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A B S T R A C T   

In recent years, the request for batteries to employ in emerging technologies like smart grids or electric vehicles 
shows constant growth. To maintain these systems over time, it is crucial to have a mechanism to monitor the 
battery State of Health (SoH), determine when it is not of use for the current application, and eventually reuse it 
in another context a.k.a. battery second life. However, standard techniques from the literature provide an accurate 
estimation of the State of Health mainly by performing offline tests or with a priori knowledge of hyper- 
parameters. This paper proposes a novel algorithm, namely State of Health Estimator (SHE), that infers the 
battery model online, i.e., during its operational life, and uses this characterization to provide a reliable and 
accurate estimation of both actual battery capacity and internal resistance, considering both ohmic and polar-
ization components. The experimental campaign, performed on real-world data, shows satisfactory performance, 
with an average error of 1.2 % and of 4 % in the estimate of the maximum battery capacity and internal 
resistance, respectively.   

1. Introduction 

The battery market has been increasing rapidly in recent years, 
driven by its use for electric vehicles [1] and stationary applications [2]. 
Batteries, thanks to their storage capacity with a high charge and 
discharge cycle efficiency, allow increasing the exploitation of renew-
able energy sources by facing the energy transition of the electrical 
system safely and efficiently. As the market grows, making the entire 
storage chain as eco-sustainable as possible is essential. For this purpose, 
several research activities have been launched aiming at extending 
battery lifetime. In this context, battery diagnostic tools play a crucial 
role. Indeed, they provide all the inputs a battery management system 
needs to optimize the control of the storage system. 

There are several battery status indicators. Some of them, such as 
State of Charge (SoC), State of Energy (SoE), and State of Power (SoP), 
provide information about the status of the battery for the current 
instant of the battery lifetime, which in its turn depends on the battery 
working condition. These indicators are significant for short-term bat-
tery usage, assuming that the battery characteristics remain the same 
over short time periods. However, batteries are subject to aging phe-
nomena. Time, environmental conditions, and working mode affect the 

rate of aging [3]. Hence, other battery status indicators that aim to 
provide information about the current aging and remaining lifetime are 
more suitable for battery life indicators. The most popular index of this 
family is the State of Health (SoH) which represents the current condi-
tion of the battery compared to the ideal ones, i.e., factory conditions. 
Knowing the SoH over time allows applying charge/discharge strategies 
that minimize the stress on the battery to increase the battery lifetime 
[4]. Moreover, the SoH index allows the battery owner to understand 
when the battery performance is not sufficient to cover the needs of a 
particular service, e.g., the range of electric vehicles, before any incon-
venience occurs. Typically, the SoH is calculated through dedicated tests 
[5], such as full-charge/full-discharge, pulse discharge, and Electro-
chemical Impedance Spectroscopy (EIS) tests, which require tempo-
rarily preventing the battery from being used for its normal operations. 
However, this might not be possible in some scenarios, e.g., automotive 
applications. In all such cases, i.e., when a physical measurement to get 
the SoH is not feasible, methods to estimate battery aging can be used. 

This work aims to provide a useful battery diagnostic tool to assess 
aging by monitoring battery voltage and current profiles during opera-
tional life without a specific electrochemical test. The proposed solution 
combines a data-driven method to partition the voltage and current 
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measurements over time with an algorithm to characterize the electrical 
model of the battery, originally used for State of Charge (SoC) estima-
tion, into a new algorithm, namely State of Health Estimator (SHE), to 
evaluate the current battery State of Health (SoH) related to both ca-
pacity and internal resistance. 

The paper is structured as follows: Section 2 reviews the currently 
available methods to estimate the SoH in Lithium-ion batteries; Section 
3 describes the necessary background to introduce the presented 
method; Section 4 describes the proposed algorithm in details; Section 5 
provides a thorough experimental analysis of the proposed method; 
Section 6 draws some conclusions on the presented work, and delineates 
the possible future works. 

2. Related works 

In this section, the recent literature about SoH estimation is pre-
sented. In particular, this analysis focuses on the works about Lithium- 
Ion batteries [6].1 Depending on the application, the definition of SoH 
is computed based on the battery capacity or internal resistance. In what 
follows, an overview of the studies available in the literature on both 
these aspects is provided. As a final remark, a method will be denoted as 
online if it performs the estimation during the operational life of the 
battery, while it is denoted as offline if it requires suspending the battery 
operations to estimate the battery SoH. 

2.1. Capacity 

The most common method used to measure the current capacity of 
the battery is Coulomb Counting (CC) [13]. However, its application 
requires an offline procedure that, as mentioned, requires temporarily 
suspending the system's normal operations. Feng et al. [14] propose an 
online method based on probability density functions that use random 
variables to determine the capacity. This solution extends the ones based 
on Incremental Capacity Analysis (ICA) [15], and Differential Voltage 
Analysis (DVA) [16]. Notice that these offline methods are time- 
consuming since their curves are obtained by imposing a low current, 
e.g., C/20 for the work in [17], C being the battery c-rate. Baghdadi et al. 
[18] propose a method to estimate the maximum capacity by estimating 
the OCV after a CC-CV charge and a relaxation period. Taking into ac-
count data-driven methods, several works are presented to estimate the 
capacity-related State of Health, based on fuzzy rules [19], Support 
Vector Machines (SVM) [20], Neural Networks [21,22], and Genetic 
Algorithms [23]. We remark that such black-box methods require the 
availability of data from the beginning to the end of multiple batteries. 

2.2. Internal resistance 

The first approach to measuring the resistance-related State of Health 
consists of the measurement of voltage reactions to current pulses [24], 
which is an offline method. Remmlinger et al. [25] highlight the 
importance of including the dependence on the SoC and temperature for 
a consistent estimation of the internal resistance. Other approaches 
make use of instruments called Electrochemical Impedance Spectros-
copy (EIS) that directly measure internal resistance, using sine-wave 
signals [26,27] but they require an offline test to measure the internal 
resistance. Instead, Eddahech et al. [28] propose an offline method to 
precisely estimate internal resistance by looking at charging curves 
using the CC-CV approach, which therefore requires suspending the 
nominal activities of the battery. Finally, also in the case of internal 
resistance State of Health, several works use data-driven methods such 
as SVM [29] and Neural Networks [30]. The drawbacks remarked for the 
capacity estimates also apply in this case. 

2.3. Complete Solutions 

Other approaches for SoH estimation are based on the model's esti-
mation and produce as a byproduct the estimation of the capacity and 
internal resistance, from which the State of Health is computed. These 
approaches usually rely on equivalent models and filtering techniques 
[31] to adapt in an online fashion the model estimation using the 
measurements. In particular, these equivalent models for lithium-ion 
batteries are RC models from which one can retrieve the measures of 
current and voltage. From these measures, equivalent models can be 
designed and estimated using Kalman Filter derivation such as Extended 
Kalman Filter (EKF) [29,32,33], Sigma-Point Kalman Filter [34], Un-
scented Kalman Filter [35] or Particle Filters [35,36]. Such methods, 
even if allowed to work online (i.e., without disconnecting the battery 
and suspending its normal operations), from the practical point of view, 
fail in avoiding the request for previous information for hyperparameter 
tuning. More specifically, they require the initialization of values such as 
the EKF error covariance matrix, which does not allow to run these 
techniques unless one has extensive domain knowledge. Xiong et al. 
[37] use EKF and Least Squares to perform an estimate of the SoH. In this 
work, the tests are conducted on a new battery and the nominal capacity 
is provided to the model. A model-based method based on Least Squares 
is proposed by Prasad and Rahn [38]. This solution partially solves 
problems related to prior information requests for hyperparameter 
tuning. Tang et al. [39] propose a solution to perform SoH estimation in 
the case in which the battery has an embedded Battery Management 
System. However, this is not the case in most of the commonly used 
battery models. Other solutions based on machine learning methods are 
the ones based on SVM [40] that use non-parametric methods to extract 
non-linear behavior and estimate both capacity and internal resistance. 
A solution based on Bayesian model integrating SVM is proposed by 
Saha et al. [41,42]. 

In general, there is a wide range of machine learning and data-driven 
models to estimate the SoH, but they require either prior knowledge or a 
large amount of preliminary collected data. 

3. Preliminaries 

Since there is no standardized way to define the SoH [43], several 
formulas to calculate battery aging have been presented in the literature. 
In what follows, the most common definitions present in the literature 
for the State of Health are presented. More specifically, they are based 
either on the battery's maximum capacity or internal resistance. The 
measurement units for the quantities mentioned in what follows are 
summarized in Table 1. 

3.1. Capacity state of health 

The Capacity State of Health SoHC(t) ∈ [0,1] at a specific time t is 
defined as: 

SoHC(t) :=
Qmax(t) − αQN

(1 − α)QN
, (1)  

where Qmax(t) is the current maximum capacity that can be stored in the 

Table 1 
Measurement units for the quantities used in the 
paper.  

Quantity Unit 

t s 
Qmax(t), QN Ah 
R(t), RS, RP, RN Ω 
C F 
I(t) A 
V(t) V  1 For a complete review of this topic, see [7–12]. 
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battery, QN is the nominal capacity declared by the manufacturer, i.e., 
the one had by the battery at the system deployment, and α is the 
fraction of capacity for which the battery becomes depleted for the 
specific application. 

3.2. Internal resistance state of health 

The Resistance State of Health SoHR(t) ∈ [0,1] at a specific time t is 
defined as: 

SoHR(t) :=
(1 + β)RN − R(t)

βRN
, (2)  

where R(t) is the current internal resistance, RN is the internal resistance 
of the battery measured at system deployment, and β is the fraction of 
increase of the internal resistance for which the battery can be consid-
ered elapsed. When the battery degrades, the internal resistance in-
crease, and the value of the ratio in Eq. (2) tends to decrease. Notice that 
it is common in the literature, e.g., in the work by Lievre et al. [44], to 
consider the internal resistance referring only to the ohmic resistance of 
the battery, which can be calculated as the ratio between voltage and 
current variation over a few seconds. However, the total voltage dip of a 
battery also includes a transient due to the polarization that is more 
complex to measure online. Notice that the use of either one of these 
definitions of SoH is mainly related to the context in which the battery is 
used. 

Commonly, the index used for battery degradation in power appli-
cations is SoHR, while in energy applications, it is more common to use 
SoHC. Indeed, for stationary applications such as the self-consumption 
scenarios in smart-grids is more common to consider the SoH compo-
nent related to capacity since this kind of application is less stressful in 
terms of power than other applications, e.g., automotive. Usually, the 
battery is considered to be elapsed, i.e., SoHC(t) = 0, when the value of 
Qmax(t) drops below the 80 % of the nominal capacity QN [9], formally α 
= 0.8. Conversely, it is common for batteries used for automotive ap-
plications to rely on the SOHR(t), since the power density is one of the 
most relevant requirements [45] for such settings. In this setting, it is 
common to have SoHR(t) = 0 when the internal resistance reaches 160 % 
of its initial value at the same condition of temperature and SoC [46], 
formally β = 0.6. 

Finally, it is worth noting that some works in the capacity-related 
SoH estimation field use a different definition, i.e., SoHC := Qmax(t)/ 
QN, e.g., [39]. However, using such a definition does not provide explicit 
information about the usability of the battery in the specific context, 
and, therefore, we resort to the definition in Eq. (1) that by setting the 
value of α adapts to different applications. 

4. Algorithm 

4.1. Problem formulation 

Since the direct measurement of the SoH is not a viable option, the 
goal of this work is to determine the battery SoH, both in its capacity 
SoHC and internal resistance SoHR formulation. Recall that the compu-
tation of these values requires estimating either the maximum capacity 
Qmax(t), or the internal resistances R(t) at the current time instant t. 

The SHE method relies on the use of the current I(t) and voltage V(t) 
measurements, the SoC of the battery SoC(t), and the battery tempera-
ture T(t) gathered during the operational battery life, at the beginning of 
its life and in its last period of usage.2 Formally, the proposed method 
requires having the above information over two time periods:  

• A dataset D init := {I(t) ,V(t) }t∈T init 
of the measurements over an 

initial time period T init characterizing the initial stages of the bat-
tery usage, and a dataset ℰinit := {SoC(t) ,T(t) }t∈T init 

of the SoC and 
temperature over the same period T init ;  

• A dataset D old := {I(t) ,V(t) }t∈T old 
of measurements over a time 

period T old characterizing the current state of the battery, and a 
dataset εold : {SoC(t) ,T(t) }t∈T old 

of the SoC and temperature over the 
same period T old. 

4.2. Proposed solution 

This work proposes the use of an electrical model, i.e., the Thevenin's 
equivalent model [48,49], to characterize the battery behavior and, 
subsequently, infer the SoH from it. Indeed, it has been shown that the 
use of Thevenin's model, i.e., a first-order electric RC model of the bat-
tery, provides enough accurate approximation of lithium-ion battery 
dynamics [50]. In this model, depicted in Fig. 1, the battery is charac-
terized by an equivalent model specified by the following parameters: 
the internal resistance RS in series with an RC group (consisting of a 
resistance RP, and capacitance C), and a voltage source, i.e., the Open 
Circuit Voltage OCV. In this model, the value of the Qmax is inferred from 
the behavior of the OCV source w.r.t. the current passing through it, 
while the variations in the internal resistance value are approximated by 
the behavior of the resistance R := RS + RP. It is worth noting that the use 
of the SHE allows evaluating SoHR based on the whole internal resis-
tance, considering both the ohmic and recovery effect, giving a 
comprehensive knowledge of the battery aging. 

Fig. 2 summarizes the whole procedure, which combines a time se-
ries segmentation approach [51] and the Voltage Dynamic-Based State 
Estimation (VDB-SE) algorithm, providing an online approach to the 
battery modeling [47] to estimate either the maximum capacity Qmax(t) 
and the resistance R(t).3 

4.3. Capacity 

Let now consider the capacity State of Health SoHC. Applying the 
VDB-SE algorithm to D init , it outputs a parameter vector θ̂ character-
izing the battery, whose elements include Q̂max,init , i.e., an estimate of the 
Thevenin's model maximum capacity for the nominal conditions of the 
battery.4 Repeating the same process on D old, the algorithm obtains an 
estimate of the same quantity Q̂max,old for the current conditions for the 
battery. The final estimates ŜoHC of the actual SoHC are computed as 
follows: 

C

RS

RP

OCV V (t)

I (t)

VC (t)VOCV (t)

VRS (t)

Fig. 1. Thevenin equivalent model of the battery.  

2 If the information about the SoC is not available, one can rely on its esti-
mation provided by using the CC [13], or the VDB-SE [47] methods. 

3 Notice that the original purpose of the work in [47] was the SoC estimation. 
Conversely, in what follows, it will be used for its ability to provide a model of 
the battery, including estimates for the Qmax, RS, and RP values.  

4 See [47] for more details. 
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ŜoHC =
Q̂max,old − αQ̂max,init

(1 − α)Q̂max,init

.

Alternatively, one can use the information about QN, if it is available, 
instead of the estimate of Q̂max,init to estimate ŜoHC. 

4.4. Internal resistance 

For what concerns the internal resistance, as stated by Huet [52], the 
resistance RS depends on different factors, i.e., the current SoC and 
temperature. This implies that the estimation procedure should follow a 
different path. In what follows, the algorithm makes use of the dataset 
ℰinit and ℰold to partition T init and T old, respectively. This approach 
ensures that the SoC and temperature are jointly homogeneous over 
each one of the elements of the partition. Finally, these intervals are used 
to partition the datasets D init and D old, respectively, and estimate the 
internal resistance R using the VDB-SE algorithm. 

At first, applying a change point detection algorithm on ℰinit, a 
partition T 1,init ,…,T Ninit ,init of the original period T init is obtained, 
formally ∪iT i,init ≡ T init and T i,init ∩ T j,init = ∅ for each i ∕= j. The 
number of sub-intervals Ninit is determined by the change point detection 
algorithm, either fixing a number of splits or a penalty factor balancing 
the number of splits with the homogeneity of each T i,init set.5 Using the 
above defined subsets T 1,init,…,T Ninit ,init, a partition of the measurement 
data into the datasets D 1,init ,…,D Ninit ,init is obtained, where each set 
D i,init corresponds to the measurements gathered during one of the 
period T i,init or, formally, D i,init :=

{
(I(t)V(t) ) ∈ D inits.t.t ∈ T i,init

}
. 

Applying the VDB-SE algorithm over each one of the datasets D i,init , 
generates a parameter vector characterizing the electrical model of the 
battery during the T i,init period. Among the parameters estimated from 
the battery by VDB-SE, the values of the resistances R̂S,i,init and R̂P,i,init, 
for all i ∈ {1,…,Ninit}, are the ones of interest for estimating the SoH. 
Indeed, their summation is an estimate R̂i,init of the internal resistance R 
(t), i.e., R̂i,init := R̂S,i,init + R̂P,i,init . Finally, define the average values of the 
SoC and temperature over each period T i,init as follows: 

SoCi,init =

∑
t∈T i,init

SoC(t)
⃒
⃒T i,init

⃒
⃒

; (3)  

Ti,init =

∑
t∈T i,init

T(t)
⃒
⃒T i,init

⃒
⃒

; (4)  

respectively, where ∣T i,init ∣ is the cardinality of the set T i,init . The above 
data defines a regression problem where the input vectors are 
(
SoCi,init ,Ti,init

)
and the corresponding output is R̂i,init. This problem is 

solved by means of standard machine learning techniques, e.g., Linear 
Regression, Regression Trees, and Neural Networks, the choice of which 
depends on the complexity and availability of the data analyzed. 

As a result, the above-mentioned techniques generate a function 
f̂ init(SoC,T) that approximates the relationship between the pair State of 
Charge SoC and temperature T, and the internal resistance R(t). Finally, 
the value of the internal resistance f̂ init(SoC*,T*) is evaluated at SoC* 
and T*, which are the reference values at which the resistance is eval-
uated for SoC and temperature, respectively. 

The same approach, i.e., partitioning and subsequent regression, is 
applied to the dataset D old corresponding to the current battery status. 
This generates the function f̂ old(SoC,T) characterizing the relationship 
between the generic State of Charge SoC and temperature T with the 
current internal resistance R(t). Finally, the estimates of the SoHR is 
computed as follows: 

ŜoHR =
(1 + β) f̂ init(SoC*,T*) − f̂ old(SoC*, T*)

βf̂ init(SoC*,T*)
. (5)  

5. Experiments 

In this section, the SHE methodology is tested using real data coming 
from a battery degradation test. 

5.1. System Under Test 

All the data used for this experimental campaign are retrieved from 
degradation tests performed in standard conditions using Nickel- 
Manganese-Cobalt (NMC) cell manufactured by KOKAM, model 
SLPB100216216H. The main characteristics of the cell are reported in 

Fig. 2. Schema of the SHE algorithm at time period T init . The same schema holds if we apply the scheme at T old by substituting the indexes corresponding to T init 

with the ones corresponding to T old. 

5 See [53] to properly choose one of these two options according to the in-
formation available on the dataset. 
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Table 2. The current and voltage composing the data used for the 
experiment are provided in Fig. 3. The degradation test is performed in 
the RSE's Battery Lab using thermal chambers to control temperature 
and measurement instruments that register sample time, current, 
voltage, and temperature information. In particular, the test bench used 
to perform the aging test is a Hoecherl & Hackl bidirectional power 
supply, model NL1V20C80. This, controlled by a host computer, can 
charge and discharge the battery at a maximum rate of 80 A. All the tests 
were carried out inside a temperature test chamber (ACS DY 250 BT), 
which was used to maintain the desired cell temperature within ±0.5 K. 
A data logger based on National Instruments Compact DAQ was used for 
measuring the cell voltage (NI9206), the current through an external 
LEM, and the ambient and battery temperatures (NI9213). The dataset 
over which the solutions are tested is composed of 24 discharges with a 
spacing of approximately 200 cycles between each period of charac-
terization. Each characterization is composed of a full discharge and a 
pulse discharge aiming at measuring the maximum capacity and internal 
resistance, respectively. To run the experiments, it has been used the 
Matlab implementation of SHE.6 The code used for the results provided 
in this section has been run on an Intel(R) I5(R) 8259U @ 2.30GHz CPU 
with 8 GB of LPDDR3 system memory. The operating system was macOS 
12.2.1, and the experiments have been run on Matlab(R) R2021b. All the 
experiments shown in this section take ≈7 minutes to be performed. 

5.2. Performance indexes 

As performance indexes, authors used the percent errors over the 
battery parameters and SoH, formally defined as follows. The percent 
error eC(t) corresponding to the capacity at time instant t is defined as: 

eC(t) =
⃒
⃒Qmax(t) − Q̂max,old(t)

⃒
⃒

Qmax(t)
⋅100,

where Q̂max,old(t) is the corresponding estimate for the maximum ca-
pacity provided by the proposed method, the ground truth Qmax(t) is 
provided by a measurement conducted offline through Coulomb 
Counting. Both are defined for each t ∈ {0,200,…,4600}, i.e., the last 
time instants of each one of the 24 discharges. The percent error eR(t) 
corresponding to the internal resistance at time instant t is defined as: 

eR(t) =
|R(t, SoC*,T*) − f̂ old(t, SoC*, T*)|

R(t, SoC*, T*)
⋅100,

where the ground truth R(t,SoC*,T*) is provided by a measurement 
conduced at time t during the pulse discharge test when the battery is at 
State of Charge SoC* and Temperature T*. 

The error over the SoH estimate are evaluated in the same way for 
both capacity-related (SoHC) and resistance-related (SoHR) State of 
Health. Formally, the errors eSoHC and eSoHR are: 

eSoHC (t) = ∣SoHC(t) − ŜoHC(t)∣⋅100,

eSoHR (t) = ∣SoHR(t) − ŜoHR(t)∣⋅100,

where ŜoHC(t) and ŜoHR(t) are the estimates provided by the proposed 
methods at time t ∈ {0,200,…,4600}, respectively. 

5.3. Capacity 

To estimate the capacity State of Health SoHC, an estimate over time 
of the maximum capacity Q̂max(t) is performed. The estimated values 
over the charge/discharge cycles, reported on the x-axis, are provided in 
Fig. 4, and are compared with the ones made in a specific discharge test 
through CC performed by applying a Constant Current-Constant Voltage 
(CC-CV) profile to the battery as depicted in Fig. 5. Recall that the 
computation of this CC baseline requires an offline test and, therefore, in 
practical application is not feasible to apply such a method without 
removing the battery from its operational context. 

The performances are satisfactory since the error in the estimate is 
eC(t) < 3% over the entire estimation period, with an average error of 
less than 1.2 % in the estimate of the Qmax(t) (averaged over the cycles 
composing the entire discharge test data). 

Fig. 6 represents the behavior of the estimated SoH SoHC(t) over the 
cycles, considering α = 0.8. The error in the SoHC estimate eSoHC(t) 
averaged over time is less than 5.9 %. This suggests that the proposed 
method provides a reliable estimate of the SoH over the entire opera-
tional life of the battery, as long as it is provided with the current and 
voltage measurements from it. 

5.4. Internal resistance 

To estimate the SoHR, a change point detection algorithm on both 
SoC and temperature signals has been applied. Since in the tests under 
analysis, the temperature is maintained constant using a thermal 
chamber, the proposed analysis will focus on the relationship between 
SoC and internal resistance, which has been shown to be the most sig-
nificant one [52]. To partition the signal, the authors adopt an 
approximated splitting criterion using a penalty factor to be more flex-
ible w.r.t. the different kinds of signals the algorithm faces during the 
operational life of the battery. In particular, bottom-up search methods, 
i.e., the ones by Killick et al. [51], Chen and Gupta [54], using an 
L1–norm as a cost function, have been used. The above-mentioned 
search method has been chosen due to its computational efficiency, i. 
e., its computational complexity is linear w.r.t. the number of samples, 
and since the cost function has empirically demonstrated to be the most 
flexible among the ones allowed by this search method (for further in-
formation about cost function, refer to Moreno et al. [55]). As 
mentioned in Section 4, once the dataset has been partitioned, the 
proposed algorithm estimates using VDB-SE multiple values of the in-
ternal resistance and builds a model of the internal resistance. In this 
test, the models are computed using Ridge Regression [56] with second- 
order polynomial features. 

The results are shown in Fig. 7a, where the models of the internal 
resistance are compared over the charge/discharge cycles with the 
resistance measurements obtained from the pulse discharge character-
ization tests (Fig. 3) denoted as Ground-Truth, whose computation re-
quires an offline procedure. The results show how, at ≈2,500 cycles, the 
resistance starts to increase rapidly, and at ≈1000 cycles, it reaches the 
value of internal resistance such that the battery stops being reliable for 
the given application. The error on the internal resistance R(t) in stan-
dard condition ̂f old(t, SoC*,T*), i.e., SoC* = 0.5, and T* = 20∘C, averaged 
over time is less than 4 %. 

Fig. 7b shows the same analysis without the Regression model, 
considering only data from subset with average State of Charge SoC and 
average temperature T closer to normal conditions, i.e., SoC ≈ 0.5 and 
T ≈ 20∘C. In this case, the analysis is more subject to noise, with an 
average error eR(t) over time equal to 6.7 %, resulting in an increase of 
68 % in the estimate w.r.t. using the model. This analysis empirically 

Table 2 
Characteristics of the simulated cell.  

Feature Value 

Rated voltage 3.6 V 
Minimum voltage 2.7 V 
Maximum voltage 4.2 V 
Rated capacity 44 Ah 
Rated charging/discharging current 40 A  

6 https://github.com/marcomussi/she. 
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confirms the good properties of adopting a regression model in the es-
timate phase for the datasets under analysis. 

Finally, Fig. 8 shows the SoHR estimate corresponding to the esti-
mated values of the internal resistance R̂(t), considering β = 0.6. In this 
analysis, considering a battery exhausted when the current capacity is 
above the 160 % of the one estimated at system deploy, the average 
error in the estimate is eSoHR is equal to 7.5 %. The behavior is consistent 
with the one presented in Fig. 7a. 

6. Conclusions and future works 

In this work, a different method to estimate online the SoH of a 
battery, either in its maximum capacity or internal resistance flavor, is 
presented. The method has the advantage w.r.t. existing methods to 
require only the operational measurements provided by the battery, i.e., 
current and voltage, and estimate a model over partitions of such signals 

Fig. 3. Profiles during the full discharge test.  

Fig. 4. Estimate of the value of Q̂max,old(t) over time.  

Fig. 5. Profiles during a single CC-CV discharge.  

Fig. 6. Estimate of the values of SoHC over time.  
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without requiring lab experiments. Moreover, differently from what has 
been proposed before, the proposed method estimates the internal 
resistance, including the ohmic resistance and the polarization one. 

Tests on real-world data coming from a battery cell empirically show 
that the performances of the algorithms in both flavors are satisfactory. 
In particular, the average error in terms eC and eR is 1.2 % and 4 %, 
respectively. These values result in an error on the capacity-related State 
of Health eSoHC below 6 %, and an error on the resistance-related State of 
Health eSoHR of 7.5 %. 

An interesting future line of research is using such estimation to 
improve the management of batteries in smart grids. 

NomenclatureThe acronyms used in the paper are the following: 

Acronym Description 
SoH State of Health 
SHE State of Health Estimator 
OCV Open Circuit Voltage 
EIS Electrochemical Impedance Spectroscopy 
SoC State of Charge 
CC Coulomb Counting 
ICA Incremental Capacity Analysis 
DVA Differential Voltage Analysis 
SVM Support Vector Machines 
VDB-SE Voltage Dynamic-Based State Estimation 
NMC Nickel-Manganese-Cobalt 
CC-CV Constant Current-Constant Voltage 
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