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We identify that flexural guided elastic waves in elastic pipes carry a well-defined orbital angular
momentum associated with the compressional dilatational potential. This enables the transfer of
elastic orbital angular momentum, that we numerically demonstrate, through the coupling of the
compressional potential in a pipe to the acoustic pressure field in a surrounding fluid in contact with
the pipe.

Introduction.— Some thirty years ago, the seminal work
of Allen et al. [1] demonstrated that Laguerre–Gaussian
(LG) laser modes carry a well-defined orbital angular mo-
mentum (OAM), per quanta of light, about the beam
axis. Crucially they outlined how such OAM, related to
the spatial distribution of the laser field [2], can be ex-
tracted and converted into a mechanical torque [3] and
that its existence arises physically due to the helical wave-
front structure associated with a central phase singular-
ity [4]. This differed from previous measurements of the
torque exerted by the transfer of spin angular momen-
tum associated with polarization [5, 6]. These significant
findings drove unabated interest in this previously ne-
glected mechanical property of light [7–9], and have led
to a renaissance in optical tweezers [10–16].

Perhaps the most distinct classical wave system from
electromagnetism is elasticity; elastic materials are gov-
erned by constitutive relations that invoke a rank 4 stiff-
ness tensor, and even in their simplest isotropic form they
support two elastic waves (compression and polarised-
shear) that travel within the bulk at distinct wave speeds;
these become inherently coupled upon reflection from a
surface. Mirroring the timeline of research in optical
OAM, only recently has the intrinsic spin of elastic waves
been studied [17], with elastic OAM being largely ne-
glected - it has only been considered in association with
the phase of coupled waveguides [18], or presented canon-
ically in conjunction with the energy-momentum tensor
for elasticity, the Eshelby tensor [19–22].

In this letter this disparity is addressed. We focus en-
tirely on the OAM of elastic waves with inclined phase
fronts, demonstrating that it is the scalar dilatational po-
tential which carries a well-defined elastic OAM. The nat-
ural setting for such guided waves is along hollow elastic
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pipes. We consider flexural modes along pipes, leveraging
the fact they can be excited using an elastic analogue to
the spiral phase plate (Fig. 1), and show that the transfer
of elastic OAM is possible in fluid-solid coupled systems,
providing motivation towards applications for acoustic
tweezers, microfluidic devices and non-destructive evalu-
ation.

To unequivocally show that elastic OAM is carried by
mechanical waves in pipes, we first outline the form of
the canonical angular momentum density by its relation
to mechanical energy flux. We derive here, from first
principles, this relation from the Eshelby tensor [20].

FIG. 1. Schematic of an elastic spiral phase pipe (copper
region) in a hollow elastic pipe (transparent region). Purely
longitudinal waves, e.g. L(0, 2) modes (circular phase fronts),
are mode converted into flexural F (3, n) waves (helical phase
fronts).

OAM in elasticity.— Waves in an isotropic, homogeneous
linear elastic material obey the dynamic Navier–Cauchy
equation [23]

µ∂j∂jξi + (λ+ µ)∂j∂iξi = ρξ̈i (1)

with ξi the displacement and ξ̈i its double time deriva-
tive. Lamé’s first and second parameters are denoted λ,
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µ respectively. In this coordinate-free index notation we
adopt the Einstein summation convention throughout.
The linear constitutive law governing such a material is

σij = Cijklεkl = λδijεkk + 2µεij , (2)

where σij is the stress tensor, Cijkl is the stiffness tensor
and εij ≡ 1

2 (ξi,j + ξj,i) is the strain tensor (comma nota-
tion denotes partial differentiation). The elastodynamic
equations (1) are, of course, recovered by the Euler–
Lagrange equations that dictate the vanishing of the vari-
ational derivative

δL
δξj
≡ ∂L
∂ξj
− ∂

∂t

(
∂L
∂ξ̇j

)
= 0, (3)

with L being the Lagrangian density for elastic waves
given by

L =
1

2
ρξ̇iξ̇i −

1

2
Cijklξi;jξk;l, (4)

where semicolon notation denotes covariant differentia-
tion and L = L(ξi, ξi,j ,x, t) with x the position vec-
tor. The Eshelby tensor results from the canonical pro-
cedure for constructing stress-energy tensors, following
Noether’s theorem, and is given as [24]

Tlj = Lδlj −
∂L
∂ξi,j

ξi,l. (5)

From this the energy density, U = T00, and flux, Fj =
T0j , of the elastic waves can be constructed:

U =
∂L
∂ξ̇i

ξ̇i − L =
1

2
ρξ̇iξ̇i +

1

2
Cijklξi;jξk;l

Fj =
∂L
∂ξi;j

ξ̇i = −Cijklξ̇iξk;l.
(6)

Thus we have arrived at the mechanical analogue of the
Poynting vector through the mechanical energy flux, Fj .

Herein we assume time harmonicity such that ξ̇k = −iωξk
with ω being the radian frequency. Therefore the time-
averaged complex mechanical energy flux density, which
can be considered the Poynting vector density of elastic
waves [17], is written as

Fj = −1

2
Re
(
σjiξ̇i

∗)
= −ω

2
Im (σjiξ

∗
i ) , (7)

where ∗ denotes complex conjugation. The integral of
this quantity, as in electromagnetism, is thus interpreted
as the linear momentum density.

The flux of the corresponding angular momentum den-
sity is defined by the rank 3 tensor Mijk = xiTjk−xjTik
[7]. The antisymmetric pseudo-tensor of rank 2, Mij0 =
εilmxlTmj has spatial components, i.e. the pseudo-vector
Mi = 1/2εijkMjk0 [2] that are then the familiar angu-
lar momentum density of the form, in vector notation,

M = r × 〈p〉 with 〈p〉 the time-averaged linear momen-
tum density. For convenience we now switch from index
notation to coordinate dependent vector notation and ex-
plicitly consider cylindrical polar coordinates.

Analogous to the treatment of electromagnetic waves
in [1] we now consider the elastic angular momentum
density as

M = −ω
2
Im[r ×

(
σ · ξ∗

)
], (8)

highlighting the tensorial nature of the stress tensor with
a double-underline, σ, such that the total angular mo-
mentum is then

J = −ω
2
Im

∫
r ×

(
σ · ξ∗

)
dr. (9)

The complex displacement field ξ is separated into lon-
gitudinal and transverse components via Helmholtz de-
composition. These are written respectively in terms of
the curl-less dilatational scalar potential, Φ (analogous to
the scalar potential of the LG beams in optics, see sup-
plemental material [25]), and the divergence-less equivo-
luminal vector shear potential, Ψ, such that

ξ = ξL + ξT = ∇Φ +∇×Ψ (10)

where ξL and ξT denote the longitudinal and transverse
parts respectively. Using this, the elastodynamic equa-
tions (1) reduce to two wave equations for compressional
and shear waves:

∇2Φ = c−2p Φ̈, cp =

√
λ+ 2µ

ρ
,

∇2Ψ = c−2s Ψ̈, cs =

√
µ

ρ
,

(11)

with cp and cs being the compressional and shear bulk
wavespeeds respectively.

The angular momentum density can therefore be re-
written in terms of its spin, orbit and ‘additional’ com-
ponents [22], each with individual contributions from the
shear and compressional potentials. Long et al. [17] iden-
tify this additional component as hybrid orbital and spin
Poynting densities.

The energy flux density (7) can then be split into or-
bital components which take the form

poL =
ωρ

2
c2pIm [(ξ∗L ·∇)ξL] ,

poT =
ωρ

2
c2sIm [(ξ∗T ·∇)ξT ] ,

poH =
ωρ

2
c2pIm [(ξ∗T ·∇)ξL] +

ωρ

2
c2sIm [(ξ∗L ·∇)ξT ] .

(12)

with the subscripts L, T,H corresponding to the lon-
gitudinal, transverse (shear) and hybrid parts respec-
tively. We now prove that, for displacement fields with
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FIG. 2. (a) Dispersion curves of guided waves in an alu-
minium pipe of inner diameter 40 mm and thickness 10 mm.
Solid lines obtained by Spectral Collocation with points re-
sulting from Finite Element computations. (b) Numerical
evaluation (details reported in the supplemental material [25])
of the well-defined elastic OAM along the pipe axis, JLz, as-
sociated with the dilatational potential for the lowest curves
of the flexural modes F (m, 1).

inclined phase fronts, the longitudinal part of the wave
field ξL, associated with compressional motion, carries a
well-defined OAM.

Flexural waves in pipes serve as exemplar mode shapes
capable of carrying elastic OAM. We consider elastic
waves propagating along an infinitely long, hollow elas-
tic cylinder with axis oriented in the z-direction of inner
radius ra and outer radius rb. The first general solution
for these guided harmonic waves was derived by Gazis
[26, 27], who showed there are three families of modes:
longitudinal, torsional and flexural. The naming conven-
tion for such modes classifies these as L(m,n), T (m,n)
and F (m,n) respectively [28]. Here m denotes the cir-
cumferential order, or azimuthal index, with n the group
order. The mode shapes for which m = 0 are axisymmet-

ric i.e. their angular profile is constant. We consider non-
axisymmetric flexural modes F (m > 0, n) whose mode
shapes vary sinusoidally in the circumferential direction.
Following the ansatz of Gazis, we leverage the cylindrical
symmetry of the pipe and writing the coordinate system

as
(
r̂, θ̂, ẑ

)
pose the form of the scalar dilatational po-

tential as

Φ = φ(r) exp [i(mθ + kzz − ωt)] . (13)

The compressional displacement field then has the form

ξL =

(
φ′,

imφ

r
, ikφ

)
exp [i(mθ + kzz − ωt)] , (14)

with the prime notation denoting partial differentiation
with respect to r. After substitution into (11) the radial
profile φ(r) is solved by a linear combination of Bessel’s
functions, each with a complex amplitude. These coef-
ficients are solved for by employing the infinitely long
cylinder gauge, ∇ · Ψ = 0, and traction free bound-
ary conditions on the inner and outer radii σrr = σrθ =
σrz = 0

∣∣
ra,rb

(see supplemental material [25]). As such

the guided modes in elastic pipes can be thought of as
Bessel ‘beams’ in the sense that the radial distributions
satisfy Bessel’s equation.

The contribution of poL to the OAM density along the

pipe axis M · ẑ is defined as Mo
L · ẑ = rpoL · θ̂, where

poL · θ̂ is the azimuthal component of the orbital, longitu-
dinal part of the linear momentum density. To evaluate
this quantity we are required to evaluate the advective
terms that arise in (12) due to the variation of the La-
grangian basis vectors as the body deforms, highlighting
its extrinsic nature; for an elastic deformation ξ, α is
the Lagrangian position vector α = β − ξ with β the
Eulerian position vector after the deformation.

Calculation of the elastic OAM density along the pipe
axis yields

Mo
L · ẑ = m

{
ωρc2p

2

[
|φ′|2 +

(
1

r
(rφ′′ + φ′)

)
φ∗ +

ω2

c2p
|φ|2 − 2

r
Re (φφ∗′)

]}
. (15)

In general φ(r) may be arbitrary and as such this re-
sult holds for all compressional wave fields with an az-
imuthally dependent profile, i.e. with inclined phase
fronts, as is the case in electromagnetism [4]. There-
fore, our assertion that the compressional component of
the displacement field carries a well-defined elastic OAM
is justified. The remaining contributions to the elas-
tic OAM (from the transverse and hybrid components)
also contain terms proportional to the azimuthal index
m, but with additional factors (see supplemental ma-

terial [25]) that leave them not fully quantised in the
sense that they are only proportional to the azimuthal
index. The physical significance of this for the exemplar
case of guided waves in pipes is then that: (i) trivially,
Mo

L · ẑ = 0 for both L(0, n), T (0, n) modes which is to
be expected for axisymmetric modes; (ii) pure flexural
modes with a constant angular profile are required to
carry OAM. Conventional means of exciting these modes
in pipes rely on either complex arrangements of trans-
ducers (e.g non-axisymmetric partial loading) or phased
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FIG. 3. Finite Element time domain simulation of OAM transfer: (a) Schematic of simulation domain, with pipe partially
submerged 1 cm in water, surrounded by air. Arrows show axisymmetric longitudinal excitation position, with absorbing
boundaries on exterior fluid walls. (b) Normalised compressional field in pipe (trace of the strain tensor, tr(ε)) and pressure
field (P ) in the fluid at the end of the pipe (z = 0). (c) Isosurfaces of fluid pressure in region below the pipe showing spiraling
acoustic waves, at same time instance as in (b). Full details shown in supplemental material, along with frequency domain
corroborations [25].

arrays [29–33]. Often many degenerate groups of flexural
modes are excited simultaneously, including modes with
both exp(±imφ) components; the angular profile then
changes with propagation distance due to modal superpo-
sition. As such there is zero average elastic OAM. Fortu-
itously, the recent advent of the elastic spiral phase pipe
(eSPP), analogous to optical spiral phase plates [34, 35],
enables arbitrary F (m,n) modes to be efficiently excited,
via mode conversion, which boast a constant angular pro-
file along the pipe axis.

We demonstrate in Fig. 2, via numerical calculation,
that the elastic OAM associated with the dilatational
potential for guided waves along a pipe carries a well-
defined OAM. The associated orbital angular momen-
tum flux density, at a constant plane in z, is given as
J L · ẑ = −ω2 Im

∫
Mo

L · ẑdrdθ. For brevity we de-
fine JLz = J L · ẑ. Figure 2(a) shows the dispersion
curves for guided waves in an Aluminium pipe, evalu-
ated using a spectral collocation method [36–38] (cor-
roborated with Finite Element computations [39], using
the commercial software COMSOL Multiphysics [40]®),
described in the supplemental material [25]; the eigen-
solutions give frequency as the eigenvalue, with the cor-
responding eigenvector containing the potential compo-
nents (Φ,Ψr,Ψθ,Ψz). These are used to numerically
evaluate the ratio of the compressional OAM flux density
to the energy flux density of a compressional bulk wave,
log | 2JLz

ωρc2p
|, shown in Fig. 2(b) for the lowest branches of

the first five flexural modes F (m = 1 . . . 5, 1).

We now utilise an elastic spiral phase pipe (Fig. 1) to
show that elastic OAM can be transferred to a fluid in

contact with the elastic material; shear waves are not
supported in fluids and as such only the compressional
motion of the elastic material couples strongly to the
acoustic pressure field in the fluid. The OAM transfer is
observed by the introduction of rotational motion within
the fluid, exciting spiraling acoustic wave-fields.

OAM transfer.— The ability to transfer elastic OAM to
a fluid is demonstrated numerically, via finite element
simulations of an aluminium pipe partially submerged
in water (Fig. 3. We excite a flexural F (3, 2) mode via
mode conversion of a longitudinal L(0, 2) wave by pas-
sage through a suitably designed elastic spiral phase pipe
(see supplemental material [25]). For a single frequency
and wavevector, the compressional motion of the flexural
mode within the pipe can be represented by a super-
position of plane waves uniformly distributed over the
circular aperture of the pipe. The plane wave compo-
nents have mutual phases proportional to the azimuthal
index m, endowed by the introduction of the eSPP. This
compressional motion couples to the pressure field within
the fluid at the submerged end of the pipe, producing ro-
tating acoustic pressure fields. This is demonstrated in
Figs. 3(b-c) that show a snapshot in time of the dilata-
tional field, through the trace of the strain tensor tr(ε), at
the submerged pipe end and the pressure field within the
fluid. The dilatation is related to the compressional po-
tential through Φ = −(∇ · u)/k2z = − tr(ε)/k2z . We only
consider a partially submerged pipe in order to neglect
Franz-type waves [41], and note that the OAM transfer is
viewed via the mechanical torque the compressional mo-
tion enacts on the fluid, not by the generation of acoustic
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Bessel beams known to carry OAM [42–46].

Conclusions.— We have shown that elastic waves with
inclined phase fronts can carry an extrinsic orbital angu-
lar momentum; it has been proved that the compressional
dilatational potential carries a well-defined contribution,
proportional to the azimuthal index m. This result is
reminiscent of the case of LG beams in optics where
the electromagnetic wave equation, under the paraxial
approximation, is satisfied by a complex scalar function
describing the field distribution, proportional to the az-
imuthal mode index. It is this phase profile that gives
rise, in both cases, to the well-defined OAM.

The coupling of guided flexural waves in elastic pipes to
acoustic pressure waves in fluids has been shown numeri-
cally through the compressional motion of the pipe. The
implications are that the elastic OAM carried by the flex-
ural modes can be transferred to acoustic pressure fields
within a fluid. Inspired by the fact that optical LG laser
modes have well-defined OAM, and that these modes are
capable of being produced by spiral phase plates [47], we
leverage recent developments in elastic spiral phase pipes
to generate the desired flexural pipe modes. These eSPP
enables efficient mode conversion of longitudinal modes
to arbitrary flexural modes, crucially of a single hand-
edness, i.e that possess only one sign of exp(±imθ). In
this way the compressional motion in the pipe acts as a
continuous phased acoustic pressure source in the fluid,
opposed to conventional discrete acoustic sources [48].
Harnessing the mechanical torques associated with the
elastic OAM then promises to unlock applications across
acoustic tweezers, non-destructive testing, ultrasonic mo-
tor design and acoustofluidic devices.
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[10] V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz,
H. Schmitzer, and K. Dholakia, Observation of the trans-
fer of the local angular momentum density of a multi-
ringed light beam to an optically trapped particle, Phys-
ical review letters 91, 093602 (2003).

[11] A. M. Yao and M. J. Padgett, Orbital angular momen-
tum: origins, behavior and applications, Advances in Op-
tics and Photonics 3, 161 (2011).

[12] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed,
G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, et al., Optical
communications using orbital angular momentum beams,
Advances in Optics and Photonics 7, 66 (2015).

[13] K. Y. Bliokh and F. Nori, Transverse and longitudinal
angular momenta of light, Physics Reports 592, 1 (2015).

[14] S. M. Barnett, M. Babiker, and M. J. Padgett, Optical
orbital angular momentum, Phil. Trans. R. Soc. A. 375,
20150444 (2017).

[15] M. J. Padgett, Orbital angular momentum 25 years on,
Optics express 25, 11265 (2017).

[16] R. Chen, H. Zhou, M. Moretti, X. Wang, and J. Li, Or-
bital angular momentum waves: generation, detection,
and emerging applications, IEEE Communications Sur-
veys & Tutorials 22, 840 (2019).

[17] Y. Long, J. Ren, and H. Chen, Intrinsic spin of elastic
waves, Proceedings of the National Academy of Sciences
115, 9951 (2018).

[18] P. Deymier, K. Runge, J. Vasseur, A. Hladky, and P. Lu-
cas, Elastic waves with correlated directional and or-
bital angular momentum degrees of freedom, Journal of
Physics B: Atomic, Molecular and Optical Physics 51,
135301 (2018).

[19] J. D. Eshelby, The force on an elastic singularity, Philo-
sophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences 244, 87
(1951).

[20] J. Eshelby, The elastic energy-momentum tensor, Journal
of elasticity 5, 321 (1975).

[21] K. O. Thielheim, Note on classical fields of higher order,
Proceedings of the Physical Society (1958-1967) 91, 798
(1967).

[22] M. Lazar and H. O. Kirchner, The Eshelby stress tensor,
angular momentum tensor and dilatation flux in gradient
elasticity, International Journal of Solids and Structures
44, 2477 (2007).

[23] L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics Vol 7: Theory and Elasticity (Pergamon press,
1959).

[24] E. Noether, Invariant variation problems, Transport the-

mailto:g.j.chaplain@exeter.ac.uk


6

ory and statistical physics 1, 186 (1971).
[25] See supplemental material at xxxx for more details on the

theory of laguerre-gaussian beams, analytical and numer-
ical solutions for guided waves in pipes, .

[26] D. C. Gazis, Three-dimensional investigation of the prop-
agation of waves in hollow circular cylinders. i. analyti-
cal foundation, The Journal of the Acoustical Society of
America 31, 568 (1959).

[27] D. C. Gazis, Three-dimensional investigation of the prop-
agation of waves in hollow circular cylinders. ii. numerical
results, The Journal of the Acoustical Society of America
31, 573 (1959).

[28] M. Silk and K. Bainton, The propagation in metal tub-
ing of ultrasonic wave modes equivalent to Lamb waves,
Ultrasonics 17, 11 (1979).

[29] H. J. Shin and J. L. Rose, Guided waves by axisymmetric
and non-axisymmetric surface loading on hollow cylin-
ders, Ultrasonics 37, 355 (1999).

[30] J. Li and J. L. Rose, Excitation and propagation of non-
axisymmetric guided waves in a hollow cylinder, The
Journal of the Acoustical Society of America 109, 457
(2001).

[31] J. Li and J. L. Rose, Angular-profile tuning of guided
waves in hollow cylinders using a circumferential phased
array, IEEE transactions on ultrasonics, ferroelectrics,
and frequency control 49, 1720 (2002).

[32] J. L. Rose, Ultrasonic guided waves in solid media (Cam-
bridge University Press, 2014).

[33] L. Tang and B. Wu, Excitation mechanism of flexural-
guided wave modes F(1, 2) and F(1, 3) in pipes, Journal
of Nondestructive Evaluation 36, 1 (2017).

[34] G. J. Chaplain and J. M. De Ponti, The elastic spiral
phase pipe, Journal of Sound and Vibration 523, 116718
(2022).

[35] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and
J. Woerdman, Helical-wavefront laser beams produced
with a spiral phaseplate, Optics communications 112,
321 (1994).

[36] A. Adamou and R. Craster, Spectral methods for mod-
elling guided waves in elastic media, The Journal of the
Acoustical Society of America 116, 1524 (2004).

[37] F. H. Quintanilla, M. J. S. Lowe, and R. V. Craster,
Modeling guided elastic waves in generally anisotropic
media using a spectral collocation method, The Journal
of the Acoustical Society of America 137, 1180 (2015),
https://doi.org/10.1121/1.4913777.

[38] B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley, Dis-
perse: A general purpose program for creating dispersion
curves, in Review of progress in quantitative nondestruc-
tive evaluation (Springer, 1997) pp. 185–192.

[39] A. Marzani, E. Viola, I. Bartoli, F. Lanza di Scalea,
and P. Rizzo, A semi-analytical finite element formula-
tion for modeling stress wave propagation in axisymmet-
ric damped waveguides, Journal of Sound and Vibration
318, 488 (2008).

[40] COMSOL Multiphysics® reference manual, version 5.6,
www.comsol.com, COMSOL AB, Stockholm, Sweden
(2021).

[41] G. Frisk, J. Dickey, and H. Überall, Surface wave modes
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SUPPLEMENTAL MATERIAL

LAGUERRE-GAUSSIAN BEAMS

Here we briefly recap the theory of Laguerre-Gaussain
beams in the paraxial approximation of the wave equa-
tion to form the comparison with the full 3D treatment
of the waves in elastic pipes.

Allen et al [1] demonstrate that Laguerre-Gaussian
beams carry a well defined orbital angular momentum
by first considering the angular momentum density asso-
ciated with the transverse EM field, given as [2]

M = ε0r × 〈E ×B〉 (16)

where E,B are the electric and magnetic fields, ε0 is
the vacuum permittivity and r the position vector. In
the Lorentz gauge the laser field of a linearly polarised
beam, propagating in the z-direction, can be written in
terms of the vector potential

A(r) = u(r)e−ikz, (17)

where A can refer to either the magnetic or electric field
vector. The complex scalar function u(r) satisfies the
paraxial wave equation

∇2
⊥ + 2ik

∂u

∂z
= 0, (18)

where ∇2
⊥ is the transverse part of the Laplacian. Phys-

ically this asserts that ∂zu varies slowly in z, a prop-
erty satisfies by most laser beams. In cylindrical polars
the complex amplitude upl(r, θ, z) defines the Laguerre-
Gaussian modes

upl(r, θ, z) =
Cpl√

1 +
(
z
zR

)2
(
r
√

2

w(z)

)l
Llp

(
2r2

w2(z)

)

× exp

(
−r2

w2(z)

)
exp

(
−ikr2z

2 (z2 + z2R)

)
× exp (−ilφ) exp

(
i(2p+ l + 1) tan−1

(
z

zR

))
,

(19)

where zR is the Rayleigh range, w(z) the radius of curva-
ture of the beam, Llp an associated Laguerre polynomial,
Cpl a constant. The beam waist is centred at z = 0. Util-
ising these modes (16) yields an OAM of l~ per photon.

GUIDED WAVES IN PIPES

Analytical Solutions

Considering transverse and longitudinal wave motion,
the elastic displacement vector ξ can be written in terms

of the curl-less dilatational scalar potential, Φ, and the
divergence-less equivoluminal vector shear potential, Ψ,
such that

ξ = ξL + ξT

= ∇Φ +∇×Ψ.
(20)

Using this, the equations of elastodynamics reduce to two
wave equations for compressional and shear waves such
that

∇2Φ = c−2p Φ̈, cp =

√
λ+ 2µ

ρ

∇2Ψ = c−2s Ψ̈, cs =

√
µ

ρ
,

(21)

with cp and cs being the compressional and shear bulk
wavespeeds respectively. Lamé’s first and second param-
eters take the form

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)
,

(22)

for Young’s modulus E and Poisson’s ratio ν. Given the
cylindrically symmetric nature of the pipe system we pose
the solutions

Φ = φ(r) exp(i(mθ + kzz − ωt)),
Ψr = ψr(r) exp(i(mθ + kzz − ωt)),
Ψθ = ψθ(r) exp(i(mθ + kzz − ωt)),
Ψz = ψz(r) exp(i(mθ + kzz − ωt)),

(23)

where m is the azimuthal order of the wave travelling
along the kz direction (i.e. along the pipe axis). Substi-
tuting the ansatz (23) into (21), results in Bessel’s and
modified Bessel’s equations for the functions describing
the radial components, for example

r2φ′′ + rφ′ +

[(
ω2

c2p
− k2

)
r2 −m2

]
φ = 0. (24)

The full set of equations are solved by [26, 27, 32]:

φ(r) = AZm(α1r) +BWm(α1r) (25)

h1 ≡
1

2
(iψr(r)− ψθ(r))

= A1Zm+1(β1r) +B1Wm+1(β1r)
(26)

h2 ≡
1

2
(iψr(r) + ψθ(r))

= A2Zm−1(β1r) +B2Wm−1(β1r)
(27)

h3 ≡ ψz(r) = A3Zm(β1r) +B3Wm(β1r) (28)
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where

Zm(α1r) =

{
Jm(α1r),

ω2

c2p
− k2z ≥ 0,

Im(α1r),
ω2

c2p
− k2z < 0,

Wm(α1r) =

{
Ym(α1r),

ω2

c2p
− k2z ≥ 0,

Km(α1r),
ω2

c2p
− k2z < 0,

(29)

Zm(β1r) =

{
Jm(β1r),

ω2

c2s
− k2z ≥ 0,

Im(β1r),
ω2

c2s
− k2z < 0,

Wm(β1r) =

{
Ym(β1r),

ω2

c2s
− k2z ≥ 0,

Km(β1r),
ω2

c2s
− k2z < 0,

(30)

with α1 ≡ |α| = |ω
2

c2p
− k2z | and β1 ≡ |β| = |ω

2

c2s
− k2z | and

Jm(x), Ym(x) are Bessel functions of the first and second
kind respectively, with Im(x),Km(x) the corresponding
modified Bessel functions.

Traction free boundary conditions on the inner and
outer radii, ra and rb such that

σrr = σrθ = σrz = 0
∣∣
ra,b

, (31)

and the infinitely long cylinder gauge

∇ ·Ψ = 0 (32)

are used to construct a linear set of equations to solve for
the coefficients Ai, Bi, from which the field components
can be retrieved

ξr =
∂Φ

∂r
+
im

r
Ψz − ikzΨθ, (33)

ξθ =
im

r
Φ + ikzΨr −

∂Ψz

∂r
, (34)

ξz = ikzΦ +
Ψθ

r
+
∂Ψθ

∂r
− im

r
Ψr. (35)

As an alternative to cumbersome, traditional root-
finding schemes to recover the coefficients Ai, Bi or to
Finite Element Methods (FEM) [39], we instead opt to
utilise a Spectral Collocation Method (SCM), based on
that by Adamou and Craster [36] and now widely used,
for instance, in DISPERSE a commercial package for
finding dispersion curves [38]. SCM is versatile, accu-
rate and has found application in elastic waveguide prob-
lems, a typical more recent example being for anisotropic
waveguides [37].

Spectral Collocation Method

Assuming time-harmonicity, as we do, the governing
equations (21) can be written as the eigen-problems

LΦ = −ω
2

c2p
Φ,

((
L − 1

r2

)
Ψr −

2im

r2
Ψθ

)
êr = −ω

2

c2s
Ψrêr,

(
2im

r2
Ψr +

(
L − 1

r2

)
Ψθ

)
êθ = −ω

2

c2s
Ψθêθ,

LΨz = −ω
2

c2s
Ψz,

(36)

with

L =

(
d2

dr2
+

1

r

d

dr
−
(
m2

r2
+ k2z

))
. (37)

The spectral collocation method employed throughout
rests on representing this differential operator as a dif-
ferentiation matrix. We use Chebyshev differentiation
matrices, namely that multiplication by the nth-order
Chebyshev differentiation matrix D(n) transforms a vec-
tor of data at N Chebyshev interpolation points into
approximate derivatives at those points. Following the
steps outlined in [36] permits (36) to be written as a ma-
trix eigenvalue equation:

Pξ = −ω2Qξ, (38)

with ξ = (Φ(ri),Ψr(ri),Ψθ(ri),Ψz(ri))
T

where i =
1, . . . , N , and the matrices P and Q encode the boundary
conditions. The rapid, spectrally accurate solutions ob-
tained with this method allow the calculation of the dis-
persion curves of an infinite hollow elastic cylinder with
ease. We adopt this method, notably in calculation of
the dispersion curves in Fig. 2(a) in the main text, and
to numerically evaluate log | 2JLz

ωρc2p
| in Fig.2(b), whereby

we demonstrate that the elastic OAM associated with
the dilatational potential of flexural modes in pipes is
well defined. The pipe considered is of Aluminium with
inner diameter 40 mm, thickness h = 10 mm and has
density ρ = 2710 kgm−3, Young’s Modulus E = 70 GPa,
and Poisson’s ratio ν = 0.33.

In Fig. 2(a) we cross-validate the SCM results with
dispersion curves obtained from FEM calculations, using
the commercial FEM software COMSOL Multiphysics
®[40]. To do this we take a section of the pipe of (arbi-
trary) length a = 10 mm, and apply Floquet-Bloch pe-
riodic boundary conditions to the faces along the length
of the pipe; the periodicity of this pipe section then rep-
resents an infinitely long pipe. The ensuing eigenvalue
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problem is solved for wave-vectors up to kz = π/a, high-
lighting an advantage of the SCM: in the FEM solutions
for kz > π/a are ‘band-folded’ due to the artificial period-
icity introduced by the pipe section, and as such require
post-processing. This is not required in the SCM.

ORBITAL ANGULAR MOMENTUM DENSITY:
CALCULATION DETAILS, TRANSVERSE AND

HYBRID CONTRIBUTIONS

We then exploit the standard definition of the material
derivative in cylindrical polars, such that [(A ·∇)B] · θ̂

=

(
Ar

∂Bθ
∂r

+
Aθ
r

∂Bθ
∂θ

+Az
∂Bθ
∂z

+
AθBr
r

)
. (39)

To evaluate Mo
L · ẑ = rpoL · θ̂, we are required to calculate

Im [(ξ∗L ·∇) ξL] · θ̂ =

Im

[
m

(
i|φ′|2

r
+
im2|φ|2

r3
+
ik2|φ|2

r
− i

r2
(φφ∗′ + φ′φ∗)

)]
=
m

r

(
|φ′|2 +

(
m2

r2
+ k2

)
|φ|2 − 2

r
Re [φφ∗′]

)
,

(40)

and as such

=
mωρc2p

2

(
|φ′|2 +

(
m2

r2
+ k2

)
|φ|2 − 2

r
Re [φφ∗′]

)
.

(41)

Using Bessel’s equation (24), this can be re-written to
the final expression presented in the main text.

The contributions to the elastic OAM density from the
transverse and hybrid parts are such that

Mo
T · ẑ ≡ rpoT · θ̂ =

ωρr

2
c2sIm [(ξ∗T ·∇) ξT ] · θ̂,

Mo
H · ẑ ≡ rpoH · θ̂

=
ωρr

2

(
c2pIm [(ξ∗T ·∇) ξL] + c2sIm [(ξ∗L ·∇) ξT ]

)
· θ̂.

(42)

We show here that these components do not possess a
well-defined OAM as additional terms are present which
are not proportional to the azimuthal index m. Working
in cylindrical polar coordinates gives

ξL ≡ ∇Φ =

(
φ′,

imφ

r
, ikφ

)
ei(mθ+kz−ωt)

ξT ≡ ∇×Ψ =

(
imψz
r
− ikψθ

)
ei(mθ+kz−ωt)r̂

+ (ikψr − ψ′z) ei(mθ+kz−ωt)θ̂

+

(
ψθ
r

+ ψ′θ −
imψr
r

)
ei(mθ+kz−ωt)ẑ,

(43)

We then substitute these expressions, and their complex
conjugates, into the advective terms in (42). Considering
first the term Im [(ξ∗T ·∇) ξT ] · θ̂, we find, after some
algebra, expressions such as

− k2

r
(ψ∗θψr + ψθψ

∗
r ) , (44)

which, of course, is purely real. As such terms such as
these vanish when we take the imaginary part. Continu-
ing in this fashion we eventually arrive at the expression

Im [(ξ∗T ·∇) ξT ] · θ̂ = −Im [k∂r (ψ∗θ (iψ′z + kψr))]

+
m

r
Im

[
∂r (kψ∗zψr + iψ′zψ

∗
z) +

1

r
(kψ∗r − iψ′∗z )ψz

]
,

(45)

where we denote ∂r = ∂/∂r. This is clearly not solely
∝ m and hence is not well-defined in the same sense as
the contribution from the compressional potential.

Similarly we find

Im [(ξ∗T ·∇) ξL] · θ̂ = −1

r
Im [(ikψ∗r − ψ′∗z )φ′]

+
m

r
Im

[
∂r

((
mψ∗z
r
− kψ∗θ

)
φ

)]
,

(46)

and

Im [(ξ∗L ·∇) ξT ] · θ̂
= Im

[
φ′∗ (ikψ′r − ψ′′z ) + k2φ∗ (ikψr − ψ′z)

]
+
m

r
Im

[
φ∗
(
ikmψr
r

− kψθ
r
−m∂r

(
ψz
r

))]
.

(47)

Therefore both the transverse and hybrid orbital angular
momentum components (J T · ẑ =

∫
Mo

T · ẑdr and JH ·
ẑ =

∫
Mo

H · ẑdr respectively) do not carry a well defined
OAM proportional to m.

THE ELASTIC SPIRAL PHASE PIPE & FEM
MODELLING

To demonstrate the transfer of elastic OAM in a cou-
pled solid-fluid system, efficient excitation of pure flexu-
ral modes in elastic pipes is required. Here we outline the
theory behind the elastic spiral phase pipe [34] by first
considering its optical analogues.

In optics, wave-fields with inclined phase fronts, such
as LG beams are vortex beams characterised by a phase
singularity at the beam centre with locally vanishing in-
tensity. These beams carry a topological charge defined
as [47]

Q =
1

2π

∮
dχ, (48)
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h = 10 mm

h = 4 mm

h = 4 mm

t [ms]0 0.1-1
0F

(a) (b) (c)

(d)

FIG. S1. (a,b) Dispersion curves for infinite pipe of inner diameter ID = 40 mm and thicknesses h1 = 4 mm (blue) and
h2 = 10 mm (red). (c) Schematic of eSPP used in FEM simulations. (d) Hanning window excitation (normalised force) applied
on top boundary of the pipe (marked by arrows in Fig. 3 in the main text).

where χ is the phase of the field. Such laser modes can be
excited by optical spiral phase plates. These are refrac-
tive devices with an azimuthally-dependent height vari-
ation parameterised by a circular helicoid. The height of
the spiral step, hs, is chosen such that the optical path
difference experienced by a traversing wave introduces a
phase retardation that results in helical phase fronts.

The elastic spiral phase pipe is a recent translation of
this device to elastic systems; it consists of hollowed cir-
cular helicoid (as shown in Fig. 1 in the main text) whose
step profile height hs is calculated by relating the phase
speeds of the incident mode and desired converted mode
through a relative refractive index, ñ = cf/ci. In the
examples used throughout the main text we consider an
incident L(0, 2) mode with phase speed ci (and there-
fore wavelength λi = 2π/ki) that is mode converted into
a flexural F (3, 2) after the device with phase speed cf .
The step height takes the form

hs =
2πQ

ki(ñ− 1)
. (49)

For the demonstration of elastic OAM transfer, we
utilise the experimentally verified eSPP of [34], with the
same properties as the pipe considered in Fig. 2 in
the main text. We choose a frequency of operation of
62 kHz and form an eSPP by removing 6 mm of Alu-
minium (which can be milled experimentally) with an
azimuthally varying profile determine by the step pro-
file (49). This is calculated by once again leveraging the
SCM to evaluate the dispersion curves for the two regions
of the pipe with thicknesses h1 = 4 mm and h2 = 10 mm.
Two representations of the dispersion curves are shown
in Fig. S1(a,b); those corresponding to h1 are shown in

Air

Air

z = 0.25 m

Water

 Open end
 Air-water 
 interface
 Solid-fluid 
 interface

 Absorbing 
 boundary

 Boundary 
 load

z = -0.25 m

z = 0 z = 0.01 m

FIG. S2. Cross section of FEM simulation domain, show-
ing fluid and solid regions with interfaces. The corre-
sponding boundary conditions are implemented in COMSOL
Multiphysics®.

blue hues whilst h2 are shown in red. At the operat-
ing frequency the step height is then determined to be
hs = 190 mm; in the FEM simulations presented in the
main text this height is partitioned over 3-spiral steps,
as shown in Fig. S1(c). The time domain simulation pre-
sented in the main text results from FEM simulation per-
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|P|

φ

tr(  )

(a)

(b) (c)

FIG. S3. FEM frequency domain simulations: (a) Normalised
absolute pressure field. (b) Phase of Pressure field, ϕ. (c)
Trace of stress tensor, tr(σ), i.e. the pressure distribution at
the end of the pipe. In all three cases the results are shown
at the base of the submerged end of the pipe at z = 0. The
excitation is a continuous sinusoidal boundary load, at the
boundary shown in Fig. S2, at a frequency of 62 kHz.

formed using COMSOL Multiphysics® [40], employing
multiphysics coupling between the acoustics and struc-
tural mechanics module such that the acoustic-structure
boundary is modelled to include the fluid load on the
structure, and the structural acceleration experienced by
the fluid. We implement a boundary longitudinal forc-
ing on the top end of the pipe, with absorbing boundary
conditions (perfectly matched layers) on the exterior of
the fluid domain. A cross-section of the domain, with
all boundary conditions, is shown in Fig. S2. The pipe
is partially submerged 1 cm in water (density ρ = 1000
kgm−3), with a uniform water level inside and outside
the pipe. Air fills and surrounds the rest of the pipe.
A 5-cycle Hanning window centred on 62 kHz excites
an axisymmetric L(0, 2) mode in the thin region of the
pipe. After traversing the eSPP region this is endowed
with a helical phase profile and is mode converted into
the F (3, 2) mode with high efficiency, which carries elas-
tic OAM. The compressional potential then couples with
the pressure field in the fluid at the submerged end of the
pipe, exciting spiraling acoustic waves within the fluid,
demonstrating the transfer of OAM.

The generation of the F (3, 2) wave in the time domain
simulation is validated by comparisons to both the dis-
persion curves obtained from the SCM and FEM (for
the case of the pipe in-vacuo), along with frequency-
domain simulations (shown in Fig. S3) and experimen-
tal corroboration from Ref. [34]. The validation of the
full multiphysics simulation is verified through standard
time-stepping convergence methods [40]. In Fig. S3 we
additionally show the spiralling phase distribution of the
acoustic field in the fluid, as well as the trace of the stress
tensor, tr(σ), since the normal stress match the pressure
at the walls of the pipe
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