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A B S T R A C T

We propose a bi-objective algorithm based on the 𝑘-nearest neighbors (biokNN) method to perform imputation
of missing values for data with multilevel structures with continuous variables. We define the imputation
method as a bi-objective minimization problem and propose a solution algorithm based on a weighted objective
function. The algorithm seeks imputed values that balance the dissimilarity between the 𝑘-nearest neighbors
and the observations within the same cluster. The effectiveness of the proposed method is evaluated through
a simulation study, and its results are compared with those of eight benchmark imputation methods. The
simulation study is based on the generation of datasets with a varying-intercept–varying-slope multilevel
model, and the results are compared both by using well-known accuracy metrics and by estimating the bias of
the estimates after inference has been performed. Based on the simulation, the effects of different configurations
of multilevel datasets are tested, including the number of clusters, their size, their similarity, the percentage of
missing values, and the effect of imbalanced clusters. The results show that the proposed method outperforms
the benchmark methods, especially in cases with high intraclass correlation. A comparison of fitted linear
multilevel regression models shows that our method can also reduce the bias of the estimates and the coefficient
of determination. Finally, the method is tested on three commonly used machine learning datasets and shows
better accuracy in most cases compared with the benchmark methods.
1. Introduction

The presence of incomplete data is a common problem in most
intelligent systems applications, limiting the implementation and anal-
ysis of statistical and machine learning models (Lin & Tsai, 2020). To
minimize the loss of efficiency and the bias that arise from removing
rows with missing data, statisticians recommend the use of imputa-
tion algorithms (Horton & Kleinman, 2007). These algorithms use the
observed data to estimate values that can replace the missing val-
ues (Garciarena & Santana, 2017). However, for imputation algorithms
to work optimally on clustered data, they need to account for cluster
effects in the data (Andridge, 2011; Drechsler, 2015; Goldstein et al.,
2014). When datasets show some form of natural clustering where
lower-level units (e.g., students or employees) are nested with higher-
level units (e.g., classrooms or departments), they are said to have a
multilevel structure. Such multilevel structure needs to be accounted
for by the imputation algorithm, since ignoring it may result in severe
model and parameter misspecification (Black et al., 2011; Enders et al.,
2016).

One of the most widely used approaches for handling multilevel
data structures with incomplete data is multiple imputation using mul-
tilevel modeling (Grund et al., 2018). In multiple imputation, several
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copies of the dataset are generated, each with different plausible re-
placement values, and then used in a second phase to perform analysis
by pooling the results (Enders et al., 2016). One of the advantages
of a multilevel approach to missing data is that it can model the
intraclass correlation among levels directly, thereby providing more
accurate estimates of each cluster and thus reducing overfitting (Car-
penter & Kenward, 2012). This approach, however, can be vulnerable
to distributional and model misspecification (Grund et al., 2016). In
addition, according to Grund et al. (2018), ‘‘the imputation model
must be at least as general as the analysis model’’. This makes it
hard for the analyst to remain flexible, even though they are not sure
a priori which kind of multilevel model they wish to estimate. To
cope with this limitation, in this paper, we propose a new method
for imputation that is indeed both simple and generic, and that can
outperform state-of-the-art methods for multilevel imputation in most
scenarios.

We develop a novel bi-objective imputation method based on the
𝑘-nearest neighbors (kNN) algorithm. Bi-objective kNN imputation, or
biokNN for short, minimizes the distance between the imputed values,
vailable online 16 May 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2022.117298
Received 24 May 2021; Received in revised form 8 February 2022; Accepted 22 Ap
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ril 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:mcub@econ.au.dk
mailto:sanw@econ.au.dk
mailto:jwulff@econ.au.dk
https://doi.org/10.1016/j.eswa.2022.117298
https://doi.org/10.1016/j.eswa.2022.117298
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117298&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 204 (2022) 117298M. Cubillos et al.
their neighbors, and class neighbors by solving a bi-objective optimiza-
tion problem. It does not require any distributional assumptions or
model specification. This flexibility is a major advantage, especially
when the user wishes to use several different multilevel analysis models
directed at different research questions (Grund et al., 2018). Using a
comprehensive simulation study, we demonstrate that biokNN outper-
forms the current state-of-the-art imputation algorithms for multilevel
data in most cases. It is particularly superior when missing data rates
are high and clusters are unbalanced. We confirm the performance of
biokNN over alternative algorithms on three benchmark datasets.

The contribution of this paper is twofold. First, we present a new
imputation method designed for datasets with continuous variables
having a multilevel structure. This method is based on the kNN method
and is formulated as a bi-objective optimization problem. Second, we
present an extensive simulation study that tested different configura-
tions of multilevel models and compared the imputation accuracy and
inference performance with those of eight other imputation methods.
In general, we find that biokNN gives better imputation accuracy in
most of the scenarios.

The rest of this paper is structured as follows. Section 2 presents the
most appropriate imputation methods and their applications to mul-
tilevel structured data. Section 3 presents the methodology, including
the formulation of the imputation problem as an optimization problem,
the proposed biokNN method, the simulation setup, the benchmark
imputation methods used for comparison, and the comparison metrics.
In Section 4, the results of both the simulation study and the appli-
cations to the benchmark datasets are presented. This is followed by
a discussion of the implications of the results, the limitations of the
method, and directions for future work are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Literature review

The problem of missing data has been studied extensively in statis-
tics, given its broad applicability in many fields of research. There are
two main approaches to dealing with missing values, namely, deletion
and imputation (Sefidian & Daneshpour, 2019). Deletion methods ig-
nore cases or variables in which there are missing values, and, owing
to their simplicity, can be useful in cases with low rates of missing
values (Lan et al., 2020). However, when the rate of missing values
is high, deletion can cause a major loss of information and lead to bias
and overfitting in the resulting models (Purwar & Singh, 2015). In such
cases, imputation methods are preferred, with the observed information
being used to estimate the missing values.

The most straightforward imputation method is mean imputation, in
which a missing value is replaced by the mean of the observed values of
the variable. This imputation method is simple, but it usually results in
poor imputation accuracy since it ignores the correlation between the
variables in the dataset (Little & Rubin, 2019). Regression imputation
incorporates the correlation of the variables in the dataset by replacing
a missing value with the least squares estimate of its regression on
all of the other variables in the data (Raghunathan et al., 2001). By
contrast, the predictive-mean matching method imputes the missing
values by drawing random samples from a set of observed values close
to regression predictions (Groothuis-Oudshoorn & Van Buuren, 2011).
These methods have been extended to include both numerical and cat-
egorical variables and to use other estimation methods such as support
vector regression (Lin & Tsai, 2020). One of the main drawbacks of
imputation methods based on regression is that they have to meet
strong assumptions and may perform poorly on datasets with nonlinear
relationships between variables. Recently, methods based on state-
of-the-art machine learning techniques have proven to be useful for
imputation purposes. Song and Sun (2020) study the distance models
that predict distances between tuples for missing data imputation using
distance likelihood maximization. Awawdeh et al. (2022) propose an
imputation method that performs feature selection simultaneously to
2

enhance the learning performance of the model using an evolutionary
approach. Finally, Lin et al. (2022) compare multilayer perception and
deep belief networks for missing value imputation and propose two
differently ordered combinations of data discretization.

One of the most widely used nonparametric imputation methods is
kNN imputation. In this method, a missing value from a given variable
is replaced by the mean of the 𝑘-nearest neighbors of the observations
from the same variable. Different distance functions can be used to se-
lect the neighbors, which allows the method to include both numerical
and categorical variables. A main advantage of kNN is that it does
not need specification of any predictive model. Furthermore, it has
a simple implementation, and it usually provides good performance
compared with other methods (Jiang & Yang, 2015). Troyanskaya et al.
(2001) compared kNN imputation with mean imputation and singular-
value decomposition (SVD) techniques. Based on simulations, their
study showed that kNN performs well compared with mean and SVD
imputation.

Several imputation methods based on kNN have been proposed in
the literature, and its effectiveness compared with other imputation
methods has been demonstrated. Caruana (2001) presented an iterative
kNN method that refines the imputed values and chooses the nearest
neighbors based on the estimated values from the previous iteration.
Kim et al. (2004) proposed a sequential kNN imputation method that
starts by imputing missing values from observations with the fewest
missing dimensions, reuses the previously imputed values, and con-
tinues imputing the subsequent missing values. Kim et al. (2005)
proposed a local least squares method based on kNN that imputes
values using regression models trained on the nearest neighbors of
a given observation. Variations of the local least squares kNN-based
method using iterative and sequential methods were proposed by Cai
et al. (2006) and Zhang et al. (2008), respectively. Tutz and Ramzan
(2015) proposed a weighted nearest neighbor imputation method that
uses distances for selected variables as weights in the imputation
process. The weight of the imputed values is assigned individually for
each observation, in contrast to the weighted approach used in this
paper, in which the weight is assigned in the objective function. In a
similar fashion, Pan et al. (2015) proposed a method that uses mutual
information weighted gray relational analysis to obtain the similarity
metric in the kNN method and thereby determine the nearest neighbors
of a missing observation. Similar to Kim et al. (2005), Rachdi et al.
(2021) presented a method combining the kNN method with a local
linear estimation approach when the regressor is of functional type
and the response variable is numerical but observed with some missing
at random observations. Finally, Al-Helali et al. (2021) combined a
weighted kNN method with genetic programming, with kNN being
used to select instances to construct the genetic models. None of these
previous variations of the kNN method, however, have explored the
integration of the multilevel structure into the model with a bi-objective
function, as is done in this study.

Imputation methods that address the multilevel structure of the data
are usually based on linear regression models with fixed or varying
intercepts for the classes (Drechsler, 2015). There are two main proce-
dures to integrate this multilevel structure into the model, namely, the
joint modeling (JM) approach and the fully conditional specification
(FCS) approach (Grund et al., 2018). In the JM approach, a single
model is specified for all variables with missing data, while in the FCS
model, missing data are imputed separately for each variable (Carpen-
ter & Kenward, 2012). These two models have been extensively studied
in recent years, but there are still limitations to their application,
particularly when the sample size is limited or there are multiple inter-
actions. Also, it has been argued that the two approaches imply similar
structures and can be used interchangeably in some situations (Lüdtke
et al., 2017; Mistler, 2015). Moreover, JM and FCS methods are usually
based on multiple imputation, which aims to estimate the posterior dis-
tribution of the missing variables and the correlation between them and
the other variables present in the dataset (Tutz & Ramzan, 2015). This
makes the two approaches computationally more expensive compared
with nonparametric methods, since they require Markov chain Monte

Carlo estimations (Drechsler, 2015).
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3. Methodology

In this section, we present the methodology used in this study.
In Section 3.1, the problem description is presented. This includes
the formulation of the multilevel imputation optimization problem.
Section 3.2 describes the algorithm used to solve the proposed bi-
objective imputation problem. Then, Section 3.3 presents the details
of the simulation study used to assess the performance of the proposed
method. This subsection describes the multilevel varying slope model,
and summarizes the parameters used in the simulation.

3.1. Problem description

This subsection describes the formulation of the missing value impu-
tation optimization problem for continuous variables, together with the
proposed solution method using a bi-objective kNN-based algorithm.
The optimization problem can be described as follows. Let 𝑋 ∈ R𝑛×(𝑃+1)

be a dataset with 𝑃 continuous variables, 𝑛 observations, and one class
variable 𝑋𝑞 containing 𝑄 classes. The observations in the dataset can
be divided into two sets: the missing indexes  = {(𝑖, 𝑝), in which the
value 𝑥𝑖𝑝 is missing}, and the indexes of the observed values  = {(𝑖, 𝑝),
in which the value 𝑥𝑖𝑝 is observed}. We use an auxiliary set  as the
set of indexes 𝑖 in which an observation has at least one missing value.

The objective of the proposed approach is to minimize the dissimi-
larity between the imputed values and both (1) its 𝑘-nearest neighbors
and (2) its class neighbors. Since the two objectives can be conflic-
tive, there is no single optimal solution for this problem. Instead,
for bi-objective problems, sets of efficient solutions that represent the
trade-off between the two objectives are to be found. In our application,
we seek for a single solution since we require a single imputed dataset
as output. A well-known approximation method for problems with
more than one objective that do no alter the structure of our problem
is the weighting method (Zadeh, 1963). We use this approach to
combine the two objectives into a single objective by adding a positive
parameter 𝛼, 0 ≤ 𝛼 ≤ 1, which define a convex combination of the two
objectives. With this approach, the weighting parameter is an input of
the problem.

For a given observation 𝑖 ∈ {1,… , 𝑛}, the 𝑘-nearest neighbors
part of the objective are given by the set of 𝑘 observations with the
smallest distance from 𝑖. The quadratic Euclidean distance between
two observations (𝑖, 𝑖′) is given by the squared difference among the
𝑃 variables in the dataset:

𝑑𝑖𝑗 =
𝑃
∑

𝑝=1
(𝑥𝑖𝑝 − 𝑥𝑗𝑝)2 (1)

On the other hand, the class neighbors  of an observation 𝑖 are given
by the set of observations that belong to the same class, i.e., that share
the same value in the class variable 𝑋𝑞 .

The minimization is based on two decision variables: 𝑤𝑖𝑝, repre-
senting the imputed value of (𝑖, 𝑝) ∈ , and an auxiliary variable 𝑧𝑖𝑗 ,
representing the neighbor assignment of the algorithm based on the
distance defined in Eq. (1). This auxiliary variable is defined by

𝑧𝑖𝑗 =

{

1 if 𝑥𝑗 is among the 𝑘-nearest neighbors of 𝑥𝑖
0 otherwise

(2)

The purpose is to solve the following optimization problem:

min 𝛼

{

∑

𝑖∈

𝑛
∑

𝑗=1
𝑧𝑖𝑗

[ 𝑃
∑

𝑝=1
(𝑤𝑖𝑝 −𝑤𝑗𝑝)2

]}

+ (1 − 𝛼)

{

∑∑

[ 𝑃
∑

(𝑤𝑖𝑝 −𝑤𝑗𝑝)2
]}

(3)
3

𝑖∈ 𝑗∈ 𝑝=1
.t. 𝑤𝑖𝑝 = 𝑥𝑖𝑝, (𝑖, 𝑝) ∈ 
𝑛
∑

𝑗=1
𝑧𝑖𝑗 = 𝑘, 𝑖 ∈ 

𝑧𝑖𝑖 = 0

𝑧𝑖𝑗 ∈ {0, 1}

(4)

he objective function in Eq. (3) is the weighted sum of the two
bjectives, namely, the 𝑘 nearest neighbors and the class neighbors.
he purpose of this function is to include the information given by the
lass variable in the imputed value, depending on the proportion 𝛼.
ote that the method is equivalent to the kNN method if 𝛼 = 1 and
< 𝑛, to the class mean method if 𝛼 = 0, and to the overall mean
ethod if 𝛼 = 1 and 𝑘 = 𝑛. Finally, the constraints in Eq. (4) include

the observed values and ensure that the auxiliary variable 𝑧𝑖𝑗 is well
efined.

.2. Solution approach

The problem formulated in (3)–(4) is a nonconvex optimization
roblem with both binary and continuous variables, which makes it
ifficult to solve to optimality. For that reason, we implement a solution
lgorithm based on the first-order coordinate descent method (Wright,
015). The derivation and details on the implementation for the impu-
ation problem are presented in Bertsimas et al. (2017). In our version,
e modify the objective of the problem to include the weighted sum of

he two objectives in our problem. The first-order coordinate descent
ethod is an iterative approximate method and finding an global
inimum is not guaranteed (Bertsekas, 1999).

An overview of the algorithm is presented in Algorithm 1, and it can
e described as follows. First, three input parameters are required: the
umber of neighbors 𝑘, the weighting parameter 𝛼, and the number of
terations 𝑁iter. As a starting point, the missing values 𝑥𝑖𝑗 are imputed
y randomly assigning a sample from the variable 𝑗, and this is set as

the start solution 𝑋0. Then, for each iteration, we proceed in two steps.
First, the algorithm updates the neighbor assignment by computing the
distance matrix between the observations with at least one missing
value in the original dataset 𝑋 and the rest of the observations. For
each observation in  the distances are sorted, and the 𝑘 observations
with the smaller distance are selected. Second, the imputed values 𝑤𝑖𝑣
are updated. In this step, each imputed value is updated individually
using a weighted average between the neighbors’ mean value 𝑤neigh
and the class mean value 𝑤class. The process is repeated 𝑁iter times.

A reviewer commented that our algorithm resembles that of the
traditional median filter (Tukey, 1977). Median filter takes the median
over a sliding window of fixed size (Arias-Castro & Donoho, 2009) and
is used for noise removal in signal and image processing (Barner &
Arce, 2003; Caselles et al., 2000; George et al., 2018). To apply median
filtering to imputation of multilevel data one would need to decide how
to deal with cluster heterogeneity and the window size. Our algorithm
approaches the multilevel imputation problem by phrasing it in terms
of a bi-objective function solved by the implementation of a first-order
coordinate descent method. Without such an addition, median filter
would not be useful the multilevel imputation problem.

3.3. Simulation framework

We consider a varying-intercept–varying-slope multilevel model to
simulate datasets with a multilevel structure and to be able to con-
trol its variables explicitly. A varying-slope model considers a target
variable 𝑦𝑖𝑗 that depends linearly on an independent variable 𝑋𝑖𝑗 , and
a class variable, where 𝑖 ∈ {1,… , 𝑛} is the 𝑖th observation and 𝑗 ∈

{1,… , 𝑄} is the 𝑗th class. The class variable contains the assignment of
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Algorithm 1

1: Input: 𝑋 ∈ R𝑛×(𝑃+1) dataset with missing values at indexes (𝑖, 𝑝) ∈


2: Input parameters: 𝑘, 𝛼, 𝑁iter
3: 𝑋0 ∈ R𝑛×(𝑃+1) initial dataset imputed using random samples
4: 𝑋′ ← 𝑋0
5: while iter ≤ 𝑁iter do
6: Update neighbors’ assignment:
7: for each 𝑖 ∈  do
8: compute distance between 𝑖 and all observations in 𝑋′

9: sort the computed distances
0: select the 𝑘 observations with the smallest distances
1: end for
2: Update the imputation for each missing value (𝑖, 𝑝)
3: for each (𝑖, 𝑝) ∈  do
4: compute the class mean value 𝑤class
5: compute the neighbors’ mean value 𝑤neigh
6: assign 𝑤𝑖𝑣 ← 𝛼𝑤neigh + (1 − 𝛼)𝑤class
7: end for
8: end while
9: Output: 𝑋′ ∈ R𝑛×(𝑃+1) dataset with imputed values

𝑄 classes, each with 𝑄𝑠 observations. The model can be formulated as
ollows:

𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝜖 (5)

𝛽0𝑗 ∼  (𝜇0, 𝜏0) (6)

1𝑗 ∼  (𝜇1, 𝜏1) (7)

∼  (0, 𝜎) (8)

here 𝜏0 and 𝜏1 represent the random effects of the intercepts and
lopes among classes, respectively, and 𝜎 corresponds to the overall
andom error of the model. The parameters 𝜇0 and 𝜇1 represent the
verage effects of the intercepts and slopes, respectively. As a baseline
or comparison, we consider 𝜇0 = 𝜇1 = 𝜏1 = 𝜎 = 1, while the variances
f the intercepts vary, depending on the intraclass correlation, which
e consider a simulation parameter.

The intraclass correlation measures how strongly the observations
n the same class resemble each other, and it can be derived as

=
𝜏0

𝜏0 + 𝜎
(9)

The values of 𝐼 range from 0 to 1, with 𝐼 = 0 when the observations
in the same class do not share characteristics, and 𝐼 = 1 when they are
exactly the same. In our simulation, we consider four representative
cases with 𝐼 = {0.3, 0.5, 0.7, 0.9}.

One of the effects on the imputation accuracy that we want to
measure is that of the presence of unbalanced datasets. Unbalanced
datasets are those in which the number of observations per class is
uneven, with some classes presenting a high number of observations
while some only have a few. To account for this in the simulation,
we consider that the number of observations per class is drawn from
a normal distribution:

𝑄𝑠 ∼  (𝜇class, 𝜎class) (10)

where 𝜇class is the average number of observations per class and 𝜎class
is its variance. The baseline case considers 𝜎class = 0, where all classes
ave the same number of observations.

Once the parameters to simulate the observed or complete dataset
ave been chosen, random observations are made to be missing for
oth the target and the independent variable. The missing values are
enerated by taking a missing percentage 𝑀 and assuming them to
e missing completely at random (MCAR, see below). The process is
epeated 𝑆 times. Table 1 summarizes all the parameters included in
he simulation study.
4

Table 1
Description of the simulation parameters.

Variable Explanation

𝑆 Number of simulations
𝑄 Number of classes
𝑄𝑠 Observations per class
𝐼 Intraclass correlation
𝑀 Percentage of missing values
𝑝 Number of variables
𝜇0 Overall intercept mean
𝜇1 Slope of variable 𝑋 mean
𝜏0 Intraclass variance
𝜏1 Within-class variance for variable 𝑋1
𝜎 Random error
𝑁Iter Number of iterations in biokNN
𝜇class Average number of observations per class
𝜎class Variance of the number of observations per class
𝛼 Weighting parameter in biokNN
𝑘 Number of neighbors in biokNN

3.4. Missing values pattern generation

There are three main assumptions regarding the mechanism that
generates the missing values in a dataset, namely, missing completely at
random (MCAR), missing at random (MAR), and missing not at random
(MNAR) (Schafer, 1997). MCAR assumes that the pattern of missing
values does not depend on either the observed or the unobserved
data. This scenario occurs because of errors in the data collection
process (Razavi-Far et al., 2014). In an MAR scenario, the missing
data depend on the observed values to some extent. Finally, the MNAR
scenario arises when the pattern of missing values depends on the value
of the variables in the observed dataset. In practice, missing value
patterns are usually between MAR and MNAR (Wulff & Ejlskov, 2017).

In this study, we focus on an assumption of an MCAR generation
pattern in both the target and explanatory variables, while the class
variable is considered to be complete. However, our experiments show
that the results are consistent with an MAR scenario. To generate
MCAR patterns, we divide the generated dataset randomly into subsets,
assuming that each value has the same probability to be missing.

4. Results

In this section, the results for the imputation performance of the
proposed method are presented and analyzed. First, the imputation
performance is compared with those of the benchmark methods by a
simulation study. The performance is compared both in terms of the
raw difference of the imputed values from the original generated data
and in terms of the inference performance. The inference performance
is compared by fitting a multilevel model and comparing the bias of the
obtained estimates and the coefficient of determination. Second, three
benchmark instances are used to test imputation accuracy. The analysis
is conducted using R 3.6.3 and run on a 3 GHz Intel X5450 processor,
with 24 GB RAM. An R package containing the biokNN procedure
is available at https://CRAN.R-project.org/package=biokNN and it is
described in Cubillos (2021).

4.1. Benchmark imputation methods

To evaluate the performance of the biokNN method, we compare
its imputation accuracy with benchmark imputation methods that are
summarized in Table 2. The mean imputation method (mean) imputes
the missing value 𝑥𝑖𝑝 by assigning it the mean value of the variable
𝑝. The 𝑘-nearest neighbors (knn) method assigns the imputed value
the average of the neighbors based on the Euclidean distance of the
observations. In the case of missing values of other variables, it uses
the mean value of the variable.

The remaining imputation methods are based on chained equations

processes in which the imputed values are obtained by estimations

https://CRAN.R-project.org/package=biokNN
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𝑅

Table 2
Description of the benchmark methods from the R package mice.

mean Unconditional mean imputation
knn 𝑘-nearest neighbors
pmm Predictive mean matching
2l.norm Level 1 normal heteroscedastic
2l.lmer Level 1 normal homoscedastic, lmer
2l.pan Level 1 normal homoscedastic, pan
2lonly.mean Level 2 class mean
2l.jomo Level 1 normal homoscedastic, jomo

where each variable takes its turn in being regressed on the other vari-
ables (Wulff & Ejlskov, 2017). These methods are implemented using
the R package mice (Groothuis-Oudshoorn & Van Buuren, 2011). The
predictive mean matching (pmm) method iteratively imputes missing
values from selected known values in a given dimension using linear
regressions.

The following benchmark methods incorporate the multilevel struc-
ture explicitly into the imputation method. In joint modeling ap-
proaches, a single multilevel model is specified for all variables with
missing data, and it is implemented in R by two packages: pan (2l.pan)
(Schafer & Zhao, 2016) and jomo (2l.jomo) (Quartagno & Carpenter,
2016). In the fully conditional specification model, missing data are
imputed separately for each variable, and this has been implemented in
mice using two functions that depend on the package used to specify the
multilevel model: 2l.norm and 2l.lmer (Hox & Roberts, 2011). Finally,
the model 2lonly.mean imputes the values by using the mean of the
classes.

4.2. Comparison metrics

We base the comparison of the proposed method with the bench-
mark imputation methods on three main metrics. First, the imputa-
tion accuracy is compared by computing the root mean squared error
(RMSE), which compares the imputed values directly with the values
from the observed dataset:

RMSE =
√

1
||

∑

(𝑖,𝑝)∈
(𝑤𝑖𝑝 − 𝑥𝑖𝑝)2 (11)

The true parameters of the generating model are known from the
simulation. Thus, the bias of the estimated parameters after fitting a
multilevel regression model can be directly compared. This comparison
gives an estimate of how much the imputation method is affecting the
inference process, which is done after the imputation step. To do that,
we specify a varying-slope fit of a regression multilevel model using the
package lme4 in R. This package uses maximum likelihood estimation
to obtain estimates of the multilevel regression coefficients (Bates et al.,
2014). If we take the true value of a model parameter to be 𝜃, then the
percentage bias of the estimate �̂� is given by

Bias (%) = 𝜃 − �̂�
𝜃

× 100 (12)

The final metric estimates the goodness-of-fit of the multilevel model,
which can be interpreted as the variance explained by the entire
model, including both fixed and random effects. The coefficient of
determination for the multilevel setting, 𝑅2, can be obtained from

2 =
𝜏20 + 𝜏21

𝜏20 + 𝜏21 + 𝜎2
(13)

4.3. Simulation results

The simulation procedure is described as follows. First, we simulate
datasets with a multilevel structure using random samples from a
varying-slope model. Each dataset contains three variables: the target
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variable, an independent variable, and the class variable. Then, we
Table 3
Root mean square error (RMSE) of the benchmark methods and the proposed algorithm
(multi.imp) on the simulated dataset, depending on the variance of the size of the
classes.

𝜎size = 0 𝜎size = 12 𝜎size = 25 𝜎size = 50

Method RMSE diff % RMSE diff % RMSE diff % RMSE diff %

biokNN 0.710 — 0.713 — 0.668 — 0.708 —
knn 0.710 0.01 0.757 5.8 0.795 16.0 0.821 13.8
2lonly.mean 0.793 10.50 0.839 15.0 0.839 20.4 0.879 19.4
2l.norm 0.844 15.93 0.853 16.4 0.794 15.9 0.777 8.9
2l.lmer 0.848 16.30 0.886 19.5 0.769 13.1 0.767 7.6
2l.pan 0.863 17.73 0.848 15.9 0.781 14.5 0.779 9.1
pmm 0.891 20.36 0.982 27.4 0.952 29.8 0.818 13.4
2l.jomo 0.935 24.12 1.023 30.3 0.929 28.2 0.946 25.2
mean 1.018 30.32 1.011 29.4 0.985 32.2 0.990 28.4

Table 4
Root mean square error (RMSE) of the benchmark methods and the proposed algorithm
(biokNN) on the simulated dataset. Results are shown for different levels of missing
values 𝑀 and intraclass correlation 𝐼 .
𝑀 𝐼 biokNN knn 2l.norm 2l.pan 2l.lmer 2lonly 2l.jomo mean pmm

0.1

0.3 0.78 0.77 0.92 0.96 0.98 1.07 1.05 1.07 1.13
0.5 0.77 0.76 0.90 0.94 0.95 1.05 1.02 1.07 0.98
0.7 0.74 0.73 0.86 0.90 0.91 1.00 0.98 1.06 0.91
0.9 0.71 0.69 0.85 0.75 0.86 0.92 0.82 1.06 0.96

0.3

0.3 0.77 0.78 1.03 1.04 0.97 0.90 1.32 0.93 1.20
0.5 0.75 0.76 1.00 1.01 0.95 0.87 1.27 0.93 1.14
0.7 0.71 0.73 0.96 0.97 0.90 0.82 1.17 0.93 1.10
0.9 0.71 0.71 0.84 0.86 0.84 0.79 0.93 1.02 0.89

0.5

0.3 0.77 0.82 0.97 0.98 1.01 0.99 1.09 0.99 1.02
0.5 0.75 0.80 0.97 0.93 0.99 0.95 1.06 1.00 1.07
0.7 0.72 0.76 0.93 0.90 0.94 0.90 1.00 1.00 1.00
0.9 0.66 0.69 0.82 0.80 0.85 0.79 0.89 1.02 0.86

randomly remove observations from both the target and the indepen-
dent variables, assuming these to be MCAR with a fixed percentage
of missing values. The imputation performance of the methods is
measured by computing the RMSE between the observed and imputed
datasets. All results shown in this subsection are average results over
100 simulations, and all variables are normalized to have unit standard
deviation. The method parameters (𝑘 and 𝛼) are selected as the minima
of the respective ranges 𝑘 ∈ {10, 20, 30} and 𝛼 ∈ {0.7, 0.8, 0.9}, based on
preprocessing tests.

Table 3 shows the RMSE and the percentage difference of the
benchmark methods with the proposed biokNN method, considering
different variabilities between the size of the classes 𝜎size. We consider
a mean size of 𝜇size = 25, a missing value rate of 𝑀 = 0.3, and an
interclass correlation of 𝐼 = 0.9. For all cases, the biokNN method
shows the best imputation accuracy, with an average difference of 6.6%
compared with the best benchmark method. The case in which all
classes have the same number of observations (𝜎size = 0) exhibits the
lower difference with the best benchmark method (knn). The greatest
difference with the best benchmark method is found at a level of 𝜎size
= 25, with a difference of 13.1% compared with the 2l.lmer method.

To assess the effect of the level of missing values 𝑀 and the
intraclass correlation 𝐼 , Table 4 shows the RMSE results for different
combinations of the two variables, assuming 𝜇size = 25 and 𝜎size = 0.
When the effect of 𝐼 is taken into account in the proposed method,
for all three scenarios of missing values rates, the imputation accuracy
increases as 𝐼 increases. From a low presence of multilevel structure
(𝐼 = 0.3) to a high level (𝐼 = 0.9), biokNN improves its results by
10.2% on average. On the other hand, a comparison with the bench-
mark methods shows that the proposed method has better imputation
accuracy for higher missing rates (𝑀 = 0.3 and 𝑀 = 0.5), while the knn
method gives better results in the case of low missing rates (𝑀 = 0.1)

In addition to comparing the error difference between the observed
and imputed values based on the RMSE, the ability to provide adequate
inference results is tested. Table 5 shows the 𝑅2 and the percentage
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Fig. 1. RMSE over the iterations of the algorithm for a generated dataset. Results are shown for three missing rates 𝑀 = {0.1, 0.3, 0.5}.
Table 5
Comparison of final fitted multilevel models including the percentage bias of the
estimates and 𝑅2.

Percentage bias (%)

Method 𝑅2 𝛽0 𝜏0 𝛽1 𝜏1
biokNN 0.915 3.79 3.55 0.54 3.04
2l.norm 0.913 5.88 4.05 1.04 4.21
2l.pan 0.901 5.84 6.08 1.32 6.41
2.lmer 0.901 5.82 5.93 1.23 6.33
knn 0.898 5.86 5.41 1.02 7.16
pmm 0.882 6.92 4.02 1.06 22.85
2lonly.mean 0.873 5.42 17.72 0.81 17.78
2l.jomo 0.864 3.75 25.92 1.03 30.44
mean 0.748 4.89 16.86 15.10 18.75

bias of four of the regression parameters of the multilevel model using
𝑀 = 0.3, 𝐼 = 0.9, 𝜇size = 25, and 𝜎size = 0. On average, biokNN provides
a better goodness-of-fit and reduced bias of the estimates. In terms of
goodness-of-fit, in contrast to the results obtained by considering the
RMSE, the results are much closer compared with the best benchmark
model (2l.norm). However, biokNN is able to obtain estimates that
are on average 30.9% less biased that those given by the 2l.norm
method. In this case, the methods that do not take account of the class
variables in the imputation (knn, pmm, 2lonly.mean, and mean) show a
reduced overall goodness-of-fit, and their estimates show a much higher
bias compared with biokNN, especially in the estimation of the slope
variance between classes (𝜏1).

In terms of inference performance after imputation, our method
gave better results in terms of goodness-of-fit and parameter estimation
compared with the FCS and JM approaches. In our simulation, FCS
and JM gave very similar results, in spite of their different theoretical
basis. The advantage of our method over FCS and JM is its simplicity
and transparency. Our method does not require any distributional
assumptions or model specification. Also, its flexibility allows the in-
corporation of prior knowledge into the imputation by selection of the
weighting parameter. This allows users to decide how much importance
the imputation is giving to the observations within the same class in a
transparent way, avoiding the black-box problem of other imputation
methods.

Overall, the simulation results suggest that biokNN can provide
gains in imputation accuracy for most of the multilevel configura-
tions tested, particularly in cases with higher missing value rates and
unbalanced classes. In terms of multilevel inference, biokNN gives
competitive results compared with the best FCS imputation methods
(2l.norm, 2l.pan) and is able to obtain unbiased estimates for both
main and random effects. By contrast, the methods that ignore the
multilevel structure of the data show inadequate fits and higher bias in
the estimates, particularly in the case of variability of the slope among
classes.
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4.4. Results on benchmark datasets

We select five representative benchmark datasets to test the effec-
tiveness of the proposed methodology: two from the UCI repository
(machine and sleepstudy), one from the datasets available in the R
package lme4 (cbpp), and two from Snijders and Bosker (2011) (ml-
book red and soep). The selection was made in order to have different
configurations regarding intraclass correlation, number of variables,
number of classes, and variability between the sizes of the classes. For
each dataset, observations were made missing values randomly under
the assumption of MCAR by taking 𝑀 from 0.1 to 0.7, and then the
RMSE was computed based on the imputed values.

Table 6 shows the results obtained by the best four models. For
each dataset, we show the number of observations (𝑁), the number of
variables (𝑝), number of classes (𝑄), intraclass correlation (𝐼), average
observations per class ( ̂𝜇size), and standard deviation of the number
of observations per class ( ̂𝜎size). For each dataset, we selected one
categorical variable to be the class variable and one variable to be
the continuous variable with missing values. We remove the rest of
categorical variables if they are present since our method is designed
for continuous variables only.

Consistently with the results obtained from the simulation, biokNN
has the best imputation accuracy for the dataset with the highest
variability in the size of the classes. This result is shown by the machine
dataset, for which, excluding the case of low missing rate (𝑀 = 0.1),
biokNN is able to give the lowest RMSE values. The lowest performance
is shown for the dataset where all classes have the same number of
observations (sleepstudy), for which both the knn and 2l.pan methods
gave most accurate results.

4.5. Convergence

The proposed method is based on a iterative first-order method and
we propose the selection of a number 𝑁 of iterations as a stop criteria.
The convergence of the method depends on the characteristics of the
dataset with missing values and the quality of the start solution of the
method, which is set to be a random imputation. In our experiments,
we observe that the convergence of our algorithm is relatively fast and
it is often met after a few iterations. For simulated data, we find that
the selection of 𝑁 = 10 iterations is sufficient, even when increasing the
amount of missing values in the same dataset. As an example, in Fig. 1
we show the RMSE values over 50 iterations of the biokNN algorithm
for a simulated dataset using 𝐼 = 0.9, 𝑄 = 𝜇𝑐𝑙𝑎𝑠𝑠 = 25. We present the
results for three missing values rates 𝑀 = {0.1, 0.3, 0.5}. Convergence
in the three cases is met relatively fast, being faster in the case with
lower missing rates. Our results are in concordance with results shown
by Bertsimas et al. (2017) in the single-objective version of the problem
regarding the speed of the convergence of the first-order method for
imputation.
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Table 6
RMSE of the four best benchmark methods and the proposed algorithm on five benchmark datasets.

Dataset 𝑁 𝑝 𝑄 𝐼 ̂𝜇size ̂𝜎size 𝑀 biokNN 2l.norm 2l.pan knn

machine 209 9 30 0.37 6.9 6.9

0.1 0.52 0.62 0.60 0.51
0.3 0.65 0.83 0.66 0.69
0.5 0.67 0.76 0.73 0.74
0.7 0.63 0.73 0.71 0.68

sleepstudy 180 2 18 0.11 10 0

0.1 0.97 0.97 0.93 0.78
0.3 0.96 0.96 0.93 0.83
0.5 0.97 0.97 0.99 0.84
0.7 1.02 1.09 1.12 0.91

cbpp 56 3 15 0.01 3.73 0.69

0.1 0.92 1.72 1.11 0.92
0.3 0.99 1.41 1.30 1.04
0.5 1.00 1.91 1.42 1.06
0.7 0.97 1.85 1.47 1.03

mlbook red 3758 2 259 0.11 17.8 7.15

0.1 0.30 0.40 0.37 0.37
0.3 0.51 0.67 0.61 0.61
0.5 0.63 0.84 0.78 0.78
0.7 0.77 1.08 0.96 0.97

soep 6024 2 23 0.02 261.9 72.9

0.1 0.29 0.40 0.39 0.34
0.3 0.61 0.77 0.71 0.71
0.5 0.72 0.97 0.92 0.86
0.7 0.85 1.14 1.05 0.99
Fig. 2. Illustration of the calibration step. In this example the best selection of
parameters is 𝑘 = 15 and 𝛼 = 0.9.

4.6. Parameter calibration

The performance of the biokNN algorithm depends on the selection
of two main parameters: the relative weight given to the two objectives
(𝛼) and the number of neighbors in the kNN part of the function (𝑘).
The best selection of parameters depends on the dataset and may be af-
fected by the size, number of classes, intraclass correlation, and amount
of missing values. The more simple way to determine this parameters
is using a grid search and selecting the lowest error metric. This can be
done by extracting a percentage of extra missing values on the dataset
and compare the errors produced by the different configurations of
parameters. In Fig. 2 we illustrate the parameter selection phase for
a generated dataset (𝑀 = 0.1, 𝐼 = 0.9) by extracting a 10% of extra
missing values. The best configuration of parameters in this example is
𝛼 = 0.9 and 𝑘 = 15.

In Fig. 3 we explore the sensitivity of the selection of parameters in
the RMSE for 100 simulated datasets with different parameter configu-
rations. In the right side of the figure we show the effect of varying the
parameter 𝑘 for 𝛼 = {0.5, 0.7, 0.9} and in the left side we show the effect
of varying the parameter 𝛼 for 𝑘 = {5, 10, 15}. In general, we observe
large variability in the RMSE values. However, the lowest RMSE values
are concentrated for lower values of the number of neighbor (𝑘 < 20)
and higher values of the weight parameter (𝛼 > 0.7).

4.7. Computational runtime

In this section, we compare the computational run time of our
method to other five benchmark imputation methods. In Fig. 4 we show
the average run time over 100 simulated datasets using 25 observations
7

per class, and increasing the number of classes from 10 to 100. With
this, we compare the computational run times for datasets with 250 to
2500 observations. The most simple methods that do not include the
multilevel structure into the imputation (mean, pmm, 2lonly.mean) are
almost instantaneous since they require little computation. The method
2l.pan also show fast computational times. The method 2l.norm, shows
a linear increase in the computational time that increases from 3
to 21 s on average in our experiments. Finally, the biokNN method
shows concave increase in time which overpass the time of the 2l.norm
method with datasets with more than 70 classes.

Finally, in Fig. 5 we show the effect of the amount of missing data on
computational runtime when increasing the number of classes. Results
are the average runtime in seconds over 100 simulated datasets with
25 observations per class for three missing rates 𝑀 = {0.1, 0.3, 0.5}.
We observe that computational runtimes are higher for higher missing
values in all cases. The relative difference in runtimes between the
three missing rates increases as we increase the number of classes. For
instance, the difference between 𝑀 = 0.1 and 𝑀 = 0.5 is about 2 s
for datasets with 20 classes, while the difference is almost 14 s when
considering 70 classes.

5. Discussion and future research

In the biokNN method it is not required to specify an imputation
model. This is a major advantage when researchers need to run several
different multilevel models after imputation. Current model-based im-
putation methods need researchers to specify an imputation model that
is at least as general as the analysis models (Grund et al., 2018). When
the research questions demand different multilevel analysis models,
the number of such models grows rapidly. Models may have different
varying intercepts and slopes, and one model might need to account for
mediation (Zhang et al., 2009), while others might include cross-level
interactions (Aguinis & Culpepper, 2015), model the variance (Lester
et al., 2021), or account for endogeneity (Antonakis et al., 2021).
Combining such model structures into one imputation model can be
a daunting task even for the most seasoned researchers. The biokNN
method circumvents this problem completely by not requiring any
model specification in the imputation process. This makes biokNN very
attractive to researchers who need several or even just a few complex
multilevel analysis models to answer their research questions.

There are some limitations to the proposed methodology that are
worth noting. The first of these regards parameter tuning. Selection
of the parameters of the method can be challenging in the case of
imputation of datasets with large numbers of missing values, since
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Fig. 3. Sensitivity of the parameter selection on the RMSE for 100 simulated datasets.
Fig. 4. Comparison of the computational runtimes of five benchmark imputation
methods.

Fig. 5. Effect of the amount of missing values in the computational runtimes of the
biokNN method.

the selection has to be made based on the remaining complete ob-
servations. For large datasets, a calibration preprocessing step may be
computationally expensive compared with other methods. Future work
could design a calibration method that can rapidly provide reliable
parameters for the model. Extensions to handle missing data in the class
variable and to handle categorical variables should also be addressed.

The biokNN method can be extended from a bi-objective to a multi-
objective method to take other features of the structure of the data
into consideration. For instance, more weighted objective terms can be
added for datasets with two or more levels of hierarchy. Future work
could also include the use of different optimization methods to provide
imputation values instead of the kNN method. For instance, Bertsimas
et al. (2017) have explored the use of kNN, support vector machines,
and decision-tree-based optimization methods in a similar fashion for
single-level imputations.
8

6. Conclusion

We proposed an imputation method to handle missing values in
the presence of data with multilevel structures. The problem was
described as an optimization problem in which we aimed to minimize
two objectives: the dissimilarity between the 𝑘-nearest neighbors and
the observations within the same clusters. We proposed an algorithm
to solve the imputation problem. To test the imputation accuracy of the
proposed method, we compared its results with those of the most com-
mon imputation methods used for multilevel imputation. The methods
were compared both by simulation and by using benchmark datasets.
The results showed that the proposed method gives better imputation
accuracy and can reduce the bias of multilevel models, especially in the
case of high missing rates and high intraclass correlation.
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