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DISCRETE TENSOR PRODUCT BGG SEQUENCES: SPLINES

AND FINITE ELEMENTS

FRANCESCA BONIZZONI, KAIBO HU, GUIDO KANSCHAT, AND DUYGU SAP

Abstract. In this paper, we provide a systematic discretization of the Bern-
stein-Gelfand-Gelfand (BGG) diagrams and complexes over cubical meshes in
arbitrary dimension via the use of tensor-product structures of one-dimensional
piecewise-polynomial spaces, such as spline and finite element spaces. We
demonstrate the construction of the Hessian, the elasticity, and div div com-
plexes as examples for our construction.

Differential complexes encode key algebraic structures in analysis and computa-
tion for partial differential equations. In addition to the de Rham complex with
applications in electromagnetism, other complexes, such as the elasticity (Kröner,
Calabi, Riemannian deformation) complex, are drawing attention for problems in
areas such as geometry, general relativity and continuum mechanics [1, 5, 7, 11, 48,
49]. These complexes are special cases of the so-called Bernstein-Gelfand-Gelfand
(BGG) sequences [7,11,17–19]. Recently, a systematic study of the construction of
BGG complexes and their properties was given in [11] with generalizations in [17].

In the framework of the finite element exterior calculus (FEEC) [5, 8, 10], there
has been a systematic discretization of the de Rham complex in any dimension
for any form and polynomial degree. See also the finite element periodic table [12].
For example, conforming finite elements over cubical meshes were developed for the
Stokes problem using de Rham complexes in Rn [47]. In the context of isogeometric
analysis (IGA) [33], spline de Rham complexes in 3D can be found in, e.g., [16].

Since the seminal work on conforming finite elements on triangular meshes by
Arnold and Winther [13], there has been a lot of progress on discretizing the
Hellinger-Reissner formulation of linear elasticity which involves the last two spaces
of the elasticity complex [5]. This was the first motivation and application of BGG
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complexes in numerical analysis [7], see also [9, 36]. Recently, there has been a
surge of interests on discretizing elasticity and other special cases of BGG com-
plexes [2, 6, 20–23, 28, 30, 41–43, 51]. See also [45] for a review. Moreover, we men-
tion [25, 26], where a discretization for the entire BGG complex in 2D and 3D is
proposed. There are also recent results on conforming simplicial finite elements for
(n − 1)-forms in Rn [24]. Nevertheless, a systematic discretization of either the
BGG complexes or the entire BGG machinery behind them in arbitrary dimension
is still missing. The underlying machinery can have important consequences be-
yond the final complexes (see, e.g., [17] for connections between twisted de Rham
complexes and the Cosserat continua and [31] for deriving Poincaré operators using
the BGG machinery). This gap is a major issue to address in order to use the BGG
construction for numerical computation.

Restricted to the discrete level, the BGG machinery also provides a constructive
tool for deriving discrete spaces by a diagram chasing. This idea has been developed
at several places: a re-interpretation of the Arnold-Winther and Hu-Zhang elasticity
elements [7,29], conforming finite elements for linearized curvature on 2D triangular
meshes [30], and a finite element elasticity complex on tetrahedral grids [28]. These
results were derived in a case-by-case manner. Special cases of BGG complexes can
be found in [2].

In this paper, we provide a systematic discretization of the BGG diagrams and
complexes based on tensor product construction in arbitrary dimension. In particu-
lar, the resulting spaces are tensor products of spaces in one space dimension (1D),
and they are naturally defined over the unit cube [0, 1]n. However, their extension to
rectangular domains and to finite elements with rectangular mesh cells is straight-
forward. The tensor product construction is built upon two general assumptions on
sequences in 1D. As examples of input spaces for 1D complexes, we consider both
splines and finite elements. We verify that the assumptions of the construction
in [11] on the continuous level hold for these tensor product spaces. The result-
ing discrete BGG diagram is symmetric in the sense that the space of (i, j)-forms
is isomorphic to the space of (j, i)-forms as they have the same coefficients. The
tensor product construction leads to bounded commuting (quasi-)interpolations for
splines and finite elements, which are important for analyzing numerical schemes
for PDEs. Thus, it provides us with a powerful tool to obtain stable discretizations
on cubical meshes. It also avoids the issue of intrinsic super-smoothness (c.f. [39])
known from simplicial schemes.

The outline of the paper is as follows: In Section 1, we review the BGG construc-
tion at the continuous level, and in Section 2, we demonstrate how we construct
tensor-product BGG complexes for arbitrary form degree and space dimension. In
Sections 3 and 4, we derive spline and tensor product finite element BGG complexes
and provide examples that include the elasticity complex, the div div complex and
the Hessian complex. In Section 5, we provide a brief review of the main aspects of
our construction and highlight our results. We also show why extending our con-
struction to more delicate BGG complexes (e.g., the conformal complexes which
require input of three de Rham complexes [17]) is nontrivial.

1. BGG complexes of differential forms

1.1. Review of the BGG construction. We briefly review the main idea of
the BGG construction. The BGG construction is a tool to derive more complexes
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from the de Rham complexes. In the setup in [11], we consider the following BGG
diagram:

(1)

0 Z0 Z1 · · · Zn 0

0 Z̃0 Z̃1 · · · Z̃n 0.

D0 D1 Dn−1

D̃0

S0

D̃1

S1

D̃n−1

Sn−1

Typically, each row of (1) is a scalar- or vector-valued de Rham complex, and
the two rows are connected by some algebraic operators S• (in vector proxies,
this can be, e.g., taking the skew-symmetric or the trace part of a matrix). We

require that (1) is a commuting diagram, meaning that Dj+1Sj = −Sj+1D̃j for
all j = 0, . . . , n − 1 (the sign is not important, but just for technical reasons).
There is one index J such that SJ is bijective, and Sj are injective for j ≤ J and
surjective for j ≥ J . From a BGG diagram, we can read out a BGG sequence. The
recipe is that we start from the first row, restricted to R(S)⊥ at each index (for
example, if S is taking the skew-symmetric part of a matrix, then R(S)⊥ consists
of symmetric matrices). Then at index J , we connect the two rows by constructing

a new operator D̃J (SJ)−1DJ .
This is possible since SJ is bijective and corresponds to a zig-zag on the diagram.

Then we come to the second row. For the rest of the indices j > J , we restrict the
domains to N (S) in the second row. The final BGG complex is summarized as the
following:

(2)
0 Υ0 Υ1 · · · ΥJ

ΥJ+1 · · · Υn 0,

D
0

D
1

D
J−1

D
J

D
j+1

D
n−1

with spaces

(3) Υj :=





Z0, j = 0,

R(Sj−1)⊥, 1 ≤ j ≤ J,

N (Sj), J < j ≤ n,

and operators

(4) D
j =





PR(Sj)⊥D
j , 0 ≤ j < J,

D̃j(Sj)−1Dj , j = J,

D̃j , J < j ≤ n,

where PR(Sj)⊥ denotes the orthogonal projection onto R(Sj)⊥.
The main conclusion of this construction is that, under some conditions, the

cohomology of the BGG complex (2) is isomorphic to the cohomology of the in-
put complexes in (1). For de Rham complexes, the cohomology is known with a
broad class of function spaces [32]. Various analytic properties follow from general
arguments based on the fact that the cohomology being finite dimensional [11].
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Example 1 (BGG complex in 1D). The simplest example is in one space dimen-
sion. We consider the following diagram with any real number q

(5)

0 Hq Hq−1 0

0 Hq−1 Hq−2 0.

∂x

∂x

I

Here we only have one connecting operator, specifically, we have S0 = I identity
operator, which is obviously bijective (one may also extend the diagram by adding
zero maps). All the conditions for the BGG diagrams hold trivially. From (5) we
derive the BGG complex

(6) 0 Hq Hq−2 0.
∂2
x

In this case, the BGG construction is just to connect the two first-order derivatives
to get a second-order derivative. In this simple example it is also easy to verify our
claim on the cohomology: the kernel of ∂x (cohomology at index 0) in each row is
R. In the BGG complex (6), the kernel of ∂2x (cohomology at index 0) is isomorphic
to R⊕ R.

1.2. Application to alternating form-valued differential forms. We follow
the construction of alternating form-valued differential forms in [11]. For i ≥ 0, let

AltiRn be the space of algebraic i-forms, that is, of alternating i-linear maps on
Rn. We also set Alti,jRn = AltiRn ⊗ AltjRn, the space of AltjRn-valued i-forms
or, equivalently, the space of (i+ j)-linear maps on Rn which are alternating in the
first i variables and also in the last j variables. For the linking maps, we define the
algebraic operators si,j : Alti,jRn → Alti+1,j−1Rn

(7) si,jµ(v0, · · · , vi)(w1, · · · , wj−1)

:=

i∑

l=0

(−1)lµ(v0, · · · , v̂l, · · · , vi)(vl, w1, · · · , wj−1),

∀v0, · · · , vi, w1, · · · , wj−1 ∈ Rn,

where in each term of the alternating sum the hat denotes the suppressed vector,
that is, the vector we move from the first parenthesis to the second (see the ap-
pendix in [11]). Alternatively, we have the following expression of si,j on a basis
of alternating forms: let σ ∈ Σ(k, n) and τ ∈ Σ(m,n) be combinations of k and m
elements of {1, . . . , n}, respectively. Then,

(8) sk,m(dxσ1 ∧ · · · ∧ dxσk ⊗ dxτ1 ∧ · · · ∧ dxτm)

=
m∑

l=1

(−1)l−1dxτl ∧ dxσ1 ∧ · · · ∧ dxσk ⊗ dxτ1 ∧ · · · ∧ d̂xτl ∧ · · · ∧ dxτm ,

where we move one factor from the second term in the tensor product to the first.
For completeness, we include a detailed proof of equation (8) in Appendix B. From
now on, we will omit Rn in the notation when confusion is unlikely. We also write
Si,j = I ⊗ si,j : Hq ⊗ Alti,j → Hq ⊗ Alti+1,j−1 for any Sobolev order q. We
use HqΛi as another notation for Hq ⊗ Alti. We have the exterior derivative,
di : Hq ⊗ Alti → Hq−1 ⊗ Alti+1. Tensorizing with Altj then gives di : Hq ⊗
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Alti,j → Hq−1 ⊗Alti+1,j . With these definitions, we may write down the diagram
generalizing (5) to n dimensions:
(9)

0 Hq ⊗Alt0,0 Hq−1 ⊗Alt1,0 · · · Hq−n ⊗Altn,0 0

0 Hq−1 ⊗Alt0,1 Hq−2 ⊗Alt1,1 · · · Hq−n−1 ⊗Altn,1 0

...
...

...

0 Hq−n+1 ⊗Alt0,n−1 Hq−n ⊗ Alt1,n−1 · · · Hq−2n+1 ⊗Altn,n−1 0

0 Hq−n ⊗Alt0,n Hq−n−1 ⊗Alt1,n · · · Hq−2n ⊗Altn,n 0.

d d d

d

S0,1

d

S1,1

d

Sn−1,1

d d d

d

S0,n

d

S1,n

d

Sn−1,n

Example 2 (BGG complexes in 3D). The BGG diagram (9) has the following
vector/matrix proxies for n = 3, where the operators between proxies are defined in
Appendix A:
(10)

0 Hq ⊗ R Hq−1 ⊗ V Hq−2 ⊗ V Hq−3 ⊗ R 0

0 Hq−1 ⊗ V Hq−2 ⊗M Hq−3 ⊗M Hq−4 ⊗ V 0

0 Hq−2 ⊗ V Hq−3 ⊗M Hq−4 ⊗M Hq−5 ⊗ V 0

0 Hq−3 ⊗ R Hq−4 ⊗ V Hq−5 ⊗ V Hq−6 ⊗ R 0.

grad curl div

grad

I

curl

2 vskw

div

tr

grad

−mskw

curl

T

div

2 vskw

grad

ι

curl

−mskw

div

I

Here V := Rn denotes vectors and M is the space of all n×n-matrices. Let further
S, K, and T be the subspaces of matrices that are symmetric, skew-symmetric and
trace-free, respectively. Following the BGG recipe, from the first two rows of (10)
we obtain the Hessian complex

(11) 0 Hq ⊗ R Hq−2 ⊗ S Hq−3 ⊗ T Hq−4 ⊗ V 0,hess curl div

where hess := gradgrad. From the second and third rows of (10) we obtain the
elasticity complex
(12)

0 Hq−1 ⊗ V Hq−2 ⊗ S Hq−4 ⊗ S Hq−5 ⊗ V 0.def inc div

Here def := symgrad is the linearized deformation (symmetric part of gradient)
and inc = curlT −1 curl leads to the linearized Einstein tensor. Finally, the last two
rows of (10) yield the divdiv complex
(13)

0 → Hq−2 ⊗ V Hq−3 ⊗ T Hq−4 ⊗ S Hq−6 ⊗ V → 0.
dev grad sym curl div div

Remark 1. On the continuous level, the BGG construction [11] starts with (10)
and derives BGG complexes (11)-(13) consisting of Sobolev Hq functions with cer-
tain q. Since q is decreasing with every derivative operator, this requires excessive
regularity on the left. This can be avoided introducing the domain complex with
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spaces H(D) = {u ∈ L2 : Du ∈ L2}, where D is any of the derivative operators
in (11)-(13).

On the discrete level, we will fit in finite element or spline spaces which are
compatible with the algebraic structures in (10) (in the sense that the horizontal
and diagonal operators map one space to another). However, we are not constrained
by the Sobolev regularity in (10) as the resulting BGG complexes (11)-(13) usually
have higher regularity than one needs. In the end, we will arrive at conforming
discretization for complexes with H(D) spaces with slightly higher regularity. For
example, in the case with lowest regularity, our elasticity complex starts with an
H1(curl)-conforming space, rather than H1 = H(def), see for instance V 0,1 = V 1,0

in (48). Nevertheless, the H1(curl) conformity is still weaker than H4 as required
by (12) if all the spaces there are to be at least L2.

Remark 2. In the construction of simplicial finite elements or splines, the isomor-
phism between the grad-rot version of complexes and the curl-div version is obtained
by swapping the tangent and normal directions. In the tensor product construction,
this is obtained via changing parametric directions accordingly.

Example 3 (BGG Complex in 2D). Let sskw = mskw−1 ◦ skw : M → R be the
map taking the skew part of a matrix and identifying it with a scalar (see [11]).

A 2D version of the diagram (10) is

(14)

0 Hq ⊗ R Hq−1 ⊗ V Hq−2 ⊗ R 0

0 Hq−1 ⊗ V Hq−2 ⊗M Hq−3 ⊗ V 0

0 Hq−2 ⊗ R Hq−3 ⊗ V Hq−4 ⊗ R 0.

grad rot

grad

I

rot

−2 sskw

grad

mskw

rot

I

Although the injectivity/surjectivity conditions are not necessary for running the
BGG machinery [17], we will stick to these conditions in our construction on the
discrete level, for simplicity. To summarize, on the discrete level, we seek discrete
versions of the BGG diagrams such that the injectivity/surjectivity conditions are

preserved. Then the commutativity DS = −SD̃ is trivially following the results
on the continuous level. To this end, we need discrete de Rham complexes for the
two rows in the construction, respectively. In fact, this is rather easy to see in 1D.
To discretize (5), we want to construct discrete spaces V i,j

h that fit in the following
diagram

(15)

0 V 0,0
h V 1,0

h 0

0 V 0,1
h V 1,1

h 0.

∂x

∂x

I

The connecting map (the identity map) makes sense if V 1,0
h

∼= V 0,1
h . This means

that the first row has higher regularity than the second. This is a general pattern
in the BGG construction, but becomes more complicated in higher dimensions.
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2. Tensor product construction

In this section, we present a general construction. The idea is that we start with
a diagram in 1D, and extend it to Rn by tensor product. This process is mostly
algebraic and does not depend on a particular construction in 1D. Thus, we start
with a fairly abstract assumption.

2.1. A discrete BGG complex in 1D. The general construction is based on the
following assumption.

Assumption 1. Let I := [0, 1], and L2Λi(I) := L2(I) ⊗ AltiR. For an abstract
smoothness parameter r and integer p ≥ 1, let Sp

r
be a finite dimensional subspace of

L2(I) and thus Sp
r
Λi(I) := Sp

r
⊗AltiR be a finite dimensional subspace of L2Λi(I).

Furthermore, we assume that the sequence

(16) 0 Sp
r
Λ0(I) Sp−1

r−1Λ
1(I) 0d0

is a complex and d0 is onto.

As we shall see later in specific examples, Sp
r
(I) may be a spline space on I of

degree p with regularity vector r (see Section 3) or a finite element space of degree p
and interelement continuity r (see Section 4). The decreasing indices in (16) reflect
the fact that d0 is a first-order differential operator. For splines, since r is a vector,
r ≥ 0 means every component of r is non-negative. Similarly, in expressions such as
r−a where a ∈ R, a is subtracted from each component, see for instance [16, p.821].

When there is no danger of confusion, we omit I in the notation. Now we tensor
the spaces in (16) with alternating forms and obtain with the above notation

(17) S
p
r
Λi,j(I) := Sp−i−j

r−i−j Λ
i,j(I) := Sp−i−j

r−i−j ⊗AltiR⊗AltjR,

as the space of 1D alternating i, j-forms with coefficients in Sp−i−j
r−i−j . Following

Assumption 1, the following sequences are complexes for j = 0, 1 and d0 is onto:

(18) 0 Sp−j
r−j Λ

0,j(I) Sp−1−j
r−1−jΛ

1,j(I) 0.d0

Hence, we obtain a 1D BGG diagram that satisfies the assumptions in Section 1:

(19)

0 Sp
r
Λ0,0(I) Sp−1

r−1Λ
1,0(I) 0

0 Sp−1
r−1Λ

0,1(I) Sp−2
r−2Λ

1,1(I) 0.

d0

d0

S0,1

Remark 3. In a vector proxy with canonical bases, S0,1 boils down to the iden-
tity operator. In 1D, there is only one sk,m operator according to (7), namely
s0,1 : Alt0,1 → Alt1,0. Nevertheless, it will be useful for the construction of tensor
products, namely Lemma 1, to define sk,m ≡ 0 for all other k,m ∈ {0, 1}.

2.2. Tensor product spaces and the exterior derivative. Let

σ = (σ1, . . . , σk) ∈ Σ(k, n)
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be a combination of k numbers from {1, · · · , n} such that 1 ≤ σ1 < · · · < σk ≤ n.
Define the set of characteristic vectors

Xk :=



χ = (χ1, · · · , χn) ∈ {0, 1}n

∣∣∣∣∣∣

n∑

j=1

χj = k



 .(20)

Then, the characteristic vector of a combination σ ∈ Σ(k, n) is the vector χ(σ) ∈
Xk, such that

χi(σ) =

{
1, i ∈ σ,

0, i 6∈ σ.

Using combinations, we can define a basis for AltkRn consisting of elements

dxσ = dxσ1 ∧ · · · ∧ dxσk σ ∈ Σ(k, n),

= (dx1)s1 ∧ · · · ∧ (dxn)sn s = χ(σ) ∈ Xk.
(21)

Here, we define (dxi)1 = dxi and (dxi)0 = 1. Note that these are two different
notations for the same form and we will use both of them below for convenience.
For χ ∈ Xn we introduce the notation

(22) |χ|m :=

m∑

l=1

χl,

with the convention |χ|0 = 0.
In Rn, define the unit hypercube In := [0, 1]n. We define the following Sobolev

spaces of alternating forms:

L2Λi,j(In) := L2Λi(In)⊗AltjRn = L2(In)⊗Alti,jRn,

HqΛi,j(In) := HqΛi(In)⊗AltjRn = Hq(In)⊗Alti,jRn.

Let σ ∈ Σ(i, n) and τ ∈ Σ(j, n) be combinations with characteristic vectors
s = χ(σ) and t = χ(τ), respectively. Let ωk = αk(dx)

sk ⊗ (dx)tk ∈ L2Λsk,tk for
k = 1, . . . , n be one-dimensional differential forms with an L2 coefficient αk. Then,
the n-dimensional tensor product is defined as

ω1 ⊗ · · · ⊗ ωn

= (α1 ⊗ · · · ⊗ αn)(dx
1)s1 ∧ · · · ∧ (dxn)sn ⊗ (dx1)t1 ∧ · · · ∧ (dxn)tn

= (α1 ⊗ · · · ⊗ αn)dx
σ ⊗ dxτ

= (α1 ⊗ · · · ⊗ αn)[(dx
1)s1 ⊗ (dx1)t1 ] ∧ · · · ∧ [(dxn)sn ⊗ (dxn)tn ].

Here we used different combinations of wedge and tensor products to express the
same object. The different notations are used in various contexts below and should
be clear from these identities. We define the tensor product spaces:

L2Λk,l
⊗n(I

n) :=
⊕

(si,··· ,sn)∈Xk

(t1,··· ,tn)∈Xl

L2Λs1,t1(I) ⊗ L2Λs2,t2(I)⊗ · · · ⊗ L2Λsn,tn(I)

=
⊕

(si,··· ,sn)∈Xk

(t1,··· ,tn)∈Xl

L2(In)⊗ Alts1,t1 ⊗ · · · ⊗Altsn,tn ,(23)
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S
~p
~r
Λk,l :=

⊕

(si,··· ,sn)∈Xk

(t1,··· ,tn)∈Xl

S
p1

r1
Λs1,t1(I)⊗ · · · ⊗ S

pn
rn

Λsn,tn(I)

=
⊕

(si,··· ,sn)∈Xk

(t1,··· ,tn)∈Xl

Sp1−s1−t1
r1−s1−t1

Λs1,t1(I)⊗ · · · ⊗ Spn−sn−tn
rn−sn−tn

Λsn,tn(I)

=
⊕

(si,··· ,sn)∈Xk

(t1,··· ,tn)∈Xl

(
Sp1−s1−t1
r1−s1−t1

⊗ · · · ⊗ Spn−sn−tn
rn−sn−tn

)
⊗Alts1,t1 ⊗ · · · ⊗Altsn,tn .(24)

Note that, the spaces L2Λk,l(In) and L2Λk,l
⊗n(I

n) coincide, see [40, Example 3.7].
Equations (23) and (24) give a characterization that separates the coefficients and
the alternating form basis.

S
~p
~r Λ

k,l is the space of (k+l)-linear maps on Rn which alternate in the first k and
last l variables. It is a direct sum corresponding to the components of the vector
proxies. Thus, each component of the direct sum corresponds to a particular basis
form dxσ ⊗ dxτ ∈ Altk,l according to equation (21) together with its coefficient
space. The coefficient space is obtained from a “root” space Sp1

r1
⊗ · · · ⊗ Spn

rn
by

reducing the order and regularity by one in each direction i where i is contained
either in σ or in τ . Accordingly, they are reduced by two if i is contained in σ
and in τ . This means in order for the discrete spaces to be compatible with the S

operators, i.e., for S to map the discrete space S
~p
~r
Λk,l to the right one S

~p
~r
Λk+1,l−1,

the polynomial degrees in direction i should always involve the sum (si+ ti). Thus,

we have polynomial spaces of the form Spi−si−ti
ri−si−ti

.
This structure of the spaces induces symmetry in the discretization of the BGG
diagram (9), such that the (k, l)-th space is isomorphic to the (l, k)-th space, as

the polynomial coefficients in the definition of S
~p
~r Λ

k,l are invariant when we switch
k and l. For example, the first row of (9) is a standard tensor product de Rham
complex [4, 27], and so is the first column. As a more specific example, the 3D
elasticity complex starts with a (0, 1)-form (the first space in the second row of
(10)), indicating that our discrete elasticity complex starts from a Nédélec space.
See Section 4 for more details.

The exterior derivatives dk : Sp
r
Λk,l(I) → Sp−1

r−1Λ
k+1,l(I) follow from the stan-

dard definition. These operators extend naturally to S
~p
~r Λ

k,l with Cartesian and

tensor products (see [4]), yielding dk : S
~p
~r Λ

k,l → S
~p
~r Λ

k+1,l given by

dk(u1 ⊗ · · · ⊗ un) =

n∑

s=1

(−1)|i|s−1(u1 ⊗ · · · ⊗ dus ⊗ · · · ⊗ un),

for all ul ∈ Spl−il−jl
rl−il−jl

Λil,jl(I), with i ∈ Xk, and j ∈ Xl.

2.3. Tensor product BGG complexes. To derive the BGG complexes, we first
establish a BGG diagram with the spaces obtained above by means of the tensor
product construction,

(25)

· · · S
~p
~r Λ

i−1,J−1 S
~p
~r Λ

i,J−1 S
~p
~r Λ

i+1,J−1 · · ·

· · · S
~p
~r
Λi−1,J S

~p
~r
Λi,J S

~p
~r
Λi+1,J · · · .

d d

d

Si−1,J

d

Si,J
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Now, we verify that it satisfies the conditions in Section 1, i.e., commutativity

DS = −SD̃ and the injectivity/surjectivity conditions. Since S
~p
~r Λ

• are subspaces
of L2Λ•, the commutativity follows from the continuous level. We will further verify
that Sk,l = I ⊗ sk,l maps between the discrete spaces in the diagram. We start
deriving an explicit expression of the operator sk,l on tensor product alternating
forms.

Lemma 1. Let i ∈ Xk, j ∈ Xl and ωh ∈ Altih,jhR for h = 1, · · · , n. Then,
ω = ω1 ⊗ · · · ⊗ ωn ∈ AltkRn ⊗AltlRn and there holds

sk,lω =

n∑

h=1

(−1)|i|h+|j|hω1 ∧ · · · ∧ sih,jhωh ∧ · · · ∧ ωn.

Proof. We prove this lemma for basis forms and conclude the general statement by
linearity. Hence, let ωh = (dxh)ih ⊗ (dxh)jh . Note that, as observed in Remark 3,
there holds

sih,jhωh =

{
dxh ⊗ 1 if ih = 0, jh = 1

0 else.
(26)

Using (8), and recalling (22), we find:

sk,lω = sk,l((dx1)i1 ∧ · · · ∧ (dxn)in)⊗ ((dx1)j1 ∧ · · · ∧ (dxn)jn)

=

n∑

h=1

(−1)|i|h+1δ1,jh
(
(dxh)jh ∧ (dx1)i1 ∧ · · · ∧ (dxn)in

)

⊗
(
(dx1)j1 ∧ · · · ∧ ̂(dxh)jh ∧ · · · ∧ (dxn)jn

)

=

n∑

h=1

(−1)|i|h+1δ1,jh
(
(dxh)jh ⊗ 1

)
∧ ω1 ∧ · · · ∧

(
(dxh)ih ⊗ 1

)
∧ · · · ∧ ωn

=

n∑

h=1

(−1)|i|h+|j|hδ1,jhω1 ∧ · · · ∧
(
(dxh)jh ⊗ 1

)
∧
(
(dxh)ih ⊗ 1

)
∧ · · · ∧ ωn.

Note that

δ1,jh
(
(dxh)jh ⊗ 1

)
∧
(
(dxh)ih ⊗ 1

)
= δ1,jh

(
(dxh)jh ∧ (dxh)ih

)
⊗ 1

= sih,jh
(
(dxh)ih ⊗ (dxh)jh

)
= sih,jhωh.

In particular, for jh = 1, we can assume ih = 0, since otherwise we would have a
two-form on R, which must be zero. Hence, the lemma is proven. �

Remark 4. Let u = q ⊗ ω ∈ S
~p
~r Λ

k,l. Since Sk,l = I ⊗ sk,l as in the continuous

case, Sk,lu = q ⊗ sk,lω. By the definition in (24), the polynomial spaces on the
left and on the right of Sk,l are the same since adding to i subtracts from j. This
implies that the induced mapping between the coefficient spaces is bijective. Hence,

Sk,lS
~p
~r Λ

k,l ⊂ S
~p
~r Λ

k+1,l−1 and Sk,l inherits surjectivity from sk,l.

Following the BGG recipe in Section 1, and exploiting the bijectivity of SJ−1,J ,
we obtain the discrete spaces

Υi
h :=

{
R(Si−1,J)⊥ ⊂ S

~p
~r
Λi,J−1, i < J ;

N (Si,J) ⊂ S
~p
~r Λ

i,J , i ≥ J,
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and the operators

D
i :=





PR(Si−1,J )⊥d
i, i ≤ J − 1;

di ◦ (Si−1,J )−1 ◦ di, i = J ;

di, i ≥ J + 1,

where h is used as a generic index for discrete spaces. The derived discrete BGG
complex is

(27) 0 Υ0
h Υ1

h · · · Υn
h 0.D

0
D

1
D

n−1

Thus, we have the algebraic setup in Section 1 with the discrete spaces S
~p
~r Λ

k,l.
Following [11, Theorem 6], the main conclusion is the cohomology of the derived
BGG complex.

Theorem 1. The dimension of cohomology of (27) is bounded by that of the input
complexes, i.e.,

(28) dimH
k(Υ•

h,D
•) ≤ dimH

k(S ~p
~r Λ

•,J−1, d•) + dimH
k(S ~p

~r Λ
•,J , d•).

Remark 5. The construction in [11] has two levels. First, by the commutativity
and the injectivity/surjectivity condition of S•, we can conclude with an inequality
of dimension as Theorem 1. Second, if more structures are available (referred to
as the K operators in [11] satisfying S = dK − Kd), then the inequality becomes
an equality. All the examples in this paper satisfy this further condition on the
continuous level. Nevertheless, whether (28) is an equality (thus reflecting the cor-
rect cohomology) or not is not clear at this stage as the K operators may not map
between the right discrete spaces.

2.4. Quasi-interpolation operators. Interpolation operators are an important
theoretical tool for verifying the convergence of numerical schemes in finite element
methods and isogeometric analysis. In this section, we obtain interpolation oper-
ators for the tensor product BGG complexes (27) from versions in 1D. The key
assumption is that we have these operators for both rows in a 1D BGG diagram
in (19), and the operators satisfy certain conditions when we connect the two rows
((30) below). This will be highlighted in Assumption 2 below. Again, the dis-
cussions in this section are abstract in the sense that no splines or finite elements
are involved. The main conclusion is that we can input bounded commuting maps
from continuous spaces to discrete spaces in 1D, and derive the corresponding BGG
version in nD by using only the algebraic structures of tensor products.

The discussions will be based on the following assumption.

Assumption 2. There exists πi,j : L2Λi,j(I) → S p
r
Λi,j(I), where i, j = 0, 1 in

1D, that is L2-bounded

‖πi,ju‖ ≤ C‖u‖,

satisfying the commutativity condition

(29) diπi,j = πi+1,jdi.

Moreover, we require that

(30) Si,jπi,j = πi+1,j−1Si,j .
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Note that the only nontrivial case for (30) is i = 0 and j = 1.

In vector proxy, S0,1 is just identity and Sp−1
r−1Λ

0,1 is identical to Sp−1
r−1Λ

1,0. The
commutativity of (30) would follow from the arguments in Section 2.2 once we use
equivalent quasi-interpolation operators for the two spaces in the 1D BGG diagram
connected by the S0 operator. Thus, to satisfy Assumption 2, we need to have a
consistent set of three bounded commuting quasi-interpolation operators.

Remark 6. For later convenience, we extend the quasi-interpolation operator πi,j

by 0, whenever applied to differential forms with index not equal to (i, j). For ex-
ample, for i = 0 and j = 1, π0,1 is defined on L2Λ0,1(I) according to Assumption 2,
and it is extended to 0, whenever applied to L2Λ0,0(I), L2Λ1,0(I) or L2Λ1,1(I).

Making use of Remark 6 and following [14], we give the following definition.

Definition 1. Given the quasi-interpolation operators in 1D, we define the tensor
product quasi-interpolation operator in n dimensions for k, l = 0, . . . , n

πk,l
⊗n : L

2Λk,l
⊗n → S

~p
~r
Λk,l

as follows:

πk,l
⊗n :=

∑

(ii,··· ,in)∈Xk

(j1,··· ,jn)∈Xl

πi1,j1 ⊗ · · · ⊗ πin,jn .(31)

Consider the particular case where πk,l
⊗n is applied to rank one tensor product

differential forms. Let ω = ω1 ⊗ · · · ⊗ ωn ∈ L2Λk,l
⊗n, with ωt ∈ L2Λit,jt(I), i =

(i1, · · · , in) ∈ Xk, j = (j1, · · · , jn) ∈ Xl. Then, we get

πk,l
⊗nω := (πi1,j1 ⊗ · · · ⊗ πin,jn)(ω1 ⊗ · · · ⊗ ωn)

= πi1,j1ω1 ⊗ · · · ⊗ πin,jnωn.

Next, we will show that the tensor product operators defined in (31) are bounded
and commute with the differential operators D• in the BGG complexes (27). Note
that the operators D• are a composition of d•, PR(S)⊥ and S−1, depending on the
indices (4). To prove that π•

⊗ commutes with D•, we will show that π•

⊗ commutes
with each one of these operators. This will be established in Lemmas 2 to 4 below.

Lemma 2. π•

⊗n commutes with d•, i.e.,

(32) dkπk,l
⊗n = πk+1,l

⊗n dk.

Proof. It is sufficient to show the result on rank one tensor product differential

forms. By linearity and density, the conclusion holds for all elements in L2Λk,l
⊗n. For

any ωt ∈ L2Λit,jt(I), i = (i1, · · · , in) ∈ Xk, j = (j1, · · · , jn) ∈ Xl, (see [14, (31)])

dk(ω1 ⊗ ω2 ⊗ · · · ⊗ ωn) =

n∑

t=1

(−1)|i|t−1(ω1 ⊗ · · · ⊗ dilωl ⊗ · · · ⊗ ωn).

Then the conclusion follows from the commutativity (29) in 1D. �

Lemma 3. π•

⊗n commutes with S•, i.e.,

(33) πk+1,l−1
⊗n Sk,l = Sk,lπk,l

⊗n, ∀ 0 ≤ k ≤ n− 1, 1 ≤ l ≤ n.

Proof. The conclusion follows from Lemma 1 and the commutativity (30) in As-
sumption 2. �
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By Assumption 2, in 1D, we have πi,j : L2Λi,j(I) → Sp
r
Λi,j(I), i, j = 0, 1. Let

{dxσ ⊗ dxµ}σ∈Σ(i,n),µ∈Σ(j,n) be a basis of Alti,j . Then πi,j induces a unique map

π̃i,j : L2(I) → Sp
r
between the coefficients, satisfying

(34) πi,j = π̃i,j ⊗ I.

Lemma 4. The following commutativity property holds:

(35) πk,l
⊗n(I ⊗ PR(sk−1,l+1)⊥) = (I ⊗ PR(sk−1,l+1)⊥)π

k,l
⊗n.

Proof. The claim follows by observing that πk,l
⊗n acts on the coefficient function,

whereas it is the identity operator on alternating forms; on the contrary, I ⊗
PR(sk−1,l+1)⊥ acts only on alternating forms as shown in the following:

πk,l
⊗n

(
I ⊗ PR(sk−1,l+1)⊥

)
=
(
π̃k,l
⊗n ⊗ I

) (
I ⊗ PR(sk−1,l+1)⊥

)

= π̃k,l
⊗n ⊗ PR(sk−1,l+1)⊥ =

(
I ⊗ PR(sk−1,l+1)⊥

) (
π̃k,l
⊗n ⊗ I

)

=
(
I ⊗ PR(sk−1,l+1)⊥

)
πk,l
⊗n.

�

From (32), (33), (35) and the explicit form of the operators in the BGG com-
plexes (4), we obtain the main result.

Theorem 2. The π⊗n operators commute with D defined in (4), i.e.,

πk+1,l−1
⊗n D

k = D
kπk,l

⊗n.

Define

Ek =

{
R(sk−1,l+1)⊥, k ≤ l,

N (sk,l+1), k ≥ l+ 1,

and the spaces

H(Dk) := {u ∈ L2 ⊗ Ek : D
ku ∈ L2 ⊗ Ek+1}(36)

with the graph norm ‖u‖2
H(Dk) := ‖u‖2 + ‖Dku‖2.

Theorem 3. The operators πk,l
⊗n are bounded in L2- and H(Dk)-norms, i.e., there

exist positive constants C such that

‖πk,l
⊗nu‖ ≤ C‖u‖, ∀u ∈ L2 ⊗ Ek,(37)

‖πk,l
⊗nu‖H(Dk) ≤ C‖u‖H(Dk), ∀u ∈ H(Dk).(38)

Proof. The L2-boundedness of πk,l
⊗n is similar to [14, Lemma 7]. In particular, there

holds:

‖πk,l
⊗n‖∗ ≤

∑

i∈Xk

j∈Xl

‖πi1,j1 ⊗ · · · ⊗ πin,jn‖∗ =
∑

i∈Xk

j∈Xl

‖πi1,j1‖∗ · · · ‖π
in,jn‖∗,

where ‖ · ‖∗ denotes the L2-norm of operators. Canonical argument, see [38, Theo-
rem 8.4], shows that the L2-boundedness and commutativity implies boundedness
in the H(Dk)-norm. �
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3. Spline BGG complexes

In this section, we derive spline BGG complexes that satisfy Assumption 1 and
Assumption 2 for arbitrary space dimensions and present the elasticity, Hessian and
div div complexes as examples. The outline of the section is as follows: In Section
3.1, we state some basic concepts from the spline theory and define a spline BGG
complex in 1D along with quasi-interpolation operators for the 1D spline spaces.
In Section 3.2, we discretize the diagram (14) and the 2D version of the diagram
(10) using spline spaces and present the derivation of the 2D stress complex as a
BGG complex. In Section 3.3, we discretize the diagram (10) for vector proxies in
higher dimensions using spline spaces and present the derivation of the elasticity,
Hessian, and div div complexes as BGG complexes.

3.1. Splines in 1D. Splines are piecewise polynomial functions that satisfy certain
regularity conditions. By convention, their parametric domain is defined as the unit
interval I = [0, 1] in 1D. Knot vectors are used to partition I and define the spline
basis functions. A knot vector is a vector Σ given by Σ = [η1, . . . , ηn+p+1] where
its components, a.k.a., the knot values (or the knots), satisfy 0 ≤ η1 ≤ η2 ≤ · · · ≤
ηn+p+1 ≤ 1, where p denotes the polynomial degree of the spline and n denotes
the number of basis functions needed to construct the space Sp

r
(Σ) defined below.

The regularity of a spline defined via Σ is given by a vector r that consists of the
regularity values of the spline at the knot values in Σ.

Suppose Σ includes N distinct knot values and let Σ̂ ⊆ Σ be the set of these
distinct knot values. For example, if Σ = {0.0, 0.0, 0.2, 0.4, 1.0, 1.0}, then Σ̂ :=

{0.0, 0.2, 0.4, 1.0}. The regularity of a spline at a knot value η̂i ∈ Σ̂ is computed by
ri := p−mi where 1 ≤ mi ≤ p+1 denotes the number of times the knot value η̂i is
repeated in Σ. By utilizing the definition in [52], we may define the one-dimensional
spline space Sp

r
(Σ) as follows:

Sp
r
(Σ) := {φ : ∃φi ∈ Pp : φ(x) = φi(x) for x ∈ Ii := [η̂i−1, η̂i), η̂i ∈ Σ̂, Ii ⊂ I,

i = 1, . . . (N − 1), Driφi−1(η̂i) = Driφi(η̂i), ri = 0, 1, . . . , p−mi},

where Pp denotes the polynomial space of degree p.

Remark 7. Note that if mi = m for some m ≥ 1 and ∀η̂i ∈ Σ, then Sp
r
(Σ) becomes

a regular polynomial space of degree p defined piecewise over the knot intervals in
I.

In this paper, we consider splines given by open knot vectors, that is, the case
where η1 = · · · = ηp+1 and ηn+1 = · · · = ηn+p+1, and use B-splines (a.k.a. basis
splines) since every spline function can be written as a linear combination of B-
splines of the same degree [50]. Thus, we refer to B-splines by the term spline here.
B-spline basis functions of degree p denoted by {Bp

i } are defined via the Cox-de Boor
formula [35], which starts with defining the lowest degree basis functions {B0

i (η)}
and obtains the higher degree B-spline basis functions {Bp

i (η)} by recursion as
follows:

B0
i (η) :=

{
1, ηi ≤ η < ηi+1,
0, otherwise,

Bp
i (η) =

η − ηi
ηi+p − ηi

Bp−1
i (η) +

ηi+p+1 − η

ηi+p+1 − ηi+1
Bp−1

i+1 (η).
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Using these basis functions, we may also define Sp
r
(Σ) as follows:

Sp
r
(Σ) := span{Bp

i (η) : i = 1, . . . , n}.(39)

Suppose that ri ≥ 0 at the internal knots, that is, the B-spline functions are at least
continuous at the knots, then the derivative of a B-spline basis function is given by

d

dη
Bp

i (η) =
p

ηi+p − ηi
Bp−1

i (η)−
p

ηi+p+1 − ηi+1
Bp−1

i+1 (η),

where Bp−1
1 (η) = Bp−1

n+1(η) = 0, by assumption [34]. We note that d : Sp
r
(Σ) →

Sp−1
r−1 (Σ̃) is surjective where Σ̃ = {η2, η3, . . . , ηn+p} is an open knot vector obtained

by dropping the first and the last knots from the open knot vector Σ [34].
In the rest of the text, to maintain a compatible notation with the finite element

spaces used in the BGG construction in Section 4.1, we use Sp
r
(I) to denote a B-

spline space of degree p with regularity r defined over I, excluding the knot vector
Σ from the notation. Thus, we denote the space of i-forms with coefficients in Sp

r
(I)

by Sp
r
Λi(I) as in Section 2.

By the definition of Sp
r
Λi(I), it follows that the following sequence is a complex

and d is onto for any integer-valued vector r defined as above and any scalar p ≥ 1.
Thus, Assumption 1 is satisfied.

0 Sp
r
Λ0(I) Sp−1

r−1Λ
1(I) 0.d

Now, we need to verify Assumption 2. We first define the following quasi-
interpolation operator as the one defined in [34]:

π̃p
0 : L2(I) → Sp

r
(I), π̃p

0(u) :=

n∑

i=1

λpi (u)B
p
i ,(40)

where each λpi is the dual basis functional to the B-spline basis function Bp
i (See

Theorem 4.41 in [52]). Thus, we have λpi (B
p
j ) = δij for i, j = 1, 2, · · · , n. As pointed

out in [34], this dual basis is used for it enables the satisfaction of the L2-stability of

the interpolation operators. Then, we may uniquely define π̃p−1
1 : L2(I) → Sp−1

r−1 (I)
using (40)

π̃p−1
1 v :=

d

dx
π̃p
0

x∫

0

v(s) ds.

Similarly, we define π̃p−2
2 : L2(I) → Sp−2

r−2 (I)

π̃p−2
2 v :=

d

dx
π̃p−1
1

x∫

0

v(s) ds.

Note that π̃p
0 and π̃p−1

1 are spline preserving, therefore, projections. π̃p
0 is L2-

stable, and π̃p−1
1 is L2-stable when the mesh is quasi-uniform [34]. Similarly, π̃p−2

2

is spline preserving and L2-stable when the mesh is quasi-uniform. Moreover, these
projection operators commute with the differential operators, that is for i = 0, 1,
we have

(41) π̃
p−(i+1)
i+1 ∂xv = ∂xπ̃

p−i
i v.

Then, we use these projection operators to define the quasi-interpolation operators
πi,j : L2Λi,j(I) → Sp−i−j

r−i−j Λ
i,j(I) as in Section 2.4. For example, π0,0 : L2Λ0,0(I) →
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Sp
r
Λ0,0(I) is given by π0,0w = (π̃0,0u)(1⊗ 1) = (π̃p

0u)(1⊗ 1) where w = u(1⊗ 1) ∈
L2Λ0,0. Then, let w = u(dxσ1 ⊗ 1) ∈ L2Λ1,0(I) and define π1,0 : L2Λ1,0(I) →
Sp−1
r−1Λ

1,0(I), as follows:

π1,0w = π1,0u(dxσ1 ⊗ 1) = (π̃1,0u)(dxσ1 ⊗ 1) = (π̃p−1
1 u)(dxσ1 ⊗ 1).

We define π0,1 = π1,0 taking advantage of the equivalence of the relevant spline
spaces. Similarly, we define π1,1 : L2Λ1,1(I) → Sp−2

r−2Λ
1,1(I) as follows:

π1,1w = π1,1u(dxσ1 ⊗ dxµ1) = (π̃1,1u)(dxσ1 ⊗ dxµ1 )

= (π̃p−2
2 u)(dxσ1 ⊗ dxµ1 ),

where w = u(dxσ1 ⊗ dxµ1 ) ∈ L2Λ1,1(I). We see that (29) holds due to (41).
Moreover, (30) holds due to the definition of the spaces and interpolation operators,
that is, S0,1π0,1 = π1,0S0,1. Thus, the assumptions in Section 1 are satisfied, and
we can write the 1D BGG diagram as follows:

(42)

0 Sp
r
(I) Sp−1

r−1 (I) 0

0 Sp−1
r−1 (I) Sp−2

r−2 (I) 0.

d

d

I

From (42), we derive the BGG complex

0 Sp
r
(I) Sp−2

r−2 (I) 0.d◦I◦d

3.2. Splines in higher dimensions. In Rn, we define the spline spaces over the
tensor-product of parametric domain as I = [0, 1]n. The partition of I is deter-
mined by n knot vectors such that an element (with non-zero measure) on the
parametric domain is Ii = [η1i1 , η

1
i1+1] ⊗ · · · ⊗ [ηnin , η

n
in+1] where ηij 6= ηij+1. Let

ri denote the fiber of ~r in direction i, thus being the regularity vector in this co-
ordinate direction. Then, a spline space in n-dimensions is defined via the tensor

product of one-dimensional spline spaces, that is, S~p
~r = Sp1

r1
⊗Sp2

r2
⊗· · ·⊗Spn

rn
where

Spi
ri

denotes the spline defined over the ith coordinate direction.
For simplicity, we focus on the case n = 2. We discretize the 2D version of the

second and third rows in the diagram (10) via two-dimensional spline spaces as
follows:
(43)

0 Sp1,p2
r1,r2

(
Sp1,p2−1
r1,r2−1

Sp1−1,p2

r1−1,r2

)
Sp1−1,p2−1
r1−1,r2−1 0

0

(
Sp1,p2−1
r1,r2−1

Sp1−1,p2

r1−1,r2

) (
Sp1,p2−2
r1,r2−2 Sp1−1,p2−1

r1−1,r2−1

Sp1−1,p2−1
r1−1,r2−1 Sp1−2,p2

r1−2,r2

) (
Sp1−1,p2−2
r1−1,r2−2

Sp1−2,p2−1
r1−2,r2−1

)
0.

curl div

curl

I

div

2 vskw

Note that the spaces in the first row of (43) are chosen so as to yield a vector-
valued de Rham complex, and we start the second row using the connecting map
S = I and complete it in a similar fashion. Since this diagram fulfills the neces-
sary conditions for the BGG construction, we can derive the 2D (stress) elasticity
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complex as a BGG complex:

(44) 0 Sp1,p2
r1,r2

Σh

(
Sp1−1,p2−2
r1−1,r2−2

Sp1−2,p2−1
r1−2,r2−1

)
0,curl curl div

where

Σh :=

{
σh =

(
σ11 σ12
σ21 σ22

)
∈

(
Sp1,p2−2
r1,r2−2 Sp1−1,p2−1

r1−1,r2−1

Sp1−1,p2−1
r1−1,r2−1 Sp1−2,p2

r1−2,r2

)
: σ12 = σ21

}
,

and curl curl v =
[ ∂2v

∂x2
2

− ∂2v
∂x1∂x2

− ∂2v
∂x1∂x2

∂2v
∂x2

1

]
for v ∈ Sp1,p2

r1,r2
.

In the light of Remark 2, we also consider the following discretization of the first
two rows of the diagram (14) via two-dimensional spline spaces.
(45)

0 Sp1,p2
r1,r2

(
Sp1−1,p2

r1−1,r2

Sp1,p2−1
r1,r2−1

)
Sp1−1,p2−1
r1−1,r2−1 0

0

(
Sp1−1,p2

r1−1,r2

Sp1,p2−1
r1,r2−1

) (
Sp1−2,p2

r1−2,r2
Sp1−1,p2−1
r1−1,r2−1

Sp1−1,p2−1
r1−1,r2−1 Sp1,p2−2

r1,r2−2

) (
Sp1−2,p2−1
r1−2,r2−1

Sp1−1,p2−2
r1−1,r2−2

)
0.

grad rot

grad

I

rot

−2 sskw

We note that the diagram (45) yields the 2D rotated (stress) elasticity complex:

(46) 0 Sp1,p2
r1,r2

Σh

(
Sp1−2,p2−1
r1−2,r2−1

Sp1−1,p2−2
r1−1,r2−2

)
0,hess rot

where Σ̂h is defined by

Σ̂h :=

{
σh =

(
σ11 σ12
σ21 σ22

)
∈

(
Sp1−2,p2

r1−2,r2
Sp1−1,p2−1
r1−1,r2−1

Sp1−1,p2−1
r1−1,r2−1 Sp1,p2−2

r1,r2−2

)
: σ12 = σ21

}
.

3.3. Vector proxies for splines in three dimensions. In this subsection, we
discretize the diagram (10) via spline spaces in three-dimensions as follows:

(47)

0 V 0,0 V 1,0 V 2,0 V 3,0 0

0 V 0,1 V 1,1 V 2,1 V 3,1 0

0 V 0,2 V 1,2 V 2,2 V 3,2 0

0 V 0,3 V 1,3 V 2,3 V 3,3 0,

grad curl div

grad

I

curl

2 vskw

div

tr

grad

−mskw

curl

T

div

2 vskw

grad

ι

curl

−mskw

div

I

where ι : R → M is defined by ιu := uI, and T : M → M is defined as T u :=
ut − tr(u)I [11]. We start with defining V 0,0 := Sp1,p2,p3

r1,r2,r3
. The rest of the first row
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is defined via following the de Rham sequence as follows:

V 1,0 =



Sp1−1,p2,p3

r1−1,r2,r3

Sp1,p2−1,p3

r1,r2−1,r3

Sp1,p2,p3−1
r1,r2,r3−1


 , V 2,0 =



Sp1,p2−1,p3−1
r1,r2−1,r3−1

Sp1−1,p2,p3−1
r1−1,r2,r3−1

Sp1−1,p2−1,p3

r1−1,r2−1,r3


 , V 3,0 = Sp1−1,p2−1,p3−1

r1−1,r2−1,r3−1 .

(48)

In the second row, we employ the symmetry of the diagram to obtain V 0,1 = V 1,0.
Then, via differential operations, we derive

V 1,1 =




Sp1−2,p2,p3

r1−2,r2,r3
Sp1−1,p2−1,p3

r1−1,r2−1,r3
Sp1−1,p2,p3−1
r1−1,r2,r3−1

Sp1−1,p2−1,p3

r1−1,r2−1,r3
Sp1,p2−2,p3

r1,r2−2,r3
Sp1,p2−1,p3−1
r1,r2−1,r3−1

Sp1−1,p2,p3−1
r1−1,r2,r3−1 Sp1,p2−1,p3−1

r1,r2−1,r3−1 Sp1,p2,p3−2
r1,r2,r3−2


 ,(49)

V 2,1 =



Sp1−1,p2−1,p3−1
r1−1,r2−1,r3−1 Sp1−2,p2,p3−1

r1−2,r2,r3−1 Sp1−2,p2−1,p3

r1−2,r2−1,r3

Sp1,p2−2,p3−1
r1,r2−2,r3−1 Sp1−1,p2−1,p3−1

r1−1,r2−1,r3−1 Sp1−1,p2−2,p3

r1−1,r2−2,r3

Sp1,p2−1,p3−2
r1,r2−1,r3−2 Sp1−1,p2,p3−2

r1−1,r2,r3−2 Sp1−1,p2−1,p3−1
r1−1,r2−1,r3−1


 ,(50)

V 3,1 =



Sp1−2,p2−1,p3−1
r1−2,r2−1,r3−1

Sp1−1,p2−2,p3−1
r1−1,r2−2,r3−1

Sp1−1,p2−1,p3−2
r1−1,r2−1,r3−2


 .

In the third row, again by the symmetry of the diagram we have V 0,2 = V 2,0, and
by transposing V 2,1 we obtain

V 1,2 =



Sp1−1,p2−1,p3−1
r1−1,r2−1,r3−1 Sp1,p2−2,p3−1

r1,r2−2,r3−1 Sp1,p2−1,p3−2
r1,r2−1,r3−2

Sp1−2,p2,p3−1
r1−2,r2,r3−1 Sp1−1,p2−1,p3−1

r1−1,r2−1,r3−1 Sp1−1,p2,p3−2
r1−1,r2,r3−2

Sp1−2,p2−1,p3

r1−2,r2−1,r3
Sp1−1,p2−2,p3

r1−1,r2−2,r3
Sp1−1,p2−1,p3−1
r1−1,r2−1,r3−1


 .

The remaining spaces are defined by similar arguments as follows:

V 2,2 =




Sp1,p2−2,p3−2
r1,r2−2,r3−2 Sp1−1,p2−1,p3−2

r1−1,r2−1,r3−2 Sp1−1,p2−2,p3−1
r1−1,r2−2,r3−1

Sp1−1,p2−1,p3−2
r1−1,r2−1,r3−2 Sp1−2,p2,p3−2

r1−2,r2,r3−2 Sp1−2,p2−1,p3−1
r1−2,r2−1,r3−1

Sp1−1,p2−2,p3−1
r1−1,r2−2,r3−1 Sp1−2,p2−1,p3−1

r1−2,r2−1,r3−1 Sp1−2,p2−2,p3

r1−2,r2−2,r3


 ,

V 3,2 =



Sp1−1,p2−2,p3−2
r1−1,r2−2,r3−2

Sp1−2,p2−1,p3−2
r1−2,r2−1,r3−2

Sp1−2,p2−2,p3−1
r1−2,r2−2,r3−1


 .

Finally, in the last row, we obtain the first three spaces by symmetry and derive
the last one via the div operator:

V 3,3 = Sp1−2,p2−2,p3−2
r1−2,r2−2,r3−2 .

Now, we can define the elasticity complex (12) in three dimensions via the second
and third rows of the diagram (47)

(51)

0 V 0,1 V 1,1 V 2,1 V 3,1 0

0 V 0,2 V 1,2 V 2,2 V 3,2 0.

grad curl div

grad

−mskw

curl

T

div

2 vskw

It is easy to check the relations such as mskwV 0,2 ⊂ V 1,1, T V 1,2 = V 2,1 (by
definition), and vskw(V 2,2) ⊂ V 3,1. Therefore the diagram (51) satisfies all the
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assumptions for the BGG construction [11]. We can read out the 3D elasticity
complex from the second and third rows of (47) as follows:

(52) 0 V 0,1 V 1,1 ∩ S V 2,2 ∩ S V 3,2 0,def inc div

Similarly, from the first and second rows of (47), we obtain the Hessian complex:

(53) 0 V 0,0 V 1,1 ∩ S V 2,1 ∩ T V 3,1 0,hess curl div

and from the third and fourth rows of (47), we obtain the div div complex:

(54) 0 V 0,2 V 1,2 ∩ T V 2,2 ∩ S V 3,3 0.
dev grad sym curl div div

4. Finite element BGG complexes

Within this Section, we first present finite element (FE) de Rham complexes in
1D fulfilling Assumption 1. Later on, FE BGG complexes are introduced and the
obtained results are compared to existing FEs in the literature.

4.1. Finite elements in 1D. When we turn from splines to FEs, the view changes
from global to local. Again, we consider a subdivision of the interval of interest into
subintervals. We define polynomial spaces on each subinterval by affine mapping of
a polynomial space on the reference interval [0, 1] to the actual interval. What con-
stituted the knot vector for splines are now the interfaces between the subintervals
together with so-called node functionals, which are also defined by mapping from
the reference interval. It is common standard to assume that continuity conditions
between all subintervals are equal. Thus, a FE space is defined by

(1) The subdivision into subintervals
(2) The polynomial space and node functionals on the reference interval

Note that in one space dimension this corresponds to a spline space where each
knot has the same multiplicity. In higher dimensions, the methods differ by the
fact that the FE version does not require tensor product meshes, just each cell must
be a tensor product.

Following these remarks, Sq
r (I) denotes the space of polynomials on the reference

interval I of degree q equipped with node functionals which establish regularity of
degree r at the interfaces between subintervals. In the examples below, r = −1
will refer to discontinuous FEs, r = 0 to continuous, and r = 1 to continuously
differentiable elements.

We now derive the FE discretization for the one-dimensional BGG diagram (5) as
well as the one-dimensional BGG complex (6). First, we observe that the regularity
index of the last element in the complex is two less compared to the first element.
As we cannot go below L2, this implies that we must start with (at least) H2

regularity on the left. The proxy field FE-BGG diagram reads:

(55)

0 W 0,0 W 1,0 0

0 W 0,1 W 1,1 0.

∂x

∂x

I

In detail, the spaces in the FE complex are (see [14, 15]):
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• W 0,0 is the space of polynomials in Sq
r
(I) defined by a modified set of

Hermite interpolation conditions ensuring continuously differentiable tran-
sitions to the neighboring intervals, complemented with a set of interior
moments. This results in the following set of q + 1 node functionals:

N 0,0
2i+1(u) = ∂i+1

x u(0), N 0,0
2i+2(u) = ∂i+1

x u(1), i = 0, . . . , r − 1,(56)

N 0,0
2r+i(u) =

∫ 1

0

ℓi−1∂xu dx, i = 1, . . . , q − 2r,(57)

N 0,0
q+1(u) = u(1) + u(0),(58)

where ℓi denotes the Legendre polynomial of degree i on the interval [0, 1],
normalized with the condition ℓi(1) = 1.

• W 1,0 is the space of polynomials in Sq−1
r−1 (I) equipped with the following

set of q node functionals

N 1,0
2i+1(v) = ∂ixv(0), N 1,0

2i+2(v) = ∂ixv(1), i = 0, . . . , r − 1,(59)

N 1,0
2r+i(v) =

∫ 1

0

ℓi−1v dx, i = 1, . . . , q − 2r.(60)

• W 0,1 is the space of polynomials in Sq−1
r−1 (I) equipped with the set of node

functionals {N 0,1
j }qj=1 defined as in (56)-(57)-(58) with r and q replaced by

r − 1 and q − 1, respectively.
• W 1,1 is the space of polynomials in Sq−2

r−2 (I) equipped with the set of node

functionals {N 1,1
j }q−1

j=1 defined as in (59)-(60) with r and q replaced by r−1
and q − 1, respectively.

The unisolvence of these finite elements was proven in [15, Section 3.3]. It is easily
verified that each row in (55) forms a complex and ∂x is onto, so that Assumption 1
is satisfied.

Remark 8. The sets of node functionals in equations (57) and (58) do not contain
u(0) and u(1) as such. Since these are used in standard finite element definitions to
ensure continuity at the interface of two elements, we have to ensure that our node
functionals still yield a conforming method. Note, that they encompass the linear
combinations

N 0,0
q+1(u) = u(1) + u(0) and N 0,0

2r+1(u) =

∫ 1

0

u′(x) dx = u(1)− u(0).(61)

As this is a change of basis in the dual space, it is easily realized that the inter-
polants obtained by the commuting interpolation operators and by the standard ones,
respectively, are equal. Hence, the commuting interpolation operators are used for
the analysis only, while the standard ones yield conformity and are used for practi-
cal implementation as in Figures 1 to 3 below. More details on this remark can be
found in Appendix C

Let nk,l be the dimension of the shape function space W k,l. Given the above-
mentioned node functionals, we can introduce the corresponding dual basis func-

tions {ψk,l
i }i=1,...,nk,l

for W k,l, fulfilling

N k,l
j (ψk,l

i ) = δij , k, l = 0, 1,(62)
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for all admissible values of i and j. Then, the canonical interpolation operators on
the polynomial spaces are defined on the reference interval as

Πk,l(u) :=

nk,l∑

i=1

N k,l
i (u)ψk,l

i .(63)

The basis functions {ψk,l
i } together with the node functionals {N k,l

i } for k, l = 0, 1
and all admissible values of i, fulfill the assumptions of the commuting Lemma
2 in [15]. Hence, the canonical interpolation operators (63) commute with the
derivative, i.e., for all u ∈ C∞(I), there holds

∂xΠ
0,lu = Π1,l∂xu, l = 0, 1.

Lemma 5. The canonical interpolation operator commutes with the identity oper-
ator in (55), that is, for any u ∈ C∞(I) there holds

Π0,1u = Π1,0u.(64)

Proof. First, we observe that the node functionals in (57) for i > 1 can be trans-
formed by integration by parts into linear combinations of those in (60). In the case
i = 1 they simply reduce to the difference of the values in the end points. Thus,
the sets of node functionals for W 1,0 and for W 0,1 can each be obtained as linear
combinations of the other set. We decompose

C∞ = Pq−1 ⊕ P⊥
q−1,(65)

where P⊥
q−1 is the polar set of the node functionals, namely

P⊥
q−1 =

{
u ∈ C∞

∣∣ N 1,0
i (u) = 0, i = 1, . . . , q}(66)

=
{
u ∈ C∞

∣∣ N 0,1
i (u) = 0, i = 1, . . . , q}.(67)

Hence, decomposing u ∈ C∞ according to this direct sum as u = p + u⊥ and
exploiting that both interpolation operators are projections onto Pq−1, there holds

Π0,1u = Π0,1p = p = Π1,0p = Π1,0u.(68)

�

The node functionals {N k,l
i } are well-defined for smooth functions. However, as

outlined in Remark 3 in [15], weighted node functionals {N
k,l

i } can be employed to
obtain an L2-bounded quasi-interpolation operator

π̃k,l(u) :=

nk,l∑

i=1

N
k,l

i (u)ψk,l
i , k, l = 0, 1, u ∈ L2(I),(69)

which commutes with the exterior derivative. We recall that π̃k,l is obtained by aver-
aging over canonical interpolation operators (63) on perturbed intervals. Since (64)
holds for each of them, and the averaging weights are chosen consistently, we con-
clude that the quasi-interpolation operators π̃k,l commute with the operators Sk,l.
Hence, they satisfy Assumption 2. Note that applying Schöberl’s trick, see for
instance section 5.3 in [14], we can even obtain a projection onto the discrete space.
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4.2. Finite elements in three dimensions. Tensor products of one-dimension-
al functions are simply defined as [u ⊗ v ⊗ w](x, y, z) = u(x)v(y)w(z). Thus, the
definition of tensor product polynomials is straightforward. Functions of this type
are called rank-1 tensors. Since rank-1 tensors span the tensor product space, it is
sufficient to define the tensor product of node functionals on such tensors and then
extend them by linearity to the whole space. Thus, for any indices i, j, k, a node
functional Nijk is defined by

Nijk(u⊗ v ⊗ w) = [Ni ⊗Nj ⊗Nk](u ⊗ v ⊗ w) = Ni(u)Nj(v)Nk(w).(70)

Hence, each node functional applies to the spatial variable x, y, or z according to
its position in the tensor product.

The unisolvence of the tensor product elements follows immediately from the
same property of the one-dimensional fibers: let {φα} be the basis of a one-
dimensional element such that the interpolation condition (62) holds. Then, by (70),

Nijk(φα ⊗ φβ ⊗ φγ) = δiαδjβδkγ .

Using the fact that the set of rank-1 tensors of basis functions forms a basis of the
tensor product space, we obtain a tensor product basis which is dual to the node
functionals. We finish this discussion noting that the argument holds for anisotropic
tensor product as well.

Finally, we observe that the tensor product of de Rham subcomplexes is a sub-
complex of the de Rham complex on the Cartesian product domain (see [4]). Hence
follows the conformity of the FE BGG complexes.

Example 4 (Node functionals in 2D). Let for instance in two dimensions N1 and
N2 be node functionals in one dimension. Then [N1 ⊗N2](u ⊗ v) = N1(u)N2(v).
Choosing node functionals N1(u) = u′(0), N2(u) = u(0), and N3(u) =

∫
u dx we

obtain by this construction in two dimensions

[N1 ⊗N1](f) = ∂xyf(0, 0), [N1 ⊗N3](f) =

∫ 1

0

∂xf(0, y) dy,

[N1 ⊗N2](f) = ∂xf(0, 0), [N2 ⊗N3](f) =

∫ 1

0

f(0, y) dy,

[N2 ⊗N1](f) = ∂yf(0, 0), [N3 ⊗N3](f) =

∫ 1

0

f(x, y) dx dy.

(71)

Now we have set the stage for studying specific FEs for BGG complexes. Let
us begin with the lowest regularity (r = 1) element family for the div div com-
plex obtained by our method. This complex combines the last two rows of the
diagram (47). Starting with V 3,3, we chose r1 = r2 = r3 = 1 to obtain an L2-
conforming space. Focusing on the isotropic case p1 = p2 = p3 = p, we obtain the
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following polynomial spaces for the div div complex:

V 0,2 =



Sp,p−1,p−1
1,0,0

Sp−1,p,p−1
0,1,0

Sp−1,p−1,p
0,0,1


 V 1,2 =



Sp−1,p−1,p−1
0,0,0 Sp,p−2,p−1

1,−1,0 Sp,p−1,p−2
1,0,−1

Sp−2,p,p−1
−1,1,0 Sp−1,p−1,p−1

0,0,0 Sp−1,p,p−2
0,1,−1

Sp−2,p−1,p
−1,0,1 Sp−1,p−2,p

0,−1,1 Sp−1,p−1,p−1
0,0,0




(72)

V 3,3 = Sp−2,p−2,p−2
−1,−1,−1 V 2,2 =




Sp,p−2,p−2
1,−1,−1 Sp−1,p−1,p−2

0,0,−1 Sp−1,p−2,p−1
0,−1,0

Sp−1,p−1,p−2
0,0,−1 Sp−2,p,p−2

−1,1,−1 Sp−2,p−1,p−1
−1,0,0

Sp−1,p−2,p−1
0,−1,0 Sp−2,p−1,p−1

−1,0,0 Sp−2,p−2,p
−1,−1,1




(73)

Thus, we have obtained exactly the same polynomial spaces as [43] as a special case
of our theory. In particular, the three spaces on the diagonal of V 1,2 are identi-
cal, thus facilitating trace free matrices. Similarly, V 2,2 is suitable for symmetric
matrices.

The degrees of freedom of these spaces can be read from the lower indices and
can be constructed by tensor products as in equation (71). Beginning from the
right, V 3,3 is simply the space of discontinuous tensor product polynomials Qp−2

with only volume node functionals, implemented as moments with respect to the
same space,

∫

K

pφdx φ ∈ Qp−2(K).

For V 2,2, the div div-conforming space of symmetric matrices, we obtain for the
diagonal element σii the conditions, that the piecewise polynomials are continu-
ously differentiable in xi-direction and discontinuous in the other two coordinate
directions. Thus, we introduce the set of node functionals

∫

F

(nTσn)φds φ ∈ Qp−2(F ),(74)

∫

F

(nT∂nσn)φds φ ∈ Qp−2(F ),(75)

where F runs through all faces of the reference cube K. Here, we used that on
each Cartesian face, nTσn selects the diagonal element σii where the unit vector ei
is orthogonal to F . These degrees of freedom are shown for the lowest order case
in the top row of figure 1. For visualization purposes, the moments on faces are
displayed as equivalent values in quadrature points. At the bottom of figure 1, we
show how the degrees of freedom for the off-diagonal elements are constructed as
tensor products of their one-dimensional fibers in the lowest order case.

The diagonal elements of a tensor σ in the space V 1,2 are each from the standard
continuous, isotropic FE space Qp−1. The fact, that the corresponding matrix
spaces in equations (11) and (13) are trace free implies that one component of
the diagonal is determined by the other two. Hence, one shape function set can
be eliminated. The off-diagonal entries are anisotropic in polynomial degree and
degrees of freedom. Instead of writing down complicated formulas for node values
and test spaces, we show their construction in the lowest order case in figure 2. Each
of the entries is a tensor product of a polynomial of degree 3, one of degree 2 and
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Figure 1. The degrees of freedom of the lowest order version of
the div div-conforming space V 2,2 and the fibers of the tensor prod-
ucts in blue. Top row the diagonal entries σ11, σ22, σ33. Bottom
row σ12 = σ21, σ13 = σ31, and σ23 = σ32. Dots indicate function
values, arrows indicate directional derivatives. Moments are visu-
alized by quadrature points.
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Figure 2. The degrees of freedom of the lowest order version of
the symcurl-conforming space V 1,2 and the fibers of the tensor
products in blue. First row for entries σ21, σ12, σ13 and second row
for σ31, σ32, σ32. Dots indicate function values, arrows indicate
directional derivatives. Moments are visualized by quadrature
points.
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Figure 3. Degrees of freedom for the lowest order strain element
V 1,1 of the elasticity complex. Diagonal entries σ11, σ22, σ33 in the
top row. Off-diagonal entries σ23 = σ32, σ13 = σ31, and σ12 = σ21
in the bottom row. Pairs of arrows indicate first order and mixed
second order derivatives.

one of degree 1, and the six off-diagonal entries traverse all possible combinations
of these. The node functionals are those of Hermite and Lagrange interpolation,
respectively.

The tensor product construction also yields finite elements for the elasticity com-
plex. The degrees of freedom of the lowest order strain element of our construction
is displayed in figure 3. The corresponding stress element is V 2,2 in figure 1. Com-
paring to [44], we see that their element in our notation is

V 2,2
HMZ =



S2,0,0
0,−1,−1 S1,1,0

0,0,−1 S1,0,1
0,−1,0

S1,1,0
0,0,−1 S0,2,0

−1,0,−1 S0,1,1
−1,0,0

S1,0,1
0,−1,0 S0,1,1

−1,0,0 S0,0,2
−1,−1,0


 , V 3,2

HMZ =



S1,0,0
−1,−1,−1

S0,1,0
−1,−1,−1

S0,0,1
−1,−1,−1


 .(76)

Thus, the polynomial spaces of their element correspond to the polynomial spaces
in our construction with p1 = p2 = p3 = 2, in which case we cannot use Hermitian
degrees of freedom. Furthermore, we cannot fit the element into the full four
row diagram (47) as the space V 2,2

HMZ is not the range of a curl. Accordingly, the
regularity indices do not fit into our construction. The spaces for off-diagonal
matrix entries exhibit more regularity than expected, but the divergence operator
is onto, since the diagonal elements have the right regularity. Hence, we conclude
that pairs in the BGG complex can be constructed in a more general way than our
construction, but that this typically may not yield a whole FE complex with locally
defined degrees of freedom.
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5. Conclusions

We presented a general construction of Bernstein-Gelfand-Gelfand (BGG) com-
plexes by tensor products of piecewise polynomial spaces. The construction is based
on merging two complexes of alternating forms of arbitrary degrees in Rn via cross-
linking maps which commute with the differential operators of the complexes to
obtain a single BGG complex. We first constructed the BGG complexes in one-
dimension, then extended our construction to n-dimensions via the tensor product
of spaces and the interpolation operators.

The method is based on scales of one-dimensional piecewise polynomial spaces
characterized abstractly by their polynomial degree and smoothness parameter.
Under the assumption of a commutativity between the interpolation operator of
these spaces and the operators in the one-dimensional BGG diagram, we derived
BGG complexes in any dimension with commuting interpolation operators.

We presented two examples for the application of this construction. For once,
standard spline spaces in one dimension can be employed to generate the BGG
spline complexes. Then, we presented the same construction for finite element
spaces and showed their degrees of freedom in three dimensions. Since the proposed
construction relies on tensor products, it is naturally defined over cubical meshes
with a straightforward extension to finite element meshes consisting of rectangular
cells. While this is clearly a limitation, it offers an important advancement in this
context as it enables us to address problems in any spatial dimension using arbitrary
polynomial degrees and smoothness on such meshes.

The construction for some more delicate BGG complexes remains open. We take
the conformal deformation complex [11, Equation (50)] as an example:

(77)
0 Hq ⊗ V Hq−1 ⊗ (S ∩ T)

Hq−4 ⊗ (S ∩ T) Hq−5 ⊗ V 0.

dev def

cot div

Here dev def = dev symgrad is the symmetric trace-free part of the gradient, and
cot := curl T −1 curlT −1 curl leads to the linearized Cotton-York tensor with mod-
ified trace. If the vector element on the left has tensor polynomial structure like

ω =



p1, q1, r1
p2, q2, r2
p3, q3, r3


 ,(78)

in order to be symmetric and trace free, we look at the orders of the gradient

∇ω =



p1 − 1, q1, r1 p1, q1 − 1, r1 p1, q1, r1 − 1
p2 − 1, q2, r2 p2, q2 − 1, r2 p2, q2, r2 − 1
p3 − 1, q3, r3 p3, q3 − 1, r3 p3, q3, r3 − 1


 .(79)

For instance, in order to be symmetric, we must require p1 = p2 − 1, but for the
trace adding up to zero, we need p2 = p1 − 1.

Based on the construction in this paper, one may further investigate numerical
schemes in the direction of isogeometric analysis, c.f., [3, 37, 46, 53].

Appendix A. Proxy fields

When discussing concrete realizations of the diagram (25) in spline and finite
element spaces below, we will define them in terms of proxy fields for the differential
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forms involved. Thus, we need vector representations of alternating forms. In three
dimensions, we can choose the basis dx1, dx2, dx3 for Alt0,1 ∼= Alt1 and Alt1,0 ∼=
Alt1. Thus, we obtain a basis for the according vector space by assigning ei = dxi
for i = 1, 2, 3. For the spaces Alt0,2 and Alt2,0, we assign in similar fashion

e1 = dx2 ∧ dx3, e2 = dx3 ∧ dx1, e3 = dx1 ∧ dx2.(80)

The space Alt1,1 = Alt1 ⊗ Alt1 consists of matrices spanned by the basis eij =

dxi ⊗ dxj for i, j = 1, 2, 3. A basis for Alt1,2 = Alt1 ⊗ Alt2 can be formed of
elements

ei,1 = dxi ⊗ dx2 ∧ dx3, ei,2 = dxi ⊗ dx3 ∧ dx1, ei,3 =dxi ⊗ dx1 ∧ dx2,(81)

i = 1, 2, 3.

Following [11], we introduce notation for the algebraic operations we need in
this picture. Now we consider the following basic linear algebraic operations: skw :
M → K and sym : M → S are the skew and symmetric part operators; tr : M → R
is the matrix trace; ι : R → M is the map ιu := uI identifying a scalar with a scalar
matrix; dev : M → T given by devw := w− 1/n tr(w)I is the deviator, or trace-free
part. In three space dimensions, we can identify a skew symmetric matrix with a
vector,

mskw




v1
v2
v3


 :=




0 −v3 v2
v3 0 −v1
−v2 v1 0


 .

Consequently, we have mskw(v)w = v×w for v, w ∈ V, where v×w denotes the
cross product between v = (v1, v2, v3) and w = (w1, w2, w3) defined as

v × w =

∣∣∣∣∣∣



e1 e2 e3
v1 v2 v3
w1 w2 w3



∣∣∣∣∣∣
,

{ej}j=1,2,3 denoting the standard basis of R3. Using the same notation as in 3D,
we define mskw : R → K in two-dimensions by

mskw(u) :=

(
0 u
−u 0

)
in R2.

We also define the operators

vskw: M → V vskw = mskw−1 ◦ skw

T : M → M T u = uT − tr(u)I.

Appendix B. Characterization of s operators

In this appendix, we prove equation (8), containing the expression of si,j applied
to a basis. We first recall, [8, Equation (2.1)], which will be helpful below:

[dx1 ∧ · · · ∧dxk](u1, · · · , uk)(82)

=

k∑

l=1

(−1)l+1dx1(ul)[dx
2 ∧ · · · ∧ dxk](u1, · · · , ûl, · · · , uk).
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Lemma 6. Let σ ∈ Σ(k, n) and τ ∈ Σ(m,n). Then

sk,m (dxσ ⊗ dxτ ) =

m∑

l=1

(−1)l−1dxτl ∧ dxσ ⊗ dxτ1 ∧ · · · ∧ d̂xτl ∧ · · · ∧ dxτm .(83)

Let s ∈ Xk and t ∈ Xm be the characteristic vectors of σ and τ , respectively.
Then, equation (83) can be equivalently written as

(84) sk,m
(
(dx1)s1 ∧ · · · ∧ (dxn)sn ⊗ (dx1)t1 ∧ · · · ∧ (dxn)tn

)

=

n∑

l=1

(−1)|t|l+1δ1,tldx
l ∧ (dx1)s1 ∧ · · · ∧ (dxn)sn ⊗ · · ·

(dx1)t1 ∧ · · · ∧ d̂xl ∧ · · · ∧ (dxn)tn .

Proof. Let σ ∈ Σ(k, n) and let τ ∈ Σ(m,n). By the definition of sk,m in equa-
tion (7), there holds

T1 := sk,m [dxσ ⊗ dxτ ] (er1 , . . . , erk+1
)(eβ1

, . . . , eβm−1
)

=

k+1∑

ℓ=1

(−1)ℓ+1 [dxσ ⊗ dxτ ] (er1 , . . . , êrℓ , . . . , erk+1
)(erℓ , eβ1

, . . . , eβm−1
)

=

k+1∑

ℓ=1

(−1)ℓ+1dxσ(er1 , . . . , êrℓ , . . . , erk+1
)dxτ (erℓ , eβ1

, . . . , eβm−1
),

for r ∈ Σ(k + 1, n) and β ∈ Σ(m− 1, n). We observe that at most one term in the
sum on the right is nonzero, namely where ℓ can be chosen such there holds

{r1, . . . , rk+1} = {rℓ, σ1, . . . , σk}, {rℓ, β1, . . . , βm−1} = {τ1, . . . , τm}.(85)

In particular, we note that rℓ 6= σi for i = 1, . . . , k and there is an index j such
that rℓ = τj . Define τ ′ ∈ Σ(m− 1, n) by removing τj from τ . Then, by (82),

dxτ (erℓ , eβ1
, . . . , eβm−1

) = (−1)j+1[dxτj ∧ dxτ
′

](erℓ , eβ1
, . . . , eβm−1

)

= (−1)j+1dxτj (erℓ)dx
τ ′

(eβ1
, . . . , eβm−1

)

= (−1)j+1dxτ
′

(eβ1
, . . . , eβm−1

).

Thus,

T1 = (−1)ℓ+jδrℓ,τjdx
σ(er1 , . . . , êrℓ , . . . , erk+1

)dxτ
′

(eβ1
, . . . , eβm−1

).(86)

Next, we start from (83) and let (again using τ ′ for τ without τj)

T2 :=

m∑

j=1

(−1)j+1
[
dxτj ∧ dxσ ⊗ dxτ

′
]
(er1 , . . . , erk+1

)(eβ1
, . . . , eβm−1

)

=
m∑

j=1

(−1)j+1 [dxτj ∧ dxσ ] (er1 , . . . , erk+1
)dxτ

′

(eβ1
, . . . , eβm−1

).

The last sum contains at most one nonzero term, namely if j can be chosen such
that there holds

{τj , β1, . . . , βm−1} = {τ1, . . . , τm}, {r1, . . . , rk+1} = {τj , σ1, . . . , σk}.(87)
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Since r1, . . . , rk+1 is as in (86), the index not contained in σ is rℓ. By (82) we get

[dxτj ∧ dxσ](er1 , . . . , erk+1
) = (−1)ℓ+1dxτj (erℓ)dx

σ(er1 , . . . , êrℓ , . . . , erk+1
).(88)

Summarizing, we obtain

T2 = (−1)ℓ+jδrℓ,τjdx
σ(er1 , . . . , êrℓ , . . . , erk+1

)dxτ
′

(eβ1
, . . . , eβm−1

),(89)

which is equal to T1 in (86). �

We give a simple example to illustrate the lemma. For k = m = 1, consider
s1,1[dx1 ⊗ dx2](e1, e2)(), where ei is the dual basis of dxi, i = 1, 2. To better
understand the notation, recall that s1,1 maps Alt1,1 in Alt2,0. In particular,
s1,1[dx1 ⊗ dx2] is applied to (e1, e2) in the first direction, whereas the second input
is empty. By definition of s, we have that the above is equal to

[dx1 ⊗ dx2](e2)(e1)− [dx1 ⊗ dx2](e1)(e2) = −1.

By Lemma 6, the above is equal to

2
[
[dx2 ∧ dx1]⊗ 1− [dx1 ∧ dx2]⊗ 1

]
(e1, e2) = 2 · (0−

1

2
) = −1.

Appendix C. On change of basis for interpolation operators

As a result of the peer review process, we are adding this appendix detailing
the validity of Remark 8. We begin by proving that the standard and commuting
interpolation operators yield the same result. We phrase this as the following
general lemma:

Lemma 7. Let N1, . . . ,Nn be a set of node functionals on a suitable function space
V and let φ1, . . . , φn be a basis of an n-dimensional subspace Vn ⊂ V , such that
the interpolation condition Ni(φj) = δij holds for i, j = 1, . . . , n. Let M1, . . . ,Mn

be a second set of node functionals on V obtained by linearly independent linear
combinations of the first set and let ψ1, . . . , ψn be the basis of Vn such that Mi(ψj) =
δij.

Then, for any function u for which N1, . . . ,Nn are well-defined, there holds

n∑

i=1

Ni(u)φi =

n∑

i=1

Mi(u)ψi.(90)

In particular, interpolation operators defined by the two sets of node values are
identical.

Proof. Let u ∈ V arbitrary and let the vectors v(u), w(u) ∈ Rn be defined by
vi(u) = Ni(u) and wi(u) = Mi(u), respectively. Due to the assumption on the two
sets of node functionals, there is a nonsingular matrix P such that w(u) = Pv(u)
independent of u. Let now for any x

Φ(x) =
(
φ1(x), . . . , φn(x)

)T
,

Ψ(x) =
(
ψ1(x), . . . , ψn(x)

)T
,
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For φj , there holds

φj =
∑

i

Mi(φj)ψi

=
∑

i

∑

k

(P )ikNk(φj)ψi

=
∑

i

(P )ijψi.

Thus, Φ(x) = PTΨ(x) for any x. For any u, we conclude
∑

i

Ni(u)φi(x) = v(u) · Φ(x)

=
(
P−1w(u)

)
·
(
PTΨ(x)

)

=
(
PP−1w(u)

)
·Ψ(x)

=
∑

i

Mi(u)ψi(x).

�

Introduce now on the whole mesh an interpolation operator using instead of (57)
and (58) the standard node functionals u(0) and u(1). By sharing these node
functionals between adjacent cells, the range of this interpolation operator is the
piecewise polynomial subspace conforming with the exterior derivative. Hence, in
the implementation, the standard interpolation operator involving u(0) and u(1)
instead of (61) as degrees of freedom is used.

In order to conduct the analysis, on each cell we use the preceding lemma to
reinterpret the result as if it was obtained with the commuting degrees of freedom.
Hence, the analysis applies.
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