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E. Riva∗, M. Di Ronco, A. Elabd, G. Cazzulani, F. Braghin

Politecnico di Milano
Department of Mechanical Engineering

Via La Masa 1, 20156, Milano

Abstract

We investigate non-reciprocal wave propagation in spatiotemporal phononic
plates. Specifically, the first aim of this manuscript is to propose a general
formulation of the Plane Wave Expansion Method (PWEM) that, in contrast
with previous works, is applicable to any class of 2D spatiotemporal unit cells
whose properties can be expanded in traveling plane waves. The second aim
is to exploit this analysis tool in order to study a class of phononic materials
capable of violating mirror symmetry in reciprocal space, therefore breaking
reciprocity principle along different propagation directions in physical space.
This is obtained by considering the plate elastic properties to be discretely
modulated in space and continuously in time. Theoretical dispersion profiles
are validated and compared with numerical simulations.

Keywords: Acoustic diode; Plane Wave Expansion Method (PWEM);
non-reciprocity; phononic bandgap; space-time modulation.

1. Introduction

Non-reciprocal wave propagation in phononic crystals has drawn growing
attention within the research community in the past years [1, 2]. Indeed, the
opportunity to design elastic structures which support one-way wave propa-
gation is of technological relevance for next-generation applications involving
elastic energy manipulation, waveguiding and conversion [3, 4].
In this context, 1D phononic waveguides have recently been designed and
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successfully realized [5–8] to break the reciprocity principle. One possibility
is to locally alter the material properties mimicking the propagation of a
wave in mechanics [6, 9–15] and acoustics [16, 17]. This generally requires
active elements such as time-modulated resonators [6] or smart periodic de-
vices [18] driven by phase shifted modulation signals. A second possibility
employs 2D lattice structures with spinning gyroscopes, establishing elastic
analogues of the Quantum Hall Effect (QHE) [19–21]. This strategy relies on
the exploitation of one-way topologically protected edge waves, not involv-
ing the bulk of the material. Systems with broken time reversal symmetry
can be also designed using three port devices [22] or exploiting nonlinearities
[23–25].
In this work we employ bi-dimensional space-time modulated systems as
a platform to study non-reciprocity in mechanics. In comparison with 1D
structures, the addition of one spatial dimension makes wave propagation
analysis more complex, but also opens new promising ways to manipulate
elastic waves along different directions. A notable example has been explored
by Attarzadeh et al. [26] leveraging spatiotemporally modulated membranes
to break time reversal symmetry, continuously biasing the applied traction
field and material density in space and time. Although the aforementioned
configuration offers a theoretical framework to study non-reciprocity in a spe-
cific class of 2D spatiotemporal mechanical structures, additional efforts are
required for the analysis of arbitrarily shaped modulations. In particular, in
this manuscript we aim to bridge the gap between fully continuous modula-
tions (for which material properties are pointwise varying in time) and those
unit cell profiles that can be more easily realized in engineering applications
- which must be studied with appropriate tools.
For this reason, we investigate discretely modulated plates as a relevant and
complete case-study. This class of materials is characterized by a spatially
discrete and temporally continuous elasticity profiles which embodies non-
reciprocal capabilities, achieved by inducing traveling-like material proper-
ties. In contrast with different space-time varying systems shown in pre-
vious works, this configuration allows for a more feasible implementation,
which can be provided using established techniques, such as negative capac-
itance shunts applied to piezoelectric materials bonded on a 2D substrate
[18, 27, 28]. The corresponding non-symmetric band diagram in recipro-
cal space is computed using a generalization of the Plane Wave Expansion
Method (PWEM) extending prior works [11, 18] to 2D structures. The gener-
alized PWEM can be applied to any kind of 2D spatiotemporal unit cells - and
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not limited to any specific class of unit cell profiles - therefore assuming that
the modulation can be mapped as a series of plane waves characterized by
different propagation speed. Moreover, we demonstrate that discretely mod-
ulated plates support non-reciprocal wave propagation. Specifically, this is
accomplished highlighting the leading Bloch-wave component [10, 11, 24, 29]
of the dispersion diagram, which is characterized by a wide set of supported
modes. Once the diagram is filtered to the most relevant terms, associated
directivity plots and group velocities are computed to predict directional and
non-reciprocal wave propagation phenomena in the x− y plane. Theoretical
dispersion plots are verified through numerical simulation of wave propaga-
tion and corresponding dispersion diagram, which are reconstructed from the
displacement response of a plate under tone burst excitation.
The article is organized as follows: in section 2 we describe the analytical
procedure for the band diagram computation of arbitrary modulations. In
section 3, the PWEM is applied to a spatially discrete and temporally contin-
uous material. Theoretical and numerical results are compared and discussed
in detail. Concluding remarks are presented in section 4.

2. Analytical procedure for non-symmetric band diagram compu-
tation

Consider the general elastodynamic equation describing the out-of-plane
motion of a Kirchhoff plate, therefore neglecting in-plane polarizations:

∂2mx

∂x2
+ 2

∂2mxy

∂x∂y
+
∂2my

∂y2
= − ∂

∂t

[
s(x, y)ρ(x, y, t)

∂w(x, y, t)

∂t

]
(1)

where w(x, y, t) is the out-of-plane displacement field, s(x, y) and ρ(x, y, t)
are the plate thickness and material density functions respectively. mi,j are
the bending moment stress resultants, which read:

mx = B(x, y, t)

[
∂2w(x, y, t)

∂x2
+ ν

∂2w(x, y, t)

∂y2

]
my = B(x, y, t)

[
∂2w(x, y, t)

∂y2
+ ν

∂2w(x, y, t)

∂x2

]
mxy = (1− ν)B(x, y, t)

∂2w(x, y, t)

∂x∂y

(2)
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where E(x, y, t) is the Young’s Modulus and B(x, y, t) = E(x,y,t)
1−ν2

s3(x,y)
12

is the
bending stiffness, which is a generic function of space and time. ν is the
Poisson’s ratio. Merging Eqs. 1 and 2 gives the PDE governing elastic wave
propagation in modulated plates, reported in Appendix A for the sake of
brevity. Now, under the assumption of space-time periodic elasticity and
material density, B(x, y, t) and G (x, y, t) = s(x, y)ρ(x, y, t) are written in
terms of exponential functions:

B(x, y, t) =
∞∑

h,n,v=−∞

B̂h,n,ve
j(κm·r−vωmt)

G(x, y, t) =
∞∑

h,n,v=−∞

Ĝh,n,ve
j(κm·r−vωmt)

(3)

where the term
∞∑

h,n,v=−∞
denotes a nested summation over the indexes h, n, v.

κm = (hκmx, nκmy) and r = (x, y) are the modulation wavevector and spa-
tial coordinates mapped within the unit cell domain. We define κmx = 2π

λmx
,

κmy = 2π
λmy

and ωm = 2π
Tm

as spatial and temporal modulation wavenum-

bers and frequency, with associated wavelengths λmx and λmy and temporal
period Tm, where the subscript mξ stands for modulation along the direc-
tion ξ. Corresponding Fourier coefficients B̂h,n,v and Ĝh,n,v for B(x, y, t) and
G(x, y, t) are obtained by numerical integration within the spatiotemporal

domain D =

[
−λmx

2
,
λmx

2

]
×
[
−λmy

2
,
λmy

2

]
×
[
−Tm

2
,
Tm
2

]
:

B̂h,n,v =
1

Tmλmxλmy

∫
D

B(x, y, t)e−j(κm·r−vωmt)dD

Ĝh,n,v =
1

Tmλmxλmy

∫
D

G(x, y, t)e−j(κm·r−vωmt)dD

(4)

Given the 3D Fourier transform of the unit cell, a general formulation of the
PWEM is hereafter presented to compute the wave propagation properties
of an arbitrary profile defined within the domain D. Compared with previ-
ous studies [9, 26], this additional complexity is required in order to address
more realistic case-studies, like space-time discretely modulated structures,
thus not limiting the analysis to a specific set of plane waves used to describe
material properties. Ansatz solution w(x, y, t) is sought for Eq. 1 as combi-
nation of propagating plane waves owning the same arbitrary periodicity of
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the modulation:

w(x, y, t) = ŵ(x, y, t)ej(κ·r−ωt), ŵ(x, y, t) =
∞∑

p,q,r=−∞

Ŵp,q,re
j(κm·r−rωmt) (5)

where κ = (κx, κy) is the imposed wavevector field and κm = (pκmx, qκmy).
Upon combination of Eqs. 1-5 and enforcing orthogonality of exponential
functions, the dispersion relation ω = ω (κx, κy) yields:[

L̃0(kx, ky) + L̃1ω + L̃2ω
2
]
w̃ = 0 (6)

which is a Quadratic Eigenvalue Problem (QEP) solved for ω imposing κx
and κy. L̃0(kx, ky), L̃1 and L̃2 are full matrices of dimension Γo = (2P +
1)(2Q+1)(2R+1), being P,Q,R the Fourier expansion truncation orders. In
the remainder of the paper, the computed dispersion relations are displayed
in terms of dimensionless quantities, i.e. µx = κxλmx, µy = κyλmy, Ω = ω/ω0

being ω0 = κ2m
√
B0/G0 with κm = κmxκmy/

√
κ2mx + κ2my, B0 =

E0s30
12(1−ν2) and

G0 = ρ0s0. E0, s0, and ρ0 are mean unit cell parameters. Moreover, a com-
plete description of the analytical procedure and QEP matrices is provided
in Appendix A.

3. Wave propagation in discretely modulated plates

Consider a periodic plate whose elasticity can be arbitrarily modulated
in space and time. Specifically, in this manuscript we focus our attention
on spatially discrete and temporally continuous profiles, as an relevant case-
study from the engineering perspective. We assume the following function
for the Young’s modulus:

E(x, y, t) = E0

{
1 +

αm
2

cos

(
θ (x)− ωmt

)
+
αm
2

cos

(
θ (y)− ωmt

)}

where : θ (ξ) = θ (ξ + 2kπ)



0 0 < ξ < 1
Rs
λm

. . . . . .

2π (i− 1) /Rs
i−1
Rs
λm < ξ < i

Rs
λm

. . . . . .

2π (Rs − 1) /Rs
Rs−1
Rs

λm < ξ < λm

k integer, i = 1, . . . , Rs

(7)
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(a) (b)

(c)

(d)

Figure 1: (a) Unit cell Young’s Modulus profile in space and time. Shaded volumes
represent the temporal evolution of each spatially discrete sub-element. Three different
time instants are highlighted with solid surfaces for t/Tm = 0, t/Tm = 1/3 and t/Tm = 2/3.
(b) Illustration of a finite spatio-temporal domain made of 5× 5 unit cells. (c) Harmonic
content of the modulation for Ω = Ωm (top) and Ω = −Ωm (bottom).

where αm = ∆E/E0 is the dimensionless modulation amplitude, ∆E =
Emax − E0 and E0 = (Emax + Emin) /2 is the mean Young’s Modulus value.
Rs is the number of sub-elements used to discretize the unit cell spatial
domain. Notice that, for simplicity and without any loss of generality,
the same Rs value and lattice constant λm are assumed in x and y, thus
λm = λmx = λmy. Moreover, piecewise functions of space θ (x) , θ (y) de-
fine a phase shift between consecutive elements of the kth unit cell, whereby
their continuous modulation in time induces directional stiffness propagation,
mimicking the propagation of a plane wave in a plate. This concept is eluci-
dated in Fig. 1(a)-(b) showing that for Rs = 3 the elastic properties are tai-
lored to propagate along an angle of π/4 in the x−y plane. Interestingly, the
spatial discretization generates a set of traveling plane wave components that,
in general, populate the entire µx×µy ×Ω reciprocal domain, whereby their
propagation velocity (positive or negative) defines the non-reciprocal work-
ing direction of the gaps [9, 11]. That is, the spectral content resulting from
the unit cell 3DFT, which has nonzero components only in the µx×µy×Ωm

subspace (see Fig. 1(c)-(d)), reveals counter propagating harmonics at dif-
ferent spatial wavenumbers and same frequency Ωm. These components have
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Figure 2: (I)− (III) Dispersion relation Ω = Ω (µx, µy) for γ = 0, γ = π/4 and γ = 3/4π.
(IV ) − (V I) Colored dispersion relation Ω = Ω (µx, µy) as a function of the magnitude
of the associated eigenvector component |w| [dB]. (V II) − (IX) Comparison between
numerical simulations and leading dispersion branches.
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different propagation speed in physical space which, in turn, depends upon
modulation wavenumbers and frequency: i.e. vm = ωm/ (hκmx, nκmx) for
different h, n values, and they all contribute to the unit cell displayed in Fig.
1(a). For simplicity, in the remainder of the manuscript we consider a di-
mensionless modulation velocity vector βm = (βmx, βmy) relative to the first
plane wave component, i.e. for h = 1 and n = 1:

βmξ =
ωm
κmξ

1

κm

√
B0

G0

=
vmξ

κm

√
B0

G0

(8)

and γm = arctan (βmy/βmx) defines its propagation direction. Plugging the
aforementioned 3D Fourier expansion of E (x, y, t) for βmx = βmy = βm =
0.094, αm = 0.8 (such strong modulation is needed in order to generate a
sufficient amplitude associated with the first nonzero spectral component of
the unit cell, as shown in Fig. 1(c)-(d)) and λmx = λmy = λm = 0.06 m
into Eq. 6 and considering constant material density G (x, y, t) = G, gives
the associated dispersion relation, which is represented in Fig. 2 (I)− (III)
mapped along different wave propagation directions, i.e. γ = 0, π/4 and
3/4π respectively, where µγ =

√
µ2
x + µ2

y defines the dimensionless propa-
gation constant, being γ = arctan (µy/µx) the investigation direction. It is
worth mentioning that, given the unit cell spatial discretization, the associ-
ated spectral content shown in Fig. 1(c) is richer compared to point-to-point
modulations. As a result, the Bloch diagram increases in complexity and
the number of dispersion branches is consistent with the harmonics used to
approximate the wave solution. In the case at hand, P = 3, Q = 3, R = 1
are employed, whereby the series expansion is limited to (2P + 1) (2Q+ 1)
spatial and (2R + 1) temporal harmonics. These additional modes populate
the entire frequency-wavenumber space, which is in agreement with the be-
havior of 1D space-time modulated systems [11, 15, 24, 29]. To discriminate
the most relevant dispersion branches, each eigenvalue is weighted by the
magnitude of the associated eigenvector component. That is, consider the
wave solution for ω = ω̂ and κ = κ̂:

w(x, y, t) =

P,Q,R∑
p,q,r=−P,−Q,−R

Ŵp,q,re
j(κm·r−rωmt)ej(κ̂·r−ω̂t) (9)

since the QEP is ωm-periodic and κm-periodic, the solution at a given fre-
quency and wavenumber is equivalent to that computed at ω = ω̂+ rωm and
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(a) (b)

Figure 3: Directivity plots for (a) spatially modulated plate αm = 0.8, βm = 0 and (b)
spatiotemporal modulation αm = 0.8, βm = 0.094.

κ = κ̂+(pκmx, qκmy) and the eigenvector components Ŵp,q,r are shifted in po-
sition accordingly. For this reason, one can identify the amplitude associated
with the contribution of the p, q, r branch to that of the p = 0, q = 0, r = 0
component while probing the entire family of solutions given by the QEP
in Eq. 6. The resulting dispersion, obtained assigning a color proportional
to the amplitude |Ŵ0,0,0 (ω,κ) |, is illustrated in Fig. 2 (IV ) − (V I), which
reveals that the energy content is mostly located on the central branches,
whereby highlighting that opposite wavenumbers support gaps occurring at
different frequencies. Specifically, at Ω+ = 0.55 and Ω− = 0.42 for γ = 0
(see Fig. 2 ((III)) ), where the superscripts + and − denote bandgap cen-
tral frequencies for positive and negative wavenumbers, respectively. Higher
relative distance between Ω+ = 1.1 and Ω− = 0.88 is achieved for γ = π/4
(Fig. ((IV )) ), whereas reciprocal bandgaps are obtained for Ω = 0.88 and
Ω = 1.1 along γ = 3/4π.
In the remainder of this section we restrict the wave propagation analysis
to the leading components, i.e. the red highlighted eigensolutions which
are characterized by |Ŵ0,0,0 (ω,κ) | = 1, thus neglecting higher order har-
monics, as wave propagation occurs involving mainly the terms associated
with the central branch. This approximation is verified though numerical
simulations of wave propagation performed using the commercial software
COMSOL Multiphysics. Specifically,we consider a plate made of 90 × 90
unit cells which is forced in its central region using a wide spectrum tone
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burst excitation. The displacement field is integrated within the spatial and
temporal simulation domains to obtain the numerical Bloch diagram, prov-
ing good agreement with the analytical results, as shown in the comparison
in Figs. 2 (V II)− (IX) for γ = 0, π/4, and 3/4π respectively.
A more complete description of the filtered eigensolution for spatial and
spatiotemporal modulations is presented in Figs. 3(a)-3(b), in terms of di-
rectivity plot: Ω (µx, µy) is mapped in a polar plane, where Ω is the distance
from the origin (also represented with colors) and γ = arctan (µy/µx) is the
corresponding angle. When the spatial modulation is turned on, a Bragg-
bandgap opens, and its position in the frequency domain depends upon the
direction of interest γ. The addition of a temporal periodicity results into
a modulation-induced tilting of the frequency-wavenumber space, which is
illustrated in the asymmetric plot in Fig. 3(b) and reflects the presence of
directional plane wave components in the unit cell 3DFT in Fig. 1(c)-(d).
The amount of change in the bandgap central position is dependent upon γ
(as for purely spatially modulated plate) but also from the modulation direc-
tion of propagation γm: indeed, for γ = γm = π/4 the dispersion relation is
more asymmetric, i.e. Ω+ and Ω− move toward higher and lower frequencies
respectively, while the bias decreases until it nullifies for γ = 3

4
π±π, a direc-

tion along which mirror symmetry is preserved and Ω+ = Ω− = Ω, similarly
to spatiotemporal membranes [26].
Consider now the non-reciprocal wave propagation problem between two
points A (emitter) and B (receiver). Point A is located in the central region
of the plate, whereas B is set sufficiently far from the excitation. When the
system is forced waves propagate along the direction identified by the group
velocity field Cg = ∇Ω (µx, µy), which is illustrated in Figs. 4(a)-4(b) for
spatially and spatiotemporally modulated medium. It is worth mentioning
that Cg is computed considering the filtered dispersion in Fig. 3, therefore
assuming that wave propagation occurs not involving less relevant, higher
order solutions that would have led to additional group velocity components
at every frequency associated with negligible wave amplitude.
Thanks to space-time modulation, Cg is defined only for certain angular re-
gions, as the filtered dispersion Ω (µx, µy) embodies non mirror-symmetric
properties. A non-reciprocal device can be thus achieved when the receiver
B is located within [160◦, 200◦] and [250◦, 290◦] for Ω ≈ 0.42, as opposite
directions (i.e. for [−20◦, 20◦] and [70◦, 110◦]) support wave propagation.
Non-reciprocity is confirmed by the RMS of the displacement field in Fig.
4(d) obtained by numerical simulation under narrowband spectrum excita-
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a)-(b) Group velocity fields at different frequency levels. RMS of the displace-
ment field for spatially and spatiotemporally modulated plate under narrowband tone
burst excitation centered at (c)-(d) Ω = 0.42 and (e)-(f) Ω = 0.88.
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tion. To better highlight the asymmetric behavior, Fig. 4(d) illustrates the
RMS response computed for the final instants of the time history. The result-
ing transmitted signal is clearly non-reciprocal for waves propagating along
opposite directions. For ease of visualization, the agreement between group
velocity and time simulations is shown by superimposing the limits of non-
reciprocal regions (dashed black lines) to the RMS displacement field. This
behavior can be also obtained within [−20◦, 20◦] and [70◦, 110◦] by switching
from positive to negative modulation direction. Moreover, if the temporal
modulation is turned off, the same input forcing gives the RMS displacement
field in Fig. 4(c), thus preserving wave propagation mirror symmetry, consis-
tently with the corresponding group velocity line depicted in Fig. 4(a). Fig.
4(c) also reveals the presence of reciprocal gaps close to the burst excitation
central frequencies which leads to the stop regions centered at 0, 90◦, 180◦

and 270◦. The comparison between Figs. 4(a)-4(c) and 4(b)-4(d) illustrates
that temporal and spatial modulations can be combined, resulting in a time
reversal symmetry break along specific directions, which can be analytically
predicted using a general formulation of the PWEM.
Non-reciprocity is also achieved within a narrow angular region centered at
225◦ for Ω ≈ 0.88, i.e. along the direction of propagation of the modulation,
as shown by the corresponding group velocity and RMS displacement fields in
Figs. 4(b)-4(f) respectively. On the other hand, when the temporal modula-
tion is turned off, reciprocity is restored, as shown in Fig. 4(e) for a spatially
varying medium forced at Ω ≈ 0.88. Even though the modulation amplitude
is not enough to generate a wide non-reciprocal region, the wave propagation
characteristics are well captured by the group velocity field, which suggests
asymmetric behavior along the angular regions highlighted with black dashed
lines.

4. Conclusions

In this work we proposed a general formulation of the PWEM in or-
der to study non-reciprocal wave propagation in spatiotemporally modulated
plates. This analysis tool is applicable to any class of modulations that can
be written as a series of traveling plane waves, thus extending the allowable
modulation classes that can be studied with the analytical tools present in
the literature.
In the second part of the manuscript, the generalized PWEM has been ap-
plied to study a spatially discrete and temporally continuous elastic medium
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which embodies non-reciprocal capabilities. We computed directivity and
group velocity plots, which are used to predict directional and non-reciprocal
phenomena at specific frequencies. Theoretical solutions have been compared
to numerical results, proving that the generalized PWEM is able to describe
wave propagation properties of discretely space-time modulated systems.
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Appendix A. QEP matrices description

Consider the wave propagation problem described in Section 2. The gen-
eral equation governing the out of plane dynamic for a Kirchhoff plate reads:

B

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

]
+ 2

∂B

∂x

∂

∂x

[
∂2w

∂x2
+
∂2w

∂y2

]
+ 2

∂B

∂y

∂

∂y

[
∂2w

∂x2
+
∂2w

∂y2

]
+

+

[
∂2B

∂x2
+
∂2B

∂y2

][
∂2w

∂x2
+
∂2w

∂y2

]
− (1− ν)

[
∂2B

∂x2
∂2w

∂y2
− 2

∂2B

∂x∂y

∂2w

∂x∂y
+
∂2B

∂y2
∂2w

∂x2

]
=

= −
∂G

∂t

∂w

∂t
−G

∂2w

∂t2
(A.1)

Plugging Eqs. 3-5 into Eq. A.1 gives:

∑
h,n,v,p,q,r

B̂h,n,vŴp,q,r

{[
(pkmx + kx)

2 + (qkmy + ky)
2

][
([h+ p]kmx + kx)

2 + ([n+ q]kmy + ky)
2

]
+

−(1− ν)
[
(hkmx)(qkmy + ky)− (nkmy)(pkmx + kx)

]2}
· ej([h+p]kmxx+[n+q]kmyy−[v+r]ωmt) =

=
∑

h,n,v,p,q,r

Ĝh,n,vŴp,q,r

{
(rωm + ω)([v + r]ωm + ω)

}
· ej([h+p]kmxx+[n+q]kmyy−[v+r]ωmt)

(A.2)

which can be simplified exploiting the orthogonality of the Fourier basis,
thus all the terms are multiplied by e−j(akmxx+bkmyy−cωmt) and integrated over

D =

[
−λmx

2
,
λmx

2

]
×
[
−λmy

2
,
λmy

2

]
×
[
−Tm

2
,
Tm
2

]
. Eq. (A.2), can now be
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conveniently rewritten as:

P∑
p=−P

Q∑
q=−Q

R∑
r=−R

B̂a−p,b−q,c−rŴp,q,r

{[
(pkmx + kx)

2 + (qkmy + ky)
2

][
(akmx + kx)

2 + (bkmy + ky)
2

]
+

−(1− ν)
[
([a− p]kmx)(qkmy + ky)− ([b− q]kmy)(pkmx + kx)

]2}
=

=
P∑

p=−P

Q∑
q=−Q

R∑
r=−R

Ĝa−p,b−q,c−rŴp,q,r

{
(rωm + ω)(cωm + ω)

}
(A.3)

Eq. A.3 is a QEP, which can be written using a compact matrix notation,
expanding the inner summation terms:

P∑
p=−P

Q∑
q=−Q

K̃a−p,b−q

{[
(pkmx + kx)

2 + (qkmy + ky)
2

][
(akmx + kx)

2 + (bkmy + ky)
2

]
+

−(1− ν)
[
([a− p]kmx)(qkmy + ky)− ([b− q]kmy)(pkmx + kx)

]2}
w̃p,q =

=
P∑

p=−P

Q∑
q=−Q

{
M̃0
a−p,b−q + M̃

1
a−p,b−qω + M̃2

a−p,b−qω
2

}
w̃p,q (A.4)

where K̃a−p,b−q, M̃
0
a−p,b−q, M̃

1
a−p,b−q, M̃

2
a−p,b−q are full square matrices of size

(2R + 1):

K̃a−p,b−q =


B̂a−p,b−q,0 . . . B̂a−p,b−q,−2R

...
...

...
B̂a−p,b−q,2R . . . B̂a−p,b−q,0



M̃0
a−p,b−q =


Ĝa−p,b−q,0(−R)(−R) . . . Ĝa−p,b−q,−2R(−R)(+R)

...
...

...
Ĝa−p,b−q,2R(+R)(−R) . . . Ĝa−p,b−q,0(+R)(+R)

ω2
m

M̃1
a−p,b−q =


Ĝa−p,b−q,0(−R−R) . . . Ĝa−p,b−q,−2R(−R+R)

...
...

...
Ĝa−p,b−q,2R(+R−R) . . . Ĝa−p,b−q,0(+R+R)

ωm

M̃2
a−p,b−q =


Ĝa−p,b−q,0 . . . Ĝa−p,b−q,−2R

...
...

...
Ĝa−p,b−q,2R . . . Ĝa−p,b−q,0


and w̃p,q accommodates the (2R + 1) time-harmonic components:

w̃p,q = {wp,q,−R, . . . , wp,q,+R}T
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In the same way, the summation term q ∈ [−Q,Q] can be expanded, thus:

P∑
p=−P

(
Z̃0
a−p + Z̃1

a−pω + Z̃2
a−pω

2

)
w̃p = 0 (A.5)

where Z̃0
a−p, Z̃

1
a−p, Z̃

2
a−p are full square matrices of order (2Q + 1)(2R + 1)

which take the following form:

Z̃0
a−p =



M̃0
a−p,0+

−K̃a−p,0

{[
(pkmx+kx)2+(−Qkmy+ky)

2

]
·

·

[
(akmx+kx)2+(−Qkmy+ky)

2

]
+

−(1−ν)

[
([a−p]kmx)(−Qkmy+ky)+

−([−Q+Q]kmy)(pkmx+kx)

]2}
. . .

M̃0
a−p,−2Q+

−K̃a−p,−2Q

{[
(pkmx+kx)2+(+Qkmy+ky)

2

]
·

·

[
(akmx+kx)2+(−Qkmy+ky)

2

]
+

−(1−ν)

[
([a−p]kmx)(+Qkmy+ky)+

−([−Q−Q]kmy)(pkmx+kx)

]2}
...

...
...

M̃0
a−p,2Q+

−K̃a−p,2Q

{[
(pkmx+kx)2+(−Qkmy+ky)

2

]
·

·

[
(akmx+kx)2+(+Qkmy+ky)

2

]
+

−(1−ν)

[
([a−p]kmx)(−Qkmy+ky)+

−([+Q+Q]kmy)(pkmx+kx)

]2}
. . .

M̃0
a−p,0+

−K̃a−p,0

{[
(pkmx+kx)2+(+Qkmy+ky)

2

]
·

·

[
(akmx+kx)2+(+Qkmy+ky)

2

]
+

−(1−ν)

[
([a−p]kmx)(+Qkmy+ky)+

−([+Q−Q]kmy)(pkmx+kx)

]2}



Z̃1
a−p =


M̃1
a−p,0 . . . M̃1

a−p,−2Q

...
...

...
M̃1
a−p,2Q . . . M̃1

a−p,0



Z̃2
a−p =


M̃2
a−p,0 . . . M̃2

a−p,−2Q

...
...

...
M̃2
a−p,2Q . . . M̃2

a−p,0


which is further expanded for p ∈ [−P, P ] wave components:[

L̃0(kx, ky) + L̃1ω + L̃2ω
2
]
w̃ = 0 (A.6)
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where L̃0(kx, ky), L̃1, L̃2 are full square matrices of order
(2P + 1)(2Q+ 1)(2R + 1):

L̃0(kx, ky) =


Z̃0

0 . . . Z̃0
−2P

...
...

...
Z̃0

2P . . . Z̃0
0



L̃1 =


Z̃1

0 . . . Z̃1
−2P

...
...

...
Z̃1

2P . . . Z̃1
0



L̃2 =


Z̃2

0 . . . Z̃2
−2P

...
...

...
Z̃2

2P . . . Z̃2
0


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