the output is validated by a human operator, and
modified if necessary.

5 CONCLUSIONS

We developed a DL-based method for the optimization
of multiple isocenters positions and jaws apertures for
TMI/TMLI.The CNNs produced field geometries of com-
parable quality to those crafted by an MP specialized in
TMI/TMLI. Revisions are still necessary to adjust incon-
sistencies and refine the models output. However, these
adjustments are subject to inter-observer variability and
depend on the MP decision process and experience.
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