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Abstract9

Distributed embedded systems are emerging and gaining importance in various domains, including10

industrial control applications where time determinism – hence network clock synchronization – is11

fundamental. In modern applications, moreover, this core functionality is required by many different12

software components, from OS kernel and radio stack up to applications. An abstraction layer13

devoted to handling time needs therefore introducing, and to encapsulate time corrections at the14

lowest possible level, the said layer should take the form of a timer device driver offering a Virtual15

Clock to the entire system. In this paper we show that doing so introduces a nonlinearity in the16

dynamics of the clock, and we design a controller based on feedback linearization to handle the issue.17

To put the idea to work, we extend the Miosix RTOS with a generic interface allowing to implement18

virtual clocks, including the newly designed controller that we call FLOPSYNC-3 after its ancestor.19

Also, we introduce the resulting virtual clock in the TDMH [20] real-time wireless mesh protocol.20
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I Introduction26

The world of embedded systems is evolving from isolated to distributed systems. This move27

can be observed in several research and market trends such as the Industrial Internet of28

Things (IIoT) [16]. As a result, clock synchronization is becoming a key technology to enable29

both real-time industrial applications as well as low energy wireless protocols [23]. At the30

application level, synchronization in distributed embedded systems allows the execution of31

coordinated tasks among multiple devices [13], allows to perform sensing and reconstruction32

of spatially distributed phenomena [10, 2], while the availability of synchronization at the33

network level enables the use of TDMA protocols [1, 20, 7], being thus fundamental for34

real-time communication among devices. Since in modern embedded operating systems35

both applications and OS components – such as the radio stack – can benefit from clock36

synchronization, an abstraction layer that handles time correction directly at the OS level is37

therefore needed. Moreover, from a software engineering perspective, the presence in the38

OS codebase of both corrected and uncorrected time values is a potential source of errors.39

Therefore, it becomes desirable to encapsulate time correction at the lowest possible level,40

such as the timer device driver.41

However, using corrected times in the entire OS codebase introduces an issue: the42

uncorrected time is usually required by the clock synchronization algorithm itself. Efficient43

clock synchronization schemes such as FLOPSYNC-2[22] require uncorrected timestamps44
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of received synchronization packets, and performing clock synchronization using corrected45

timestamps is challenging as it makes the model of the clock synchronization problem46

nonlinear.47

This work introduces a new clock synchronization scheme, FLOPSYNC-3, that is capable48

of operating with timestamps corrected by the previous iteration of the algorithm itself. As49

a result of this improved capability, the Miosix RTOS was extended with a generic interface50

allowing to implement clock correction at the hardware timer level.51

The FLOPSYNC-3 controller is here tested both in simulation and on a network of nodes52

running the Miosix operating system and the TDMH [20] real-time wireless mesh protocol.53

This paper is organized as follows: Section II presents a brief overview on the state of the54

art in clock synchronization for distributed embedded systems. Section III discusses how the55

Miosix OS has been extended with a virtual clock abstraction that enables transparent clock56

corrections. Section IV briefly mentions the design of the Miosix subsystem for performing57

timestamp measurements, a key feature used to precisely timestamp clock synchronization58

packets. Section V presents the FLOPSYNC-3 clock synchronization scheme that can perform59

clock corrections using the virtual clock as actuator while operating on corrected timestamps60

only. Finally, Section VI presents simulation and experimental results, and Section VII61

outlines future research directions.62

II Related Works63

Clock synchronization is a classical problem in distributed systems [11, 15], but also one where64

research is still ongoing to produce clock synchronization schemes fine-tuned to changing appli-65

cation requirements and hardware capabilities. Many works related to clock synchronization66

in distributed embedded systems come from the Wireless Sensor Network research community,67

focusing on several aspects including low power synchronization [18, 22], propagation delay68

compensation [12, 19], efficient synchronization information dissemination [14, 8].69

When considering accuracy, a major differentiating factor is whether a clock synchroniza-70

tion scheme only performs offset corrections or it also performs skew corrections. Simple71

schemes such as TPSN [9] and DMTS [17] only correct for offset. When implemented at the72

OS level, this correction can be efficiently performed by overwriting the hardware counter73

with the required correction at every synchronization [9]. The disadvantage is however that74

after each correction the hardware clock keeps counting at the incorrect frequency, and thus75

a time error accumulates over the synchronization period, which reaches its maximum value76

immediately before the next correction. Another issue is that the value returned by the clock77

exhibits a discontinuity at every synchronization [22], a matter that can introduce errors in78

interval measurements, especially for short intervals.79

More advanced clock synchronization schemes perform skew (also known as frequency80

or rate) corrections. The synchronization scheme produces both an offset and a frequency81

correction value at every synchronization. As altering the frequency of a crystal oscillator82

requires additional hardware [5] which is usually unavailable in off-the-shelf boards, the83

frequency correction is preferably performed by applying an algorithm every time the OS or84

applications request the time. In this paper we refer to such algorithm as a virtual clock. For85

a given synchronization period, frequency correction allows for lower synchronization errors86

compared to offset correction. Additionally, clock synchronization schemes that perform87

frequency correction can make the corrected clock continuous and monotonic [22], thus88

avoiding clock jumps.89

Real-time embedded systems also face increasing power and energy constraints [3],90
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especially if battery operated. Clock synchronization may thus be required to operate also91

when the processor enters a deep sleep state which includes turning off the main oscillator.92

In such cases, time is kept using a low power Real-Time Clock (RTC), and this introduces93

the need to synchronize both the RTC and high-frequency timebase [21], a matter that we94

account for by designing our virtual clock to support multiple corrections.95

In this paper we address the clock synchronization problem from the perspective of96

implementing it at the real-time OS level. Software engineering considerations suggest us to97

completely encapsulate time correction, and since this makes uncorrected time unavailable to98

the clock synchronization scheme, we design a new scheme that can operate with corrected99

timestamps.100

III Virtual Clock101

A real-time OS typically requires two main time-related primitives: one to get the current102

time, whose use is obvious, and one to set an interrupt in a given future time instant, to be103

used to handle context switches as well as sleeping tasks wakeup. This chapter describes the104

design and implementation of a virtual clock to make these primitives synchronization-aware.105

III.1 Design106

An uncorected clock tnc fed by an oscillator with nominal frequency f0, affected by (possibly107

time-varying) frequency error δs will progressively diverge from an ideal one as108

tnc(t) =
∫ t

0

fs(τ)
f0

dτ = t +
∫ t

0

δs(τ)
f0

dτ (1)109

110

where fs is the instantaneous oscillator frequency, and the integral accounts for the accu-111

mulated frequency error. Accordingly, the accumulated frequency error ∆(k) over one clock112

synchronization period k of duration T is113

∆(k) =
∫ kT

(k−1)T

δsτ

f0
dτ (2)114

A virtual clock VC is a piece wise linear function (Figure 1) that applied to the uncorrected115

clock tnc produces a corrected one. Virtual clocks allow to perform not only offset corrections,116

but also frequency corrections. Said otherwise, it is possible to control a virtual clock to117

count time faster or slower than the underlying hardware clock to better approximate a118

reference clock. A virtual clock is however just an actuator, it provides the means to correct119

a hardware clock, but requires at every synchronization period updated parameters. A clock120

synchronization scheme uses a controller and time information from an external reference to121

adjust the virtual clock rate trying to align it to the reference clock. By defining the virtual122

clock rate separately on each synchronization interval, it can be demonstrated by induction123

that the value of the virtual clock (that is the corrected time tc) on a generic time tnc inside124

a synchronization interval [ kT, (k + 1) T ] can be expressed as125

tc = VC (tnc) = VC (k) +
•

V C(k)
(
tnc − tnc(k)

)
(3)126

where
•

V C(k) is the rate of the virtual clock. More specifically, if tnc = tnc(k + 1), its127

definition simplifies as128

VC (k + 1) = VC (k) +
•

V C(k) (T + ∆ (k)) (4)129

NG-RES 2023
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Figure 1 Virtual clock correcting clock rate to align itself to a reference clock

We can further generalize the virtual clock expressing (3) as f = akx + bk by algebraic130

manipulation131

{
ak =

•
V C(k)

bk = VC (k) −
•

V C(k)tnc(k)
(5)132

133

where ak is the rate correction of the clock in the synchronization period k and bk is the134

offset. This rate is adjusted by the controller to align the current clock to the reference, and135

is related to the mean skew over the synchronization period.136

III.2 Implementation137

The virtual clock was implemented in C++ as part of the Miosix RTOS, as shown in Figure 2.138

To support clock synchronization as well as deep sleep operation which entails transitions139

from a board RTC to an high resolution clock (a technique called VHT [21]), a virtual140

clock may need to perform multiple clock corrections fi combined. The software design of141

the virtual clock thus supports multiple corrections as a Variable Length Correction Stack142

(VLCS). This design allows for an arbitrary number of Correction Tiles, each with their own143

correction parameters ak,i and bk,i. For performance reasons, the number of correction tiles144

is configured at compile time as a template parameter. Having n distinct corrections chained145
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Figure 2 Virtual clock interface

together as f0 ◦ · · · ◦ fn, the combined correction parameters can be calculated as146

ak,vc =
n−1∏
i=0

ak,i (6)147

bk,vc =
n−2∑
i=0

{
bk,i ·

n−1∏
j=i+1

ak,j

}
+ bk,n−1 (7)148

149

where index 0 is the correction closer to the hardware timer, and n the furthest.150

As reading the current time is a more frequent operation than changing the correction151

coefficients, the combined parameters are precomputed when a new clock correction is152

produced (Figure 3). Conversely, to set a time interrupt the corrected time coming from the153

OS will need to be back-converted as the hardware timer still works using uncorrected time.154

tc = ak,vc · tnc + bk,vc (8)155

tnc = (tc − bk,vc) / ak,vc (9)156
157

158

III.3 Optimization159

As the typical skew of quartz clocks is in the order of tens of parts per million (ppm), the160

ak,vc coefficient should be very close to 1. Since many microcontrollers lack a Floating Point161

Unit (FPU), we need an efficient way (exploiting the range of ak,vc as just identified) to162

perform the multiplication ak,vc · x, as the time retrieval is one of the most critical path163

of the operating system. For this purpose, a template class Fixed was designed. This is164

capable of representing a fixed point number with an arbitrary number of bits for the decimal165

part. Given a few compile-time optimized functions able to handle multiplication between a166

64-bit integer and a fixed point 32.32, a specialization of the said class – called fp32_32 and167

NG-RES 2023
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representing a fixed point number as a 64-bit integer with 32-bit for both decimal and integer168

part – was used. With fp32_32, the multiplication ak,vc · x can be performed in just 60 clock169

cycles bringing the total time to get the current time to 170 clock cycles, a 37% improvement170

compared to the previous implementation. Regarding the uncorrection, we can note from (9)171

that a division by ak,vc is needed. There is no nice properties to perform fast division using172

fixed point, so it was implemented as a multiplication for the inverse. The inverse value is173

precomputed using 64-bit floating point numbers at every update of the ak,vc parameter and174

converted to fp32_32. The pre-computation is optimized using a modified version of the175

fast inverse square root algorithm [6], adapted to perform 1/x instead of 1/
√

x as follows.176

The optimization relies on the fact that an IEEE754 double precision number is very similar177

to an Logarithmic Number System (LNS) number, as they never differ for more than a178

small factor. An interesting property of LNS numbers is that it makes implementations for179

multiplications and divisions very efficient. In particular, the inverse of an LNS number v180

is −v. The bit representation of a floating point number u can approximated as the LNS181

number x = 2u/252−1023, and using this representation the inverse q can be computed as182

follows183

2q/252−1023 = 2−(u/252−1023) (10)184
185

which solving the implicit equation results in186

q = 0x7FE0000000000000 − u (11)187
188

Performing a sweep with sufficient precision, it was possible to elaborate a quadratic regression189

model to approximate faster and with more precision the hexadecimal value. Having a closer190

approximation, less Newton steps are necessary making the inversion faster. This whole191

inversion process is called optimizedFastInverse.192

IV Hardware Events193

Although what presented above is sufficent to support the time-related requirements of194

an OS, performing clock synchronization requires accurate timestamping of received radio195

packets. Moreover, advanced radio transmission techniques such as constructive interference196

require accurate packet transmission times [22]. To abstract hardware-accelerated event197

timestamping and generation, Miosix was extended with an Eventstamping interface. This198

Figure 3 Virtual clock recomputing aggregated parameters avc and bvc
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abstraction introduces the concept of event channels that abstract the event sources or sinks199

of a given platform. Every event channel can be configured as input, for external event200

timestamping, or as output to trigger events. When configured in input mode, a thread201

can block and wait for an event to happen on the chosen channel, with an optional timeout202

(Figure 4). When configured as output, a thread can generate a hardware event in the future,203

blocking until that time point. This design simplifies the realization of TDMA networking204

protocols. Since events are measured/generated in hardware, the achievable time granularty205

is that of the hardware timer (in our implementation 21ns), and is unaffected by software206

interrupt latencies.207

V FLOPSYNC-3208

The redesign of the Miosix OS timing subsystem in order to only operate in terms of corrected209

time in the entire OS –except for the timer driver– required the design of a new clock210

synchronization scheme. Previously, the clock synchronization packets were timestamped211

using the uncorrected clock, as this was needed by the FLOPSYNC-2 algorithm [22]. The212

previous approach required to deal with both corrected and uncorrected times and was causing213

code maintainability issues from a software engineering standpoint. However, performing clock214

synchronization using timestamps corrected by the previous round of clock synchronization215

makes the problem nonlinear. The FLOPSYNC-3 controller was designed to address the216

aforementioned nonlinearity, and implemented at the OS level.217

V.1 Design218

Given (4), we can define the clock synchronization error at the end of each synchronization219

period as220

e(k) = VC (k) − kT (12)221

To observe the evolution of the error across synchroniation periods, we can compute the next222

error as a function of the previous, resulting in223

e(k + 1) = e(k) + T
(
1 −

•
V C(k)

)
− ∆(k)

•
V C(k) (13)224

where the ∆(k)
•

V C(k) term makes the model nonlinear. To perform the control synthesis we225

used Feedback Linearization [4] to linearize this process using the output u(k) of a linear226

Figure 4 Eventstamping, wait event

NG-RES 2023
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controller and express the new error as227

e(k + 1) = β e(k) + (1 − β) u(k) (14)228

and as a consequence have the new output u(k) of the controller provide
•

V C(k) from229

•
V C(k) = e(k)(1 − β) + u(k)(β − 1) + T

T + ∆(k) . (15)230

The mean skew value at the synchronization period k is of course not available and needs231

to be approximated with the previous one (k − 1), i.e.,232

∆̂(k) = ∆(k − 1) = V C(k) − V C(k − 1)
α(k − 1) − T (16)233

We can then obtain the transfer function H (z) of the imposed dynamic (14) as234

H (z) = E(z)
U(z) ⇒ 1 − β

z − β
(17)235

The controller C(z) used to work in conjuction with the feedback linearization is a pro-

Figure 5 FLOPSYNC-3 Control scheme

236

portional one having a gain of 0.15. The full FLOPSYNC-3 control scheme is shown in237

Figure 5.238

VI Simulation and Experimental Results239

The operation of the FLOPSYNC-3 controller and virtual clock were first assessed through240

simulations performed using the Modelica language.241

Figure 6 shows one such simulation, where the clock synchronization period T was set to242

10 seconds and β was chosen to be 0.025. The left part of the figure shows the simulated243

clock skew profile, that starts from 10 ppm and increases to 50 ppm from T = 150 seconds,244

approximating in the simulation the effect of an ambient temperature change. The right part245

of the figure shows the clock synchronization error. The blue line is the instantaneous error246

of the virtual clock, thus the time error exposed to the operating system and application. As247

a node in the network can measure its error only at discrete intervals, corresponding to when248

synchronization packets are received, the red line shows the measured error that feeds the249

FLOPSYNC-3 controller.250

As can be seen, the initial 10 ppm skew causes a 100 µs error that is quickly corrected by251

the FLOPSYNC-3 controller. The frequency change caused by the simulated temperature252

change, although higher in amplitude than the initial skew causes a lower peak error, less253

than 75 µs, due to its slower nature.254

The FLOPSYNC-3 controller as specified by equation (15) and (16) has been implemented255

in Miosix acting on the the variable length correction stack of the virtual clock. Since deep256



A. Sorrentino and F. Terraneo and A. Leva XX:9

Figure 6 Simulated clock skew profile (left) and clock synchronization error (right). The blue
line shows the instantaneous synchronization error, while the red line shows the measured error.

sleep support was not implemented, the correction stack was configured to perform the257

FLOPSYNC-3 correction only. Synchronization parameters T and β were configured as in258

the simulations. The clock synchronization error measurement was taken from the TDMH259

networking stack using the eventstamping interface to provide the timestamps of received260

synchronization packets. FLOPSYNC-3 was implemented using the fp32_32 type to perform261

intermediate calculations efficiently. Because of the limited range of this type, pre-scaling262

was necessary to avoid overflows.263

Clock synchronization experiments were performed with a network of nodes running the264

TDMH networking stack on top of Miosix. Figure 7 shows the clock synchronization error of265

one such node. The top part of the figure shows the measured clock synchronization error in266

the first three minutes after synchronization. The initial clock synchronization error of 40 µs267

occurs when the node is booted and joins the network. This value is the accumulation of the268

oscillator frequency error over the entire first synchronization period, as the FLOPSYNC-3269

algorithm, being a feedback one, requires a first error measure to compute a correction. The270

bottom part of the figure shows the error after the initial synchronization, over a period of271

approximately 24 hours, to better appreciate the error dynamics after the initial skew is272

corrected. The observed stochastic nature of the clock synchronization error, not present273

in the simulations, is caused by the measurement noise of packet timestamps. The error274

standard deviation, excluding the first transient, is 137 ns.275

VII Conclusions276

This work addressed abstracting clock synchronization at the operating system level. To277

achieve this goal a virtual clock was introduced as an efficient abstraction allowing a hardware278

timer driver to provide a time reference whose rate can be changed compared to the one279

of the underlying oscillator. Support for multiple corrections sources was accounted for,280

allowing the implementation of deep sleep solution such as VHT [21]. Encapsulating time281

correction allows reducing bugs and problems during development since all components are282

just using the same time source (corrected), but makes the uncorrected synchronization283

packet timestamps unavailable to the clock synchronization algorithm. The FLOSPYNC-3284

controller was thus designed specifically to overcome this issue.285

NG-RES 2023
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Figure 7 Clock synchronization error during experimental evaluation. Top plot includes the initial
clock skew compensation, bottom plot shows the synchronization error after the initial transient.

The Miosix real-time OS was extended with a flexible, efficient and modular timing286

subsystem based on the virtual clock design, capable of internalizing the clock correction and287

only exposing corrected time to all kernel and application tasks. This new timing subsystem288

was designed from the start to be general allowing to easily port the Miosix to different289

microcontrollers.290

Future research directions will focus on further improving clock synchronization resilience291

to temperature variations, while future improvements of the Miosix timing subsystem will292

address completing the support for maintaining clock synchronization during deep sleep293

periods using the variable length correction stack.294
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