
First Steps Towards Federated Learning Network
Traffic Detection

Antonio Boiano, Valeria Detomas, Alessandro E. C. Redondi, Matteo Cesana
DEIB, Politecnico di Milano

Milan, Italy
{name.surname}@polimi.it

Abstract—Federated Learning (FL) has emerged as a promis-
ing machine learning approach which enables cooperative train-
ing while preserving data privacy. The FL process involves clients
and a parameter server to exchange model parameters over the
network, generating unique traffic patterns that can be detected.
The identification of FL traffic may be used in diverse applica-
tions, ranging from network traffic management to security and
privacy enhancement in FL environments. For this purpose, this
paper investigates the problem of FL traffic identification. We
created a dataset of FL network traces, encompassing different
FL training setups. We then developed two classifiers based on
Random Forest and Neural Network algorithms and compared
their performance, obtaining promising results.

Index Terms—Federated Learning, Network Traffic Classifier,
Random Forest, Neural Network.

I. INTRODUCTION

Federated Learning (FL) is a decentralized machine learn-
ing paradigm where model training occurs across multiple
edge nodes housing local data samples, without the need to
exchange the actual data themselves [1]. This setup ensures
that data ownership and privacy remain intact as only model
updates are shared. In contrast to conventional centralized
learning methods, which involve transferring all data to a
central server for training, FL boasts several advantages, in-
cluding enhanced privacy, improved communication efficiency,
scalability, and, notably, robustness [2].

Within this context, the TRUSTroke project [3] introduces
an innovative AI-based platform to support clinicians, patients,
and caregivers in managing acute and chronic phases of
ischemic stroke. Central to the project’s objectives is the es-
tablishment of a FL infrastructure allowing multiple hospitals
and clinical sites to collaborate on training AI models for
stroke-related predictions without compromising data privacy.
This infrastructure prioritizes trustworthiness, robustness, and
privacy preservation, aligning with the stringent requirements
set forth by the EU Artificial Intelligence (AI) Act. The FL
process can be summarized as it follows: (i) a centralized en-
tity, known as the Parameter Server (PS) disseminates a model
structure (generally a Neural Network (NN)) with randomly
initialized weights to the participating clients, (ii) each client
performs a training step using the locally available data and
transmits the updated model parameters back to the PS, (iii)
the PS aggregates the parameters from the different clients
using speficic algorithms (e.g., FedAvg [4]) and disseminates

the computed global model back to the clients. Such steps
are repeated over a certain number of training rounds until
convergence is reached.

Figure 1 shows the traffic pattern (in packets/sec) observed
at a client during the FL process. As one can see, such traffic
exhibits unique characteristics, such as periodic behaviour
(due to the training rounds) and consistent bidirectional data
exchange patterns (due to the local/global model updates).
Being able to detect and correctly classify FL traffic in a
network is key to the realization of a robust and trustworthy
FL platform as envisioned by the TRUSTroke project:

• Quality of service: by accurately classifying FL traffic, it
is possible to prioritize the transmission of the related data,
ensuring that FL training processes receive the necessary
bandwidth and network resources. This optimization directly
improves the FL training process, leading to faster convergence
and more accurate and reliable models.
• Client security: FL traffic classification may be used at the
clients premises as an additional measure of security in all
the cases where there is low trust in the FL framework and
PS. This can be achieved by deploying intelligent firewalls
to enforce access control policies tailored specifically to FL-
related data transmissions. This is particularly important in
the context of medical clients implemented in hospitals, where
security is of paramount importance.
• Traffic shaping: It’s essential to consider the potential risks
associated with malicious attacks targeting FL participants.
These attackers may seek unauthorized access to stored data
or attempt to disrupt FL training sessions. Traffic detection can
inadvertently reveal which clients are engaged in FL activities,
making them potential targets for such attacks. In response to
this threat, implementing traffic shaping techniques that hinder
FL traffic detection becomes crucial and enhance the overall
security posture of the FL platform.

For these reasons, this paper explores the possibility of
performing FL network traffic detection. Although the long-
term characteristics of FL traffic are evident, we focus here
on early detection, which allows for rapid reaction. Alongside
classical approaches for traffic detection, the use of ML
approaches resides in the complexity of the host architecture,
the sensitivity of the data it stores, and the use of VPNs
and Jump Host tunnelling, making the traffic to prioritize
harder to identify. We have collected a detailed dataset of978-3-903176-64-5 ©2024 IFIP



0 200 400 600 800 1000 1200 1400

Time [s]

0

50

100

150

200

250
P

ac
ke

ts
/5

se
c

Downlink traffic Uplink traffic

Fig. 1: Traffic from a client performing eight Federated
Learning (FL) round with the Flower [5] framework

FL traffic based on Flower [5], a popular open-source FL
framework, by recreating a real deployment setup with a server
hosted in cloud computing platforms, and we have tested two
Machine Learning (ML) approaches based on Random Forest
and Neural Networks classifiers with promising results.

II. METHODS

A. Dataset Creation

A dataset containing traces of FL-network traffic, as well
as non-FL traces was created. For what concerns FL traffic, a
testbed to generate diverse and controlled network traces was
developed. The testbed allows to emulate a FL infrastructure
composed of one PS and several client nodes running Flower
[5], a popular and widely used FL framework known for its
simplicity and prevalence in the literature [6], [7]. For what
concerns the PS, we deployed it either on a Google Cloud
server (2 vCPU with clock frequency of 2.25 GHz and 8 GB
of RAM)or an AWS server (1 vCPU with clock frequency of
3.3 GHz and 1 GB of RAM).As on can see the two servers are
characterised by different computational resources, although
both were located in central Europe. As for the FL clients, they
were executed via multiple containerised instances of Flower
run on the same physical workstation located in Milan. This
setup allowed us to simulate different FL scenarios and to
capture the corresponding network traffic generated.

Multiple FL training tasks have been executed varying
the number of clients, the maximum number of rounds for
training the global model, the size of Neural Network (NN)
model utilised, and the communication protocol used in the
framework. Indeed, Flower supports three different com-
munication protocols: gRPC request-response (gRPC rere),
gRPC bidirectional-streaming (gRPC bidi), and Representa-
tional State Transfer (REST). The first two are based on
HTTP/2 and Protobuf serialisation, while the latter is based on
HTTP/1 and JSON payloads. Each performed experiment was
either used as training or testing data, so that no overlap exist

TABLE I: Training FL dataset

Scenario Protocol # Clients Model Size
1A gRPC bidi 5/10 54.60 KB
1B 5/10 733.29 KB
2A gRPC rere 5/10 54.60 KB
2B 5/10 733.29 KB
3A REST 5/10 54.60 KB
3B 5/10 733.29 KB

TABLE II: Test FL dataset

Scenario Protocol # Clients Model Size
1C gRPC bidi 5/7 12.97 MB
2C gRPC rere 6/11 12.97 MB
3C REST 8/9 12.97 MB

between the characteristics of the corresponding FL training
tasks. Table I and II reports the details of the configurations
used for the training and testing datasets. Packet-level network
traffic was captured using tcpdump within each FL client
container. To minimise bias introduced by the Linux Kernel,
TCP offload has been turned off using ethtool. The following
information are retained for each packet: packet length, times-
tamp, transport protocol, source and destination address, and
source and destination port. In total more than 16K different
TCP flows containing FL traffic have been captured.

For what concerns non-FL network traffic, we used a testbed
architecture as close as possible to the one used for FL
traffic in order to avoid bias due to the different underlying
network configurations. In particular, a containerised Wi-Fi
Access Point was setup with the same configuration of the
FL client testbed and used to capture traffic from five laptops
used by researchers during standard daily working activities
for three days. Typical traffic contained in such a dataset refers
to web browsing, email exchange, voice and video calls, video
streaming and bulk data download. About 100K flows (both
UDP and TCP) were captured for the non-FL traffic type.

B. Feature Selection and Model Description

After the dataset acquisition phase was completed, a data
cleaning process was performed. This involved removing TCP
acknowledgement packets, DNS packets, and flows containing
fewer than two packets. Both TCP and UDP flows have been
considered. Subsequently, each flow was processed with a
moving window of size p packets. In this work, we used
p = 20, which is shown as a good tradeoff between model
performance and reaction time of classification in [8]. From
both the captured FL and non-FL traffic we selected via
undersampling about 165k windows for training and 33k
windows for testing. For what concerns FL traffic, the windows
are balanced among the different tested scenarios. For what
concerns non-FL traffic, the training and testing windows are
selected randomly. It is important to highlight that training
windows were selected uniquely from traffic flows obtained
when the PS was executed in the Google Cloud premises,
while test windows contain both Google as well as AWS PS
flows.



FL Non-FL

FL

Non-FL

T
ru

e
L

ab
el

97.7% 2.3%

0.11% 99.89%

(a)
Accuracy: 0.988

FL Non-FL

FL

Non-FL

87.95% 13.05%

4.69% 95.31%

(b)
Accuracy: 0.916

FL Non-FL
Predicted Label

FL

Non-FL

T
ru

e
L

ab
el

91.04% 8.96%

0.11% 99.89%

(c)
Accuracy: 0.955

FL Non-FL
Predicted Label

FL

Non-FL

81.42% 18.58%

4.77% 95.23%

(d)
Accuracy: 0.883

Fig. 2: Traffic Classification Performances with: RF tested with
Google PS, b: NN tested with Google PS, c: RF tested with
AWS PS, d: NN tested with AWS PS

We evaluate the performance of two ML models: (i) a
Random Forest (RF) Classifier and (ii) a NN leveraging
on Convolutional Neural Networks (CNNs) and Long Short-
Term Memorys (LSTMs) networks. For what concerns the
RF Classifier, we used 100 trees, no max depth limitations,
minimum amount of samples to split equal to 2, minimum
number of samples to be at a leaf node equal to 1, and number
of features to consider when looking for the best split as√
f where f is the number of features used. The following

features were extracted from each p-packet window and used
in the model: packet-length (min., max., avg., std., kurtosis),
inter-arrival time (min., max., avg., std., kurtosis) and packet
count. The features were computed considering both the uplink
and the downlink direction as well as globally. In total,
f = (5+5+1)×3 = 33 features were extracted from each p-
packet window. Additionally, data standardisation was applied
to normalise the features. As for the NN model, we adopted
the best performing architecture proposed in [8], which accepts
an n× p matrix as input, where p corresponds to the number
of packets considered and n to features extracted from each
packet. The following (normalised) features are used in this
work: frame length, frame time, inter-arrival time and a binary
indicator for the direction (uplink or downlink). Therefore,
n = 5. The detail of the utilised model, which we implemented
with TensorFlow, is as it follows: Conv1D(32,3,1,relu) - Batch-
Normalization - Conv1D(32,3,1,relu) - BatchNormalization
- LSTM(100) - Dropout(0.2) - Flatten - Dense(100,relu) -
Dropout(0.4) - Dense(2,softmax) [8].

III. TRAFFIC CLASSIFICATION RESULTS

The two models were trained and tested over the created
dataset to assess their performance. For the NN model, training

was performed with 50 epochs and an early stopping criterion
was adopted if the loss function didn’t improve for 10 con-
secutive epochs. The confusion matrices and model accuracies
for both models are shown in Figure 2. As one can see, both
models demonstrate the capability to effectively discriminate
FL network traffic from non-FL traffic, as evidenced by
their accuracy in classification. In general, the RF classifier
model presented better classification performance compared
to its counterpart. In details, the RF classifier achieves an
accuracy of 0.988 when tested with traffic from a unique
combination of clients, FL rounds, and model sizes never used
during the training process. Even when the PS characteristics
changes (in terms of server location and performance), the RF
classifier maintains a high accuracy of 0.955. In contrast, the
NN model exhibits slightly lower classification performance
compared to the RF classifier. When tested with the same
unseen combinations of FL rounds, clients, and model sizes,
the NN model achieves an accuracy of 0.916. This accuracy
decreases to 0.883 when the server location and characteristics
also change. We highlight that, once trained, both classifiers
are able to label a flow as being of FL type after just p = 20
packets, therefore allowing for early detection and a quick
reaction. Although FL traffic has unique and evident long-
term periodical features, we deliberately decided not to use
such characteristics that would delay the detection process.

IV. CONCLUSIONS

The early detection of FL traffic hold significant promise for
enhancing FL performance through QoS provisioning and bol-
stering client security. This work addressed such a challenge
by curating a dataset of FL network traffic, which served as the
basis for training machine learning models for its identifica-
tion. The proposed methodology enables efficient detection of
FL traffic with as few as 20 packets captured from a network
flow, facilitating quick response times. These findings carry
substantial implications for Internet Service Providers (ISPs)
and network security practitioners. ISPs can capitalize on the
unique characteristics of FL traffic to implement policies that
prioritize and optimize the transmission of FL model updates.
However, it’s crucial to acknowledge potential security risks.
Attackers monitoring the network could exploit the identifiable
FL traffic pattern to target clients engaged in FL activities. This
underscores the need for traffic shaping techniques aimed at
masking FL traffic, a topic that we plan to further investigation.
Future research directions include expanding the FL dataset to
evaluate the classification model’s performance across differ-
ent FL frameworks and configurations. As an example, we plan
to study the possibility of identifying TLS-encrypted or SSH-
tunneled FL traffic, which the TRUStroke project envisions
as a way to enhance the robustness and security level of the
proposed FL platform [9].

ACKNOWLEDGMENTS

Funded by the EU in the call HORIZON-HLTH-
2022-STAYHLTH-01-twoStage under grant agreement No
101080564.



REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of
Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[2] B. S. Guendouzi, S. Ouchani, H. EL Assaad, and M. EL
Zaher, “A systematic review of federated learning: Challenges,
aggregation methods, and development tools,” Journal of Network and
Computer Applications, vol. 220, p. 103714, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804523001339

[3] Feb 2024. [Online]. Available: https://trustroke.eu/
[4] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,

S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 1175–1191. [Online]. Available:
https://doi.org/10.1145/3133956.3133982

[5] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão et al.,
“Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[6] A. G. Samuel, S. V. Puthusseri, E. S. Eazhakadan, and M. Shetty,
“Detecting malicious blockchain attacks through flower using horizontal
federated learning: An investigation of federated approaches,” in 2023
14th International Conference on Computing Communication and Net-
working Technologies (ICCCNT), 2023, pp. 1–7.

[7] M. Kapsecker, D. N. Nugraha, C. Weinhuber, N. Lane, and S. M. Jonas,
“Federated learning with swift: An extension of flower and performance
evaluation,” SoftwareX, vol. 24, p. 101533, 2023.

[8] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[9] A. Boiano, M. D. Gennaro, L. Barbieri, M. Carminati, M. Nicoli,
A. Redondi, S. Savazzi, A. S. Aillet, D. R. Santos, and L. Serio, “A secure
and trustworthy network architecture for federated learning healthcare
applications,” 2024.


