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Abstract. In this paper we introduce reproducing kernel Hilbert spaces of polyanalytic func-
tions of infinite order. First we study in details the counterpart of the Fock space and related
results in this framework. In this case the kernel function is given by e

zw+zw which can be con-
nected to kernels of polyanalytic Fock spaces of finite order. Segal-Bargmann and Berezin type
transforms are also considered in this setting. Then, we study the reproducing kernel Hilbert

spaces of complex-valued functions with reproducing kernel
1

(1− zw)(1− zw)
and

1

1− 2Re zw
.

The corresponding backward shift operators are introduced and investigated.
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1. Introduction and preliminary results

Polyanalytic functions were introduced in 1908 by Kolossov to solve problems in elasticity theory,
see [27]. For a general introduction to this topic see [7, 12, 13]. In more recent times, this function
theory was studied by several authors from different perspectives, see [2, 3, 6, 18, 32] and the
references therein. Polyanalytic functions are used also to study sampling and interpolation
problems on Fock spaces using time frequency analysis techniques such as short-time Fourier
transform (STFT) or Gabor transforms, see [1]. In the next parts of this introduction, we collect
some basic definitions and explain what we mean by polyanalytic functions of infinite order in
our setting. Some important facts that will be needed in the sequel will be also revised. Then, we
will explain the general construction of the kernels associated to the reproducing kernel Hilbert
spaces of polyanalytic functions of infinite order, which will be studied in this paper. We conclude
by describing the contents of the paper.
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1.1. Definitions. A complex valued function f : Ω ⊂ C −→ C which belongs to the kernel of a

power n ≥ 1 of the classical Cauchy-Riemann operator
∂

∂z
, that is

∂n

∂zn
f(z) = 0, ∀z ∈ Ω,

is called a polyanalytic function of order n. An interesting fact regarding these functions is that

any polyanalytic function of order n can be decomposed in terms of n analytic functions so that
we have a decomposition of the following form

(1.1) f(z) =
n−1
∑

k=0

zkfk(z),

for which all fk are analytic functions on Ω. In particular, expanding each analytic component
using the series expansion theorem lead to an expression of this form

(1.2) f(z) =

n−1
∑

k=0

∞
∑

j=0

zkzjak,j,

where (ak,j) are complex coefficients. In this paper, we are interested by the case where the
expansion (1.2) is of infinite order, which means that we consider functions of the form

(1.3) f(z) =

∞
∑

k=0

∞
∑

j=0

zkzjak,j,

which will be called polyanalytic functions of infinite order. We note that such functions were
discussed in [12, 13] in which they were mentioned as conjugate analytic functions.

For n = 1, 2, ... we recall that polyanalytic Fock spaces of order n can be defined as follows

Fn(C) :=

{

g ∈ Hn(C),
1

π

∫

C

|g(z)|2e−|z|2dA(z) <∞
}

.

The reproducing kernel associated to the space Fn(C) is given by

(1.4) Kn(z, w) = ezw
n−1
∑

k=0

(−1)k

k!

(

n

k + 1

)

|z − w|2k,

for every z, w ∈ C.

1.2. The kernels construction: general discussion. Consider a function F (z1, z2) in the
Hardy space of the bidisk D

2 in C
2. Then, g(z) = F (z, z) belongs to the Bergman space of

the disk D, and the map F 7→ g is onto and contractive, but not one-to-one. For instance, the
polynomials zn1 z

m
2 belong to H

2(D2) and have the same image zs with n+m = s. On the other
hand the map g(z) = F (z, z) is one-to-one, and its image is the reproducing kernel Hilbert space
with reproducing kernel

1

(1− zw)(1 − zw)

The corresponding reproducing kernel Hilbert space consists of polyanalytic functions of infinite
order.

Motivated by the above discussion we consider a function c(z,w) positive definite in some open
subset Ω of C2N , and analytic in z and w. We assume that

(1.5) Ωs =
{

z ∈ C
N : (z, z) ∈ Ω

}
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is open and non-empty. The function

k(z, w) = c((z, z), (ω, ω))

is then positive definite in Ωs. The purpose of the present work is to study the corresponding
reproducing kernel Hilbert spaces of polyanalytic functions of infinite order. For instance in the

case of the Fock space with reproducing kernel c(z, ω) = e
∑2N

n=1 znωn we have the kernel

(1.6) k(z, w) = e
∑N

n=1(znwn+znwn)

while in the case of the Drury-Arveson space with reproducing kernel 1
1−

∑2N
n=1 znwn

which is

positive definite in the open unit ball of C2N , the corresponding kernel is

(1.7)
1

1−∑N
n=1(znwn + znwn)

positive definite in the open ball of CN centered at the origin and with radius 1√
2
. In this paper

we will focus on N = 1.

A general family of examples correspond to

k(z, w) = K1(z, w)K2(z, w)

where K1 and K2 are analytic kernels, or, in the matrix-valued case,

k(z, w) = K1(z, w) ⊗K2(z, w).

The structure of the paper is as follows: in Section 2 we introduce the kernel functionK associated
to the polyanalytic Fock space SF(C) of infinite order and we study various properties. We give
a sequential characterization of the space SF(C) and, in particular, we prove that the creation
and annihilation operators are adjoint of each other. We also introduce and study two backward
shift operators. In Section 3 we prove that by taking the power series of the polyanalytic Fock
kernels of finite order (Kn)n≥0 we obtain the kernel function K multiplied up to an exponential
kernel. In Section 4 and 5 we study Segal-Bargmann and Berezin type transforms and some
related operators. In Section 6 we present the polyanalytic Hardy space of infinite order and we
study the Gleason problem. We also prove some results on the backward shift operator in this
setting. Finally, Section 7 is devoted to the case of Drury-Arveson space.

2. The polyanalytic Fock space of infinite order and associated kernel

We denote by Mz and Mz the multiplication operators by z and z. Then, we will prove the
following main result

Theorem 2.1. The reproducing kernel Hilbert space with reproducing kernel ezw+zw is, up to a
multiplicative positive factor, the only reproducing kernel Hilbert space of polyanalytic functions
of infinite order, regular at the origin, and for which

(

∂

∂z

)∗
= Mz(2.1)

(

∂

∂z

)∗
= Mz.(2.2)

To this end, we need the following:

Definition 2.2. We consider the kernel function given by

(2.3) K(z, w) = ezw+zw = e2Re(zw), ∀(z, w) ∈ C
2.

We denote by (H(K), 〈·, ·〉H(K)) the reproducing kernel Hilbert space associated to the kernel
function (2.3).
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Proposition 2.3. The function K : C× C −→ C defined by (2.3) is a positive definite kernel.

Proof. It is clear that we have

(2.4) K(z, w) = F (z, w)F (z, w),

for every z, w ∈ C and F denotes the reproducing kernel of the classical Fock space F(C). Thus,

since F (z, w) is also a positive definite kernel we can conclude, since K is a product of positive
definite kernels. �

We observe that the following integral representation holds

Proposition 2.4. It holds that

(2.5)
1

π

∫

C

K(z, w)e−|w|2dA(w) = e|z|
2
=
√

K(z, z), for any z ∈ C.

Proof. We set w = x+ iy, we identify C with R
2 and use the classical Gaussian integral

∫

R

e−at2+btdt =

√

π

a
e

b2

4a , a > 0, b ∈ C.

We have

1

π

∫

C

K(z, w)e−|w|2dA(w) =
1

π

∫

C

ezw+zwe−|w|2dA(w)

=
1

π

∫

C

ez(x−iy)+z(x+iy)e−(x2+y2)dxdy

=
1

π

(∫

R

ex(z+z)−x2
dx

)(∫

R

eyi(z−z)−y2dy

)

= e
(z+z)2

4 e−
(z−z)2

4

= e|z|
2

=
√

K(z, z),

as stated. �

Next result is simple but very useful:

Proposition 2.5. For any z, w ∈ C it holds that

i)
∂

∂z
K(z, w) = wK(z, w) and

∂

∂z
K(z, w) = wK(z, w).

ii)
∂

∂w
K(z, w) = zK(z, w) and

∂

∂w
K(z, w) = zK(z, w).

Proof. It is an easy calculation based on the expression of the kernel function K(z, w) given by
formula (2.3). �

Corollary 2.6. For any z, w ∈ C and n = 1, 2, ... it holds that

i)
∂n

∂zn
K(z, w) = wnK(z, w) and

∂n

∂zn
K(z, w) = wnK(z, w).

ii
∂n

∂wn
K(z, w) = znK(z, w) and

∂n

∂wn
K(z, w) = znK(z, w).

Proof. We will prove i), the other statements follow similar arguments. We apply Proposition
2.5 and get

∂

∂z
K(z, w) = wK(z, w).
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Thus, we apply a second time the complex derivative with respect to the variable z, we use again
Proposition 2.5 and get

∂2

∂z2
K(z, w) = w2K(z, w).

Then, we repeat the same calculation n-times and obtain

∂n

∂zn
K(z, w) = wnK(z, w).

�

Now, let us consider the commutator operators given by

(2.6)

[

∂

∂z
,Mz

]

:=
∂

∂z
Mz −Mz

∂

∂z

and

(2.7)

[

∂

∂z
,Mz

]

:=
∂

∂z
Mz −Mz

∂

∂z
.

Then, we can prove the following

Proposition 2.7. For any z, w ∈ C we have
[

∂

∂z
,Mz

]

K(z, w) = K(z, w)

and
[

∂

∂z
,Mz

]

K(z, w) = K(z, w).

Proof. We have

∂

∂z
MzK(z, w) =

∂

∂z
(zK(z, w))

= z
∂

∂z
K(z, w) +K(z, w)

= zwK(z, w) +K(z, w).

On the other hand

Mz
∂

∂z
K(z, w) =Mz (wK(z, w))

= zwK(z, w),

hence, we obtain
[

∂

∂z
,Mz

]

K(z, w) = K(z, w).

In a similar way we can prove that
[

∂

∂z
,Mz

]

K(z, w) = K(z, w).

�

Thanks to the reproducing kernel property we have this more general result
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Theorem 2.8. For any f ∈ H(K), the following identities hold
[

∂

∂z
,Mz

]

f = f

and
[

∂

∂z
,Mz

]

f = f.

Proof. Let f ∈ H(K), we know that

f(z) =< f,Kz >H(K), for any z ∈ Ω.

Thus, for any z ∈ Ω we apply Proposition 2.7 and get
[

∂

∂z
,Mz

]

f(z) =< f,

[

∂

∂z
,Mz

]

Kz >H(K)

=< f,Kz >H(K)

= f(z).

Hence, it follows that
[

∂

∂z
,Mz

]

f = f.

In the same way we can prove that
[

∂

∂z
,Mz

]

f = f.

�

As a consequence of Proposition 2.5 we can study more properties of the kernel function in (2.3).

Proposition 2.9. For any z, w ∈ C we have

(2.8) ∆zK(z, w) = 4|w|2K(z, w)

and

(2.9) ∆w∆zK(z, w) = 16
(

1 + wz + wz + |w|2|z|2
)

K(z, w) = 16|1 + wz|2K(z, w).

Proof. We note that using (2.3) and Proposition 2.5 we have

∂2

∂z∂z
K(z, w) = w

∂

∂z
K(z, w)

= wwK(z, w)

= |w|2K(z, w).

Since
∂2

∂z∂z
=

1

4
∆z we conclude that

(2.10) ∆zK(z, w) = 4|w|2K(z, w).

Furthermore, by taking the derivative with respect to w we get

∂

∂w
∆zK(z, w) = 4w

∂

∂w
(wK(z, w))

= 4w(K(z, w) + wzK(z, w))

= 4(1 + wz)wK(z, w).
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Then, we apply the derivative with respect to w, develop the computations and get

∂2

∂w∂w
∆zK(z, w) = 4(1 + wz)

∂

∂w
(wK(z, w))

= 4(1 + wz)(1 + wz)K(z, w)

= 4|1 +wz|2K(z, w),

from which we conclude that

∆w∆zK(z, w) = 16|1 + wz|2K(z, w).

�

Corollary 2.10. Let Ω = D denote the unit disk, we consider the operator

Tz,w :=
∆w∆z

16|1 + wz|2 , ∀(z, w) ∈ Ω× Ω.

Then, we have

(2.11) Tz,wK(z, w) = K(z, w), ∀(z, w) ∈ Ω× Ω.

Proof. It is a direct consequence of Proposition 2.9. �

Remark 2.11. From (2.10) we deduce that if w is a fixed parameter, then the kernel function
K(z, w) can be seen as an eigenfunction of the Laplace operator ∆z with eigenvalue given by
4|w|2.
Definition 2.12. The polyanalytic Fock space SF(C) of infinite order is the set of functions of
the form

(2.12) f(z) =

∞
∑

n=0

znfn(z),

satisfying the conditions

i) fn ∈ F(C) for any n ≥ 0;

ii) ||f ||2SF(C) =
∞
∑

n=0

n!||fn||2F(C) <∞.

Then, we consider the scalar product on SF(C) given by

(2.13) 〈f, g〉SF(C) :=
∞
∑

k=0

k!〈fk, gk〉F(C),

for any f =

∞
∑

k=0

zkfk and g =

∞
∑

k=0

zkgk with fk, gk ∈ F(C) for every k ≥ 0.

Proposition 2.13. A function f : C −→ C belongs to SF(C) if and only if f is of the form

f(z) =
∑

(m,n)∈N2

zmznαm,n,

with (αm,n) ⊂ C and such that

(2.14) ||f ||2SF(C) =
∑

(m,n)∈N2

m!n!|αm,n|2 <∞.

Moreover, if for any (m,n) ∈ N
2 we set φm,n(z, z) =

zmz̄n√
m!n!

then, the family of functions

{φm,n}m,n≥0 form an orthonormal basis of SF(C).
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Proof. Let

f(z) =
∑

(m,n)∈N2

znzmαm,n,

with (αn,m) ⊂ C.

Setting fn(z) =
∞
∑

m=0

zmαm,n, it is clear that f(z) =
∞
∑

n=0

znfn(z). Moreover, we have

||f ||2SF(C) =

∞
∑

n=0

n!||fn||2F(C) =
∑

(m,n)∈N2

m!n!|αm,n|2.

Therefore, f belongs to the space SF(C) if and only if

||f ||2SF(C) =
∑

(m,n)∈N2

m!n!|αm,n|2 <∞.

On the other hand, easy computations lead to

〈f, φm,n〉SF(C) =
√
n!m!αm,n, ∀m,n ≥ 0.

If 〈f, φm,n〉SF(C) = 0 for any m,n ≥ 0, then we have αm,n = 0 for any m,n ≥ 0. We note also
that

〈φm,n, φm,n〉SF(C) = 1 and 〈φm,n, φp,q〉SF(C) = 0 whenever (m,n) 6= (p, q).

In particular, this shows that {φm,n}m,n≥0 form an orthonormal basis of SF(C). This ends the
proof. �

Example 2.14. We recall the complex Hermite polynomials introduced in [26]

(2.15) Hm,n(z, z) :=

min (m,n)
∑

k=0

(−1)kk!

(

m

k

)(

n

k

)

zm−kzn−k.

It is easy to prove that Hm,n belong to SF(C).

We now provide a sequential charachterization of the space H(K)

Theorem 2.15. We have

H(K) = SF(C).

Moreover, it holds that

(2.16) K(z, w) =

∞
∑

m,n=0

φm,n(z, z)φm,n(w,w), for any z, w ∈ C.

Proof. Since (φm,n)m,n≥0 is an orthonormal basis of the space SF(C), the associated reproducing
kernel is given by the convergent series

∞
∑

m,n=0

φm,n(z, z̄)φm,n(w, w̄) <∞, for any z, w ∈ C.
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More precisely, for any (z, w) ∈ C
2 we have the equalities

∞
∑

m,n=0

φm,n(z, z̄)φm,n(w, w̄) =

∞
∑

m,n=0

zmz̄nw̄mwn

m!n!

=

( ∞
∑

m=0

zmw̄m

m!

)( ∞
∑

n=0

wnz̄n

n!

)

= ezw̄ewz̄

= ezw̄+wz̄

= K(z, w).

�

Theorem 2.16. It holds that

(2.17) 〈 ∂
∂z
f, g〉SF(C) = 〈f,Mzg〉SF(C),

moreover

(2.18) 〈 ∂
∂z
f, g〉SF(C) = 〈f,Mzg〉SF(C).

Proof. Let f =

∞
∑

k=0

zkfk and g =

∞
∑

k=0

zkgk in SF(C) that belongs to the domains of the creation

and annihilation operators. Firstly, we note that we have

Mz(g) =

∞
∑

k=0

zkMz(gk).

Then, it follows that

〈 ∂
∂z
f, g〉SF(C) =

∞
∑

k=0

k!〈 ∂
∂z
fk, gk〉F(C)

=

∞
∑

k=0

k!〈fk, (
∂

∂z
)∗gk〉F(C)

=

∞
∑

k=0

k!〈fk,Mz(gk)〉F(C)

= 〈f,Mz(g)〉SF (C).

Moreover, since

∂

∂z
(f)(z) =

∞
∑

h=0

(h+ 1)zhfh+1,

and

Mz(g)(z) =
∞
∑

h=1

zhgh−1,
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it follows that

〈 ∂
∂z
f, g〉SF(C) =

∞
∑

k=0

k!〈(k + 1)fk+1, gk〉F(C)

=

∞
∑

k=0

(k + 1)!〈fk+1, gk〉F(C)

=

∞
∑

k=1

k!〈fk, gk−1〉F(C)

= 〈f,Mz(g)〉SF (C).

�

Remark 2.17. We shall see later that that we have

F(C) ⊂ SF(C) ⊂ L2(C, dµβ), β > 2.

The previous inclusions are strict. It is well known that the classical Fock space F(C) is the
only space of entire functions on which the creation and annihilation operators are adjoints of
each others and satisfy the classical commutation rules. Of course, this is not true anymore on
L2(C, dµ), see Proposition 7.2 in [31]. However, the previous theorem shows that the result still
holds in the subspace SF(C) of the space of polyanalytic functions of infinite order.

Definition 2.18. Let f, g ∈ SF(C) and let f(z) =

∞
∑

n=0

z̄nfn(z) and g(z) =

∞
∑

m=0

zmgm(z̄).

Then, we define two backward shift operators R∞ and L∞ with respect to the variables z and z̄
respectively given by

(2.19) R∞(f)(z, z̄) =

∞
∑

n=0

z̄nR0(fn)(z) =
1

z

(

f(z, z̄)−
∞
∑

n=0

z̄nfn(0)

)

, z ∈ C

and

(2.20) L∞(g)(z, z̄) =
1

z̄

(

g(z, z̄)−
∞
∑

m=0

zmgm(0)

)

, z ∈ C.

It turns out that both the backward shift operators R∞ and L∞ define two contractions on the
polyanalytic Fock space of infinite order SF(C). Indeed, the following result holds:

Proposition 2.19. For any f ∈ SF(C), we have

(2.21) ||R∞(f)||2SF(C) ≤ ||f ||2SF(C) −
∞
∑

n=0

n!|fn(0)|2 ≤ ||f ||2SF(C).

and

(2.22) ||L∞(g)||2SF(C) ≤ ||g||2SF (C) −
∞
∑

n=0

n!|gn(0)|2 ≤ ||g||2SF (C).

Proof. We will prove the result for R∞. Indeed, if we consider

f(z) =

∞
∑

n=0

z̄nfn(z), fn ∈ F(C),

we have

R∞(f)(z) =

∞
∑

n=0

z̄nR0(fn)(z).
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Thus, using the fact R0 is a contraction on the Fock space (see [9]) we deduce

||R∞(f)||2SF(C) =
∞
∑

n=0

n!||R0(fn)||2F(C)

≤
∞
∑

n=0

n!(||fn||2F(C) − |fn(0)|2)

= ||f ||2SF(C) −
∞
∑

n=0

n!|fn(0)|2 ≤ ||f ||2SF(C)

and this ends the proof. We note that the argument follows in a similar way for L∞ using the
fact that we can write f also in the form

f(z) =

∞
∑

m=0

zmfm(z).

�

Now, we consider other two operators:

Definition 2.20. Let f, g ∈ SF(C) and let f(z) =
∞
∑

n=0

z̄nfn(z) and g(z) =
∞
∑

m=0

zmgm(z̄). Then,

we define two operators with respect to the variables z and z̄ respectively which are given by

(2.23) I∞(f)(z, z̄) =
∞
∑

n=0

z̄nI(fn)(z), z ∈ C

and

(2.24) J∞(g)(z, z̄) =

∞
∑

m=0

zmJ(gm)(z̄), z ∈ C.

We point out that the operator I is the integration operator considered in [9], while J is the
integration with respect to the conjugate variable.

Remark 2.21. It holds that

(2.25) I∞(z̄nzm)(z) =
z̄nzm+1

m+ 1
, z ∈ C

and

(2.26) J∞(z̄nzm)(z) =
z̄n+1zm

n+ 1
, z ∈ C.

As a consequence, we have the following result:

Theorem 2.22. The adjoints of R∞ and L∞ satisfy

(2.27) R∗
∞ = I∞

and

(2.28) L∗
∞ = J∞.

Proof. Let f, g ∈ SF(C); we will prove that

(2.29) 〈I∞(f), g〉SF(C) = 〈f,R∞(g)〉SF (C).
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Indeed, we write f(z) =

∞
∑

n=0

znfn(z) and g(w) =

∞
∑

n=0

zngn(z) with fn, gn ∈ F(C) for any n ≥ 0.

We have

I∞(f)(z) =
∞
∑

n=0

z̄nI(fn)(z)

and

R∞(g)(z) =
∞
∑

m=0

z̄mR0(gm)(z).

Then, we use the scalar product on SF(C) and apply the result on the classical backward shift
operator, see [9]. Therefore, it follows that

〈I∞(f), g〉SF(C) =

∞
∑

k=0

k!〈I(fk), gk〉F(C)

=

∞
∑

k=0

k!〈fk, R0(gk)〉F(C)

= 〈f,R∞(g)〉SF(C).

The second part of the statement can be proved in a similar way. �

3. A kernel function relating polyanalytic Fock spaces of finite and infinite

order

In this section we study how the polyanalytic Fock spaces of finite and infinite order are related
between them. We denote by Fn(C) the classical polyanalytic Fock space whose kernel is given
by the formula (1.4). The relation between the kernels K and (Kn)n≥1 is described in the next
result.

Proposition 3.1 (kernel formula). For any z, w ∈ C we set

G(z, w) = ezw−(|z|2+|w|2).

Then, it holds that

(3.1)

∞
∑

n=1

Kn(z, w)

2n+1
= G(z, w)K(z, w), for any z, w ∈ C.

Proof. We note that the polyanalytic Fock kernels given by (1.4) can be written in terms of the
generalized Laguerre polynomials as follows

(3.2) Kn(z, w) = ezwL1
n−1(|z − w|2), for any z, w ∈ C.

Then, taking the series (3.2) we obtain

(3.3)
∞
∑

n=1

Kn(z, w)

2n−1
= ezw

∞
∑

n=1

L1
n−1(|z − w|2)

2n−1
= ezw

∞
∑

n=0

L1
n(|z − w|2)

2n
.

Morever, we note that for any a, α > 0 we have the following expansion, see [28, Example 2, pp
89]
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(3.4) e−ax = (a+ 1)−(α+1)
∞
∑

n=0

(

a

a+ 1

)n

Lα
n(x), x ≥ 0.

In particular, inserting α = a = 1 and x = |z − w|2 in (3.4) we obtain

e−|z−w|2 =
1

22

∞
∑

n=0

L1
n(|z − w|2)

2n
, z, w ∈ C.

Hence, with some computations involving (3.3) we obtain that

∞
∑

n=1

Kn(z, w)

2n+1
= G(z, w)K(z, w),

for any z, w ∈ C where G(z, w) = ezw−(|z|2+|w|2). �

Remark 3.2. We observe that the classical creation and annihilation operators are adjoint of
each others on the polyanalytic Fock space of infinite order SF(C), see Theorem 2.16.

4. A Segal-Bargmann type transform and related operators

In this section, we deal with a Segal-Bargmann type transform related to the polyanalytic Fock
spaces of infinite order. We discuss also some related operators.
Let (ψn(x))n≥0 denote the normalized Hermite functions and consider the Segal-Bargmann kernel
A(z, x) which is given by

(4.1) A(z, x) :=

∞
∑

n=0

zn√
n!
ψn(x) = e−

1
2
(z2+x2)+

√
2zx, for any (z, x) ∈ C× R.

For any z ∈ C fixed we use also the notation Az(x) = A(z, x) for all x ∈ R. The kernel (2.3) can
be factorized as follows:

Theorem 4.1. For any (z, w) ∈ C
2, we have

(4.2) K(z, w) = 〈Az ⊗Az̄, Aw ⊗Aw̄〉L2(R2).

Proof. The proof is based on computations using Fubini’s theorem combined with the following
well-known fact

〈Az, Aw〉L2(R) = ezw̄.

Indeed, for z, w ∈ C we have the explicit computations

〈Az ⊗Az̄, Aw ⊗Aw̄〉L2(R2) =

∫

R2

(Az ⊗Az̄)(x, y)(Aw ⊗Aw̄)(x, y)dxdy

=

∫

R2

Az(x)Az(y)Aw(x) Aw(y)dxdy

=

(
∫

R

Az(x)Aw(x)dx

)(
∫

R

Az(y)Aw(y)dy

)

= 〈Az, Aw〉L2(R)〈Aw, Az〉L2(R)

= ezw̄ewz̄

= K(z, w).

�
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Definition 4.2. For a given ϕ ∈ L2(R2), we define the so-called first Segal-Bargmann type
transform by

(4.3) T (ϕ)(z, z̄) = 〈ϕ,Az ⊗Az̄〉L2(R2) =

∫

R2

Az(x)Az̄(y)ϕ(x, y)dxdy.

Then, as a consequence, we can write the kernel function K(z, w) as a function in the range of
the transform T thanks to the following

Proposition 4.3. For a fixed w ∈ C, we set ϕw(t1, t2) = (Aw ⊗ Aw)(t1, t2), with t1, t2 ∈ R.
Then

K(z, w) = T (ϕw)(z, z), for any z ∈ C.

Proof. This result can be obtained as a direct application of Theorem 4.1 and Definition 4.2
taking into account that

Aw ⊗Aw = Aw ⊗Aw, w ∈ C.

Indeed, for any z, w ∈ C we have

T (ϕw)(z, z) = 〈ϕw, Az ⊗Az̄〉L2(R2)

= 〈Aw ⊗Aw, Az ⊗Az̄〉L2(R2)

=

∫

R2

(Aw ⊗Aw)(t1, t2)(Az ⊗Az̄)(t1, t2)dt1dt2

= 〈Az ⊗Az̄, Aw ⊗Aw〉L2(R2)

= 〈Az ⊗Az̄, Aw ⊗Aw̄〉L2(R2)

= K(z, w).

�

Remark 4.4. As a consequence of the previous result, we observe that for any fixed w ∈ C, we
have

T (ϕw)(z) = K(z, w) = Kw(z), z ∈ C.

Then, T ∗ = T−1 since T is a unitary operator; moreover, for any w ∈ C

T−1(Kw)(t1, t2) = T ∗(Kw)(t1, t2) = (Aw ⊗Aw)(t1, t2), for all (t1, t2) ∈ R
2.

As a first example, we consider the family of functions given by

ψm,n(x, y) := (ψm ⊗ ψn)(x, y) = ψm(x)ψn(y), for any m,n ≥ 0.

We have

Proposition 4.5. For every z ∈ C we have

(4.4) T (ψm,n)(z, z̄) =
zmzn√
m!n!

= φm,n(z, z), m, n = 0, 1, ...

and

(4.5) ∆zφp,q(z, z) = 4
√
pqφp−1,q−1(z, z), p, q = 1, 2, ....
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Proof. Recalling that Az(y) = Az(y) for any y ∈ R, using the Fubini’s theorem we have:

T (ψ(m,n))(z, z̄) =

∫

R2

(Az ⊗Az̄)(x, y)ψm,n(x, y)dxdy

=

∫

R2

Az(x)Az(y)ψm(x)ψn(y)dxdy

=

(
∫

R

Az(x)ψm(x)dx

)(
∫

R

Az(y)ψn(y)dy

)

= B(ψm)(z)B(ψn)(z)

=
zmzn√
m!n!

= φm,n(z, z).

Now, using the fact that ∆z = 4
∂2

∂z∂z
we get

∆z(φp,q)(z, z) = 4
pq√
p!q!

zp−1zq−1 = 4
√
pqφp−1,q−1(z, z).

�

Example 4.6. Let

f(z, z) = T (ψn,m)(z, z), for any z ∈ C.

Then f ∈ SF(C), moreover we have

||f ||SF(C) = ||T (ψn,m)|| = 1 = ||ψn,m||L2(R2).

Theorem 4.7. The first Segal-Bargmann type transform T defines an isometric isomorphism
from L2(R2) onto SF(C).

Proof. The normalized Hermite functions (ψm,n)m,n≥0 form an orthonormal basis of L2(R2), thus
for any ϕ ∈ L2(R2,C), there exist unique coefficients (βm,n)m,n≥0 in C such that

ϕ(x, y) =

∞
∑

m,n=0

ψm,n(x, y)βm,n, and ||ϕ||2L2(R2) =

∞
∑

m,n=0

|βm,n|2 <∞.

Therefore, inserting ϕ in the definition of the transform T and using some standard arguments
we have

T (ϕ)(z, z̄) =

∫

R2

Az(x)Az̄(y)





∞
∑

m,n=0

ψm,n(x, y)βm,n



 dxdy

=
∞
∑

m,n=0

(∫

R2

Az(x)Az(y)ψm,m(x, y)dxdy

)

βm,n

=

∞
∑

m,n=0

T (ψm,n)(z, z)βm,n.
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Applying the first part of Proposition 4.5 we obtain

T (ϕ)(z, z̄) =
∞
∑

m,n=0

φm,n(z, z)βm,n

=

∞
∑

m,n=0

zmzn√
m!n!

βm,n

=
∞
∑

n=0

zn

( ∞
∑

m=0

zm√
m!n!

βm,n

)

.

Then, setting fn(z) =
1√
n!

∞
∑

m=0

zm√
m!
βm,n for any n ≥ 0 we have

T (ϕ)(z, z) =

∞
∑

n=0

znfn(z), z ∈ C.

We observe that fn are entire functions. Moreover, it is immediate to see that

||fn||2F(C) =
1

n!

∞
∑

m=0

|βm,n|2 <∞.

Hence, we deduce

||T (ϕ)||2SF(C) =
∞
∑

n=0

n!||fn||2F(C)

=

∞
∑

n=0

∞
∑

m=0

|βm,n|2

= ||ϕ||2L2(R).

This proves that the transform T defines an isometric operator from L2(R) into the polyanalytic
Fock space of infinite order SF(C). On the other hand, we note that using Proposition 4.5 we
have

T (ψm,n) =
zmzn√
m!n!

, m, n ≥ 0.

This allows to justify that if f ∈ SF(C) there exists g ∈ L2(R) such that f = T (g). In particular,
this shows that T is also surjective which ends the proof. �

Remark 4.8. We know that T defines an isometric and surjective transform from L2(R2) onto
SF(C). This shows that T is invertible and the inverse of T exists. However, we do not know
how to explicitly calculate this inverse because of the lack of a geometric description of the space
SF(C).

We recall the position operators given by

Xϕ(x, y) = xϕ(x, y)

and

Y ϕ(x, y) = yϕ(x, y).

We denote by D(X) =
{

ϕ ∈ L2(R),X(ϕ) ∈ L2(R)
}

the domain of the position operator X.
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Proposition 4.9. The following relations hold:

T−1

(

∂

∂z
+Mz

)

T =
√
2X, on D(X)

and

T−1

(

∂

∂z
+Mz

)

T =
√
2Y, on D(Y ).

Proof. We will make the calculations for the operator X and for Y it can be done in a similar
way. As in the classical case, for ϕ ∈ D(X) we have

∂

∂z
[T (ϕ)](z) =

∫

R2

∂

∂z
(Az(x))Az(y)ϕ(x, y)dxdy

.
It is easy to check that

∂

∂z
(A(z, x)) = (−z +

√
2x)A(z, x).

Thus, we obtain

∂

∂z
T (ϕ)(z) =

∫

R2

(−z +
√
2x)Az(x)Az(y)ϕ(x, y)dxdy

= −z
∫

R2

Az(x)Az(y)ϕ(x, y)dxdy +
√
2

∫

R2

Az(x)Az(y)xϕ(x, y)dxdy

= −MzT (ϕ)(z) +
√
2T (Xϕ)(z).

Therefore, it follows that for any ϕ ∈ D(X) we have

∂

∂z
T (ϕ) +MzT (ϕ) =

√
2TX(ϕ).

Hence, we obtain
(

∂

∂z
+Mz

)

T =
√
2TX.

Finally, this leads to

T−1

(

∂

∂z
+Mz

)

T =
√
2X, on D(X).

�

Proposition 4.10. We have

1

2
T−1

(

1

4
∆z + z

∂

∂z
+ z

∂

∂z
+M|z|2

)

T = Y X, on D(Y X).

Proof. We observe that Proposition 4.9 yields

1

2
T−1

(

∂

∂z
+Mz

)(

∂

∂z
+Mz

)

T = Y X.

Then, the result holds since we have
(

∂

∂z
+Mz

)(

∂

∂z
+Mz

)

=
1

4
∆z + z

∂

∂z
+ z

∂

∂z
+M|z|2 .

�

Let D(Mz) = {f ∈ SF(C),Mz(f) ∈ SF(C)} be the domain of the creation operator Mz.
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Proposition 4.11. The following relations hold

T

(

X − ∂

∂x

)

T−1 =
√
2Mz, on D(X) ∩D(

∂

∂x
)

and

T

(

Y − ∂

∂y

)

T−1 =
√
2Mz, on D(Y ) ∩D(

∂

∂y
).

Proof. We will prove the first statement of this result; the second one follows with similar argu-

ments. Indeed, let ϕ ∈ D(X) ∩ D(
∂

∂x
) we have

T (X − ∂

∂x
)ϕ(z) = T (Xϕ)(z) − T (

∂

∂x
ϕ)(z).

By definition we have

T (Xϕ)(z) =

∫

R2

Az(x)Az̄(y)xϕ(x, y)dxdy,

so that

T (
∂

∂x
ϕ)(z) =

∫

R2

Az(x)Az̄(y)
∂

∂x
ϕ(x, y)dxdy = −

∫

R2

∂

∂x
(Az(x))Az̄(y)ϕ(x, y)dxdy,

since
∂

∂x
(Az(x)) = (−x+

√
2z)Az(x),

we are lead to

T

(

X − ∂

∂x

)

ϕ(z) =
√
2zT (ϕ)(z).

Hence, we obtain

T

(

X − ∂

∂x

)

T−1 =
√
2Mz, on D(X) ∩ D(

∂

∂x
).

�

As a consequence of the previous result we can prove the following

Corollary 4.12. We have

T

(

∂2

∂x∂y
+XY −X

∂

∂y
− Y

∂

∂x

)

T−1 = 2M|z|2 .

Proof. Indeed, we just need to apply Proposition 4.11 combined with the relation
(

X − ∂

∂x

)(

Y − ∂

∂y

)

=
∂2

∂x∂y
+XY −X

∂

∂y
− Y

∂

∂x
.

�

5. A Berezin transform and related operators

We now use the kernel function (2.3) to study a Berezin integral transform and develop further
results on it.

Definition 5.1. Let f : C −→ C and let dµ(w) = 1
π
e−|w|2dA(w) be the Gaussian measure. Then,

we consider the following integral transform

(5.1) B(f)(z) =
∫

C

e−|z|2K(z, w)f(w)dµ(w), z ∈ C,

when the integral exists.
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Remark 5.2. We observe that

e−|z|2K(z, w)e−|w|2 = e−|z−w|2, z, w ∈ C.

Thus, it turns out that the integral transform given by (5.1) coincides with the so-called Berezin
transform considered in [33, p. 101]. However, since B can be expressed in terms of the kernel
function K(z, w) we can use various properties of this kernel in order to develop further results.
A similar transform in the case of two complex variables was considered in [19]. It is important
to note that the Berezin transform was first introduced by Berezin in [20] as a general concept
of quantization.

We start first by observing that the Berezin transform B fixes all the complex monomials zn,
n ∈ N which form an orthogonal basis of the classical Fock F(C):

Proposition 5.3. For n = 0, 1, ... it holds that

(5.2) B(zn) = zn, ∀z ∈ C.

Proof. We set fn(z) = zn with n = 0, 1, .... Then, for every α ∈ C we can write

(5.3)

∞
∑

n=0

αnN (fn)(z)

n!
=

1

π
e−|z|2

∫

C

K(z, w)eαwe−|w|2dA(w).

Let us set w = t1 + it2 and let us replace K(z, w) by its expression to obtain
∞
∑

n=0

αnN (fn)(z)

n!
=

1

π
e−|z|2

∫

R2

ez(t1−it2)+(t1+it2)z+α(t1+it2)e−(t21+t22)dt1dt2.

Therefore, thanks to Fubini’s theorem we have
∞
∑

n=0

αnB(fn)(z)
n!

=
1

π
e−|z|2

(∫

R

e−t21+t1(z+z+α)dt1

)(∫

R

e−t22+t2i(z−z+α)dt2

)

.

Now, we recall the classical Gaussian integral

(5.4)

∫

R

e−at2+btdt =

√

π

a
e

b2

4a , a > 0, b ∈ C.

Thus, setting b1(z, z) = z + z + α and b2(z, z) = i(z − z + α) we obtain
∞
∑

n=0

αnB(fn)(z)
n!

=
1

π
e−|z|2πe

b21(z,z)

4 e
b22(z,z)

4 .

Therefore, we have
∞
∑

n=0

αnB(fn)(z)
n!

= e−|z|2e
b21(z,z)+b22(z,z)

4

We have b21(z, z) = z2+z2+2|z|2+α2+2αz+2αz and b22(z, z) = −(z2+z2−2|z|2+α2+2αz−2αz),
which leads to

b21(z, z) + b22(z, z) = 4(|z|2 + αz).

Hence ∞
∑

n=0

αnB(fn)(z)
n!

= eαz =
∞
∑

n=0

αn z
n

n!
, ∀α ∈ C.

Finally, we identify the coefficients with respect to the variable α and get

B(fn)(z) = zn, n = 0, 1, ...

�
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Remark 5.4. It is impotant to note that in [33] it was proved that a function f ∈ L∞(C) is a
fixed point for the Berezin transform B if and only if f is constant. Then, Proposition 5.3 shows
that monomials are fixed by the Berezin transform. In particular, this suggests to consider a
more general fixed point problem: to find when B(f) = f for f in some suitable function space.

Remark 5.5. We observe that

(5.5) B(f)(z) = 1

π

∫

C

ewz+wz−|z|2f(w)e−|w|2dA(w).

If z = 0, we have

B(f)(0) = 1

π

∫

C

f(w)e−|w|2dA(w).

In particular, using the Cauchy-Schwarz inequality we obtain

|B(f)(0)| ≤ ||f ||L2(C,µ),

and by taking the function f = 1, we get

B(1)(z) = e−|z|2 1
π

∫

C

K(z, w)e−|w|2dA(w).

Theorem 5.6. For any α > 0, let dµα(w) =
α
π
e−α|w|2dA(w) be the weighted Gaussian measure.

For any β > 2 the operator B is bounded from L2(C, dµ) into L2(C, dµβ). In particular, for any
f ∈ L2(C, dµ) it holds that

(5.6) ||B(f)||L2(C,dµβ) ≤
1√
β − 2

||f ||L2(C,dµ).

Proof. For z ∈ C fixed, we have

B(f)(z) = e−|z|2
∫

C

K(z, w)f(w)dµ(w).

Thus, setting Kz(w) = K(z, w) for any w ∈ C and noting that f,Kz ∈ L2(C, dµ) we obtain

|B(f)(z)| ≤ e−|z|2
∫

C

|K(z, w)||f(w)|dµ(w),

and using the Cauchy Schwarz inequality

|B(f)(z)| ≤ e−|z|2 ||Kz ||L2(C,dµ)||f ||L2(C,dµ).

Moreover, developing some calculations using Gaussian integrals we get

||Kz||L2(C,dµ) = e2|z|
2
,

and so
|B(f)(z)| ≤ e|z|

2 ||f ||L2(C,dµ).

As a consequence, for any β > 2 we have

||B(f)||2L2(C,dµβ )
≤ ||f ||2L2(C,dµ)

(

1

π

∫

C

e−(β−2)|z|2dA(z)

)

=
1

β − 2
||f ||2L2(C,dµ).

Hence, B is a bounded operator from L2(C, dµ) into L2(C, dµβ) with β > 2. �

Remark 5.7. In particular, for any β > 2 we have

||B(f)||L2(C,dµβ) ≤ ||B(f)||SF(C).

This explains somehow that
SF(C) ⊂ L2(C, dµβ), β > 2.

Now, we can prove the following
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Lemma 5.8. For any p, q = 0, 1, 2, . . ., we have

B(Hp,q)(z, z) = zpzq.

We have also

||B(Hp,q)||SF(C) = ||Hp,q||L2(C,dµ).

Proof. For any u, v ∈ C we have (see [23, 26] )

(5.7)
∞
∑

m,n=0

Hm,n(z, z)
umvn

m!n!
= euz+vz−uv, ∀z ∈ C.

For w ∈ C we set

(5.8) R(z, w) :=

∞
∑

m,n=0

zmzn

m!n!
Hm,n(w,w) = ezw+zw−|z|2, z ∈ C.

It is immediate that

R(z, w) = R(z, w), z, w ∈ C.

From formula (5.1) we obtain

B(Hp,q)(z) =

∫

C

e−|z|2K(z, w)Hp,q(w,w)dµ(w)

=

∫

C

e−|z|2+zw+wzHp,q(w,w)dµ(w)

=

∫

C





∞
∑

m,n=0

zmzn

m!n!
Hm,n(w,w)



Hp,q(w,w)dµ(w)

=

∫

C

R(z, w)Hp,q(w,w)dµ(w)

=

∫

C

R(z, w)Hp,q(w,w)dµ(w)

=
∞
∑

m,n=0

zmzn

m!n!

∫

C

Hm,n(w,w)Hp,q(w,w)dµ(w)

=

∞
∑

m,n=0

zmzn

m!n!
〈Hp,q,Hm,n〉L2(C,dµ).

However, we know that the complex Hermite polynomials (Hm,n)m,n≥0 form an orthonormal
basis of L2(C, dµ) (see [26]) so that we have

〈Hp,q,Hm,n〉L2(C,dµ) = p!q!δ(p,q);(m,n).

In particular, this leads to

B(Hp,q)(z, z) = zpzq, z ∈ C.

As a consequence, it is clear that for any p, q = 0, 1, 2, . . . we have

||B(Hp,q)||SF(C) = ||zpzq||SF(C) =
√

p!q! = ||Hp,q||L2(C,dµ).

�
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Theorem 5.9. The integral transform B is an isomorphism from L2(C, dµ) onto SF(C) and for
any f ∈ L2(C, dµ) we have

(5.9) ||B(f)||SF(C) = ||f ||L2(C,dµ).

Proof. For any f ∈ L2(C, dµ) we can write the following decomposition using Hermite polyno-
mials

f(z) =

∞
∑

p,q=0

Hp,q(z, z)αp,q, z ∈ C,

and

||f ||2L2(C,dµ) =
∞
∑

p,q=0

p!q!|αp,q|2.

Thus, thanks to Lemma 5.8 we get

B(f)(z) =
∞
∑

p,q=0

B(Hp,q)(z, z)αp,q

=

∞
∑

p,q=0

zpzqαp,q.

Then, using also Proposition 2.13 we obtain

||B(f)||2SF(C) =

∞
∑

p,q=0

p!q!|αp,q|2

= ||f ||2L2(µ).

We observe that the surjectivity of the transform B is a direct consequence of Lemma 5.8. This
allows to consider the integral transform B : L2(C, dµ) −→ SF(C) which defines an unitary
operator.

�

Proposition 5.10. For any f ∈ L2(C, dµ), it holds that

∂

∂z
B(f)(z) = −zB(f)(z) + B(wf)(z).

In a similar way, we have also

∂

∂z
B(f)(z) = −zB(f)(z) + B(wf)(z).

Proof. We observe that thanks to the definition of B we have

B(f)(z) = 1

π

∫

C

e−|z|2K(z, w)f(w)e−|w|2dA(w), z ∈ C.

Thus, we have

(5.10)
∂

∂z
B(f)(z) = 1

π

∫

C

∂

∂z
(e−|z|2K(z, w))f(w)e−|w|2dA(w), z ∈ C.

Applying the Leibniz rule and Proposition 2.5 we get
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∂

∂z
(e−|z|2K(z, w)) = e−|z|2 ∂

∂z
K(z, w) +

∂

∂z
(e−|z|2)K(z, w)

= e−|z|2wK(z, w) − ze−|z|2K(z, w)

= (w − z)e−|z|2K(z, w).

Hence, we insert the previous computations in the formula (5.10) and this leads to

∂

∂z
B(f)(z) = 1

π

∫

C

e−|z|2(w − z)K(z, w)f(w)e−|w|2dA(w)

= B(wf)(z)− zB(f)(z).

�

As a consequence of the previous result we prove

Proposition 5.11. It holds that

(5.11) B−1

(

∂

∂z
+ z

)

B =Mw,

and

(5.12) B−1

(

∂

∂z
+ z

)

B =Mw.

Proof. We note that thanks to Proposition 5.10 we can write

∂

∂z
B(f)(z) + zB(f)(z) = B(wf)(z).

Then, using the fact that B is an isomorphism it is easy to see that

B−1

(

∂

∂z
+ z

)

B =Mw.

In a similar way we can prove the second statement.
�

As a consequence, we can prove the following

Corollary 5.12. It holds that

(5.13) B−1

(

1

4
∆z +

∂

∂z
z + z

∂

∂z
+ |z|2

)

B =M|w|2 .

Proof. We observe that using the two expressions proved in Proposition 5.11 we obtain that

B−1

(

∂

∂z
+ z

)(

∂

∂z
+ z

)

B =MwMw =M|w|2 .

On the other hand, we have
(

∂

∂z
+ z

)(

∂

∂z
+ z

)

=

(

1

4
∆z +

∂

∂z
z + z

∂

∂z
+ |z|2

)

,

and this ends the proof. �

In the next result, we will calculate
∂n

∂zn
B(f)(z) and

∂n

∂zn
B(f)(z):
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Proposition 5.13. For any n = 0, 1, 2, . . ., it holds that

(5.14)
∂n

∂zn
B(f)(z) =

n
∑

k=0

(−1)k
(

n

k

)

zkB(wn−kf)(z) = B((w − z)nf)(z),

and

(5.15)
∂n

∂zn
B(f)(z) =

n
∑

k=0

(−1)k
(

n

k

)

zkB(wn−kf)(z) = B((w − z)nf)(z).

Proof. The proof is done by induction. For n = 0 the relations are true. We assume that (5.14)
holds for some n and we prove that we have

(5.16)
∂n+1

∂zn+1
B(f)(z) =

n+1
∑

k=0

(−1)k
(

n+ 1

k

)

zkB(wn+1−kf)(z).

Indeed, using Proposition 5.10 we have

∂

∂z
B(f)(z) = −zB(f)(z) + B(wf)(z).

Thus, applying the operator
∂n

∂zn
we get

∂n+1

∂zn+1
B(f)(z) = −z ∂

n

∂zn
B(f)(z) + ∂n

∂zn
B(wf)(z).

Applying the induction hypothesis to the functions f and g = wf we obtain the chain of equalities

∂n+1

∂zn+1
B(f)(z) = −z

(

n
∑

k=0

(−1)k
(

n

k

)

zkB(wn−kf)(z)

)

+

n
∑

k=0

(−1)k
(

n

k

)

zkB(wn+1−kf)(z)

=

n
∑

k=0

(−1)k+1

(

n

k

)

zk+1B(wn−kf)(z) +

n
∑

k=0

(−1)k
(

n

k

)

zkB(wn+1−kf)(z)

=
n+1
∑

h=1

(−1)h
(

n

h− 1

)

zhB(wn+1−hf)(z) +
n
∑

h=0

(−1)h
(

n

h

)

zhB(wn+1−hf)(z)

=

(

n

0

)

B(wn+1f)(z) +
n
∑

h=1

(−1)h
((

n

h

)

+

(

n

h− 1

))

zhB(wn+1−hf)(z)

+ (−1)n+1

(

n

n

)

zn+1B(f)(z).

By Pascal identity we have
(

n

h

)

+

(

n

h− 1

)

=

(

n+ 1

h

)

, for any h ≥ 1,

so that

∂n+1

∂zn+1
B(f)(z) =

n+1
∑

k=0

(−1)k
(

n+ 1

k

)

zkB(wn+1−kf)(z),

and this ends the proof. The second statement follows using similar arguments. �
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Theorem 5.14. For any f ∈ L2(C, dµ), it holds that

(5.17) B(∂wf)(z) = B(wf)(z) − zB(f)(z).
In a similar way, we have

(5.18) B(∂wf)(z) = B(wf)(z)− zB(f)(z).
Proof. This result can be proved using some computations that are based on Proposition 7.2 of

[31]. Indeed, setting dµ(z) := 1
π
e−|z|2dA(z) we get

∫

C

u(w)(∂wv(w))dµ(w) =

∫

C

(−∂w + w) (u(w))v(w)dµ(w).

In particular, this means that on L2(C, dµ) we have

(∂w)
∗ = −∂w + w.

Then, using this fact we deduce the following computations

MzB(f)(z) = zB(f)(z)

= e−|z|2
∫

C

zK(z, w)f(w)dµ(w)

= e−|z|2
∫

C

∂

∂w
(K(z, w))f(w)dµ(w)

= e−|z|2〈∂wKz, f〉µ
= e−|z|2〈Kz, ∂

∗
w(f)〉µ

= e−|z|2〈Kz, (−∂w + w)(f)〉µ

= e−|z|2
∫

C

K(z, w)(−∂w + w)(f)(w)dµ(w)

= e−|z|2
∫

C

K(z, w)(−∂wf + wf)dµ(w)

= B(−∂wf + wf)(z)

= B(wf)(z)− B(∂wf)(z),
where we used ∂wf = ∂wf, which leads to

(−∂w + w)(f) = (−∂wf + wf).

This ends the proof. �

As a consequence of the previous result, we prove that the operators w− ∂w, w− ∂w are similar
to Mz and Mz respectively:

Proposition 5.15. It holds that

(5.19) B (w − ∂w)B−1 =Mz,

and

(5.20) B (w − ∂w)B−1 =Mz.

Proof. By Theorem 5.14 we have

B(∂wf)(z) = B(wf)(z) − zB(f)(z),
from which we deduce

B((w − ∂w)f)(z) = zB(f)(z).
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Hence, using the fact that the integral transform B is a unitary operator from L2(C, dµ) onto
SF(C) we multiply the operator B−1 on the right and obtain

B (w − ∂w)B−1 =Mz.

The second part of the statement can be proved similarly. �

Proposition 5.16. We have

(5.21) ∂zB(f) = B(∂wf)
and

(5.22) ∂zN(f) = B(∂wf).
Proof. Applying Proposition 5.10 and Theorem 5.14 we have

∂zB(f)(z) = −zB(f)(z) + B(wf)(z)
and

B(∂wf)(z) = B(wf)(z)− zB(f)(z).
Therefore, from the two previous relations we obtain

∂zB(f)(z) = B(∂wf)(z).
The second statement can be proved in a similar way and this will end the proof. �

In the table below, we summarize different operators that are equivalent to each others thanks
to the Berezin transform B.

Table 1. Equivalent operators using the transform B

SF(C) L2(C, dµ)

∂
∂z

+ z w

∂
∂z

+ z w

∂n

∂zn
∂n

∂wn

∂n

∂zn
∂n

∂wn

1
4
∆z +

∂
∂z
z + z ∂

∂z
+ |z|2 |w|2

M|z|2
1
4
∆w − ∂

∂w
w − w ∂

∂w
+ |w|2

z w − ∂
∂w

z w − ∂
∂w
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Inspired by [34] we consider the following integral operator on the Fock space F(C)

Definition 5.17. Let ϕ : C −→ C and denote by dµ(w) = 1
π
e|w|2dA(w) the normalized Gaussian

measure. Then, we define the following integral transform when it exists

(5.23) Sϕ(f)(z) :=

∫

C

ezwf(w)ϕ(w − z)dµ(w), f ∈ F(C).

Remark 5.18. If ϕ = 1, it is clear by the reproducing kernel property for the Fock space that
in this case

Sϕ(f)(z) :=

∫

C

ezwf(w)dµ(w) = f(z), ∀f ∈ F(C).

Example 5.19. For every a ∈ C set ϕa(w) = eaw. Then, we have

Sϕz(f)(z) =

∫

C

ezwf(w)ϕz(w − z)dµ(w) = B(f)(z).

It turns out that the transform B is a particular case of the general integral operator Sϕ.

6. The polyanalytic Hardy space of infinite order and Gleason problem

Let us denote by D the unit disk and by H2(D) the classical Hardy space. In this section, we
will prove the following main result:

Theorem 6.1. The reproducing kernel Hilbert space with reproducing kernel
1

(1− zw)(1− zw)
is, up to a multiplicative positive factor, the only reproducing kernel Hilbert space of polyanalytic
functions of infinite order, regular at the origin, and for which

R∗
∞ = Mz(6.1)

L∗
∞ = Mz.(6.2)

To prove this theorem we need a couple of preliminary results, including a sequential character-
ization of the space H(K).

Definition 6.2. The polyanalytic Hardy space of infinite order SH(D) is the space of functions
of the form

(6.3) f(z) =

∞
∑

n=0

znfn(z),

satisfying

i) fn ∈ H2(D) for any n ≥ 0;

ii) ||f ||2SH(D) =

∞
∑

n=0

||fn||2H2(D) <∞.

Then, we consider the scalar product on SH(D) given by

(6.4) 〈f, g〉SH(D) :=
∞
∑

k=0

〈fk, gk〉H2(D),

for any f =

∞
∑

k=0

zkfk and g =

∞
∑

k=0

zkgk with fk, gk ∈ H2(D) for every k ≥ 0.

Proposition 6.3. A function f : D −→ C belongs to SH(D) if and only if f is of the form

f(z) =
∑

(m,n)∈N2

zmznαm,n,
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with (αm,n) ⊂ C and such that

(6.5) ||f ||2SH(D) =
∑

(m,n)∈N2

|αm,n|2 <∞.

Moreover, if for any (m,n) ∈ N
2 we set υm,n(z, z) = zmz̄n. Then, the family of functions

{υm,n}m,n≥0 form an orthonormal basis of SH(D).

Proof. This proof follows the arguments used to prove Proposition 2.13. �

Lemma 6.4. We have

H(K) = SH(D).

Moreover, it holds that

(6.6) K(z, w) =

∞
∑

m,n=0

υm,n(z, z)υm,n(w,w),

for every z, w ∈ D.

Proof. We note that (υm,n)m,n≥0 is an orthonormal basis of the space SH(D). Thus, the as-
sociated reproducing kernel is given by the following series which converges uniformly on each
compact so that

∞
∑

m,n=0

υm,n(z, z̄)υm,n(w, w̄) <∞, for any z, w ∈ D.

More precisely, for any (z, w) ∈ D
2 we have the equalities

∞
∑

m,n=0

υm,n(z, z̄)υm,n(w, w̄) =

∞
∑

m,n=0

zmz̄nw̄mwn

=

( ∞
∑

m=0

zmw̄m

)( ∞
∑

n=0

wnz̄n

)

=
1

(1− zw)

1

(1− zw)

=
1

(1− zw)(1 − zw)

= K(z, w).

�

Lemma 6.5. It holds that

(6.7) 〈R∞(f), g〉SH(D) = 〈f,Mzg〉SH(D),

and

(6.8) 〈L∞(f), g〉SH(D) = 〈f,Mzg〉SH(D).

Proof. Let f =

∞
∑

k=0

zkfk and g =

∞
∑

k=0

zkgk in SH(D). Since we have

Mz(g) =
∞
∑

k=0

zkMz(gk),
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it follows that

〈R∞(f), g〉SH(D) =

∞
∑

k=0

〈R0(fk), gk〉H2(D)

=

∞
∑

k=0

〈fk, (R0)
∗gk〉H2(D)

=

∞
∑

k=0

〈fk,Mz(gk)〉H2(D)

=

∞
∑

k=0

〈fk, zgk〉H2(D)

= 〈f,Mz(g)〉SH(D).

In a similar way, we can prove the second part of the statement. �

Example 6.6. On the bidisc D
2 we consider the inner function defined by

j(z1, z2) =
z1 + z2 + 2z1z2
z1 + z2 + 2

, ∀(z1, z2) ∈ D
2.

Then, j(z1, z2) is a contractive multiplier of the Hardy space H2(D2) and hence (dimension 2) is
in the Schur-Agler class, see [14, 15]. Moreover, if we set

ρw(z) = 1− zw,

we can consider the kernel function

(6.9) Kj((z1, z2); (w1, w2)) :=
1− j(z1, z2)j(w1, w2)

ρw1(z1)ρw2(z2)
, ∀(z1, z2); (w1, w2) ∈ D

2.

We note that

Kj((z1, z2); (w1, w2)) =
2

(z1 + z2 + 2)(w1 + w2 + 2)

·
(

(z1 + 1)(w1 + 1)

(1− z1w1)
+

(z2 + 1)(w2 + 1)

(1− z2w2)

)

.

Then, by taking z1 = z, z2 = z and w1 = w,w2 = w we have

(6.10) j(z, z) =
z + z + 2|z|2
z + z + 2

=
Re(z) + |z|2
1 + Re(z)

, ∀z ∈ D,

and we can write

j(z, z) =
P (z, z)

Q(z, z)
,

where both the polynomials P and Q are polyanalytic of order 2. We observe that Q(z, z) = 0
if and only if Re(z) = −1, so, Q(z, z) 6= 0 for every z ∈ D. On the other hand, we note that
j(z, z) = 1 on the boundary ∂D. We have

(6.11) Kj(z, w) =
1− j(z, z)j(w,w)

ρw(z)ρw(z)
, ∀(z, w) ∈ D

2,

and, as a consequence,
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Kj((z, z); (w,w)) =
2

(z + z + 2)(w + w + 2)

·
(

(z + 1)(w + 1)

(1− zw)
+

(z + 1)(w + 1)

(1− zw)

)

.

It is important to note also that the function j given by (6.10) is polyrational in the sense of [12,
pp 175].

Remark 6.7. According to [5, 16] we observe that

(6.12) j(z1, z2) = C(I2 − ZA)−1ZB,

and using the unitary matrix M given by

M =

(

A B
C D

)

=







−1
2 −1

2
1√
2

−1
2 −1

2 − 1√
2

1√
2

− 1√
2

0






,

we have

A =

(

−1
2 −1

2
−1

2 −1
2

)

, C =
(

1√
2

− 1√
2

)

, B =

(

1√
2

− 1√
2

)

and D = 0 where we set Z =

(

z1 0
0 z2

)

.

Inspired by [8] we can prove the following result concerning the backward shift operators con-
sidered in Definition 2.18 in the case of the polyanalytic Hardy space of infinite order SH(D).
Indeed, we have

Theorem 6.8. A function f ∈ SH(D) is a common eigenfunction for the backward shift oper-
ators R∞ and L∞ with corresponding eigenvalues given respectively by λ1, λ2 ∈ D if and only
if

(6.13) f(z, z) =
f(0, 0)

(1− λ1z)(1 − λ2z)
, ∀z ∈ D.

Proof. It is easy to check that if f is of the form (6.13), then we have R∞(f) = λ1f and
L∞(f) = λ2f. For the converse, we assume that f is an eigenfunction for R∞ and L∞ with
corresponding eigenvalues given by λ1 and λ2. By writing

f(z, z) =

∞
∑

n=0

znfn(z),

we observe that R∞(f) = λ1f if and only if
∞
∑

n=0

znR0(fn)(z) =

∞
∑

n=0

zn(λ1fn)(z).

In particular, this shows that

R0(fn)(z) = λ1fn(z), for any n = 0, 1, 2, . . . .

Using the classical result on the backward shift operator R0 for any n = 0, 1, 2, . . . we get

fn(z, z) =
fn(0)

1− λ1z
, z ∈ D.
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Now, we insert the expression of fn in the f decomposition which leads to the following calcula-
tions

f(z) =

∞
∑

n=0

znfn(z)

=
∞
∑

n=0

zn
fn(0)

1− λ1z

=

( ∞
∑

m=0

zmλm1

)( ∞
∑

n=0

znfn(0)

)

=
∞
∑

m=0

zmgm(z)

where we set gm(z) = λm1

( ∞
∑

n=0

znfn(0)

)

for any z ∈ D. On the other hand, we note that by

definition

L∞(f) =

∞
∑

m=0

zmL0(gm),

with L0(gm)(z) =
gm(z)− gm(0)

z
. Then, following a similar reasoning as we did in the case of

R∞, using the fact that L∞(f) = λ2f we deduce tha L0(gm)(z) = λ2gm(z). Thus, in particular
this allows to write

gm(z) =
gm(0)

(1− λ2z)
, z ∈ D.

So, now we insert gm in the expression of f and get

f(z) =

∞
∑

m=0

zm
gm(0)

1− λ2z
.

We note that gm(0) = λm1 f0(0) = λm1 f(0). Then, we obtain

f(z) =
f(0)

1− λ2z

∞
∑

m=0

λm1 z
m, z ∈ D.

Hence, we conclude that

f(z, z) =
f(0, 0)

(1− λ1z)(1− λ2z)
, for any z ∈ D.

�

Lemma 6.9. For any f ∈ C1 we have

d

dt
f(tx, ty) = z∂f + z∂f

Proof. It follows from

d

dt
f(tx, ty) = x

∂f

∂x
(tx, ty) + y

∂f

∂y
(tx, ty)

=
1

2
(x+ iy)

(

∂f

∂x
(tx, ty)−−i∂f

∂y
(tx, ty)

)

+
1

2
(x− iy)

(

∂f

∂x
(tx, ty) + i

∂f

∂y
(tx, ty)

)

= z∂f + z∂f.



32 D. ALPAY, F. COLOMBO, K. DIKI, AND I. SABADINI

�

Let

(6.14) f(z, z) = zf1(z, z) + zf2(z, z)

where f1 and f2 are required to be in the same space as f . Then

(A0f)(z, z) =

∫ 1

0

∂

∂z
f(tz, tz)dt(6.15)

(B0f)(z, z) =

∫ 1

0

∂

∂z
f(tz, tz)dt(6.16)

We have
d

dt
f(tz, tz) = z

∂

∂z
f(tz, tz)dt+ z

∂

∂z
f(tz, tz)dt

and so

(6.17) f(z, z)− f(0, 0) = zA0f(z, z) + zB0f(z, z)

Lemma 6.10. Let M be a finite dimensional space in which (6.17) holds. Any f ∈ M which is
a common eigenfunction of A0 and B0 can be written in the form

f(z, z) =
f(0, 0)

1− az − bz
.

Proof. Since A0 and B0 commute they can be simultaneously triangularized. Let

A0f = af and B0f = bf

We have

f(z, z) = f(0, 0) + (az + bz)f

and so

f(z, z) =
f(0, 0)

1− az − bz

�

Lemma 6.11. The following equalities hold:

A0(z
nzm) =

n

n+m
zn−1zm(6.18)

B0(z
nzm) =

m

m+ n
znzm−1.(6.19)

Proof. It follows from

A0(z
nzm) =

∫ 1

0
(nzn−1zm)(tz, tz)dt

= nzn−1zm
∫ 1

0
ntn+m−1dt

=
n

n+m
zn−1zm,

and similarly for B0. �

Remark 6.12. We remark that A0 is not R0, in general; it will reduce to R0 when f is analytic.
We note that both the operators R∞ and A0 extend the classical backward shift operator R0 on
the Hardy space, but these two operators are different.
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7. The Drury-Arveson space case

Let us consider the kernel function given by

(7.1) k(z, w) =
1

1− (zw + zw)
.

We denote by H(k) the associated reproducing kernel Hilbert space. Setting z = x + iy and
w = t+ iu, we have

(7.2)
1

1− (zw + zw)
=

1

1− 2(xt+ yu)

We note that (7.1) is a complete Nevanlinna-Pick kernel, meaning that

1

k(z, w)
= 1− 2xt− 2yu

has one positive square in B(0, 1/
√
2). Such kernels were introduced by Agler, see [4] and also

the paper of Quiggin [29].

Lemma 7.1. The function (7.1) is positive definite in |z| < 1/
√
2 and the functions

∂k

∂t
and

∂k

∂u

belong to H(k). Furthermore, it holds that

〈f, ∂f
∂t

〉H(k) =
∂f

∂x
(7.3)

〈f, ∂f
∂u

〉H(k) =
∂f

∂y
.(7.4)

Proof. For a fixed choice of (t, u) and for h ∈ R small enough we set

fh(x, y, t, u) =
k(x, y, t, u+ h)− k(x, y, t, u)

h
.

Then fh ∈ H(k) and

‖fh‖2H(k) =
k(t, u+ t, t, u+ h) + k(t, u, t, u) − 2k(t, u+ h, t, u)

h2

uniformly bounded in h for h small. Thus fh has a weakly convergent subsequence, with limit
say gt,u. Since weak convergence implies pointwise convergence we have

gt,u(x, y) = 〈gt,u, k(·, ·, x, y)〉H(k)
= lim

h→0
〈fh, k(·, ·, x, y)〉H(k)

= lim
h→0

〈

k(·, ·, t, u + h)− k(·, ·, t, u)
h

, k(·, ·, x, y)
〉

H(k)

= lim
h→0

k(x, y, t, u + h)− k(x, y, t, u)

h

=
∂f

∂u
(x, y, t, u).
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Furthermore, for f ∈ H(k), we have:

〈f, gt,u〉H(k) = = lim
h→0

〈f, fh〉H(k)

= lim
h→0

〈

f(·, ·), k(·, ·, t, u + h)− k(·, ·, t, u)
h

〉

H(k)

= lim
h→0

f(t, u+ h)− f(t, u)

h

=
∂f

∂y
(t, u)

The other claims are proved in the same way. �

Iterating the above result we get:

Corollary 7.2. Let k be as in (7.1), then for n,m = 0, 1, 2, . . .

(7.5)
∂n+mk

∂tn∂um
(·, ·, t, u) ∈ H(k)

and

(7.6) 〈f(·, ·), ∂
n+mk

∂tn∂um
(·, ·, t, u)〉H(k) =

∂n+mf

∂xn∂ym
(t, u).

Proof. This a direct consequence of Lemma 7.1. �

Corollary 7.3. For for n,m = 0, 1, 2, . . . we have

xnym ∈ H(k).

Proof. It suffices to set t = u = 0 in the previous corollary. �

We now give a characterization of the space H(k).

Proposition 7.4. The space H(k) consists of the functions of the form

(7.7) f(z, z) =
∞
∑

a,b=0

ca,bz
azb

with norm

(7.8) ‖f‖2 =
∞
∑

a,b=0

|ca,b|2
a!b!

(a+ b)!

Proof. It suffices to observe that we have

(7.9) k(z, w) =
∑

a,b∈N0

(a+ b)!

a!b!
zazbwbwa.

�

Proposition 7.5. The operators Mz and Mz are bounded in H(k), with ‖Mz‖ ≤ 1 and ‖Mz‖ ≤ 1.
Their adjoints are given by

M∗
z = A0(7.10)

M∗
z = B0.(7.11)
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Proof. The first claim follows from

1− zw

1− 2Re zw
= 1 +

zw

1− 2Re zw
≥ 0

and
1− zw

1− 2Re zw
= 1 +

zw

1− 2Re zw
≥ 0

The second claim follows from

〈Mz(z
nzm), zuzv〉 = 〈zn+1zm, zuzv〉

and similarly for Mz. �

Following [10, Corollary 2.4, p. 7] we introduce

(Aaf)(z) =
z

1− 2Re za
f(z)(7.12)

(Baf)(z) =
z

1− 2Re za
f(z)(7.13)

with a ∈ B(0, 1/
√
2).

Proposition 7.6. Let a ∈ B(0, 1/
√
2). The operators Aa and Ba are bounded and it holds that

(7.14) f(z)− f(a) = (z − a)(A∗
af)(z) + (z − a)(B∗

af)(z), f ∈ H(k).

Proof. We have

(A∗
akb)(z) = b

1−2Re (ba)kb(z)(7.15)

(B∗
akb)(z) = b

1−2Re (ba)kb(z)(7.16)

(z − a)(A∗
akb)(z) + (z − a)(B∗

akb)(z) =
(z − a)b+ (z − a)b

(1− 2Re ba)(1 − 2Re zb)

=
zb+ zb− ab− ab

(1− 2Re ba)(1 − 2Re zb)

= kb(z)− kb(a)

�

Example 7.7. Let us consider the coefficients cn such that

(7.17) 1−
√
1− t =

∞
∑

n=1

cnt
n, t < 1.

Then, the function

fm(z, z) = z +
m
∑

n=1

cnz
2m

is bounded by one in modulus in |z| < 1√
2
, but is not a Schur multiplier.
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Indeed, recalling that the cn > 0 and satisfy
∑∞

n=1 cn = 1 we have
∣

∣

∣

∣

∣

z +

m
∑

n=1

cnz
2n

∣

∣

∣

∣

∣

≤ |z|+
m
∑

n=1

cn|z|2n

≤ |z|+
∞
∑

n=1

cn|z|2n

= |z|+ 1−
√

1− |z|2

≤ 1√
2
+ 1−

√

1

2

= 1.

But ‖fm‖2 = 1 +
∑m

n=1 cn‖z2n‖2 > 1.

For a ∈ B(0, 1/
√
2) we set

(7.18) ba(z) =
(1− 2|a|2)

(

z − a z − a
)

1− Re za

√

I2 −
(

a
a

)

(

a a
)

We note that (with c1, c2, . . . as in (7.17))
√

I2 −
(

a
a

)

(

a a
)

= I2 −
∞
∑

n=1

cn

((

a
a

)

(

a a
)

)n

= I2 −
∞
∑

n=1

cn

((

a
a

)

(

a a
)

)(

(

a a
)

(

a
a

))n−1

= I2 −

(

a a
)

(

a
a

)

2|a|2
∞
∑

n=1

cn(2|a|2)n

I2 −

(

a a
)

(

a
a

)

2|a|2
(

1−
√

1− 2|a|2
)

.

Theorem 7.8. The function f belongs to H(k) and f(a) = 0 if and only if

f(z) = ba(z)g(z),

with g ∈ H(k)2.

Proof. We follow [10]. One direction is trivial while the converse is a direct consequence of (7.14)

with g(z) =

(

A∗
af

B∗
af

)

since f(a) = 0. �

More generally, as in Proposition 4.5 and Section 5 of [10] we have

Theorem 7.9. Let z1, . . . , zN ∈ B(0, 1/
√
2) and w1, . . . , wN ∈ C. There exists a Schur multiplier

s such that

(7.19) s(zn) = wn, n = 1, . . . , N

if and only if the N ×N matrix with (n,m) entry

(7.20)
1− wnwm

1− 2Re znzm
is non negative.
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Proof. This holds thanks to the fact that the kernel k(z, w) = 1
1−2Re zw is a complete Nevanlinna-

Pick kernel, and so the Nevanlinna-Pick interpolation problem is solved. �
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