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Abstract. We consider degenerate Kolmogorov–Fokker–Planck operators

Lu =
m0∑

i, j=1

ai j (x, t)∂2xi x j
u +

N∑

k, j=1

b jk xk∂x j u − ∂t u

≡
m0∑

i, j=1

ai j (x, t)∂2xi x j
u + Y u

(with (x, t) ∈ R
N+1 and 1 ≤ m0 ≤ N ) such that the corresponding model operator having constant ai j is

hypoelliptic, translation invariant w.r.t. a Lie group operation inRN+1 and 2-homogeneous w.r.t. a family of
nonisotropic dilations. The matrix (ai j )

m0
i, j=1 is symmetric and uniformly positive onRm0 . The coefficients

ai j are bounded and Dini continuous in space, and only bounded measurable in time. This means that,
setting

(i) ST = R
N × (−∞, T ) ,

(ii) ω f,ST (r) = sup
(x,t),(y,t)∈ST‖x−y‖≤r

| f (x, t) − f (y, t)|

(iii) ‖ f ‖D(ST ) =
∫ 1

0

ω f,ST (r)

r
dr + ‖ f ‖L∞(ST )

we require the finiteness of ‖ai j ‖D(ST ). We bound ωuxi x j ,ST , ‖uxi x j ‖L∞(ST ) (i, j = 1, 2, ..., m0),

ωY u,ST , ‖Y u‖L∞(ST ) in terms of ωLu,ST , ‖Lu‖L∞(ST ) and ‖u‖L∞(ST ), getting a control on the uniform
continuity in space of uxi x j , Y u if Lu is bounded and Dini-continuous in space. Under the additional
assumption that both the coefficients ai j and Lu are log-Dini continuous, meaning the finiteness of the
quantity

∫ 1

0

ω f,ST (r)

r
|log r | dr,

we prove that uxi x j and Y u are Dini continuous; moreover, in this case, the derivatives uxi x j are locally
uniformly continuous in space and time.
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1. Introduction and statement of the main result

In this paper, wewill be concernedwithKolmogorov–Fokker–Planck (KFP, in short)
operators of the form

Lu =
m0∑

i, j=1

ai j (x, t)∂2xi x j
u +

N∑

k, j=1

b jk xk∂x j u − ∂t u, (x, t) ∈ R
N+1, (1.1)

where 1 ≤ m0 ≤ N . The first-order part of the operator L, also called the drift term,
is a smooth vector field which will be denoted by Y ; more explicitly,

Y u =
N∑

k, j=1

b jk xk∂x j u − ∂t u. (1.2)

Points of RN+1 will be sometimes denoted by the compact notation

ξ = (x, t), η = (y, s).

Given T ∈ R, we set

ST := R
N × (−∞, T ).

We will make the following assumptions on L:
(H1) A0(x, t) = (ai j (x, t))m0

i, j=1 is a symmetric, uniformly positive matrix on Rm0 of

bounded measurable coefficients, defined in RN+1; more precisely, there exists
a constant ν > 0 such that

ν|v|2 ≤
m0∑

i, j=1

ai j (x, t)viv j ≤ ν−1|v|2

for every v ∈ R
m0 , x ∈ R

N and a.e. t ∈ R.

(1.3)

The coefficients will be also assumed to be Dini continuous w.r.t. x , uniformly
w.r.t. t . This assumptionwill be specified later (seeDefinition 1.2 and assumption
(H3)), since it requires some preliminaries.

(H2) The matrix B = (bi j )
N
i, j=1 satisfies the following condition: for m0 and suitable

positive integers m1, . . . , mk such that

m0 ≥ m1 ≥ . . . ≥ mk ≥ 1 and m0 + m1 + . . . + mk = N , (1.4)

we have

B =

⎛

⎜⎜⎜⎜⎜⎝

O O . . . O O

B1 O . . . . . . . . .

O B2 . . . O O

...
...

. . .
...

...

O O . . . Bk O

⎞

⎟⎟⎟⎟⎟⎠
(1.5)

where B j is an m j × m j−1 matrix of rank m j (for j = 1, 2, . . . , k).
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To the best of our knowledge, the study of the KFP operators has a long history
which dates back to the 1934 paper by Kolmogorov [10] on the Theory of Gases. In
this paper, Kolmogorov introduced the operator

K = �u + 〈u,∇v〉 − ∂t , with u, v ∈ R
n and t ∈ R,

which can be obtained from (1.1) by choosing

N = 2n, m0 = m1 = n, A0 = Idn, , B =
(
On On

Idn On

)
.

It should be noticed that, since m0 < N , the operator K is not parabolic; however,
Kolmogorov proved in [10] that K is C∞-hypoelliptic in R

2n by constructing an
explicit smooth fundamental solution. The (global)C∞-hypoellipticity of the operator
K is cited by Hörmander as one of the main ‘inspiration’ for his celebrated work [7]
on the hypoellipticity of the sums of squares of vector fields (plus a drift), of which
the KFP operators with constant coefficients ai, j ’s are a particular case.
After the seminal paper by Hörmander, the KFP operators with constant coefficients

have been studied by many authors, and from several point of views; in particular, at
the beginning of the ‘90s’ Lanconelli and Polidoro [11] started the study of constant
coefficients KFP operators from a geometrical viewpoint, showing that these operators
possess a rich underlying subelliptic geometric structure. More precisely, they proved
that the m0 + 1 vector fields

X1 = ∂x1, . . . , Xm0 = ∂xm0
, Y =

N∑

k, j=1

b jk xk∂x j − ∂t

(on which the KFP operators (1.1) are modeled) satisfy the following properties:

(a) X1, . . . , Xm0 , Y are left-invariant on the Lie group G = (RN+1, ◦), where the
(non-commutative) composition law ◦ is defined as follows

(y, s) ◦ (x, t) = (x + E(t)y, t + s)

(y, s)−1 = (−E(−s)y,−s),

and E(t) = exp(−t B) (which is defined for every t ∈ R since the matrix B is
nilpotent). For a future reference, we explicitly notice that

(y, s)−1 ◦ (x, t) = (x − E(t − s)y, t − s), (1.6)

and that the Lebesgue measure is the Haar measure, which is also invariant with
respect to the inversion.

(b) X1, . . . , Xm0 are homogeneous of degree 1 and Y is homogeneous of degree 2
with respect to a nonisotropic family of dilations in R

N+1, which are automor-
phisms of G and are defined by

D(λ)(x, t) ≡ (D0(λ)(x), λ2t) = (λq1x1, . . . , λ
qN xN , λ2t), (1.7)
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where the N -tuple (q1, . . . , qN ) is given by

(q1, . . . , qN ) = (1, . . . , 1︸ ︷︷ ︸
m0

, 3, . . . , 3︸ ︷︷ ︸
m1

, . . . , 2k + 1, . . . , 2k + 1︸ ︷︷ ︸
mk

).

The integer

Q =
N∑

i=1

qi > N (1.8)

is called the (spatial) homogeneous dimension of RN , while Q + 2 is the homo-
geneous dimension ofRN+1. We explicitly point out that the exponential matrix
E(t) satisfies the following homogeneity property

E(λ2t) = D0(λ)E(t)D0

(1
λ

)
, (1.9)

for every λ > 0 and every t ∈ R (see [11, Rem.2.1.]).
(c) X1, . . . , Xm0 , Y satisfy the Hörmander Rank Condition in RN+1.

Through the years, many Authors have studied KFP operators with variable coef-
ficients ai j (x, t), modeled on the above class of left invariant hypoelliptic operators.
For instance, Schauder estimates on bounded domains have been investigated first
by Manfredini [14], and later by Di Francesco–Polidoro in [6] under more general
assumptions, assuming the coefficients ai j Hölder continuous with respect to the in-
trinsic distance induced in R

N+1 by the vector fields ∂x1, ...∂xm0
, Y . With regards to

Schauder estimates for KFP operators, the reader is referred also to the papers by
Lunardi [13], Priola [17], Imbert–Mouhot [8], Wang–Zhang [18], and the references
therein. Also, continuity estimates on uxi x j under a Dini continuity assumption on ai j

and Lu have been proved by Polidoro, Rebucci, Stroffolini in [16].
Recent contributions from the field of stochastic differential equations (see e.g. [15])

suggest the importance of developing a theory allowing the coefficients ai j to be rough
in t (say, L∞), and uniformly continuous (for instance, Hölder continuous) only w.r.t.
the space variables. The Schauder estimates that one can reasonably expect under this
mild assumption consist in controlling the Hölder seminorms w.r.t. x of the derivatives
involved in the equations, uniformly in time. These estimates are sometimes called
“partial Schauder estimates”. Similar results can be expected when Hölder continuity
is replaced by Dini continuity. Results of this kind (in the Hölder case) are well-
known for uniformly parabolic operators (see [4,9], and more recent papers quoted
in the references in [1]). Also, in the parabolic case, it is known that uxi x j satisfy a
continuity estimate in time, under the same assumptions of continuity in space of ai j

andLu. Partial Schauder estimates for uxi x j , Y u, together with local Hölder continuity
in the joint variables, have been recently proved by the first two of us in [1]. Partial
Schauder estimates for degenerate KFP operators have been proved also in the recent
paper [5] by Chaudru de Raynal, Honoré, Menozzi, with different techniques and
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without getting the Hölder control in time of second order derivatives. We also quote
[12], by Lucertini, Pagliarani, Pascucci, dealingwith the construction of a fundamental
solution for KFP operators with coefficients Hölder continuous in space and L∞ in
time.
In this paper, we address the problem of proving uniform continuity estimates w.r.t.

the space variables on uxi x j , Y u, assuming ai j and Lu to be Dini continuous w.r.t.
the space variables, uniformly in t . We prove an estimate of this kind, which, in turn,
implies the (partial) Dini continuity of uxi x j , Y u under the stronger assumption that
ai j and Lu are log-Dini continuous w.r.t. the space variables, uniformly in t (for the
precise statement, see Theorem 1.6). These results are consistent with those proved in
[16] when ai j and Lu are Dini-continuous in the joint variables. Moreover, under the
same stronger assumption of log-Dini continuity of ai j and Lu, we prove a bound on
the modulus of continuity in the joint variables for uxi x j , analogously to what happens
in the Hölder case. (For the exact statement, see Theorem 1.7).
Statement of the main result. In order to introduce the function spaces and the quantities
which will be involved in the statements of our results, we need to introduce some
metric notions. First of all, the system

X = {X1, . . . , Xm0 , Y }
induces in a standard way a (weighted) control distance dX in R

N+1, which is left
invariant w.r.t. the group operation ◦ and jointly 1-homogeneous with respect to D(λ).
As a consequence, the function ρX(ξ) := dX(ξ, 0) satisfies

(1) ρX(ξ−1) = ρX(ξ);
(2) ρX(ξ ◦ η) ≤ ρX(ξ) + ρX(η).

(For these and related basic notions on Hörmander vector fields, we refer to [2, Chaps.
1–3]). In addition, since dX is a distance, we also have

(1)’ ρX(ξ) ≥ 0 and ρX(ξ) = 0 ⇔ ξ = 0;
(2)’ ρX(D(λ)ξ) = λρX(ξ),

and this means that ρX is a homogeneous norm in R
N+1. We then notice that, owing

to the explicit expression of D(λ) in (1.7), the function

ρ(ξ) = ρ(x, t) := ‖x‖ + √|t | =
N∑

i=1

|xi |1/qi + √|t | (1.10)

is also a homogeneous norm in R
N+1, and therefore, it is globally equivalent to the

norm ρX. As a consequence, the map

d(ξ, η) := ρ(η−1 ◦ ξ) = ‖x − E(t − s)y‖ + √|t − s| (1.11)

is a left-invariant, 1-homogeneous quasi-distance on R
N+1. More precisely, there

exists κ ≥ 1 such that

d(ξ, η) ≤ κ
(
d(ξ, ζ ) + d(η, ζ )

) ∀ ξ, η, ζ ∈ R
N+1; (1.12)

d(ξ, η) ≤ κ d(η, ξ) ∀ ξ, η ∈ R
N+1. (1.13)
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The quasi-distance d is globally equivalent to the control distance dX; hence, we
will systematically use this quasi-distance d in place of dX. We refer the reader to
Sect. 2 for several properties of d which shall be used in the paper.

Using the quasi-distance d, we now introduce the relevant spaces of functions to
which our main result applies.

Definition 1.1. [Hölder continuous functions] Let � ⊆ R
N+1 be an open set, and let

α ∈ (0, 1). Given a function f : � → R, we introduce the notation

| f |Cα(�) = sup

{ | f (ξ) − f (η)|
d(ξ, η)α

: ξ, η ∈ � and ξ �= η

}
.

Accordingly, we define the space Cα(�) as follows:

Cα(�) := { f ∈ C(�) ∩ L∞(�) : | f |Cα(�) < ∞}.
Finally, on this space Cα(�) we introduce the norm

‖ f ‖Cα(�) := ‖ f ‖L∞(�) + | f |Cα(�).

Definition 1.2. [Partially Dini and log-Dini continuity] Let� be an arbitrary open set
in RN+1, and let f ∈ L∞(�). For every r > 0, we set

ω f,�(r) = sup
(x,t),(y,t)∈�

‖x−y‖≤r

| f (x, t) − f (y, t)|.

We then say that
(i) f is partially Dini-continuous in �, and we write f ∈ D(�), if

∫ 1

0

ω f,� (r)

r
dr < ∞; (1.14)

(ii) f is partially log-Dini continuous, and we write f ∈ Dlog(�), if

∫ 1

0

ω f,�(r)

r
| log r |dr < ∞. (1.15)

If f ∈ D(�), we define

| f |D(�) =
∫ 1

0

ω f,�(r)

r
dr and ‖ f ‖D(�) = ‖ f ‖L∞(�) + | f |D(�).

Remark 1.3. Let � ⊆ R
N+1 be an open set, and let f ∈ Dlog(�). We will see in

Sect. 2 that the following functions are well-defined moduli of continuity (that is,
non-decreasing functions on (0,∞) vanishing for r → 0+):

M f,�(r) = ω f,�(r) +
∫ r

0

ω f,�(s)

s
ds + r

∫ ∞

r

ω f,�(s)

s2
ds; (1.16)

N f,�(r) = M f,�(r) +
∫ r

0

M f,�(s)

s
ds + r

∫ ∞

r

M f,�(s)

s2
ds. (1.17)
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Furthermore, given any μ > 0, we will see that also the functions

Uμ
f,�(r) =

∫

RN
e−μ|z|2(

∫ r‖z‖

0

ω f,�(s)

s
ds

)
dz (1.18)

Vμ
f,�(r) =

∫

RN
e−μ|z|2(

∫ r‖z‖

0

M f,�(s)

s
ds

)
dz (1.19)

are well-defined on the interval (0,∞). The continuity estimates appearing in our
main results, namely Theorems 1.6–1.7, will depend on these functions.

Definition 1.4. Given any number T > 0, we define S0(ST ) as the space of all fun-
ctions u : ST → R satisfying the following properties:

(i) u ∈ C(ST ) ∩ L∞(ST );

(ii) for every 1 ≤ i, j ≤ m0, ∂xi u, ∂2xi x j
u ∈ L∞(ST );

(iii) Y u ∈ L∞(ST )

(in the above (ii)–(iii), the derivatives ∂xi u, ∂2xi x j
u and Y u are intended in the sense

of distributions). For every fixed τ < T , we also define

S0(τ, T ) = { f ∈ S0(ST ) : supp( f ) ⊂ R
N × (τ, T )}.

Finally, we define SD(ST ) as the space of functions u ∈ S0(ST ) such that

∂xi u, ∂2xi x j
u ∈ D(ST ) (for i, j = 1, 2, ..., m0) and Y u ∈ D(ST ).

Remark 1.5. If u ∈ S0(ST ) then u and ∂x1u, ..., ∂xm0
u belong to Cα (ST ) for every

α ∈ (0, 1). A quantitative estimate on these Hölder norms is proved in Theorem 2.20
[1], under the assumption of Hölder continuity (w.r.t. x) of ai j and Lu, while in our
main result (Theorem 1.6) this will be proved under the assumption of partial Dini
continuity of ai j and Lu.

We are now ready to state the main results of this paper.

Theorem 1.6. (Global continuity estimates) Let L be an operator as in (1.1), and
assume that (H1), (H2) are satisfied. In addition, we assume that

(H3) ai j ∈ D(RN+1) for every 1 ≤ i, j ≤ m0.

Then, for every 1 ≤ i, j ≤ m0, every T > 0 and α ∈ (0, 1) there exists a constant
c > 0, depending on T , α, the matrix B in (1.5), the number ν in (1.3) and on the
number

A = ∑m0
i, j=1 ‖ai j‖D(RN+1) (1.20)
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such that the following estimates hold for every u ∈ SD(ST ):

(i)
m0∑

h,k=1

‖∂2xh xk
u‖L∞(ST ) + ‖Y u‖L∞(ST ) +

m0∑

i=1

‖∂xi u‖Cα(ST ) + ‖u‖Cα(ST )

≤ c
{‖Lu‖D(ST ) + ‖u‖L∞(ST )

}

(ii)
m0∑

h,k=1

ω∂2xh xk
u,ST

(r) + ωY u,ST (r)

≤ c
{MLu,ST (cr) + (Ma,ST (cr) + rα)(‖Lu‖D(ST ) + ‖u‖L∞(ST ))

}
.

Here, Ma,ST = ∑m0
i, j=1Mai j ,ST and M·, ST is as in (1.16).

In particular, the functions ∂2xh xk
u, (h, k = 1, ..., m0), Y u are partially Dini contin-

uous if both the coefficients ai j and the function Lu are partially log-Dini continuous.

It is worthwhile noting that the full Hölder norms of the lower order terms u, ∂xi u
(i = 1, 2, ..., m0) can be bounded assuming the partial Dini continuity of Lu and the
coefficients ai j . In particular, any function in SD(ST ) has this regularity property.

Theorem 1.7. (Continuity estimates in space-time for ∂2xi x j
u) Let L be an operator

as in (1.1), and assume that (H1), (H2) are satisfied. In addition, we assume that
(H3)’ ai j ∈ Dlog(R

N+1) for every 1 ≤ i, j ≤ m0.
Then, for every 1 ≤ i, j ≤ m0, every −∞ < τ < T , every α ∈ (0, 1) and every
compact set K ⊆ R

N there exists a constant c > 0, depending on K , τ, T, α and ν,
such that

|∂2xi x j
u(x1, t1) − ∂2xi x j

u(x2, t2)|
≤ c

{
NLu,ST (cr) + Vμ

Lu,ST

(
c
√|t1 − t2|

)

+
(
Na,ST (cr) + Vμ

a,ST

(
c
√|t1 − t2|

)
+ rα

) (‖Lu‖D(ST ) + ‖u‖L∞(ST )

)}
(1.21)

for any u ∈ SD(ST ) with Lu ∈ Dlog(ST ) and any (x1, t1), (x2, t2) ∈ K × [τ, T ]. In
the above estimate, we have used the notation

r = d(x1, t1), (x2, t2)) + |t1 − t2|1/qN

where qN ≥ 3 is the largest exponent in the dilations D(λ), see (1.7); in addition,

Na,ST = ∑m0
i, j=1Nai j ,ST , Vμ

a,ST
= ∑m0

i, j=1 Vμ
ai j ,ST

,

and N·, ST , Vμ
·, ST

are as in (1.17)–(1.19), respectively (and μ > 0 is a constant only
depending on ν).

More explicit bounds on the functions Uμ
... (r) ,Vμ

.... (r) appearing in (1.21) will be
given in Proposition 2.13.
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Remark 1.8. (Dependence of the constants) Throughout the paper, we will call ‘struc-
tural constant’ any constant c > 0 only depending on the matrix B and the ellipticity
constant’ ν. Notice that the matrix B encodes in particular the numbers N , Q, qi , mi ,
κ , and the functions dX , ρX , d, ρ. Any other dependence will be specified.

Structure of the paper. Let us now briefly explain the strategy we follow to prove
our a priori estimates. As in the classical Schauder theory, the operator with variable
coefficients is seen as a small local perturbation of the constant one obtained by
freezing the coefficients ai j at some point

(
x, t

)
. In our context, since the coefficients

are not continuous in t , we can only see our operator as a small local perturbation of
the operator with coefficients only depending on t , obtained by freezing the ai j (·, t)
at some point x . Therefore, our model operator is the one with bounded measurable
coefficients ai j (t):

Lu =
m0∑

i, j=1

ai j (t)∂
2
xi x j

u +
N∑

k, j=1

b jk xk∂x j u − ∂t u.

So, the starting point of our strategy is a careful study of the operator L with bounded
measurable coefficients ai j (t). For this operator, an explicit fundamental solution has
been computed and studied by Bramanti and Polidoro in [3]; more properties and
sharp estimates for this fundamental solution have been established in [1]. In Sect. 2,
after recalling some known facts about the metrics (Sect. 2.1) and establishing some
preliminary results on the Dini-type function spaces (Sect. 2.2), in Sects. 2.3 and 2.4
we recall some results proved in [1,3] about the fundamental solution of the model
operator with coefficients ai j (t) and some interpolation inequalities for Hölder norms.
In Sect. 3 we keep studying the model operator with coefficients only depending on

t . We first establish representation formulas for u and uxi x j in terms of Lu, exploiting
this fundamental solution, under the partial Dini-continuity assumption on Lu. Then,
by singular integral techniques, we prove the desired a priori estimates for this model
operator (see Theorems 3.4–3.5). In Sect. 4 we then study the operator with coeffi-
cients ai j (x, t). Here we apply the classical “Korn’s trick” of freezing the coefficients
of L, in our case only w.r.t. x , writing representation formulas for uxi x j and then re-
gard the original operator as a small local perturbation of the frozen one. This allows
us to prove the desired a priori estimates for functions with small compact support
(Sect. 4.1). Removing this restriction requires the use of cutoff functions and inter-
polation inequalities for the derivatives of intermediate order; this is accomplished in
Sect. 4.2, completing the proof of our first main result, Theorem 1.6. Finally, in Sect. 5
we prove our second main result, Theorem 1.7, that is the bound of the modulus of
continuity of uxi x j in the joint variables (x, t).
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2. Preliminaries

We collect in this section several preliminary results which will be used in the rest of
the paper. For basic facts and more details about Hörmander vector fields, the metric
they induce, and homogeneous groups, we refer to [2].

2.1. Some metric properties

As already discussed in the Introduction, Lanconelli and Polidoro [11] proved that
there is an ‘intrinsic subelliptic geometry’ associated with any KFP operator. More
precisely, if L is as in (1.1) and if

X = {∂x1, . . . , ∂xm0
, Y },

assumption (H2) ensures that the weighted distance ρX induced by X is well-defined,
left-invariant w.r.t. the group operation ◦ and D(λ)-homogeneous of degree 1. Even
if it seems natural to investigate the regularity properties of L using this distance, the
lack of an explicit expression makes better suited the quasi-distance

d((x, t), (y, s)) = ρ((y, s)−1 ◦ (x, t)) = ‖x − E(t − s)y‖ + √|t − s|, (2.1)

which is globally equivalent to ρX and has an explicit form. We now list here below
some simple properties of d which shall be used in the sequel.

We begin by observing that, since E(0) = I, from (2.1) we infer that

d((x, t), (y, t)) = ‖x − y‖ =
N∑

i=1

|xi − yi |1/qi ∀ x, y ∈ R
N , t ∈ R. (2.2)

As a consequence, we derive that d is symmetric and independent of t when applied
to points of R

N+1 with the same t -coordinate. Unfortunately, an analogous property
for points with the same x-coordinate does not hold. In fact, for every fixed x ∈ R

N

and every t, s ∈ R, again by (2.1), we have

d((x, t), (x, s)) = ‖x − E(t − s)x‖ + √|t − s|.
Now, since the geometry of a metric space is encoded in the ‘shape’ of the balls, in
our context we are led to consider the d-balls associated with d. Recalling that d is a
quasi-distance (in particular, d is not symmetric), we fix once and for all the following
definition: given any ξ ∈ R

N+1 and any r > 0, we define

Br (ξ) := {η ∈ R
N+1 : d(η, ξ) < r}.

Using the translation-invariance and the homogeneity of d, it is not difficult to recog-
nize that the following properties are satisfied:

(i) Br (ξ) = ξ ◦ Br (0) = ξ ◦ Dr (B1(0)) ∀ ξ ∈ R
N+1, r > 0; (2.3)

(ii) |Br (ξ)| = |Br (0)| = ωQr Q+2, where ωQ := |B1(0)| > 0. (2.4)
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On the other hand, since d satisfies (1.12)–(1.13) with a positive constant κ possibly
greater that 1, we readily derive that
(iii) if η ∈ Br (ξ), then ξ ∈ Bκr (η);
(iv) if η1, η2 ∈ Br (ξ), then d(η1, η2) < 2κr .

Finally, we state for a future reference some elementary lemmas concerning the quasi-
distance d; for a proof of these results we refer to [1].

Lemma 2.1. There exists a structural constant ϑ > 0 such that, if ξ1, ξ2 and η are
points in R

N+1 which satisfy d(ξ1, η) ≥ 2κ d(ξ1, ξ2), one has

ϑ−1d(ξ2, η) ≤ d(ξ1, η) ≤ ϑd(ξ2, η), (2.5)

Here, κ > 0 is the constant appearing in (1.12)–(1.13).

Lemma 2.2. There exists a structural constant c > 0 such that

‖E(t)x‖ ≤ cρ(x, t) = c
(‖x‖ + √|t |) ∀ x ∈ R

N , t ∈ R. (2.6)

Lemma 2.3. Let K ⊆ R
N be a fixed compact set, and let T > τ > −∞. There exists

a constant c = c(K , T, τ ) > 0 such that, for every x ∈ K and t, s ∈ [τ, T ],
‖x − E(t − s)x‖ ≤ c |t − s|1/qN (2.7)

‖(E(t) − E(s))x‖ ≤ c |t − s|1/qN . (2.8)

Here qN ≥ 3 is the maximum exponent appearing in (1.7).

2.2. Function spaces

Let us now turn our attention to the notion of partial Dini and log-Dini continuity.
In what follows, � ⊆ R

N+1 is an arbitrary open set.
We begin by recalling that, according to Definition 1.2, a function f : � → R

belongs to the space D(�) (resp.Dlog(�)) if f ∈ L∞(�) and

∫ 1

0

ω f,�(r)

r
dr < ∞

(
resp.

∫ 1

0

ω f,�(r)

r
| log r | dr < ∞

)
,

where ω f,�(r) = sup
(x,t),(y,t)∈�

‖x−y‖≤r

| f (x, t) − f (y, t)|. (2.9)

We obviously have Dlog(�) ⊆ D(�).
We also notice that, given any f ∈ L∞(�), by (2.2) we can write

ω f,�(r) = sup
(x,t),(y,t)∈�

d((x,t),(y,t))≤r

| f (x, t) − f (y, t)|.

Moreover, ω f,� is non-negative, non-decreasing and globally bounded on (0,∞);
more precisely, we have the obvious estimate

0 ≤ ω f,�(r) ≤ 2‖ f ‖L∞(�) ∀ r > 0. (2.10)
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Remark 2.4. Here we list some remarks on partially Dini and log-Dini continuous
functions which easily follow from the definition.

1. If f ∈ L∞(�) and 0 < a < b, by (2.10) we have

∫ b

a

ω f,�(r)

r
dr ≤ 2‖ f ‖L∞(�) log(b/a) < ∞. (2.11)

Thus, condition (2.9) is actually an integrability condition near 0.
2. If f ∈ D(�) and r > 0, from (2.11) we infer that

∫ r

0

ω f,�(s)

s
ds =

∫ 1

0

ω f,�(s)

s
ds +

∫ r

1

ω f,�(s)

s
ds

≤ | f |D(�) + 2‖ f ‖L∞(�) log(r) 1(1,∞)(r)

≤ (
1 + 2 log(r)1(1,∞)(r)

)‖ f ‖D(�),

(2.12)

where | · |D(�) and ‖ · ‖D(�) are as in Definition 1.2.
3. If f ∈ D(�) (so that f ∈ L∞(�) and condition (2.9) is satisfied), it is readily

seen that ω f,�(r) → 0 as r → 0+; thus, ω f,� is a continuity modulus (i.e., it is
non-negative, non-decreasing and it vanishes as r → 0+).

Next, we can turn to the functions M f,�, N f,� introduced in Remark 1.3 (and
appearing in Theorems 1.6–1.7).

In the following, we want to prove that when f is a function satisfying suitable
continuity properties (reflecting in properties of ω f,�), then the moduliM f,�, N f,�

have suitable properties. By the definition of N f,�, this will involve some iterative
argument. Now, while the function ω f,� (r) is globally bounded as soon as f is
bounded, the same is not true for M f,� (r) (see (2.12)). In view of this fact, it is
useful to introduce the following definition.

Definition 2.5. We will say that a function ω : R+ ≡ (0,∞) → R is a continuity
modulus of exponent α ∈ (0, 1) if

(P1) ω is non-decreasing on R+, and ω(r) → 0 as r → 0+;
(P2) there exists ω0 > 0 such that

ω(r) ≤ ω0 rα ∀ r ≥ 1;
If, in addition, we have

[ω] :=
∫ 1

0

ω(r)

r
dr < ∞, (2.13)

we will say that ω is a Dini continuity modulus (of exponent α).

Lemma 2.6. Let α ∈ (0, 1), and let ω : R+ → R be a Dini continuity modulus of
exponent α. Then, the function M(ω) defined by

M(ω)(r) = ω(r) +
∫ r

0

ω(s)

s
ds + r

∫ ∞

r

ω(s)

s2
ds. (2.14)
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is a continuity modulus with exponent α. In particular, there exists a constant c > 0,
only depending on α, such that

M(ω)(r) ≤ ω′
0rα for all r ≥ 1, where ω′

0 = c([ω] + ω0), (2.15)

If, in addition, ω satisfies the stronger integrability property

∫ 1

0

ω(r)

r
| log(r)| dr < ∞, (2.16)

then M(ω) is a Dini continuity modulus. In particular, we have

[M(ω)] =
∫ 1

0

M(ω)(s)

s
ds ≤ c

( ∫ 1

0

ω(s)

s
(1 + | log(s)|)ds + ω0

)
, (2.17)

for a constant c > 0 only depending on α.

Proof. To ease the readability, we split the proof into three steps.
Step I: In this first step we prove that M(ω) is well-defined onR+. To this end, we

observe that, by (P1) and (2.13), we have

∫ r

0

ω(s)

s
ds ≤

∫ 1

0

ω(s)

s
ds +

∫ max{1,r}

1

ω(s)

s
ds

≤ [ω] + ω(max{r, 1})r < ∞ ∀ r > 0.

Moreover, by exploiting property (P2) (and since α < 1), we also have

∫ ∞

r

ω(s)

s2
ds ≤

∫ 1

min{r,1}
ω(s)

s2
ds +

∫ ∞

1

ω(s)

s2
ds

≤ ω(1)

r
+ ω0

∫ ∞

1

1

s2−α
ds < ∞.

Gathering these facts, we then conclude that M(ω)(r) < ∞ for all r > 0.
Step II: Now we have shown that M(ω) is well-defined, we then turn to prove

that such a function is a continuity modulus of exponent α, further satisfying estimate
(2.17). To this end,wefirst observe that, owing to the properties ofω, the (well-defined)
function

F(r) := ω(r) +
∫ r

0

ω(s)

s
ds (r > 0)

is clearly non-negative, non-decreasing and it vanishes as r → 0+. Moreover, by using
property (P2) of ω we see that, for every r ≥ 1,

F(r) ≤ ω0rα +
∫ 1

0

ω(s)

s
ds +

∫ r

1

ω(s)

s
ds

≤ ω0rα + [ω] + ω0

∫ r

1
sα−1 ds ≤ 1

α
([ω] + 2ω0)r

α,
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and thus, F is a continuity modulus of exponent α satisfying (2.15). In view of these
facts, and taking into account (2.14), to prove that M(ω) is a continuity modulus, we
consider the (well-defined) map

G(r) := r
∫ ∞

r

ω(s)

s2
ds (r > 0),

and we show that also G satisfies the following properties:
(a) G is non-negative, non-decreasing and it vanishes as r → 0+;
(b) there exists a constant ĉ > 0, only depending on α such that

G(r) ≤ ĉ ω0 rα ∀ r ≥ 1.

Proof of (a). Clearly, G(r) ≥ 0 for every r > 0 (as ω is non-negative); moreover,
by Lebesgue’s Differentiation Theorem (and recalling that the function ω is non-
decreasing on (0,∞)), for a.e.r > 0 we have

G ′(r) =
∫ ∞

r

ω(s)

s2
ds − ω(r)

r
≥ ω(r)

∫ ∞

r

1

s2
ds − ω(r)

r
= 0,

and this proves that G is non-decreasing. Finally, we turn to prove that G(r) vanishes
as r → 0+. To this end, it is useful to distinguish two cases.

• If
∫ ∞
0

ω(s)
s2

ds < ∞, we immediately get

lim
r→0+ G(r) = lim

r→0+ r
∫ ∞

r

ω(s)

s2
ds = 0.

• If, instead,
∫ ∞
0

ω(s)
s2

ds = ∞, we observe that

(∫ ∞
r

ω(s)
s2

ds
)′

(1/r)′
= ω(r) for every r > 0;

thus, since ω(r) vanishes as r → 0+ (see assumption (ii)), an immediate application
of De L’Hôpital’s Theorem gives

lim
r→0+ G(r) = lim

r→0+

∫ ∞
r

ω(s)
s2

ds

1/r
= 0.

Proof of (b). By exploiting property (P2) of ω, we immediately get

G(r) ≤ ω0r
∫ ∞

r
sα−2 ds = ω0r

[ sα−1

α − 1

]∞
r

= ω0

1 − α
rα ∀ r ≥ 1,

and this proves thatG satisfies (b). Summing up, the functionG is a continuitymodulus
of exponent α satisfying (2.15), and thus the same is true for M(ω).



J. Evol. Equ. KFP operators with coefficients measurable Page 15 of 52    32 

Step III: In this last step, we prove that M(ω) satisfies (2.17) (hence, M(ω) is a
Dini continuity modulus of exponent α), provided ω satisfies the stronger property
(2.16). To prove this fact, and since ω satisfies (2.16), we set

M1(r) =
∫ r

0

ω(s)

s
ds, M2(r) = r

∫ ∞

r

ω(s)

s2
= G(r), (2.18)

and we show that both M1, M2 satisfy property (iii), that is,
∫ 1

0

Mi (r)

r
dr < ∞ ∀ i = 1, 2.

As regards M1, by Fubini–Tonelli’s Theorem we have
∫ 1

0

M1(r)

r
dr =

∫ 1

0

1

r

(∫ r

0

ω(s)

s
ds

)
dr =

∫ 1

0

ω(s)

s

(∫ 1

s

dr

r

)
ds

=
∫ 1

0

ω(s)

s
| log s| ds < ∞,

(2.19)

where we have used the fact that ω satisfies (2.16). As regards M2, again by using
Fubini–Tonelli’s Theorem (and since ω satisfies (2.16)), we obtain

∫ 1

0

M2(r)

r
dr =

∫ 1

0

( ∫ ∞

r

ω(s)

s2
ds

)
dr

=
∫ ∞

0

ω(s)

s2

( ∫ min{s,1}

0
dr

)
ds

=
∫ 1

0

ω(s)

s
ds +

∫ ∞

1

ω(s)

s2
ds

≤
∫ 1

0

ω(s)

s
ds + ω0

1 − α
< ∞,

(2.20)

where we have also used the fact that ω satisfies property (P2) (with α < 1). Finally,
by combining (2.19)–(2.20), we conclude that

[M(ω)] =
∫ 1

0

M(ω)(s)

s
ds ≤ [ω] +

∫ 1

0

ω(s)

s
| log(s)| ds + [ω] + ω0

1 − α

≤ c
( ∫ 1

0

ω(s)

s
(1 + | log(s)|)ds + ω0

)
.

This ends the proof. �
Remark 2.7. Let α ∈ (0, 1), and let ω : R+ → R be a Dini continuity modulus of
exponent α. It is contained in the proof of Lemma 2.6 the following useful (thought
not sharp) bound, which will be repeatedly used in the sequel:

∫ r

0

ω(s)

s
ds ≤ cα([ω] + ω0)(1 + rα) ∀ r > 0 (2.21)

(where c > 0 is a constant only depending on α).
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Thanks to Lemma 2.6, we readily obtain the following

Proposition 2.8. Assume that f ∈ D(�). Then, the function M f,�(r) defined in
(1.16) is a modulus of continuity of exponent α, for every α ∈ (0, 1). In particular,
given any α ∈ (0, 1) there exists a constant c > 0 only depending on α such that

M f,�(r) ≤ c‖ f ‖D(�)r
α ∀ r ≥ 1, (2.22)

If, in addition, f ∈ Dlog(�), then the function M f,� is a Dini continuity modulus; in
particular, given any α ∈ (0, 1) there exists c = cα > 0 such that

∫ 1

0

M f,�(r)

r
dr ≤ c

( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

)
< ∞. (2.23)

Finally, the function N f,�(r) defined in (1.17) is a modulus of continuity of exponent
α, for every α ∈ (0, 1).

Proof. First of all, we observe that, if f ∈ D(�), then ω f,� is a Dini continuity
modulus of exponent α, for every α ∈ (0, 1). To be more precise, if α ∈ (0, 1) is
arbitrarily chosen, by exploiting (2.10) we get

ω f,�(r) ≤ ω0 rα for all r ≥ 1, with ω0 = 2‖ f ‖D(�).

Thus, since M f,� = M(ω f,�) (where M is as in (2.14)), from Lemma 2.6 we infer
that M f,� is a modulus of continuity of exponent α. In particular,

M f,�(r) ≤ ω′
0 rα ∀ r ≥ 1,

where ω′
0 > 0 is a constant which, by (2.15), is of the form

ω′
0 = c([ω f,�] + ω0) = c

( ∫ 1

0

ω f,�(s)

s
ds + ω0

)
≤ c‖ f ‖D(�),

and c > 0 is a constant only depending on α. This gives (2.22). If, in addition,
f ∈ Dlog(�), the function ω f,� also satisfies assumption (2.16) in the statement of
Lemma 2.6; we then infer from this lemma that

M f,� = M(ω f,�)

is a Dini continuity modulus. Moreover, by (2.17), we have
∫ 1

0

M f,�(r)

r
dr = [M f,�] ≤ c

( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ω0

)

≤ c
( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

)
,

where c > 0 depends on the fixed α. Finally, we also have that

N f,� = M(M f,�)

is a well-defined modulus of continuity, and the proof is complete. �



J. Evol. Equ. KFP operators with coefficients measurable Page 17 of 52    32 

Remark 2.9. It should be noticed that, even if f ∈ Dlog(�), the function N f,� may
not be a Dini continuity modulus; namely, we cannot ensure that

∫ 1

0

N f,�(r)

r
dr < ∞. (2.24)

In fact, by arguing as in the proof of Proposition 2.8, we see that a sufficient condition
for (2.24) to hold is the log-Dini continuity of M f,�, i.e.,

∫ 1

0

M f,�(r)

r
| log(r)| dr < ∞.

This, in turn, is readily seen to be satisfied as soon as
∫ 1

0

ω f,�(r)

r
log2(r) dr < ∞,

that is when f is log2-Dini continuous.

Now that we have fully established Proposition 2.8, we proceed by studying the
two functions Uμ

f,�, Vμ
f,� introduced in Remark 1.3.

Lemma 2.10. Let α ∈ (0, 1), and ω : R
+ → R be a Dini continuity modulus of

exponent α. For a given μ > 0, we consider the function

Uμ(ω)(r) :=
∫

RN
e−μ|z|2(

∫ r‖z‖

0

ω(s)

s
ds

)
dz (r > 0). (2.25)

Then, the following facts hold:

(i) there exists a constant c > 0, only depending on μ and α, such that

0 ≤ Uμ(ω)(r) ≤ c(1 + rα)(ω0 + [ω]) ∀ r > 0;
(ii) Uμ(ω)(r) → 0 as r → 0+.

Proof. (i) Since ω is a Dini continuity modulus of exponent α, we get

e−μ|z|2(
∫ r‖z‖

0

ω(s)

s
ds

)

≤ e−μ|z|2([ω] + ω0

∫ max{r‖z‖,1}

1
sα−1 ds

)

≤ c([ω] + ω0) · e−μ|z|2(1 + rα‖z‖α) ∀ z ∈ R
N , r > 0.

(2.26)

From this, since μ > 0 and ‖z‖ = ∑
j |z j |1/q j , we obtain

0 ≤ Uμ(ω)(r) ≤ c([ω] + ω0)

∫

RN
e−μ|z|2(1 + rα‖z‖α) dz

≤ c([ω] + ω0)
( ∫

RN
e−μ|z|2 dz + rα

∫

RN
e−μ|z|2‖z‖α dz

)

= c([ω] + ω0)(c1,μ + c2,μrα) ≤ c([ω] + ω0)(1 + rα),
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where c > 0 is a constant only depending on μ and α.

(ii) We fist observe that, since
∫ 1
0

ω(s)
s ds < ∞, we have

lim
r→0+ e−μ|z|2(

∫ r‖z‖

0

ω(s)

s
ds

)
= 0 ∀ z ∈ R

N .

On the other hand, for every z ∈ R
N and every r ∈ (0, 1), by (2.26) we have

0 ≤ e−μ|z|2(
∫ r‖z‖

0

ω(s)

s
ds

)

≤ c e−μ|z|2(1 + ‖z‖) ∈ L1(RN ).

Then, by Lebesgue’s Dominated Convergence Theorem,

lim
r→0+ Uμ(ω)(r) = lim

r→0+

∫

RN
e−μ|z|2(

∫ r‖z‖

0

ω(s)

s
ds

)
dz = 0.

This ends the proof. �

The next proposition collects some explicit bounds for Uμ(ω).

Proposition 2.11. Let α ∈ (0, 1), and let ω : R+ → R be a Dini continuity modulus
of exponent α. Then, the following facts hold.

(i) There exist constants c, κ > 0, only depending on μ and N, such that

Uμ(ω)(r) ≤
{

c
( ∫ √

r
0

ω(s)
s ds + ([ω] + ω0)e− κ

r
)

if 0 < r < 1,

crα([ω] + ω0) if r ≥ 1.

(ii) Assume that there exists ω0 > 0 such that

ω(r) ≤ ω0rαfor every r > 0 (2.27)

(that is, ω satisfies the estimate in property (P2) for every r > 0, and not only
for r ≥ 1); then, we have the following estimate

Uμ(ω)(r) ≤ cμ,α · ω0 rα ∀r > 0.

Proof. (i) For a fixed R > 1 (to be chosen later on), we write

Uμ(ω)(r) =
∫

{‖z‖≤R}
{· · · } dz +

∫

{‖z‖>R}
{· · · } dz ≡ AR + BR . (2.28)

Then, we proceed by estimating the two integrals AR, BR separately, distinguishing
two cases.



J. Evol. Equ. KFP operators with coefficients measurable Page 19 of 52    32 

Case I: 0 < r < 1. We have:

AR ≤
∫

{‖z‖≤R}
e−μ|z|2(

∫ r R

0

ω(s)

s
ds

)
dz

≤
( ∫ r R

0

ω(s)

s
ds

)
·
∫

RN
e−μ|z|2 dz

= c
∫ r R

0

ω(s)

s
ds,

(2.29)

where c > 0 is a constant only depending on the fixed μ. Next, since in BR we have
‖z‖ > R > 1 and we are assuming 0 < r < 1, from (2.21) we get

BR ≤
∫

{‖z‖>R}
e−μ|z|2(

∫ ‖z‖

0

ω(s)

s
ds

)
dz

≤ c([ω] + ω0)

∫

{‖z‖>R}
(1 + ‖z‖α)e−μ|z|2 dz

≤ c([ω] + ω0)

∫

{‖z‖>R}
‖z‖αe−μ|z|2 dz.

Then, by performing the change of variables z = D0(R)u, we obtain

BR ≤ c([ω] + ω0) RQ+α

∫

{‖u‖>1}
e−μ|D0(R)u|2‖u‖α du. (2.30)

Now, since we are assuming R > 1, we have

|D0(R)u|2 =
N∑

j=1

R2q j u2
j ≥ R2|u|2 ∀ u ∈ R

N .

As a consequence, we obtain the following estimate

e−μ|D0(R)u|2‖u‖α ≤ e−μR2|u|2‖u‖α ≤ c
N∑

j=1

e−μR2|u|2 |u j |α/q j

≤ c
N∑

j=1

e−μR2|u|2 |u|α/q j .

(2.31)

In view of (2.31), and since {‖u‖ > 1} ⊆ {|u| > δ} for some constant δ > 0 only
depending on the dimension N , from (2.30) we finally get

BR ≤ c([ω] + ω0) RQ ∑N
j=1

∫
{|u|>δ} e− μR2

2 |u|2 |u|α/q j du

= c([ω] + ω0) RQ ∑N
j=1

∫ ∞
δ

e− μR2

2 ρ2
ρ

N+ α
q j

−1
dρ

(by the change of variables ρ = s/R, and since R > 1)

≤ c([ω] + ω0) RQ ∑N
j=1

∫ ∞
δR e− μs2

2 s
N+ α

q j
−1

ds
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≤ c([ω] + ω0) RQ
∫ ∞
δR e− μs2

4 ds

≤ c([ω] + ω0) RQe− μδ2R2

4 ≤ c([ω] + ω0) e−κ R2
, (2.32)

where c > 0 is a suitable constant, possibly different from line to line but only
depending on μ, N and α, and κ = μδ2/8. Gathering (2.29)–(2.32), and choosing
R = 1/

√
r > 1, we then conclude that

Uμ(ω)(r) ≤ AR + BR ≤ c
( ∫ √

r

0

ω(s)

s
ds + ([ω] + ω0)e

− κ
r

)
,

where c, κ > 0 are constants only depending on μ and N .
Case II: r ≥ 1. Since r R ≥ R > 1, by combining (2.21) with estimate (2.29)

(which actually holds for every r > 0) we obtain

AR ≤ c
∫ r R

0

ω(s)

s
ds ≤ c([ω] + ω0)(1 + (r R)α)

≤ c(r R)α([ω] + ω0).

(2.33)

Next, since in BR we have r‖z‖ > r R > 1, again by (2.21) we get

∫ r‖z‖

0

ω(s)

s
ds ≤ c([ω] + ω0)

(
1 + (r‖z‖)α) ≤ c(r‖z‖)α([ω] + ω0);

from this, since μ > 0 and ‖z‖ = ∑
j |z j |1/q j , we obtain

BR ≤ crα([ω] + ω0)

∫

RN
e−μ|z|2‖z‖α dz = crα([ω] + ω0), (2.34)

where c > 0 is a constant dependingonμ andα.Gathering (2.33)–(2.32), and choosing
R = 2, we then conclude that

Uμ(ω)(r) ≤ AR + BR ≤ crα([ω] + ω0),

where c > 0 is a constant only depending on μ and α.

(ii) If (2.27) holds, by definition of Uμ(ω) we have

Uμ(ω)(r) ≤ ω0

∫

RN
e−μ|z|2(

∫ r‖z‖

0
sα−1 ds

)
dz

= ω0 rα

α

∫

RN
e−μ|z|2‖z‖α dz ≡ cμ,α · ω0 rα ∀r > 0.

This ends the proof. �

Thanks to Lemmas 2.10–2.11, we readily obtain the following results.

Lemma 2.12. Let � ⊆ R
N+1 be an arbitrary open set, and let f ∈ D(�). For a

given μ > 0, let Uμ
f,� be as in (1.18). Then, the following facts hold.
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(i) for every α ∈ (0, 1) there exists a constant c > 0 only depending on μ and α,
such that

0 ≤ Uμ
f,�(r) ≤ c(1 + rα)‖ f ‖D(�) ∀ r > 0;

(ii) Uμ
f,�(r) → 0 as r → 0+.

If, in addition, f ∈ Dlog(�), then the function Vμ
f,� defined in (1.19) satisfies the

following properties, analogous to (i)–(ii) above:

(i)’ for every α ∈ (0, 1) there exists a constant c > 0 only depending on μ and α,
such that

0 ≤ Vμ
f,�(r) ≤ c(1 + rα)

( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

)
,

(ii)’ Vμ
f,�(r) → 0 as r → 0+.

Proof. If f ∈ D(�), both the properties (i) and (ii) of Uμ
f,� immediately follow from

Lemma 2.10, taking into account that

Uμ
f,� = Uμ(ω f,�) and [ω f,�] + ω0 =

∫ 1

0

ω f,�(s)

s
ds + ω0 ≤ 3‖ f ‖D(�),

see the the incipit of the proof of Proposition 2.8. If, in addition, f ∈ Dlog(�), from
Proposition 2.8 we know that M f,� is a Dini continuity modulus of exponent α, for
every α ∈ (0, 1); more precisely,

(1) M f,� ≤ ω′α
0 for all r ≥ 1,where ω′

0 = c‖ f ‖D(�);

(2) [M f,�] =
∫ 1

0

M f,�(s)

s
ds ≤ c

( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

)
,

where c > 0 is a constant only depending on the fixed α. As a consequence, properties
(i)’–(ii)’ of Vμ

f,� follow again from Lemma 2.10, since

Vμ
f,� = Uμ(M f,�)

and since, by (2.22)–(2.23) in Proposition 2.8, we have

[M f,�] + ω′
0 ≤

∫ 1

0

M f,�(s)

s
ds + c‖ f ‖D(�)

≤ c
( ∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

)
,

(2.35)

where c > 0 is a constant only depending on α. This ends the proof. �
Proposition 2.13. Let � ⊆ R

N+1 be an arbitrary open set, and let f ∈ D(�).
Moreover, let μ > 0 and α ∈ (0, 1) be fixed. Then, we have

Uμ
f,�(r) ≤

{
c
( ∫ √

r
0

ω f,�(s)
s ds + ‖ f ‖D(�)e− κ

r
)

if 0 < r < 1,

crα‖ f ‖D(�) if r ≥ 1.
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If in addition f ∈ Dlog(�), we have

Vμ
f,�(r) ≤

{
c
( ∫ √

r
0

ω f,�(s)
s ds + ‖ f ‖Dlog(�)e− κ

r
)

if 0 < r < 1,

crα‖ f ‖Dlog(�) if r ≥ 1.

where c, κ > 0 only depends on μ, N and α, and

‖ f ‖Dlog(�) :=
∫ 1

0

ω f,�(s)

s
(1 + | log(s)|)ds + ‖ f ‖L∞(�)

Proof. This is an immediate consequence of Proposition 2.11, taking into account the
following identities (see (2.10) and Proposition 2.8)

[ω] + ω0 ≤ c ·
{

‖ f ‖D(�), if ω = ω f,�;
‖ f ‖Dlog(�), if ω = M f,�.

This ends the proof. �

We conclude this part of the section with a couple of technical lemmas, which will
be repeatedly used in the sequel.

Lemma 2.14. Let f ∈ D(�), and let ξ ∈ �, r > 0 be such that B = Br (ξ) � �.
We assume that f ≡ 0 in � \ B (i.e., supp( f ) ⊆ B). Then,

ω f,�(r) = ω f,B(r) ∀ r > 0.

Proof. First of all, since B � �we haveω f,� ≥ ω f,B on (0,∞). To prove the reverse
inequality, we fix r > 0 and we let (x, t), (y, t) ∈ � be such that

d((x, t), (y, t)) = ‖x − y‖ ≤ r.

We then distinguish three cases.

(a) (x, t), (y, t) ∈ B. In this case, by definition of ω f,B we have

| f (x, t) − f (y, t)| ≤ sup
(z1,s),(z2,s)∈B

‖z1−z2‖≤r

| f (z1, s) − f (z2, s)| = ω f,B(r). (2.36)

(b) (x, t), (y, t) /∈ B. In this case, since f ≡ 0 out of B, we have

| f (x, t) − f (y, t)| = 0 ≤ ω f,B(r). (2.37)

(c) (x, t) ∈ B, (y, t) /∈ B. In this last case, we consider the segment

γ (τ) = (x + τ(y − x), t) (τ ∈ [0, 1])
and we first observe that, for every 0 ≤ τ ≤ 1, we have:

d((x, t), γ (τ )) = ‖τ(y − x)‖ =
N∑

j=1

τ 1/q j |x j − y j |1/q j ≤ τ 1/qN ‖x − y‖ ≤ r.
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On the other hand, since γ (0) ∈ B and γ (1) /∈ B, there exists τ ∗ ∈ (0, 1] such
that γ (τ ∗) ∈ ∂ B. Thus, since f ≡ 0 in � \ B ⊃ ∂ B, we have

| f (x, t) − f (y, t)| = | f (x, t)| = | f (x, t) − f (γ (τ ∗))|
≤ sup

(z1,s),(z2,s)∈B
‖z1−z2‖≤r

| f (z1, s) − f (z2, s)| = ω f,B(r). (2.38)

Gathering (2.36)-to-(2.38), we then conclude that

ω f,�(r) = sup
(x,t),(y,t)∈�

d((x,t),(y,t))≤r

| f (x, t) − f (y, t)| ≤ ω f,B(r),

and the proof is complete. �
Lemma 2.15. There exists a structural constant c > 0 such that, for every f ∈ D(�)

every r > 0 and every γ > 0, the following estimates hold true:
∫

{η∈RN+1: d(ξ,η)>r}
ω f,�(γ d(ξ, η))

d(ξ, η)Q+3 dη ≤ c
∫ ∞

2r

ω f,�(γ s)

s2
ds (2.39)

∫

{η∈RN+1: d(ξ,η)<r}
ω f,�(γ d(ξ, η))

d(ξ, η)Q+2 dη ≤ c
∫ 2r

0

ω f,�(γ s)

s
ds (2.40)

Here, Q ≥ 1 is as in (1.8), and c is independent of both f and r.

Proof. The proof of both (2.39)–(2.40) is based on the fact that, since f ∈ D(�),
the function ω f,� is non-negative, non-decreasing and satisfies (2.9); moreover, we
exploit the fact that |Br (ξ)| = ωQ r Q+2, see (2.4).

(I) Proof of (2.39). Taking into account (1.13), we have
∫

{η∈RN+1: d(ξ,η)>r}
ω f,�(γ d(ξ, η))

d(ξ, η)Q+3 dη

=
∞∑

k=0

∫

{η∈RN+1: 2kr≤d(ξ,η)<2k+1r}
ω f,�(γ d(ξ, η))

d(ξ, η)Q+3 dη

≤
∞∑

k=0

ω f,�(2k+1γ r)

(2kr)Q+3 · ∣∣{η ∈ R
N+1 : 2kr ≤ d(ξ, η) < 2k+1r}∣∣

≤
∞∑

k=0

ω f,�(2k+1γ r)

(2kr)Q+3 · |B2k+1κr (ξ)|

= ωQ(2κ)Q+2
∞∑

k=0

ω f,�(2k+1γ r)

2kr
.

(2.41)

On the other hand, since ω f,� is non-decreasing we have
∫ ∞

2r

ω f,�(γ s)

s2
ds =

∞∑

k=0

∫ 2k+2r

2k+1r

ω f,�(γ s)

s2
ds

≥
∞∑

k=0

ω f,�(2k+1γ r)

(2k+2r)2
· 2k+1r = 1

8

∞∑

k=0

ω f,�(2k+1γ r)

2kr
.

(2.42)
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By combining (2.41)–(2.42), we immediately get (2.39).
(II) Proof of (2.40). Using once again (1.13), we have

∫

{η∈RN+1: d(ξ,η)<r}
ω f,�(γ d(ξ, η))

d(ξ, η)Q+2 dη

=
∞∑

k=0

∫

{η∈RN+1: r/2k+1<d(ξ,η)≤r/2k }
ω f,�(γ d(ξ, η))

d(ξ, η)Q+2 dη

≤
∞∑

k=0

ω f,�(γ r/2k)

(r/2k+1)Q+2 · ∣∣{η ∈ R
N+1 : r/2k+1 < d(ξ, η) ≤ r/2k}∣∣

≤
∞∑

k=0

ω f,�(γ r/2k)

(r/2k+1)Q+2 · |Bκr/2k (ξ)|

= ωQ(2κ)Q+2
∞∑

k=0

ω f,�(γ r/2k).

(2.43)

On the other hand, since ω f,� is non-decreasing we have

∫ 2r

0

ω f,�(s)

s
ds =

∞∑

k=0

∫ r/2k−1

r/2k

ω f,�(s)

s
ds

≥
∞∑

k=0

ω f,�(γ r/2k)

r/2k−1 · r

2k
= 1

2

∞∑

k=0

ω f,�(γ r/2k).

(2.44)

By combining (2.43)–(2.44), we immediately get (2.40). �

2.3. Fundamental solution and representation formulas for the operator with coeffi-
cients only depending on t

In this section we collect some results established in [1,3] concerning the KFP
operators L with coefficients ai j only depending on t , that is,

Lu =
m0∑

i, j=1

ai j (t)∂
2
xi x j

u +
N∑

k, j=1

b jk xk∂x j u − ∂t u. (2.45)

Throughout what follows, we tacitly understand thatL satisfies the structural assump-
tions (H1)–(H2) stated in the Introduction.
We begin by stating a result proved in [3], which provides an explicit expression

for the global fundamental solution (heat kernel) of L.
Theorem 2.16. (Fundamental solution for operators as in (2.45)) Let C(t, s) be the
N × N matrix defined as follows:

C(t, s) =
∫ t

s
E(t − σ) ·

(
A0(σ ) 0
0 0

)
· E(t − σ)T dσ (with t > s) (2.46)
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(we recall that E(σ ) = exp(−σ B), see (1.5)). Then, C(t, s) is symmetric and positive
definite for every t > s. Moreover, if we define

�(x, t; y, s)

= 1

(4π)N/2
√
det C(t, s)

e− 1
4 〈C(t,s)−1(x−E(t−s)y), x−E(t−s)y〉 · 1{t>s}

(2.47)

(where 1A denotes the indicator function of a set A), then � enjoys the following
properties, so that � is the fundamental solution for L with pole at (y, s).

1. In the open set O := {(x, t; y, s) ∈ R
2N+2 : (x, t) �= (y, s)}, the function �

is jointly continuous in (x, t; y, s) and C∞ with respect to x, y. Moreover, for
every multi-indices α, β the functions

∂α
x ∂β

y � = ∂α+β�

∂xα∂yβ

are jointly continuous in (x, t; y, s) ∈ O. Finally, � and ∂α
x ∂

β
y � are Lipschitz

continuous with respect to t, s in any region R of the form

R = {(x, t; y, s) ∈ R
2N+2 : H ≤ s + δ ≤ t ≤ K },

where H, K ∈ R and δ > 0 are arbitrarily fixed.
2. For every fixed y ∈ R

N and t > s, we have

lim|x |→+∞ �(x, t; y, s) = 0.

3. For every fixed (y, s) ∈ R
N+1, we have

L�(·; y, s)(x, t) = 0 for every x ∈ R
N and a.e. t.

4. For every x ∈ R
N and t > s, we have

∫

RN
�(x, t; y, s) dy = 1. (2.48)

5. For every f ∈ C(RN ) ∩ L∞(RN ) and s ∈ R, the function

u(x, t) =
∫

RN
�(x, t; y, s) f (y) dy

is the unique solution to the Cauchy problem

{
Lu = 0 in R

N × (s,∞)

u(·, s) = f
(2.49)

In particular, u(·, s) → f uniformly in R
N as t → s+.
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Finally, the function �∗(x, t; y, s) := �(y, s; x, t) satisfies dual properties of (2)–
(4) with respect to the formal adjoint of L, that is,

L∗ = ∑m0
i, j=1 ai j (s)∂yi y j − ∑N

k, j=1 b jk yk∂yi + ∂s,

and thus �∗ is the fundamental solution of L∗.

The precise definition of solution to the Cauchy problem (2.49) requires some care,
see [3, Definitions 1.2 and 1.3] for the details.
In the particular case when the coefficients ai j of L are constant, the results of the

previous theorem apply in a simpler form (see also [11]).

Theorem 2.17. (Fundamental solution for operators with constant coefficients) Let
α > 0 be fixed, and let Lα be the constant coefficient KFP operator

Lαu = α

m0∑

i=1

∂2xi xi
u +

N∑

k, j=1

b jk xk∂x j u − ∂t u. (2.50)

Moreover, let �α be the fundamental solution of Lα , whose existence is guaranteed by
Theorem 2.16. Then, the following facts hold true:

1. �α is a kernel of convolution type, that is,

�α(x, t; y, s) = �α

(
x − E(t − s)y, t − s; 0, 0)

= �α

(
(y, s)−1 ◦ (x, t); 0, 0); (2.51)

2. the matrix C(t, s) in (2.46) takes the simpler form

C(t, s) = C0(t − s), (2.52)

where C0(τ ) is the N × N matrix defined as

C0(τ ) = α

∫ τ

0
E(t − σ) ·

(
Im0 0
0 0

)
· E(t − σ)T dσ (τ > 0).

Furthermore, one has the ‘homogeneity property’

C0(τ ) = D0(
√

τ)C0(1)D0(
√

τ) ∀ τ > 0. (2.53)

In particular, by combining (2.47) with (2.52)–(2.53), we can write

�α(x, t; 0, 0) = 1

(4πα)N/2
√
det C0(t)

e− 1
4α

〈
C0(t)−1x,x

〉

= 1

(4πα)N/2t Q/2
√
det C0(1)

e
− 1

4α 〈C0(1)−1
(

D0

(
1√
t

)
x
)
, D0

(
1√
t

)
x〉

.

(2.54)
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Now we have recalled Theorems 2.16–2.17, we collect in the next theorem some
fine properties of � and of its derivatives which will be extensively used in the sequel.
In what follows, if α = (α1, . . . , αN ) ∈ (N ∪ {0})N , we set

|α| := ∑N
i=1 αi and ω(α) := ∑N

i=1 qiαi ,

where the qi ’s are the exponents appearing in the dilation D0(λ), see (1.7).

Theorem 2.18. (See [1, Thm.s 3.5 and 3.9]) Let � be as in Theorem 2.16, and let
ν > 0 be as in (1.3). Then, the following assertions hold:

1. there exists a structural constant c1 > 0 and, for every pair of multi-indices
α1,α2 ∈ (N ∪ {0})N , there exists c = c(ν,α1,α2) > 0, such that

∣∣∣Dα1
x Dα2

y �(x, t; y, s)
∣∣∣ ≤ c

(t − s)ω(α1+α2)/2
�c1ν−1(x, t; y, s)

≤ c

d((x, t), (y, s))Q+ω(α1+α2)
,

(2.55)

for every (x, t), (y, s) ∈ R
N with t �= s. In particular, we have

∣∣∣Dα1
x Dα2

y �(x, t; y, s)
∣∣∣ ≤ c

d((x, t), (y, s))Q+ω(α1+α2)
∀ (x, t) �= (y, s).

2. Let η = (y, s) ∈ R
N+1 be fixed, and let α ∈ (N∪ {0})N be a multi-index. Then,

there exists a constant c = c(α, ν) > 0 such that

|Dα
x �(ξ1, η) − Dα

x �(ξ2, η)| ≤ c
d(ξ1, ξ2)

d(ξ1, η)Q+ω(α)+1
(2.56)

for every ξ1 = (x1, t1), ξ2 = (x2, t2) ∈ R
N+1 such that

d(ξ1, η) ≥ 4κd(ξ1, ξ2) > 0.

We conclude this subsection by recalling a representation formula for functions
u ∈ S0(τ, T ).

Theorem 2.19. (See [1, Thm.3.11 and Cor. 3.12]) Let T ∈ R be fixed, and let τ < T .
Moreover, let L be as in (2.45), and let u ∈ S0(τ ; T ). Then,

u(x, t) = −
∫

RN ×(τ,t)
�(x, t; y, s)Lu(y, s) dy ds ∀ (x, t) ∈ ST . (2.57)

Furthermore, given any 1 ≤ k ≤ m0, the function ∂xk u exists pointwise on ST in the
classical sense, and for every (x, t) ∈ ST we have

∂xk u(x, t) = −
∫

RN ×(τ,t)
∂xk �(x, t; y, s)Lu(y, s) dy ds. (2.58)

Starting from the representation formula (2.57), in [1] the Authors proved a rep-
resentation formula for ∂2xi x j

u (when u ∈ S0(τ, T ) and 1 ≤ i, j ≤ m0) under the
assumption that Lu is partially Hölder-continuous w.r.t. x , uniformly in t (see, pre-
cisely, [1, Cor. 3.12 and Thm.3.14]). In Sect. 3, we will extend such formulas to all
functions u ∈ S0(τ, T ) with Lu only belonging to D(ST ).
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2.4. Interpolation inequalities

We conclude this preliminary section by stating some interpolation inequalities,
established in [1], which will be exploited in the proof of Theorem 1.6.

Theorem 2.20. (See [1, Thm. 4.2])Let T ∈ Rbe arbitrarily fixed, and let u ∈ S0(ST ).
Then, for every α ∈ (0, 1), ξ ∈ ST and r > 0 we have

u, ∂xk u ∈ Cα(BT
r (ξ)) ∀ 1 ≤ k ≤ m0,

where we set:

BT
r (ξ) = Br (ξ) ∩ ST .

Moreover, the following interpolation inequality holds: for every α ∈ (0, 1) and every
r > 0 there exist constants c > 0 and γ > 1 such that

m0∑

h=1

‖∂xhu‖Cα(BT
r (ξ)) + ‖u‖Cα(BT

r (ξ))

≤ ε

{ m0∑

h,k=1

‖∂2xk xh
u‖L∞(BT

4r (ξ)) + ‖Y u‖L∞(BT
4r (ξ))

}

+ c

εγ
‖u‖L∞(BT

4r (ξ)).

(2.59)

and this estimate holds for every ε ∈ (0, 1), ξ ∈ ST and u ∈ S0(ST ). We stress that
the constant c depends on r and α, but is independent of ε, ξ and u.

Remark 2.21. We explicitly highlight, for a future reference, the following easy yet
important fact: if � ⊆ R

N+1 is an arbitrary open set and if f ∈ Cα(�) for some
α ∈ (0, 1), then f ∈ D(�) and we have the estimate

ω f,�(r) = sup
(x,t),(y,t)∈�

‖x−y‖≤r

| f (x, t) − f (y, t)|

≤ | f |Cα(�) · sup
(x,t),(y,t)∈�

‖x−y‖≤r

d
(
(x, t), (y, t)

)α ≤ rα| f |Cα(�),

where we have also used (2.1). As a consequence, we easily deduce

M f,�(r) ≤ crα| f |Cα(�).

3. Operators with coefficients only depending on t

In this section we establish some ‘weaker’ versions of Theorems 1.6–1.7 for KFP
operators with coefficients ai j only depending on t ; we will use these results as a
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crucial tool to prove Theorems 1.6–1.7 in Sect. 4. Throughout what follows, we tacitly
understand that L is as in (2.45), and that the structural assumptions (H1)–(H2) stated
in the Introduction are satisfied (without the need of repeat it); moreover, � denotes
the fundamental solution of L, as in Theorem 2.16.

To begin with, we extend to all functions u ∈ S0(τ, T ) with Lu ∈ D(ST ) the
representation formula for ∂2xi x j

u (where 1 ≤ i, j ≤ m0) proved in [1, Thm.3.14]
under the more restrictive assumption that Lu is partially Hölder continuous w.r.t. x .
In this direction, a first key tool is the following proposition.

Proposition 3.1. There exist structural constants c, μ > 0 such that, for every fixed
T ∈ R, every f ∈ D(ST ), x ∈ R

N and τ < t < T , one has

∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · ω f,ST (‖E(s − t)x − y‖) dy ds

≤ cUμ
f,ST

(
√

t − τ),

(3.1)

where Uμ
f,ST

is as in (1.18). In particular, we have

∫

RN ×(t−ε,t)
|∂2xi x j

�(x, t; y, s)| · ω f,ST (‖E(s − t)x − y‖) dy ds → 0

uniformly w.r.t. (x, t) ∈ R
N+1 as ε → 0+.

(3.2)

Proof. The proof of this proposition is similar to that of [1, Prop. 3.13]; we sketch it
here for the sake of completeness, but we omit the details. First of all, by combining
estimate (2.55) with (2.51)–(2.54), we have

∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · ω f,ST (‖E(s − t)x − y‖) dy ds

≤ c
∫

RN ×(τ,t)

e
−μ|D0

(
1√
t−s

)
(E(s−t)x−y)|2

(t − s)Q/2+1 · ω f,ST (‖E(s − t)x − y‖) dy ds

≤ c
∫ t

τ

1

(t − s)Q/2+1 · Ix,t (s) ds = (�),

where we have introduced the notation

Ix,t (s) =
∫

RN
e
−μ|D0

(
1√
t−s

)
(E(s−t)x−y)|2

ω f,ST (‖E(s − t)x − y‖) dy,

and c, μ > 0 are structural constants.We explicitlymention that, in the above estimate,
we have also used (1.9) and the non-singularity of E(1). Then, by performing in the
integral Ix,t (s) the change of variables

y = E(s − t)x − D0(
√

t − s)z,
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and by exploiting the 1-homogeneity of ‖ · ‖, we obtain

(�) = c
∫ t

τ

1

t − s

( ∫

RN
e−μ|z|2ω f,ST (

√
t − s‖z‖) dz

)
ds

= c
∫

RN
e−μ|z|2(

∫ t

τ

ω f,ST (
√

t − s‖z‖)
t − s

ds
)

dz

= c
∫

RN
e−μ|z|2(

∫ √
t−τ‖z‖

0

ω f,ST (σ )

σ
dσ

)
dz = cUμ

f,ST
(
√

t − τ).

Since the constants c, μ > 0 only depend on ν, this is exactly the desired (3.1). As
regards (3.2), it is a direct consequence of (3.1) and Lemma 2.12. �

Thanks to Proposition 3.1, we can now prove the following theorem.

Theorem 3.2. For T > t > τ > −∞, let u ∈ S0(τ ; T ) be such that Lu ∈ D(ST ).
Then, for every 1 ≤ i, j ≤ m0 the second-order derivatives ∂2xi x j

u exist pointwinse
on ST in the classical sense, and for every (x, t) ∈ ST we have

∂2xi x j
u(x, t) =

∫

RN ×(τ,t)
∂2xi x j

�(x, t; y, s)
[Lu(E(s − t)x, s) − Lu(y, s)

]
dy ds.

(3.3)

Proof. The proof of this result is essentially analogous to that of [1, Thm.3.14], but we
use Proposition 3.1 in place of [1, Prop. 3.13]. For the sake of completeness we sketch
the argument, but we refer to [1] for the details. First of all we observe that, owing
to Proposition 3.1 (and taking into account the very definition of ω f,ST in Definition
1.2), we have

∣∣∣∣
∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · |Lu(E(s − t)x, s) − Lu(y, s)| dy ds

∣∣∣∣

≤
∣∣∣∣
∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · ωLu,ST (‖E(s − t)x − y‖) dy ds

∣∣∣∣

≤ cUμ
Lu,ST

(
√|t − τ |) ∀ (x, t) ∈ ST

(where c, μ > 0 only depend on ν); hence, the function

g(x, t) :=
∫

RN ×(τ,t)
∂2xi x j

�(x, t; y, s)
[Lu(E(s − t)x, s) − Lu(y, s)

]
dy ds

is well-defined on ST . We then turn to prove that ∂2xi x j
u = g pointwise in ST by an

approximation argument. To this end, we fix 0 < ε � 1 and we define

vε(x, t) := −
∫

RN ×(τ,t−ε)

∂x j �(x, t; ·)Lu dy ds.

Now, using (2.58) and taking into account the regularity of �, we see that
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(i) vε ∈ C(ST ) and vε → ∂x j u pointwise in ST as ε → 0+;
(ii) vε is continuously differentiable w.r.t. xi on ST , and

∂xi vε(x, t) =
∫

RN ×(τ,t−ε)

∂2xi x j
�(x, t; y, s)×

× [Lu(E(s − t)x, s) − Lu(y, s)
]

dy ds ∀ (x, t) ∈ ST .

We explicitly stress that, in computing ∂xi vε, we have also used (2.48). On the other
hand, again by Proposition 3.1, we have

|∂xi vε(x, t) − g(x, t)|
=

∫

RN ×(t−ε,t)
|∂2xi x j

�(x, t; ·)| |Lu(E(s − t)x, s) − Lu| dy ds

≤
∫

RN ×(t−ε,t)
|∂2xi x j

�(x, t; ·)| · ωLu,ST (‖E(s − t)x − y‖) dy ds

≤ cUμ
Lu,ST

(
√

ε) for every (x, t) ∈ ST ,

and this shows that ∂xi vε → g uniformly on ST as ε → 0+. Gathering these facts, by
standard results, we then conclude that there exists

∂2xi x j
u = ∂xi (∂x j u) = g pointwise in ST .

This ends the proof. �

Now that we have established the representation formula (3.3), we can prove the
announced weaker version of Theorem 1.6 for KFP operators with coefficients ai j

only depending on t . Actually, we will deduce this result from the following general
theorem, which will be used as a key tool in the next section.

Theorem 3.3. [Singular integrals and Dini-continuous functions] For every fixed T ∈
R and −∞ < τ < T , let us introduce the function space

D(τ ; T ) := { f ∈ D(ST ) : f (x, t) = 0 for every t ≤ τ },

and define, on this space D(τ ; T ), the linear operator

f �→ Ti j f (x, t) :=
∫

RN ×(τ,t)
∂2xi x j

�(x, t; y, s)
[

f (E(s − t)x, s) − f (y, s)
]

dy ds.

Then, there exist structural constants c, μ > 0 such that

‖Ti j f ‖L∞(ST ) ≤ cUμ
f,ST

(
√

T − τ) (3.4)

ωTi j f (r) ≤ cM f,ST (cr) ∀ r > 0. (3.5)

Here, M f,ST is the function defined in (1.16).
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Proof. The proof of this theorem is similar to that of [1, Thm.3.17], where the Authors
deal with the particular case of functions f ∈ D(ST ) such that

ω f,ST (r) ≤ c rα for some α ∈ (0, 1)

(that is, f is partially Hölder continuous w.r.t. x , uniformly in t). We then limit our-
selves to sketch the argument exploited in [1], but we highlight how themain estimates
have to be modified in our more general context. Let f ∈ D(τ ; T ) be arbitrarily fixed.
Since f (·, t) ≡ 0 for all t ≤ τ , we clearly have Ti j f (x, t) = 0 for all x ∈ R

N and
t ≤ τ . Thus, it is readily seen that

‖Ti j f ‖L∞(ST ) = ‖Ti j f ‖L∞(�) and ωTi j f,ST ≡ ωTi j f,�, (3.6)

where we have set � = R
N × (τ, T ). On account of (3.6), to prove (3.4)–(3.5) it

then suffices to study the function Ti j f (x, t) only for (x, t) ∈ �. As regards (3.4) we
observe that, by Proposition 3.1, we have

|Ti j f (x, t)| ≤
∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · | f (E(s − t)x, s) − f (y, s)| dy ds

≤
∫

RN ×(τ,t)
|∂2xi x j

�(x, t; y, s)| · ω f,ST (‖E(s − t)x − y‖) dy ds

≤ cUμ
f,ST

(
√

t − τ) ≤ cUμ
f,ST

(
√

T − τ) ∀ (x, t) ∈ �,

where c, μ > 0 are structural constants. Hence,

‖Ti j f ‖L∞(ST ) ≤ cUμ
f,ST

(
√

T − τ).

We then turn to prove (3.5). To begin with, we arbitrarily fix r > 0 and we let
ξ1 = (x1, t), ξ2 = (x2, t) ∈ � be such that d(ξ1, ξ2) = ‖x1 − x2‖ ≤ r . Using the
compact notation η = (y, s), we write

Ti j f (x1, t) − Ti j f (x2, t)

=
∫

RN ×(τ,t)

{
∂2xi x j

�(x1, t; y, s)
[

f (E(s − t)x1, s) − f (y, s)
]

− ∂2xi x j
�(x2, t; y, s)

[
f (E(s − t)x2, s) − f (y, s)

]}
dy ds

=
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
{· · · } dy ds

+
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
{· · · } dy ds

=: A1 + A2,

(3.7)

where κ > 0 is as in (1.12)–(1.13). We then turn to estimate A1 and A2.
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- Estimate of A1. To begin with, we write A1 as follows:

A1 =
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}

{[
f (E(s − t)x1, s) − f (y, s)

]

× [
∂2xi x j

�(x1, t; y, s) − ∂2xi x j
�(x2, t; y, s)

]}
dy ds

+
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}

{
∂2xi x j

�(x2, t; y, s)

× [
f (E(s − t)x1, s) − f (E(s − t)x2, s)

]}
dy ds

=: A11 + A12.

- Estimate of A11. By using the mean value inequalities (2.56) in Theorem 2.18,
together with Lemma 2.1, (1.13) and the expression of d in (2.1), we have

|A11| ≤ c
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
d(ξ2, ξ1)

d(ξ2, η)Q+3 · ω f,ST (‖E(s − t)x1 − y‖) dyds

≤ c d(ξ2, ξ1)

∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
ω f,ST (d(η, ξ1))

d(ξ2, η)Q+3 dyds

≤ c d(ξ2, ξ1)

∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
ω f,ST (c d(ξ2, η))

d(ξ2, η)Q+3 dyds.

From this, by applying Lemma 2.15 (and since f ∈ D(ST )), we obtain

|A11| ≤ c d(ξ2, ξ1)

∫ ∞

8κd(ξ2,ξ1)

ω f,ST (cs)

s2
ds ≤ cr

∫ ∞

cr

ω f,ST (s)

s2
ds, (3.8)

where c > 0 is a structural constant. We explicitly mention that, in the above estimate,
we have also used the monotonicity of the map

r �→ M2, f,ST (r) = r
∫ ∞

r

ω f,ST (s)

s2
ds

proved in Lemma 2.6, jointly with the fact that

d(ξ2, ξ1) = ‖x1 − x2‖ ≤ r.

- Estimate of A12. Arguing as in [1], by using Lemma 2.3 we have

|A12| ≤
∫ t

τ

∣∣ f (E(s − t)x1, s) − f (E(s − t)x2, s)
∣∣ · J (s) ds

≤
∫ t

τ

ω f,ST (‖E(s − t)(x1 − x2)‖) · J (s) ds

≤
∫ t

τ

ω f,ST

(
c(‖x1 − x2‖ + √

t − s)
) · J (s) ds,

(3.9)

where c > 0 is a structural constant and

J (s) :=
∣∣∣∣
∫

{y∈RN : d(ξ2,(y,s))≥4κd(ξ2,ξ1)}
∂2xi x j

�(x2, t; y, s) dy

∣∣∣∣.
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From this, since ω f,ST shares with the map r �→ rα the same monotonicity, we can
proceed exactly as in the proof of [1, Thm.3.17], obtaining

|A12| ≤ c ω f,ST (c‖x1 − x2‖) ≤ c ω f,ST (cr). (3.10)

for a suitable structural constant c > 0.

Summing up, by combining (3.8) with (3.10), we conclude that

|A1| ≤ c
{
ω f,ST (cr) + cr

∫ ∞

cr

ω f,ST (s)

s2
ds

}
, (3.11)

for a suitable structural constant c > 0.

- Estimate of A2. First of all, we write

|A2| ≤ A21 + A22, (3.12)

where, for k = 1, 2, we have introduced the notation

A2k :=
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
|∂2xi x j

�(xk, t; y, s)|
× ω f,ST (‖E(s − t)xk − y‖) dy ds.

We then proceed by estimating the two integrals A21, A22 separately.

- Estimate of A21. By exploiting the estimates for ∂2xi x j
� in Theorem2.18-(1), together

with (1.12)–(1.13) and the expression of d, we have

A21 ≤ c
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ω f,ST (‖E(s − t)x1 − y‖)

d(ξ1, η)Q+2 dy ds

≤ c
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ω f,ST (d(η, ξ1))

d(ξ1, η)Q+2 dy ds

≤ c
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ω f,ST (κd(ξ1, η))

d(ξ1, η)Q+2 dy ds

(
since d(ξ2, η) < 4κd(ξ2, ξ1) ⇒ d(ξ1, η) < c d(ξ2, ξ1)

)

≤ c
∫

{η: d(ξ1,η)<cd(ξ2,ξ1)}
ω f,ST (κd(ξ1, η))

d(ξ1, η)Q+2 dy ds,

where c > 0 is a suitable structural constant. From this, using once again Lemma
2.15, we obtain

A21 ≤ c
∫ 2cd(ξ2,ξ1)

0

ω f,ST (κs)

s
ds ≤ c

∫ cr

0

ω f,ST (s)

s
ds. (3.13)
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- Estimate of A22. By proceeding exactly as in the estimate of A21 (but without the
need of enlarging the domain of integration), we obtain

A22 ≤ c
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ω f,ST (‖E(s − t)x2 − y‖)

d(ξ2, η)Q+2 dy ds

≤ c
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ω f,ST (κd(ξ2, η))

d(ξ2, η)Q+2 dy ds

≤ c
∫ 8κd(ξ2,ξ1)

0

ω f,ST (κs)

s
ds ≤ c

∫ cr

0

ω f,ST (s)

s
ds.

(3.14)

Summing up, by combining (3.13)–(3.14) with (3.12), we conclude that

|A2| ≤ c
∫ cr

0

ω f,ST (s)

s
ds, (3.15)

where c > 0 is a suitable structural constant.
Now we have estimated A1 and A2, we are ready to complete the proof: in fact,

gathering (3.11)–(3.15), and recalling (3.7), we conclude that

|Ti j f (x1, t) − Ti j f (x2, t)| ≤ |A1| + |A2|
≤ c

{
ω f,ST (cr) +

∫ cr

0

ω f,ST (s)

s
ds + cr

∫ ∞

cr

ω f,ST (s)

s2
ds

}

= cM f,ST (cr) ∀ (x1, t), (x2, t) ∈ � with ‖x1 − x2‖ ≤ r,

from which we readily obtain the desired (3.5). �
Thanks to Theorem 3.3, we can finally prove the following theorem.

Theorem 3.4. [Moduli of continuity of derivatives] Let T > τ > −∞. Then, there
exist structural constants c, μ > 0, such that

m0∑

i, j=1

‖∂2xi x j
u‖L∞(ST ) ≤ cUμ

Lu,ST
(
√

T − τ),

ω∂2xi x j
u,ST

(r) ≤ cMLu,ST (cr) ∀ r > 0.

(3.16)

for every u ∈ S0(τ, T ) with Lu ∈ D(ST ). Moreover, we have

‖Y u‖L∞(ST ) ≤ c
(‖Lu‖L∞(ST ) + Uμ

Lu,ST
(
√

T − τ)
)

ωY u,ST (r) ≤ cMLu,ST (cr) ∀ r > 0.
(3.17)

In particular, if Lu ∈ Dlog(ST ) we have ∂2xi x j
u , Y u ∈ D(ST ).

Proof. Let u ∈ S0(τ ; T ) be such that Lu ∈ D(ST ). By applying the representation
formula (3.3), we can write

∂2xi x j
u(x, t) =

∫

RN ×(τ,t)
∂2xi x j

�(x, t; y, s) · [Lu(E(s − t)x, s) − Lu(y, s)
]

dy ds

= Ti j (Lu)(x, t) for every (x, t) ∈ ST and 1 ≤ i, j ≤ m0,
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where Ti j is as in Theorem 3.3. Then, from (3.4)–(3.5) we obtain (3.16). On the other
hand, using the definition of L, and recalling that the coefficients ai j (·) are bounded
and independent of x , from (3.16) we also get

‖Y u‖L∞(ST ) =
∥∥∥Lu −

m0∑

i, j=1

ai j ∂2xi x j
u
∥∥∥

L∞(ST )

≤ c
(‖Lu‖L∞(ST ) + Uμ

Lu,ST
(
√

T − τ)
);

analogously, if A is as in (1.20), we obtain

ωY u,ST (r) ≤ ωLu(r) + A
m0∑

i, j=1

ω∂2xi x j
u(r) ≤ cMLu(cr).

This is precisely (3.17). Finally, the Dini continuity of the functions ∂2xi x j
u, Y u, under

the additional assumption Lu ∈ Dlog(ST ), immediately follows from Proposition 2.8.
�

We end this section with a weaker version of Theorem 1.7 for operators with coef-
ficients only depending on t ; we will use this result to prove Theorem 1.7.

Theorem 3.5. (Continuity estimates in space-time) Let L be as in (2.45), and let
T > τ > −∞. Moreover, let K ⊆ R

N be a compact set.
Then, there exist a structural constant μ > 0 and a constant c(K , τ, T ) > 0 such

that, for every u ∈ S0(τ ; T ) such that Lu ∈ D(ST ), one has

|∂2xi x j
u(x1, t1) − ∂2xi x j

u(x2, t2)|
≤ c

{MLu,ST

(
c(d((x1, t1), (x2, t2)) + |t1 − t2|1/qN )

)

+ Uμ
Lu,ST

(
√|t2 − t1|)

}
(3.18)

for every 1 ≤ i, j ≤ m0 and (x1, t1), (x2, t2) ∈ K × [τ, T ].
Here, Uμ

Lu,ST
is as in (1.18) and MLu,ST is as in (1.16); moreover, qN ≥ 3 is the

largest exponent in the dilations D0(λ), see (1.7).
In particular, from (3.18)we deduce that the derivatives ∂2xi x j

u are locally uniformly
continuous in the joint variables (x, t).

Proof. Let u ∈ S0(τ ; T ) be such that Lu ∈ D(ST ). To prove (3.18) we first observe
that, owing to Theorem 3.4, for every (x1, t), (x2, t) ∈ ST we have

|∂2xi x j
u(x1, t) − ∂2xi x j

u(x2, t)| ≤ ω∂2xi x j
u(‖x1 − x2‖)

≤ cMLu,ST (c‖x1 − x2‖)
(3.19)

where c > 0 is a structural constant. As a consequence of (3.19), and taking into
account Lemma 2.3 , to prove (3.18) it suffices to show that

|∂2xi x j
u(x, t1) − ∂2xi x j

u(x, t2)|
≤ c

{MLu,ST (c|t1 − t2|1/qN ) + Uμ
Lu,ST

(
√|t1 − t2|)

}
,

(3.20)
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for every (x, t1), (x, t2) ∈ K ×[τ, T ], where c > 0 is a constant independent of u (but
possibly depending on K , τ, T ), while μ > 0 is a structural constant. In fact, once
(3.20) has been established, by (3.19)–(3.20) we get

|∂2xi x j
u(x1, t1) − ∂2xi x j

u(x2, t2)|
≤ |∂2xi x j

u(x1, t1) − ∂2xi x j
u(x2, t1)| + |∂2xi x j

u(x2, t1) − ∂2xi x j
u(x2, t2)|

≤ c
{MLu,ST (c‖x1 − x2‖) + MLu,ST (c|t1 − t2|1/qN )

+ Uμ
Lu,ST

(
√|t1 − t2|)

}

(by the explicit expression of d, see (2.1))

= c
{MLu,ST

(
cd((x1, t1), (x2, t1))

) + MLu,ST (c|t1 − t2|1/qN )

+ Uμ
Lu,ST

(
√|t1 − t2|)

} =: (�);
from this, using the quasi-triangle inequality (1.12) jointly with Lemma 2.3, and re-
calling that MLu,ST is non-decreasing, see Proposition 2.8, we obtain

(�) ≤ c
{MLu,ST

(
c(d((x1, t1), (x2, t2)) + d((x2, t1), (x2, t2)))

)

+ MLu,ST (c|t1 − t2|1/qN ) + Uμ
Lu,ST

(
√|t1 − t2|)

}

= c
{MLu,ST

(
c(d((x1, t1), (x2, t2)) + ‖x2 − E(t1 − t2)x2‖ + √|t1 − t2|)

)

+ MLu,ST (c|t1 − t2|1/qN ) + Uμ
Lu,ST

(
√|t1 − t2|)

}

(since |t1 − t2| ≤ T − τ and qN ≥ 3)

≤ c
{MLu,ST

(
c(d((x1, t1), (x2, t2)) + |t1 − t2|1/qN )

)

+ MLu,ST (c|t1 − t2|1/qN ) + Uμ
Lu,ST

(
√|t1 − t2|)

}

≤ c
{MLu,ST

(
c(d((x1, t1), (x2, t2)) + |t1 − t2|1/qN )

)

+ Uμ
Lu,ST

(
√|t1 − t2|)

}
,

which is exactly (3.18). Hence, we turn to prove (3.20). This can be done adapting
several computations already exploited in the proof of Theorem 3.4. We will point out
just the relevant differences.
To begin with, we fix ξ1 = (x, t1), ξ2 = (x, t2) ∈ K × [τ, T ] and we exploit

the representation formula (3.3): assuming, to fix ideas, that t2 ≥ t1 (and using the
compact notation η = (y, s)), we can write

∂2xi x j
u(x, t1) − ∂2xi x j

u(x, t2)

=
∫

RN ×(τ,t1)

{
∂2xi x j

�(x, t1; y, s)
[Lu(E(s − t1)x, s) − Lu(y, s)

]

−∂2xi x j
�(x, t2; y, s)

[Lu(E(s − t2)x, s) − Lu(y, s)
]}

dy ds

−
∫

RN ×(t1,t2)
∂2xi x j

�(x, t2; y, s)
[Lu(E(s − t2)x, s) − Lu(y, s)

]
dy ds
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=
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
{· · · } dy ds

+
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
{· · · } dy ds

−
∫

RN ×(t1,t2)
{· · · } dy ds

=: A1 + A2 − A3, (3.21)

where κ > 0 is as in (1.12)–(1.13) We now turn to estimate A1,A2 and A3.

- Estimate of A1. To begin with, we write A1 as follows:

A1 =
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}

{[Lu(E(s − t1)x, s) − Lu(y, s)
]×

× [
∂2xi x j

�(x, t1; y, s) − ∂2xi x j
�(x, t2; y, s)

]}
dy ds

+
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}

{
∂2xi x j

�(x, t2; y, s)×

× [Lu(E(s − t1)x, s) − Lu(E(s − t2)x, s)
]}

dy ds

=: A11 + A12.

We then turn to estimate A11 and A12 separately.

- Estimate of A11. First of all, by proceeding exactly as in the estimate of A11 in the
proof of Theorem 3.4, we get the following estimate

|A11| ≤ c
∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
d(ξ2, ξ1)

d(ξ2, η)Q+3 · ωLu,ST (‖E(s − t1)x − y‖) dyds

≤ c d(ξ2, ξ1)

∫

{η: d(ξ2,η)≥4κd(ξ2,ξ1)}
ωLu,ST (cd(ξ2, η))

d(ξ2, η)Q+3 dyds

≤ cd(ξ2, ξ1)

∫ ∞

cd(ξ2,ξ1)

ωLu,ST (s)

s2
ds,

where c > 0 is a structural constant. On the other hand, by exploiting Lemma 2.3 (and
since t1, t2 ∈ [τ, T ]), we have

d(ξ2, ξ1) = ‖x − E(t2 − t1)x‖ + √|t2 − t1| ≤ c |t2 − t1|1/qN , (3.22)

where c > 0 is a constant depending on K , τ, T . Hence, we obtain

|A11| ≤ c|t1 − t2|1/qN

∫ ∞

c|t1−t2|1/qN

ω f,ST (s)

s2
ds. (3.23)
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- Estimate of A12. First of all, using once again Lemma 2.3 we get

|A12| ≤
∫ t1

τ

∣∣Lu(E(s − t1)x, s) − Lu(E(s − t2)x, s)
∣∣ · J (s) ds

≤
∫ t1

τ

ωLu,ST (‖(E(s − t1) − E(s − t2))x‖) · J (s) ds

(since |s − t1|, |s − t2| ≤ T − τ for all τ ≤ s ≤ t1)

≤ ωLu,ST (c|t1 − t2|1/qN )

∫ t1

τ

J (s) ds =: (�)

where c > 0 is a constant depending on K , τ, T and

J (s) :=
∣∣∣∣
∫

{y∈RN : d((x,t2),(y,s))≥4κd(ξ2,ξ1)}
∂2xi x j

�(x, t2; y, s) dy

∣∣∣∣.

From this, using the cancellation property of J in [1, Thm.3.16], we obtain

(�) ≤ c ωLu,ST (c|t1 − t2|1/qN ), (3.24)

for a suitable constant c > 0 depending on K , τ, T . By combining (3.23) with (3.24),
we conclude that

|A1| ≤ c
{
ωLu,ST (|t1 − t2|1/qN )

+ c|t1 − t2|1/qN

∫ ∞

c|t1−t2|1/qN

ω f,ST (s)

s2
ds

}
,

(3.25)

for a suitable constant c > 0 possibly depending on K , T, τ .
- Estimate of A2. By proceeding exactly as in the estimate of A2 in the proof of
Theorem 3.4, and by taking into account (3.22), we obtain the estimate

|A2| ≤ c
{ ∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ωLu,ST (‖E(s − t1)x − y‖)

d(ξ1, η)Q+2 dy ds

+
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ωLu,ST (‖E(s − t2)x − y‖)

d(ξ2, η)Q+2 dy ds
}

≤ c
{ ∫

{η: d(ξ1,η)<cd(ξ2,ξ1)}
ωLu,ST (κd(ξ1, η))

d(ξ1, η)Q+2 dy ds

+
∫

{η: d(ξ2,η)<4κd(ξ2,ξ1)}
ωLu,ST (κd(ξ2, η))

d(ξ2, η)Q+2 dy ds
}

≤ c
∫ cd(ξ2,ξ1)

0

ωLu,ST (s)

s
ds ≤ c

∫ c|t1−t2|1/qN

0

ωLu,ST (s)

s
ds,

(3.26)

where c > 0 is a suitable constant depending on K , T, τ .

- Estimate of A3. Using the assumption Lu ∈ D(ST ), together with estimate (3.1)
in Proposition 3.1, we immediately obtain

|A3| ≤
∫

RN ×(t1,t2)
|∂2xi x j

�(x, t2; y, s)| · ωLu,ST (‖E(s − t2)x − y‖) dy ds

≤ cUμ
Lu,ST

(
√|t1 − t2|),

(3.27)
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where c, μ > 0 ore structural constants.
Nowwe have estimatedA1,A2 andA3,we can complete the proof: in fact, gathering

(3.25), (3.26) and (3.27), and recalling (3.21), we conclude that

|∂2xi x j
u(x, t1) − ∂2xi x j

u(x, t2)| ≤ |A1| + |A2| + |A3|

≤ c
{
ωLu,ST (c|t1 − t2|1/qN ) + c|t1 − t2|1/qN

∫ ∞

c|t1−t2|1/qN

ωLu,ST (s)

s2
ds

+
∫ c|t1−t2|1/qN

0

ωLu,ST (s)

s
ds + Uμ

Lu,ST
(|t1 − t2|1/qN )

}

= c
{MLu,ST (c|t1 − t2|1/qN ) + Uμ

Lu,ST
(
√|t1 − t2|)

}
,

which is exactly the desired (3.20). �

4. Operators with coefficients depending on (x, t)

4.1. The basic estimate for functions with small support

Wewant to extend our results to operatorswith coefficients ai j (x, t)Dini continuous
in x and bounded measurable in t . The first step is a local estimate for functions with
small compact support.
Notation: Since in this section wewill make crucial use of the interpolation inequality
contained in Theorem 2.20 , we will adopt the following notation: given any T > 0,
any ξ ∈ ST and any r > 0, we set

BT
r (ξ) = Br (ξ) ∩ ST .

Theorem 4.1. Let L be as in (1.1), satisfying assumptions (H1), (H2), (H3) stated in
Sect. 1. Then, there exist constants c, r0 > 0 depending on T , the matrix B in (1.5),
the number ν in (1.3) and A in (1.20), respectively, such that

‖∂2xi x j
u‖L∞(BT

r (ξ)) ≤ cUμ
Lu,ST

(1) (4.1)

ω∂2xi x j
u,BT

r (ξ)(ρ) ≤ c
(MLu,ST (cρ) + Ma,ST (cρ) · Uμ

Lu,ST
(1)

) ∀ ρ > 0, (4.2)

and these estimates hold for every ξ ∈ ST , 0 < r ≤ r0, 1 ≤ i, j ≤ m0 and u ∈ SD(ST )

with supp(u) ⊆ Br (ξ) ∩ ST . Here,

Ma,ST = ∑m0
i, j=1Mai j ,ST and M·, ST is as in (1.16).

We stress that the constant c in (4.1)–(4.2) is independent of the ball Br (ξ). In par-
ticular, in view of Proposition 2.8, estimate (4.2) expresses Dini-continuity of ∂2xi x j

u
provided that both Lu and ai j are log-Dini continuous, while it just expresses uniform
continuity if Lu and ai j are only Dini continuous.
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Proof. We follow and revise the proof of [1, Thm.4.1]. To begin with, we arbitrarily
fix 0 < r0 ≤ 1/2 (to be suitably chosen later on) and a point ξ = (x, t) ∈ ST . We
then consider the operator Lx with coefficients ai j (x, t) (frozen in space, variable in
time), and we let �x be its fundamental solution. We now observe that, given any
u ∈ SD(ST ) with supp(u) ⊆ Br (ξ) ∩ ST (for some 0 < r ≤ r0), we clearly have
u ∈ S0(t − r, T ) and Lx u ∈ D(ST ); thus, we can exploit the representation formula
in Corollary 3.2, giving

∂2xi x j
u(x, t)

=
∫ t

t−r

(∫

RN
∂2xi x j

�x (x, t; y, s) [Lx u(E(s − t)x, s) − Lx u(y, s)] dy

)
ds,

for every (x, t) ∈ BT
r (ξ). From this, since we can write

Lx u = Lu + (Lx − L)u

= Lu +
m0∑

h,k=1

(
ahk(x, t) − ahk(x, t)

)
∂2xh xk

u,

we obtain the following identity

∂2xi x j
u(x, t) =

∫ t

t−r

(∫

RN
∂2xi x j

�x (x, t; y, s)
{Lu(E(s − t)x, s) − Lu(y, s)

}
dy

)
ds

+
m0∑

h,k=1

∫ t

t−r

∫

RN
∂2xi x j

�x (x, t; y, s)

×
{(

ahk(x, s) − ahk(E(s − t)x, s)
)
∂2xh xk

u(E(s − t)x, s)

− (
ahk(x, s) − ahk(y, s)

)
∂2xh xk

u(y, s)
}

dyds

= Ti j (Lu)(x, t) +
m0∑

h,k=1

Ti j ( fhk)(x, t),

(4.3)

where Ti j (·) is as in Theorem 3.3, and

fhk(y, s) = (
ahk(x, s) − ahk(y, s)

)
∂2xh xk

u(y, s) ∈ D(t − r, T ).

To proceed further, we turn to estimate the L∞-norm and the continuity modulus of
Ti j (Lu) and of Ti j ( fhk) (for 1 ≤ h, k ≤ m0) on BT

r (ξ).

(1) Estimate of the L∞-norm. First of all we observe that, since we assuming
0 < r ≤ r0 ≤ 1/2, by Proposition 3.1 we get the following estimate

‖Ti j (Lu)‖L∞(BT
r (ξ))

≤ sup
(x,t)∈Br (ξ)

∫

RN ×(t−r,t)
∂2xi x j

�x (x, t; y, s)ωLu,ST (‖E(s − t)x − y‖) dy ds

≤ c sup
(x,t)∈Br (ξ)

Uμ
Lu,ST

(
√

t − t + r) = cUμ
Lu,ST

(
√
2r) ≤ cUμ

Lu,ST
(1),

(4.4)
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where we have used the fact that Uμ
Lu,ST

is non-decreasing, see (1.18), and c, μ > 0
are structural constants. Analogously, since 0 < r ≤ r0, we have

‖Ti j ( fhk)‖L∞(BT
r (ξ)) ≤ cUμ

fhk ,ST
(
√
2r) ≤ cUμ

fhk ,ST
(
√
2r0)

= c
∫

RN
e−μ|z|2(

∫ √
2r0‖z‖

0

ω fhk ,ST (s)

s
ds

)
dz

(4.5)

Now, by exploiting the product structure of fhk , together with Lemma 2.14 (note that
fhk = ∂2xh xk

u = 0 on ST \ Br (ξ)) and (2.10), we can write

ω fhk ,ST (ρ) = ω fhk ,Br (ξ)∩ST
(ρ)

≤ sup
(y,s)∈Br (ξ)∩ST

|ahk(y, s) − ahk(x, s)| · ω∂2xh xk
u,ST

(ρ)

+ ωahk ,ST (ρ) · ‖∂2xh xk
u‖L∞(BT

r (ξ))

≤ 2ωahk ,ST (ρ) · ‖∂2xh xk
u‖L∞(BT

r (ξ)) + ωahk ,ST (ρ) · ‖∂2xh xk
u‖L∞(BT

r (ξ))

≤ 3ωa,ST (ρ) · ‖∂2xh xk
u‖L∞(BT

r (ξ)) (for all ρ > 0),

(4.6)

where ωa,ST (·) = ∑m0
h,k=1 ωahk ,ST (·). Thus, by combining (4.5)–(4.6) we get

‖Ti j ( fhk)‖L∞(BT
r (ξ))

≤ c ‖∂2xh xk
u‖L∞(BT

r (ξ))

∫

RN
e−μ|z|2(

∫ √
2r0‖z‖

0

ωa,ST (s)

s
ds

)
dz

≡ c ‖∂2xh xk
u‖L∞(BT

r (ξ)) Uμ
a,ST

(
√
2r0) (for all 1 ≤ i, j ≤ m0).

(4.7)

Gathering (4.3), (4.4) and (4.7), we finally obtain

max
1≤i, j≤m0

‖∂2xi x j
u‖L∞(BT

r (ξ))

≤ c
(
Uμ
Lu,ST

(1) + Uμ
a,ST

(
√
2r0)

m0∑

h,k=1

‖∂2xh xk
u‖L∞(BT

r (ξ))

)

≤ c
(
Uμ
Lu,ST

(1) + max
1≤i, j≤m0

‖∂2xi x j
u‖L∞(BT

r (ξ)) · Uμ
a,ST

(
√
2r0)

)
,

where c > 0 is a constant, possibly different from line to line. From this, if we choose
0 < r0 ≤ 1/2 so small that

cUμ
a,ST

(
√
2r0) ≤ 1

2
(4.8)

(recall that Uμ
a,ST

(r) vanishes as r → 0+, see Lemma 2.12), we immediately derive
the desired (4.1). We explicitly point out that the choice of r0 (in such a way that (4.8)
is satisfied) only depends on the coefficients ahk .
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(2) Estimate of the continuity modulus. First of all we observe that, by com-
bining the representation formula (4.3) with Theorem 3.3, we get

ω∂2xi x j
u,BT

r (ξ)(ρ) ≤ ωTi j (Lu),ST (ρ) +
m0∑

h,k=1

ωTi j ( fhk ),ST (ρ)

≤ c
(
MLu,ST (cρ) +

m0∑

h,k=1

M fhk ,ST (cρ)
)
,

(4.9)

where c > 0 is a structural constant. On the other hand, using (4.6) (and taking into
account the very definition ofM fhk ,ST , see (1.16)), we can write

M fhk ,ST (ρ) = ω fhk ,ST (ρ) +
∫ ρ

0

ω fhk ,ST (s)

s
ds + ρ

∫ ∞

ρ

ω fhk ,ST (s)

s2
ds

≤ 3 ‖∂2xh xk
u‖L∞(BT

r (ξ))Ma,ST (ρ) (for all ρ > 0).
(4.10)

By combining (4.9)–(4.10) with (4.1) (which has been already proved), we then obtain
the following estimate, provided that r0 is small enough:

ω∂2xi x j
u,BT

r (ξ)(ρ) ≤ c
(
MLu,ST (cρ) + Ma,ST (cρ) ·

m0∑

h,k=1

‖∂2xh xk
u‖L∞(BT

r (ξ))

)

≤ c
(MLu,ST (cρ) + Ma,ST (cρ) · Uμ

Lu,ST
(1)

)
(for all ρ > 0),

This is precisely the desired (4.2), and the proof is complete. �

4.2. The continuity estimate in the general case

Given an arbitrary open set � ⊆ R
N+1 and a function f : � → R, we recall that

the (partial) continuity modulus ω f,� of f is defined as follows:

ω f,�(r) = sup
(x,t),(y,t)∈�

‖x−y‖≤r

| f (x, t) − f (y, t)| (r > 0).

In the following, we will get a control on ω f,ST starting with a uniform control on the
moduli ω f,Br (ξ i )

where {Br (ξ i )}∞i=1 is a covering of ST .
This is possible in view of the following:

Proposition 4.2. Let r > 0 be fixed, and let {Br (ξ i )}∞i=1 be a covering of ST , that is,
ST ⊆ ⋃

i Br (ξi ). Then, we have

ω f,ST (ρ) ≤ sup
i

ω f,BT
θr (ξ i )

(ρ) for every 0 < ρ ≤ r.

where θ ≥ 1 is a structural constant.
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Proof. Let (x1, t), (x2, t) ∈ ST be two points satisfying ‖x1 − x2‖ = s ≤ r , and let
i1 ∈ N be such that (x1, t) ∈ BT

r (ξ i1). Using the quasi-triangle inequality of d, see
(1.12), we infer that (x2, t) ∈ BT

θr (ξ i1) for some structural constant θ ≥ 1 (actually,
we have θ = κ(1 + κ)); as a consequence, we get

| f (x1, t) − f (x2, t)| ≤ ω f,BT
θr (ξ i1

)(s) ≤ sup
i

ω f,BT
θr (ξ i )

(s),

and this implies the assertion. �

Thanks to all the results established so far, we can now give the

Proof of Theorem 1.6. To begin with, we fix r > 0 so small that the local conti-
nuity estimates in Theorem 4.1 hold on balls of radius 2θr (where θ ≥ 1 is as in
Proposition 4.2), and we let {Br (ξn)}n≥1 be a covering of ST . We then choose a
function � ∈ C∞

0 (B2θr (0)) satisfying � ≡ 1 in Bθr (0), and we define

φn(ξ) = �(ξ
−1
n ◦ ξ) (n ≥ 1).

Note that, by (2.3), φn ∈ C∞
0 (B2θr (ξn)) and φn ≡ 1 in Bθr (ξ̄n); moreover, by the

left-invariance of ∂x1, . . . , ∂xm0
, Y we see that the Cα-norms of φn, ∂xk φn,L(φn) are

bounded independently of n (for all α ∈ (0, 1)). Throughout this proof, the constants
involved may depend on r , which however is by now fixed.
We now arbitrarily fix n ≥ 1 and we observe that, since un = uφn ∈ SD(ST ) and

since supp(un) ⊆ BT
2θr (ξn), we can apply the estimates (4.1)–(4.2) in Theorem 4.1 to

this function un : recalling that φn ≡ 1 in Bθr (ξn), this gives

‖∂2xi x j
u‖L∞(BT

θr (ξn)) ≤ ‖∂2xi x j
un‖L∞(BT

2θr (ξn)) ≤ cUμ
Lun ,ST

(1) (4.11)

ω∂2xi x j
u,BT

θr (ξn)(ρ) ≤ ω∂2xi x j
un ,BT

2θr (ξn)(ρ)

≤ c
(MLun ,ST (cρ) + Ma,ST (cρ) · Uμ

Lun ,ST
(1)

) ∀ ρ > 0, (4.12)

where c, μ > 0 are structural constants (and 1 ≤ i, j ≤ m0). On the other hand, since
a direct computation shows that

Lun = (Lu)φn + u(Lφn) + 2
∑m0

h,k=1 ahk∂xh u · ∂xk φn,

we clearly have the following estimate

ωLun ,ST (ρ) ≤ ω(Lu)φn ,ST (ρ) + ωu(Lφn),ST (ρ)

+ 2
∑m0

h,k=1 ωahk∂xh u·∂xk φn ,ST (ρ).
(4.13)

In viewof (4.11)–(4.12), and taking into account the above (4.13), to prove the theorem
we then turn to estimate the three continuity moduli

(1) ω(Lu)φn ,ST , (2) ωu(Lφn),ST , (3) ωahk∂xh u·∂xk φn ,ST .
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To this end we will repeatedly use the following straightforward estimate, holding true
for every open set � ⊆ R

N+1 and every f, g ∈ D(�):

ω f g,�(ρ) ≤ ‖ f ‖L∞(�)ωg,�(ρ) + ‖g‖L∞(�)ω f,�(ρ) ∀ ρ > 0. (4.14)

- Estimate of (1). On account of (4.14), and since φn ∈ C∞
0 (RN+1) (hence, in

particular, φn ∈ Cα(RN+1) for every α ∈ (0, 1)), we immediately get

ω(Lu)φn ,ST (ρ) ≤ ‖Lu‖L∞(ST )ωφn ,ST (ρ) + ‖φn‖L∞(ST )ωLu,ST (ρ)

≤ c
(
ρα‖Lu‖L∞(ST ) + ωLu,ST (ρ)

) ∀ ρ > 0,
(4.15)

where c > 0 is a constant only depending on �.
- Estimate of (2). Using once again (4.14), and taking into account that uLφn is
compactly supported in B2θr (ξn), by Lemma 2.14 we can write

ωu(Lφn),ST (ρ) = ωu(Lφn),B2θr (ξn)∩ST
(ρ)

≤ ‖u‖L∞(BT
2θr (ξn))ωLφn ,ST (ρ)

+ ‖Lφn‖L∞(BT
2θr (ξn))ωu,B2θr (ξn)∩ST

(ρ)

(since Lφn ∈ Cα(RN+1) for every 0 < α < 1)

≤ c
(
ρα‖u‖L∞(BT

2θr (ξn)) + ωu,B2θr (ξn)∩ST
(ρ)

) = (�),

where c > 0 is a constant only depending on �. On the other hand, since we know
from Theorem 2.20 that u ∈ Cα(B ∩ ST ) for every ball B = BR(η) (with η ∈ ST )
and every α ∈ (0, 1), we obtain

(�) ≤ c ρα‖u‖Cα(BT
2θr (ξn)) ∀ ρ > 0. (4.16)

- Estimate of (3). By repeatedly exploiting (4.14), and by taking into account the
smoothness and support of φn , we derive the following estimate

ωahk∂xh u·∂xk φn ,ST (ρ) = ωahk∂xh u·∂xk φn ,B2θr (ξn)∩ST
(ρ)

≤ ωahk ,ST (ρ) ‖∂xh u‖L∞(BT
2θr (ξn))‖∂xk φn‖L∞(B2θr (ξn))

+ ω∂xh u,B2θr (ξn)∩ST
(ρ) ‖ahk‖L∞(RN+1)‖∂xk φn‖L∞(RN+1)

+ ω∂xk φn ,ST (ρ) ‖ahk‖L∞(RN+1)‖∂xh u‖L∞(BT
2θr (ξn))

≤ c
(
ωahk ,ST (ρ) ‖∂xh u‖L∞(BT

2θr (ξn)) + ω∂xh u,B2θr (ξn)∩ST
(ρ)

+ ρα‖∂xh u‖L∞(BT
2θr (ξn))

) =: (�),

where c > 0 is a constant only depending on � and on ν in (1.3). On the other hand,
since we know from Theorem 2.20 that ∂xh u ∈ Cα(B ∩ ST ) for every ball B = BR(η)

(with η ∈ ST ) and every α ∈ (0, 1), we obtain

(�) ≤ c
(
ωahk ,ST (ρ) ‖∂xh u‖L∞(B2θr (ξn))

+ ρα‖∂xh u‖Cα(BT
2θr (ξn))

) ∀ ρ > 0.
(4.17)
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Gathering (4.15)-to-(4.17), from (4.13) we then get

ωLun ,ST (ρ) ≤ c
(
ρα‖Lu‖L∞(ST ) + ωLu,ST (ρ) + ρα‖u‖Cα(BT

2θr (ξn))

+
m0∑

h,k=1

(
ωahk ,ST (ρ) ‖∂xh u‖L∞(B2θr (ξn))

+ ρα‖∂xh u‖Cα(BT
2θr (ξn))

))

(setting, as usual, ωa,ST = ∑m0
h,k=1 ωahk ,ST )

≤ c
(
ρα‖Lu‖L∞(ST ) + ωLu,ST (ρ) + ρα‖u‖Cα(BT

2θr (ξn))

+ (
ωa,ST (ρ) + ρα

) m0∑

h=1

‖∂xh u‖Cα(BT
2θr (ξn))

)
,

(4.18)

and this estimate holds for every ρ > 0. With (4.18) at hand, we are now ready to
establish assertions (i)–(ii) in the statement of the theorem.

- Proof of (i). First of all, by combining estimates (4.11)–(4.18) and by exploiting
Lemma 2.12-(i), we derive the bound

‖∂2xi x j
u‖L∞(BT

r (ξn)) ≤ cUμ
Lun ,ST

(1)

= c
∫

RN
e−μ|z|2(

∫ ‖z‖

0

ωLun ,ST (s)

s
ds

)
dz

≤ c
(
‖Lu‖L∞(ST ) + Uμ

Lu,ST
(1)

+
m0∑

h=1

‖∂xh u‖Cα(BT
2θr (ξn)) + ‖u‖Cα(BT

2θr (ξn))

)

≤ c
(
‖Lu‖D(ST ) +

m0∑

h=1

‖∂xh u‖Cα(BT
2θr (ξn)) + ‖u‖Cα(BT

2θr (ξn))

)

(4.19)

where c > 0 now depends on the chosen α and on the number A in (1.20). From this,
by using the interpolation inequality (2.59) in Theorem 2.20, we obtain

‖∂2xi x j
u‖L∞(BT

r (ξn))

≤ c
{
‖Lu‖D(ST ) + ε

( m0∑

h,k=1

‖∂2xk xh
u‖L∞(ST ) + ‖Y u‖L∞(ST )

)

+ 1

εγ
‖u‖L∞(ST )

}
,

(4.20)
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and this estimate holds for every ε ∈ (0, 1). We then observe that, since n ≥ 1 is
arbitrarily fixed, by taking the sup over N in the previous inequality we get

‖∂2xi x j
u‖L∞(ST ) ≤ c

{
‖Lu‖D(ST ) + ε

( m0∑

h,k=1

‖∂2xk xh
u‖L∞(ST ) + ‖Y u‖L∞(ST )

)

+ 1

εγ
‖u‖L∞(ST )

}
;

moreover, since Y u = Lu − ∑m0
h,k=1 ahk∂

2
xh xk

u, by exploiting assumption (H3) we
can write (up to possibly change the constant c)

‖∂2xi x j
u‖L∞(ST ) ≤ c

{
‖Lu‖D(ST ) + ε

m0∑

h,k=1

‖∂2xk xh
u‖L∞(ST ) + 1

εγ
‖u‖L∞(ST )

}
.

Thus, if we choose ε > 0 so small that c ε < 1/2, we conclude that

‖∂2xi x j
u‖L∞(ST ) ≤ c

(‖Lu‖D(ST ) + ‖u‖L∞(ST )

)
, (4.21)

and this implies, again by the identity Y u = Lu − ∑m0
h,k=1 ahk∂

2
xh xk

u,

‖Y u‖L∞(ST ) ≤ ‖Lu‖L∞(ST ) +
m0∑

h,k=1

‖ahk‖L∞(RN+1)‖∂2xh xk
u‖L∞(ST )

≤ c
(‖Lu‖D(ST ) + ‖u‖L∞(ST )

)
.

(4.22)

In view of (4.21)–(4.22) and Theorem 2.20, assertion (i) is now established.

- Proof of (ii). First of all, by combining (4.12) with (4.18) (and by taking into account
the very definition ofM·,ST , see (1.16)), we get

ω∂2xi x j u ,BT
θr (ξn)(ρ) ≤ c

(MLun ,ST (cρ) + Ma,ST (cρ) · Uμ
Lun ,ST

(1)
)

≤ c
{
ρα‖Lu‖L∞(ST ) + MLu,ST (cρ)

+ (Ma,ST (cρ) + ρα
)( m0∑

h=1

‖∂xh u‖Cα(BT
2θr (ξn)) + ‖u‖Cα(BT

2θr (ξn))

)

+ Ma,ST (cρ) · Uμ
Lun ,ST

(1)
}

(by the same computation in (4.19))

≤ c
{
MLu,ST (cρ) + (Ma,ST (cρ) + ρα

)‖Lu‖D(ST )

+ (Ma,ST (cρ) + ρα
)( m0∑

h=1

‖∂xh u‖Cα(BT
2θr (ξn)) + ‖u‖Cα(BT

2θr (ξn))

)}
,

where c > 0 depends on α ∈ (0, 1) and on the number A. From this, by exploiting
the interpolation inequality (2.59) with ε = 1, jointly with the estimate in assertion (i)
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(which has been already established), we obtain

ω∂2xi x j u ,BT
θr (ξn)(ρ)

≤ c
{
MLu,ST (cρ) + (Ma,ST (cρ) + ρα

)(‖Lu‖D(ST ) + ‖u‖L∞(ST )

)

+ (Ma,ST (cρ) + ρα
)( m0∑

h,k=1

‖∂2xk xh
u‖L∞(ST ) + ‖Y u‖L∞(ST )

)}

≤ c
{
MLu,ST (cρ) + (Ma,ST (cρ) + ρα

)(‖Lu‖D(ST ) + ‖u‖L∞(ST )

)}
.

We then observe that, since n ≥ 1 is arbitrarily fixed, by taking the supremum over N
in the above estimate and by using Proposition 4.2, we obtain

ω∂2xi x j u ,ST
(ρ) ≤ sup

n∈N
ω∂2xi x j u ,BT

θr (ξn)(ρ)

≤ c
{
MLu,ST (cρ) + (Ma,ST (cρ) + ρα

)(‖Lu‖D(ST ) + ‖u‖L∞(ST )

)}

and this estimate holds for every 0 < ρ ≤ r (note that r > 0 is fixed once and for all);
this, together with the identity Y u = Lu − ∑

h,k ahk∂
2
xh xk

u and (4.14), immediately
implies an analogous bound for the modulus

ωY u,ST (ρ) (for 0 < ρ ≤ r).

Finally, when ρ ≥ r estimate (ii) is an immediate consequence of (i). �

5. Time continuity of ∂2xi x j
u

Now we have established Theorem 1.6, we are finally ready to give the

Proof. Let K , T, τ, α be as in the statement of the theorem, and let ψ(t) ∈ C∞
0 (R)

be a cut-off function such that

(i) 0 ≤ ψ ≤ 1 on R, (ii) ψ ≡ 1 on [τ, T ], (iii) ψ(t) = 0 for t ≤ τ − 1.

We then fix a point ξ = (x, t) ∈ ST and, for a given function u ∈ SD(ST ) with
Lu ∈ Dlog(ST ), we apply the continuity estimate (3.18) in Theorem 3.5 to the function
v := uψ ∈ S0(τ − 1, T ) (see property (iii) of ψ): this gives

|∂2xi x j
u(x1, t1) − ∂2xi x j

u(x2, t2)| = |∂2xi x j
v(x1, t1) − ∂2xi x j

v(x2, t2)|
≤ c

{MLx v,ST

(
c(d((x1, t1), (x2, t2)) + |t1 − t2|1/qN )

)

+ Uμ
Lx v,ST

(
√|t2 − t1|)

}
,

(5.1)

for every couple of points (x1, t1), (x2, t2) ∈ K × [τ, T ]. Owing to (5.1), and taking
into account the definitions ofM·, ST and of Uμ

·, ST
, to complete the proof we then turn

to estimate the continuity modulus

ωLx v,ST (r) (for r > 0).



J. Evol. Equ. KFP operators with coefficients measurable Page 49 of 52    32 

First of all, since ψ is independent of x , we get Lxv = ψ(Lx u) − u ∂tψ; moreover,

Lx u = Lu + (Lx − L)u

= Lu +
m0∑

h,k=1

(
ahk(x, t) − ahk(x, t)

)
∂2xh xk

u.

In view of these facts, and since ψ is constant w.r.t. x , by repeatedly exploiting (4.14),
together with estimates (i)–(ii) in Theorem 1.6, we then obtain

ωLx v,ST (ρ) ≤ ωψ(Lx u),ST (ρ) + ωu∂t ψ,ST (ρ) ≤ c
(
ωLx u,ST (ρ) + ωu,ST (ρ)

)

≤ c

⎧
⎨

⎩ωLu,ST (ρ) + 2A
m0∑

h,k=1

ω∂2xh xk
u.ST

(ρ)

+ ωa,ST (ρ)

m0∑

h,k=1

‖∂2xh xk
u‖L∞(ST ) + ωu,ST (ρ)

⎫
⎬

⎭

≤ c
{
ωLu,ST (ρ)

+ (MLu,ST (cρ) + (Ma,ST (cρ) + ρα
) (‖Lu‖D(ST ) + ‖u‖L∞(ST )

))

+ ωa,ST (ρ)
(‖Lu‖D(ST ) + ‖u‖L∞(ST )

) + ωu,ST (ρ)
}

(since, by definition, ωa ST ≤ Ma,ST )

≤ c
{
ωLu,ST (ρ) + ωu,ST (ρ) + MLu,ST (cρ)

+ ((Ma,ST (cρ) + ρα
) (‖Lu‖D(ST ) + ‖u‖L∞(ST )

))}
(5.2)

where, as usual, ωa,ST = ∑m0
h,k=1 ωahk ,ST . With estimate (5.2) at hand, we can easily

complete the proof of the theorem: indeed, by combining (5.1)–(5.2) and by taking
into account the definitions of the functions involved, we get

|∂2xi x j
u(x1, t1) − ∂2xi x j

u(x2, t2)|
≤ c

{MLu,ST (cr) + Mu,ST (cr) + NLu,ST (cr)

+ (Na,ST (cr) + rα)(‖Lu‖D(ST ) + ‖u‖L∞(ST )))

+ Uμ
Lu,ST

(c
√|t1 − t2|) + Uμ

u,ST
(c

√|t1 − t2|) + Vμ
Lu,ST

(c
√|t1 − t2|)

+ (Vμ
a,ST

(c
√|t1 − t2|) + |t1 − t2|α/2)(‖Lu‖D(ST ) + ‖u‖L∞(ST ))

}
, (5.3)

where we have set

r := d
(
(x1, t1), (x2, t2)

) + |t1 − t2|1/qN .

Next we note that, on the one hand we have ωLu,ST ≤ MLu,ST ≤ NLu,ST , which
implies that Uμ

Lu,ST
≤ Vμ

Lu,ST
. On the other hand, since by Theorem 1.6 we know

that

‖u‖Cα(ST ) ≤ c
{‖Lu‖D(ST ) + ‖u‖L∞(ST )

}
,
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by Remark 2.21 and Proposition 2.11, we can write

Mu,ST (cr) + Uμ
u,ST

(c
√|t1 − t2|) ≤ crα

{‖Lu‖D(ST ) + ‖u‖L∞(ST )

}
.

Using these facts in (5.3) we obtain the desired (1.21). �
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