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Abstract
Many tolerancing problems on mechanical assemblies involve a functional requirement depending on a chain of parallel 
dimensions on individual parts. In these one-dimensional cases, simple methods are available for the analysis and the alloca-
tion of dimensional tolerances. However, they are difficult to extend to geometric tolerances, which must be translated into 
equivalent dimensional tolerances; this allows the analysis but makes the allocation generally impossible without Monte 
Carlo simulation and complex search strategies. To overcome this difficulty, the paper proposes a way of dealing directly 
with geometric tolerances in the allocation problem. This consists in expressing the functional requirement as a linear model 
of geometric tolerances rather than equivalent dimensional tolerances; the coefficients of the model (sensitivities) are cal-
culated considering both the dimension chain and the standard definition of the geometric tolerances. The approach can be 
combined with any constrained optimization method based on sensitivities. The optimal scaling method, previously proposed 
for dimensional tolerances, is extended to geometric tolerances and used in two examples to demonstrate the simplicity of 
the overall workflow and the quality of the optimal solution.

Keywords Tolerancing · Assembly design · GD&T · Dimension chain · Tolerance synthesis

1 Introduction

Tolerance allocation is the search for an optimal set of tol-
erance specifications. Parts are connected in an assembly, 
which establishes geometric relations between their features. 
Tolerances on part features should be as wide as possible to 
reduce manufacturing costs, yet tight enough to control the 
variation of some assembly-level geometric characteristics, 
here referred to as functional requirements (e.g., gaps, dis-
tances, or angles between features of different parts). For 
a candidate set of tolerances, the stackup of the allowed 
geometric deviations must be evaluated and compared with 
the allowable variation on each functional requirement; this 
task is called tolerance analysis and is carried out as a sub-
task of allocation. By solving a constrained optimization 
problem that has the tolerances as variables, it is possible to 
find the allocation that minimizes the manufacturing cost or 

alternative objective functions relating to tolerances (e.g., 
the reject rate or the expected quality loss).

Allocation problems were initially solved for dimensional 
tolerances. Only recently has attention been paid to the allo-
cation of geometric tolerances, which are now widespread 
in design practice and extensively regulated in international 
standards [1, 2]. The main reason is the increasing availabil-
ity of methods for geometric tolerance analysis, which are 
needed to verify the constraints of the optimization problem. 
In most assemblies, a functional requirement can involve 
both dimensional and geometric tolerances. The types of tol-
erances (e.g., orientation, position, profile) and their mutual 
relationships within the same part (datum system) must be 
chosen in a preliminary phase of tolerance specification; 
the allocation then finds the optimal values   of the specified 
tolerances (the two tasks are collectively referred to as geo-
metric tolerance synthesis).

The allocation of geometric tolerances has an additional 
difficulty compared to the original problem with dimensional 
tolerances. Verifying the stackup constraint requires that the 
geometric tolerances are translated into statistical variables 
with suitable properties. For reasons that will be discussed 
later, an optimal solution expressed in these variables may 
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not correspond to an optimal solution expressed in the origi-
nal geometric tolerances. This occurs especially in allocation 
methods based on analytic optimization, which embed the 
stackup constraint in the objective function to avoid complex 
procedures of numerical simulation.

This paper proposes a way of handling the geometric tol-
erances in the stackup analysis, in order to allow the direct 
search for the optimal solution of the allocation problem. 
The main concept is the definition of the sensitivities of the 
functional requirement to the geometric tolerances (rather 
than to differently defined stackup variables). The approach 
is able to deal with one-dimensional stackup problems (or 
1D dimension chains), the simplest allocation cases although 
very frequent in practice.

The paper is organized as follows. Section 2 recalls the 
allocation methods currently available for geometric toler-
ances. Section 3 discusses the difficulties of the problem, 
using a simple example to justify the proposed approach. 
Section 4 details the allocation procedure based on the sen-
sitivities associated with geometric tolerances. Section 5 
illustrates the application of the method to two 1D allocation 
cases that cover the main assumptions of this work. Section 6 
compares the method with an alternative approach based on 
numerical search and simulation. Section 7 discusses the 
advantages and limitations of the proposed method.

2  Literature review

The progress in tolerance allocation literature has been docu-
mented in several reviews. Some of them discuss allocation 
within the broader framework of tolerancing, focusing on 
the major approaches at their time of writing: these include 
mathematical programming [3], design of experiments and 
numerical optimization [4], and estimation of cost-tolerance 
relationships [5]. Available worst-case and statistical allo-
cation methods are described in [6–8]. Other reviews focus 
exclusively on allocation and recall the available methods 
[9] or discuss special formulations of the problem [10]. All 
these sources regard the allocation problem as limited to 
dimensional tolerances. Only a recent review [11], which 
provides an extensive classification of existing approaches, 
cites few studies where the allocation is extended to geo-
metric tolerances; the apparent misalignment with stand-
ards is explained with the difficulty of representing geo-
metric deviations as statistical variables for the purposes of 
optimization.

A first issue in the extension of the allocation problem 
is that manufacturing costs must now be related to all the 
standard geometric controls. Cost-tolerance functions have 
been proposed for various types of features and machining 
processes, considering position tolerances on holes [12] 
and profile tolerances [13]. To cover a wider range of cases, 

discrete cost-tolerance data have been published under given 
assumptions regarding machining and inspection processes 
[14–16].

Some allocation methods allow the use of geometric tol-
erances, but do not explain how they are treated. In one case, 
such detail is not addressed in a high-level description of 
assembly modeling software with tolerancing capabilities 
[17]. In another, the focus is on core aspects of geometric 
tolerancing such as datum systems [18], but formal details 
are expressed through constraint equations that are seem-
ingly bound to the specific assembly example. Also difficult 
to generalize is the approach of [19–21], which optimizes 
an extended cost function including machining, rework, and 
assembly; the function is evaluated assuming a given process 
sequence for each geometric tolerance.

Some authors have studied elementary tasks as building 
blocks of a typical allocation problem. In [22], position tol-
erances are calculated without any optimization as a function 
of basic dimensions and IT tolerance grades (correspond-
ing to alternative machining processes). For hole patterns, 
the definition of position tolerance with maximum mate-
rial condition (MMC) is used to develop equations for such 
tasks as calculating process capabilities [23] or reconstruct-
ing datums and basic dimensions from inspection data [24]. 
In [25], the allocation of angularity tolerances on a dove-
tail joint is carried out by a solution search method using a 
graphical procedure for stackup analysis.

Among the full-fledged allocation methods proposed 
for geometric tolerances, some are limited to 1D tolerance 
stackups (the same assumption made in this paper). To allow 
tolerance analysis within the optimization procedure, geo-
metric tolerances are translated into equivalent dimensional 
tolerances. For example, a position or profile tolerance is 
translated into a tolerance on one of the basic dimensions 
associated with the feature, while an orientation tolerance 
is translated into a tolerance on a zero nominal dimension. 
This is consistent with the simple tolerance analysis proce-
dures described in handbooks [26, 27] and commonly used 
in practice. The same approach is used in allocation methods 
taking into account the uncertainty on cost-tolerance func-
tions [28, 29] as well as in methods based on the optimiza-
tion of objective functions including cost [30] and quality 
loss [31] by genetic algorithms.

When dealing with 2D or 3D tolerance stackups, the treat-
ment of geometric tolerances is more complex and must rely 
on appropriate models or tools for tolerance analysis. One 
of the most popular choices is the use of commercial com-
puter-aided tolerancing (CAT) software to verify stackup 
constraints for each candidate set of geometric tolerances. 
Software simulation is integrated with several optimiza-
tion strategies; they include design-of-experiments (DOE) 
approaches such as full factorial plans [32, 33] or response 
surfaces [34, 35], solution search methods such as genetic 
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algorithms [36, 37], and the improvement of an initial solu-
tion through interactive procedures [38, 39]. For an unusual 
formulation of the allocation problem without cost-based 
optimization [40], simulation drives the selection of solu-
tions in a constraint space defined by applicable functional 
requirements.

While in CAT-based allocation the tolerance analysis task 
is “canned” within the optimization procedure, other alloca-
tion methods embed the formal details of available methods 
for the 3D analysis of geometric tolerances. For this purpose, 
geometric tolerances are translated into statistical variables 
associated with individual translational and rotational devia-
tions allowed to toleranced features. Most studies are based 
on either the small displacement torsor method [41–47] or 
some of its variants such as Jacobian-torsor [48, 49] and 
DP-SDT [50]. Other analysis methods used for allocation 
include the vector loop [51, 52], variational geometric con-
straints [53], datum flow chains [54], virtual joints [55], and 
some methods based on skin model shapes to include form 
errors in the analysis [56, 57]. In [58], the allocation of geo-
metric tolerances on deformable parts is carried out by inte-
grating a finite-element model in the optimization procedure.

With the objective of covering a wider spectrum of cases 
and assumptions, a further step is the development of proce-
dures based on advanced concepts and mathematical models 
for the representation of geometric tolerances. These include 
the actual mating envelope [59], vectorial tolerancing [60], 
quantifier and virtual boundary [61], and the T-maps in 
progressively more detailed definitions [62–66]. On the 
opposite end, other approaches try to reduce the complexity 
involved by geometric tolerances by special assumptions or 
approaches; examples include measurements on prototypes 
in the study of an electrical device [67] and the definition of 
variables with multivariate normal distributions in an alloca-
tion strategy considering designer’s preferences [68].

Related problems solved with similar methods include 
tolerance allocation on optical components [69] or CNC 
machine tools [70–72] and the allocation of geometric tol-
erances on machining processes [73–79].

In summary, any tolerance allocation method includes 
a tolerance analysis procedure. An optimization strategy 
generates solutions, i.e., sets of values   for the tolerances 
involved in a functional requirement. For each solution, 
it evaluates the objective function, e.g., the total machin-
ing cost of the toleranced features. Then it calls tolerance 
analysis to verify the stackup constraint, i.e., to estimate 
the statistical distribution of the functional requirement and 
compare it with assembly specifications. This applies to both 
dimensional and geometric tolerances. The treatment of geo-
metric tolerances requires the use of more complex analysis 
methods, which translate the geometric tolerances into sta-
tistical parameters for properly defined variables describing 
elementary deviations on the features (small translations or 

rotations in/about different directions). Such variables are 
essential for the analysis, but create a difficulty: since there 
are unlikely to be as many deviations as there are geomet-
ric tolerances, translating back the former into the latter is 
generally impossible.

The lack of a one-to-one mapping with geometric tol-
erances implies that deviation variables cannot be directly 
used for optimization, because the optimal solution does not 
uniquely correspond to an optimal set of values for original 
unknowns of the allocation problem. Such condition does 
not actually affect many of the above methods, which are 
based on Monte Carlo stackup simulation (possibly imple-
mented in CAT software) and numerical search strategies. 
These methods tackle allocation problems with possibly 
complex definitions and assumptions, but carry the price 
of a heavier computational burden as the simulation is to be 
repeated for a possibly high number of candidate solutions. 
Furthermore, it is not always clear and explicitly mentioned 
whether and how the results of the analysis (i.e., the indi-
vidual contributions of the deviations to the variation of the 
functional requirement) can guide the search for the optimal 
solution.

The above difficulty is more critical for simpler alloca-
tion methods, discussed in the earlier reviews cited in this 
section. These methods use analytical optimization for a 
direct calculation of the solution, without the need to gener-
ate many candidate solutions. They have been widely used 
for dimensional tolerances with obvious computational 
advantages albeit with limitations on the assumptions of 
the allocation problem (e.g., on statistical distributions and 
cost-tolerance functions). However, their extension to geo-
metric tolerances is not trivial, because they find an optimal 
solution in terms of deviation variables with no guarantee 
that it can be mapped to the unknown geometric tolerances. 
In the following, this issue is described in more detail for 
1D allocation problems, and a method is proposed in order 
to avoid it.

3  Main concept

In a 1D stackup problem, an assembly-level functional 
requirement depends on a set of tolerances on different parts. 
For simplicity, however, we initially consider a simplified 
case involving different features of a single part. This limita-
tion will be released in the next section.

Figure 1a shows a flat rectangular plate with a hole. It is 
assumed that the functional requirement to be controlled is 
the distance Y between the edge of the hole and the right 
edge of the plate. Both features are subject to geometric 
tolerances, which reference datums A and B established on 
the bottom and left edges of the plate; some basic dimen-
sions define the nominal positions of the two toleranced 
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features. The values of the tolerances are assumed to be 
known, as candidate solutions (possibly not optimal) of the 
allocation problem. In detail, the three specified tolerances 
are (all dimensions in mm throughout the paper):

• Ts =  ± 0.4: size tolerance on hole diameter
• Tp1 = 0.6: position tolerance with MMC modifier on 

hole center with respect to datums A and B
• Tp2 = 1: profile tolerance on the right edge with respect 

to datum B

To check whether the tolerance values satisfy the func-
tional requirement, a tolerance analysis problem must be 
solved by calculating the resulting variation TY on the 
hole-edge distance and verifying that it is less than the 
specified variation (e.g., ± 1 mm). The calculation can be 
easily done using three stackup variables, each of which 
is associated with a dimensional tolerance. The defined 
variables and their tolerances are as follows:

• H = 16 ± TH: hole diameter
• A = 50 ± TA: distance between hole center and left edge
• B = 70 ± TB: distance between left and right edges

The tolerances on the equivalent dimensions H, A, and 
B are set considering the definitions of the specified geo-
metric tolerances:

(1)
TH = Ts = 0.4

TA = Tp1
/
2 + Ts = 0.7

TB = Tp2
/
2 = 0.5

The expression of TA in (1) adds the maximum bonus 2Ts 
to the position tolerance as the hole departs from its MMC. 
A division by two is required whenever a geometric toler-
ance zone is converted into a semi-tolerance. The diagram in 
Fig. 1b provides the following functional equation:

The sensitivities of Y with respect to the three dimensions 
(in absolute values as required when composing deviations) 
are therefore

and can be used to estimate the maximum variation on Y 
under the assumption that all deviations are at the limits of 
their tolerance zones (worst-case stackup):

To account for the statistical compensation of deviations, 
the root sum square (RSS) equation can also be used to esti-
mate the stackup of tolerances:

This estimate is more realistic than the worst-case stackup 
if the dimensions are statistically independent and have 
normal distributions. However, dimensions H and A are not 
independent because one of the specified tolerances (Ts) 
appears in the expressions of both tolerances TH and TA; if 
the hole has a larger diameter, it departs from MMC and can 
afford a higher position deviation. From a statistical point of 
view, an increase in the variance on H leads to an increase in 
the variance on A. Therefore the RSS equation, which cor-
responds to the sum of the variances under the assumption of 
equal process capabilities, is no longer valid and should be 
completed with an additional term involving the covariance 
between H and A.

Is there an alternative way to carry out the tolerance 
analysis task avoiding any dependence between variables? 
The proposed method consists in defining the sensitivities 
of Y with respect to the geometric tolerances. In the worst 
case, TY can be expressed as a function of the three specified 
tolerances:

This gives the three sensitivities associated to the geo-
metric tolerances

which can then be used for the RSS stackup:

(2)Y = −H∕2 − A + B

(3)SH = 1∕2, SA = 1, SB = 1

(4)
TY = SHTH + SATA + SBTB = 1∕2 ⋅ 0.4 + 0.7 + 0.5 = 1.4

(5)
TY =

√
S2
H
T2
H
+ S2

A
T2
A
+ S2

B
T2
B
=

√
1
/
4 ⋅ 0.42 + 0.72 + 0.52 = 0.88

(6)
TY = 1∕2 ⋅ Ts +

(
Tp1∕2 + Ts

)
+ Tp2∕2

= 3∕2 ⋅ Ts + 1∕2 ⋅ Tp1 + 1∕2 ⋅ Tp2

(7)Ss = 3∕2, Sp1 = 1∕2, Sp2 = 1∕2

Fig. 1  Allocation example: a tolerances, b stackup dimensions
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This new estimate is likely to be more accurate than (5), 
because geometric deviations are independent: Ts limits the 
departure of hole diameter from MMC, while Tp1 limits the 
deviation from the nominal position of a corresponding hole 
at MMC. Furthermore, the geometric deviations associated 
to the three tolerances can be assumed to have normal dis-
tributions: this obviously applies to Ts (which is actually a 
dimensional tolerance on a feature of size), but also to Tp1 
and Tp2. For the former, the normally distributed variable 
is the actual horizontal position of hole center at MMC; 
for the latter, it is the actual horizontal position of the right 
edge (for both, the mean of the distribution is the nominal 
position).

The above reasoning involves a transformation between 
two types of sensitivities of requirement Y:

• The “dimensional” sensitivities seq = [SH, SA, SB]T, 
defined as the partial derivatives of the deviation on Y 
with respect to the deviations associated to the equivalent 
tolerances Teq = [TH, TA, TB]T

• The “geometric” sensitivities s = [Ss, Sp1, Sp2]T, defined as 
the partial derivatives of the deviation on Y with respect 
to the deviations associated to the specified tolerances 
T = [Ts, Tp1, Tp2]T

The transformation can be expressed as

where

is a matrix whose rows and columns correspond, respec-
tively, to the specified geometric tolerances and to the equiv-
alent dimensional tolerances. The element Mij of the matrix 
is the linear contribution of the i-th specified tolerance to the 
j-th equivalent tolerance. Such notation separates the two 
effects that determine the geometric sensitivities. The first 
one, expressed by seq, is the configuration of the dimension 
chain. The second one, expressed by M, is the meaning of 
the specified geometric tolerances. As will be described in 
the next section, M can be built using rules depending on 
tolerance types, datums, and possible MMC modifiers.

As already shown, s can be used instead of seq in the tol-
erance analysis task to get a more accurate estimate of the 
variation on Y. However, there is an even more important 
reason why it is useful to associate sensitivities to geometric 
tolerances. As recalled in Sect. 1, most tolerance allocation 

(8)
T
Y
=
√

S2
s
T2
s
+ S

2
p1
T
2
p1
+ S

2
p2
T
2
p2

=

√
9
/
4 ⋅ 0.42 + 1∕4⋅0.62 + 1∕4 ⋅ 12 = 0.71

(9)� = � ⋅ ���

(10)� =

⎡⎢⎢⎣

1 1 0

0 1∕2 0

0 0 1∕2

⎤⎥⎥⎦

methods require the sensitivities as input data. In some 
cases, they are used to build a functional equation such as 
(2), which allows the statistical estimation of the deviations 
on Y by Monte Carlo simulation. In other cases, under given 
assumptions on statistical distributions, they appear in a con-
straint equation such as (5) for an optimization problem that 
is solved analytically or numerically. Suppose then that the 
equivalent sensitivities seq have been used to calculate an 
optimal set Teq of equivalent tolerances. To express the solu-
tion consistently with design specifications, the correspond-
ing set T of specified tolerances is now to be calculated. 
Considering the definition of matrix M, it is easy to find that

and therefore

In the above example, M is a square matrix, and its 
transpose has full rank. So there is one and only one back-
transformation of the equivalent tolerances into the specified 
ones:

However, it is not guaranteed that the same conditions 
apply in any 1D allocation problem. The equivalent toler-
ances may not be as many as the original geometric toler-
ances. By solving the allocation problem on equivalent toler-
ances, an optimal solution Teq may correspond to no valid 
solution T, or to an infinite set of solutions. For example, 
the tolerancing scheme of the plate considered so far could 
be modified as shown in Fig. 2a, where the profile tolerance 
Tp2 references the hole center at MMC. According to the 
diagram in Fig. 2b, the requirement Y would depend on only 
two equivalent dimensions, H and A (now defined as the 
distance between hole center and right edge). The functional 
equation would be

and the sensitivities would transform as follows:

Since the transpose of M is not square and therefore 
not invertible, it would not be possible to use Eq. (12) to 
transform an optimal allocation Teq back into T. Using 
the geometric sensitivities s to find the optimal allocation, 
this difficulty can be avoided by directly calculating the 

(11)��� = �T
⋅ �

(12)� =
(
�T

)−1
⋅ ���

(13)

⎡
⎢⎢⎢⎣

Ts

Tp1

Tp2

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 0 0

1 1∕2 0

0 0 1∕2

⎤
⎥⎥⎥⎦

−1

⋅

⎡
⎢⎢⎢⎣

T
H

T
A

T
B

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 0 0

−2 2 0

0 0 2

⎤
⎥⎥⎥⎦
⋅

⎡
⎢⎢⎢⎣

T
H

T
A

T
B

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

T
H

2
�
T
A
− T

H

�

2T
B

⎤
⎥⎥⎥⎦

(14)Y = −H∕2 + A

(15)
⎡⎢⎢⎣

Ss
Sp1
Sp2

⎤⎥⎥⎦
= � ⋅

�
SH
SA

�
=

⎡⎢⎢⎣

1 1

0 1∕2

0 1∕2

⎤⎥⎥⎦
⋅

�
1∕2

1

�
=

⎡⎢⎢⎣

3∕2

1∕2

1∕2

⎤⎥⎥⎦
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minimum-cost tolerances Ts, Tp1, and Tp2. As an extra ben-
efit, the RSS stackup constraint can be verified more accu-
rately than using the equivalent sensitivities seq.

4  Method

Now consider a full 1D stackup problem with its com-
mon assumptions. The parts of an assembly are connected 
through pairwise contact relations between features. The 
functional requirement is a linear distance between fea-
tures of different parts, which is the result of a dimension 
chain possibly involving other parts. All the dimensions 
in the chain are parallel to the direction of the require-
ment. The part features involved in the dimension chain 
have random deviations due to manufacturing errors; 
the stackup of these deviations causes a deviation on the 
requirement, which must be controlled within a specified 
assembly tolerance.

It is assumed that, possibly using a formal method of 
tolerance specification [80], a tolerance scheme has been 
chosen for each part according to the ISO GPS [1] or ASME 
GD&T [2] standards. The scheme includes geometric toler-
ances of different types (form, orientation, position, profile) 
with possible MMC modifier. Size tolerances are also speci-
fied on features of size; they are always expressed as equal 
bilateral tolerances. A geometric tolerance on a feature can 
reference one or more datums established on other features 
of the same part; the MMC modifier can possibly be applied 
to a datum reference corresponding to a feature of size.

All specified geometric tolerances (including size toler-
ances) have unknown values, which are to be chosen in the 
tolerance allocation problem. According to the simplest and 
most widespread of the available formulations in literature 
[11], the allocation is the constrained optimization of the 
total manufacturing cost of the parts. The objective func-
tion is the sum of the cost-tolerance functions evaluated for 
the individual part features involved in the requirement. The 
constraint is the condition that the deviation on the require-
ment, i.e., the RSS stackup of the deviations on part features, 
is lower than the assembly tolerance.

The method chosen for the solution of the allocation 
problem is the optimal scaling procedure proposed in [81], 
which combines the Lagrange multiplier method [82] with 
an extended version of the reciprocal-power cost-tolerance 
function [83]. The procedure calculates tentative values   
of the tolerances, which satisfy the optimal proportions 
between them; the tolerances are then scaled to satisfy the 
stackup condition. The initial value of each tolerance is cal-
culated by the expression

which includes the sensitivity S, the nominal dimension X 
[mm], the surface area fA of the feature  [cm2], and two coef-
ficients related to the material (fM) and to the type of feature 
(fF). These factors are described in detail in the Appendix. 
The optimal scaling method has been proposed for the allo-
cation of dimensional tolerances, but can be easily extended 
to geometric tolerances by replacing nominal dimensions 
with appropriate basic dimensions included in the specified 
tolerance scheme.

All the data needed for the optimal scaling procedure are 
available in part drawings except for the sensitivities. As 
discussed in Sect. 3, these should be directly associated with 
the geometric tolerances. However, the method commonly 
used for 1D stackup analysis [26, 27] uses the sensitivities 
of the requirement to the equivalent dimensions of the chain. 
These dimensions are easily identified by following the chain 
of assembly relations between the two part features involved 
in the requirement. The chain may include dimensions with 
zero nominal value; examples include the displacement of an 
axis or midplane of a feature of size due to a position devia-
tion and the displacement between the two mating features 
of a clearance fit (assembly shift).

In a 1D problem, the sensitivities seq associated with the 
equivalent dimensional tolerances are usually equal to 1 
except in special cases (e.g., 1/2 when the equivalent dimen-
sion is half the diameter of a cylindrical feature). Setting 
seq is straightforward once the dimension chain has been 
described in a diagram. Then the sensitivities s associated 
with the specified geometric tolerances are calculated by 
Eq. (9). This requires constructing the transformation matrix 

(16)F = f 0.39
M

f 0.39
F

f 0.39
A

X0.072S−0.78

Fig. 2  Alternative version of the allocation example: a tolerances, b 
stackup dimensions

1962 The International Journal of Advanced Manufacturing Technology (2022) 122:1957–1973



1 3

M through a study of how the specified tolerances influence 
the dimension chain. The study includes three main steps as 
described below.

The first step is the identification of the geometric toler-
ances that are related with the equivalent dimensions. These 
may include the following:

• Size tolerances corresponding to dimensions in the chain
• Position tolerances on features of size, e.g., cylindrical 

shafts or holes, if the corresponding basic dimensions are 
in the chain

• Profile tolerances on non-size features, e.g., planar sur-
faces, if the corresponding basic dimensions are in the 
chain

• Orientation tolerances on datums involved in the dimen-
sion chain

According to the common assumptions in the analysis of 
tolerances (even in 2D/3D stackups, as in [84]), form toler-
ances are not considered in the study because they have usu-
ally little influence on the variation of the requirement. A basic 
dimension, which is usually the distance between the target fea-
ture and one of the datum features of a geometric tolerance, is 
assumed to correspond to the target feature because deviations 
on datum features do not cause further deviations at assembly 
level. In some cases, a basic dimension is identified as the sum 
or difference of basic dimensions specified in part drawing.

In the second step, the order of M is set, and its non-zero 
elements are identified. Each row of the matrix corresponds 
to one of the specified geometric tolerances, and each col-
umn to one of the equivalent dimensional tolerances. If it 
turns out that the matrix is not square, the proposed method 
is actually needed for an allocation based on sensitivities; 
without it, the optimization should be done with more com-
putationally intensive methods based on Monte Carlo simu-
lation (e.g., DOE, search algorithms, or sensitivity analysis).

Non-zero elements correspond to several possible rela-
tionships between the specified geometric tolerances and the 
equivalent dimensional tolerances. The following is a list of 
possible relationships:

• Size tolerance on a feature of size corresponding to the 
equivalent dimension (Fig. 3a).

• Position, profile, or (when these are not specified) ori-
entation tolerance that has the equivalent dimension as a 
basic dimension (Fig. 3b).

• Size tolerance on a feature of size subject to a position 
or orientation tolerance at MMC that has the equiva-
lent dimension as a basic dimension; this relationship 
is due to the allowed increase (bonus) on the geometric 
tolerance when the feature size departs from its MMC 
(Fig. 3c).

• Size, position, or (when the latter is not specified) orien-
tation tolerance on a feature of size that is referenced as 
a datum at MMC in another geometric tolerance having 
the equivalent dimension as a basic dimension; this rela-
tionship is due to the additional bonus on the referenc-
ing tolerance (datum shift) that the datum feature allows 
when it departs from its MMC (Fig. 3d).

• Size, position, or (when the latter is not specified) orien-
tation tolerance on a feature of size involved in a clear-
ance fit with another feature of size; in this case, the 
equivalent dimension is the assembly shift of the first 
feature with respect to the second one (Fig. 3e).

Regarding the last relationship, it is assumed that the 
minimum clearance between the two features (i.e., the 
difference between the MMC sizes of the hole and the 
shaft or fastener) is equal to the sum of the geometric 
tolerances specified at MMC for the two features. This 
is consistent with the fixed-fastener and floating-fastener 
rules recommended in geometric tolerancing (e.g., [26]). 
If a larger clearance is required for functional reasons, 
the extra-clearance is regarded as an additional equivalent 
dimension with zero tolerance.

The third step sets the values of the elements of M 
according to rules that are related with the standard defi-
nition of the geometric tolerances. For example, a position 
or profile tolerance defines the whole tolerance zone, so 
it must be multiplied by 1/2 to get an equal bilateral toler-
ance on an equivalent dimension. The possible cases under 

Fig. 3  Geometric tolerances in 
relationship to an equivalent 
dimensional tolerance: a) size 
tolerance; b) tolerance with 
basic dimension; c) size toler-
ance of a feature toleranced 
at MMC; d) size tolerance of 
a datum feature referenced at 
MMC; e) tolerance on a feature 
with clearance fit

equivalent
dimension

a)

b)
c)

d)
e)

1963The International Journal of Advanced Manufacturing Technology (2022) 122:1957–1973



1 3

the assumptions made at the beginning of this section are 
listed in Table 1.

5  Results

The proposed method will now be applied to two examples 
of tolerance allocation on 1D stackups. The first is a simple 
block assembly, which includes the most common combi-
nations of geometric tolerances and equivalent dimensional 
tolerances. The second is a more typical mechanical assem-
bly, which requires the handling of additional situations 
such as part and feature patterns, stock parts, and composite 
tolerances.

5.1  Block assembly

Figure 4 shows three parts (base, pin, block) connected 
with simple contact relationships without any fastening 
or joining. The functional requirement Y is assumed to be 
the distance between the pin and the block in the free area 

above the base. The allowed variation on the requirement is 
Y0 ± TY = 5 ± 1 mm.

As illustrated in the diagram of Fig. 5, Y can be analyzed 
as a stackup of equivalent dimensions along the horizontal 
direction. The functional equation is

where:

• A = 20 ± TA is the largest diameter of the pin.
• B = 0 ± TB is the eccentricity between the two diameters 

of the pin.
• C = 0 ± TC is the assembly shift between the pin and the 

hole in the base.
• D = 15 ± TD is the distance between the axis of the hole 

and the step in the base.
• E = 0 ± TE is the out-of-plane deviation of the vertical 

face of the block.

The following geometric tolerances have an influence on 
the equivalent dimensions:

(17)Y = −A∕2 + B + C + D + E

Table 1  Elements of the matrix 
for the transformation of 
sensitivities

Tolerance type Relationship to equivalent dimension Value

Size Any (nominal size, bonus, datum shift, assembly shift) 1
Position, profile Any (basic dimension, datum shift, assembly shift) 1/2
Orientation (feature of size) Any (datum shift, assembly shift) 1/2
Orientation (non-size feature) (0 ± …) equivalent dimension on the feature 1

Fig. 4  Block assembly
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• Ts1: size tolerance on the largest diameter of the pin.
• Tp1: position tolerance at MMC on the largest diameter 

of the pin.
• Ts2: size tolerance on the smallest diameter of the pin.
• To2: perpendicularity tolerance at MMC on the smallest 

diameter of the pin.
• Ts3: size tolerance on the hole in the base.
• To3: perpendicularity tolerance at MMC on the hole in 

the base.
• Tp4: profile tolerance on the step in the base.
• To5: perpendicularity tolerance on the vertical face of the 

block.

The nominal dimensions X02 and X03 of the features 
involved in the clearance fit are set with a common virtual 
condition of 10 mm:

The allocation problem has 8 unknown geometric toler-
ances T = [Ts1, Tp1, Ts2, To2, Ts3, To3, Tp4, To5]T. If the optimal 
values of the 5 equivalent tolerances Teq = [TA, TB, TC, TD, 
TE]T could be found, they would correspond to an infinite 
set of solutions T. To find the optimal geometric tolerances 
directly, the sensitivities s of Y with respect to T have to 
be calculated; this is done by transforming the sensitivities 
seq of Y with respect to Teq, which appear in the functional 
equation:

(18)
X02 = 10 − Ts2 − To2
X03 = 10 + Ts3 + To3

Matrix M in (19) is constructed by recognizing the fol-
lowing relationships between T and Teq:

• Ts1 influences TA (size tolerance on diameter ∅20) and 
TB (bonus on the position tolerance Tp1 of the same diam-
eter).

• Tp1 influences TB (position tolerance on diameter ∅20).
• Ts2 and To2 influence TB (datum shift on the position 

tolerance Tp1 of diameter ∅20) and TC (assembly shift 
between pin and hole).

• Ts3 and To3 influence TC (assembly shift between pin and 
hole) and TD (datum shift on the profile tolerance Tp4 of 
the step at distance 15 mm to the hole).

• Tp4 influences TD (profile tolerance of the step at distance 
15 mm to the hole).

• To5 influences TE (perpendicularity tolerance on the face 
of the block).

The non-zero elements of M are set according to Table 1.
Once the related sensitivities are known, the geometric 

tolerances are allocated by means of the optimal scaling 
procedure. All parts are assumed to be made of the same 
material (low-carbon steel). Table 2 lists the initial values 
F of the tolerances in optimal proportions, along with the 
data used for their calculation using Eq. (16). The data are 
collected pretty much as in the allocation of dimensional 
tolerances with few exceptions. When setting surface areas 
fA, the datum surface of a geometric tolerance may have to 
be considered in addition to the own surface of the feature; 
for consistency with the stackup constraint, this is done only 
when the datum is relevant to the position of the feature 
along the direction of the functional requirement. Among 
nominal dimensions X, the one corresponding to the orien-
tation of a non-size feature is arbitrarily set to a value (in 
parentheses) representative of the machined feature.

The optimal values Topt of the geometric tolerances 
in Table 2 are found by scaling the values of F on the 
assembly tolerance TY. From the procedure described in 
the Appendix, the scaling factor is

(19)
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Fig. 5  Dimension chain for the block assembly
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where i = 1, … 8 is the index of the tolerance in T, and 
c = 1.5. Rounding the values of Topt and calculating the 
nominal sizes of the mating features from (18) yield  
the tolerance callouts shown in Table  2. For the sake  
of brevity, the callouts are described using the ISO text 
equivalents of tolerance types [85] to avoid showing  
them graphically on the final part drawings in a separate 
figure.

5.2  Bracket assembly

Figure  6 shows two brackets fastened to a baseplate 
by means of bolts and nuts. The distance Y between the 
vertical faces of the two brackets is to be controlled at 
Y0 ± TY = 20 ± 1 mm.

The dimension chain in Fig. 7 corresponds to the func-
tional equation

where:

• A = 40 ± TA is the distance between the vertical face and 
the hole axes in the left bracket.

• B = 100 ± TB is distance between the axes of the left and 
right holes in the baseplate.

• C = 40 ± TC is the distance between the vertical face and 
the hole axes in the right bracket.

• D = 0 ± TD is the assembly shift between the holes in the 
left bracket and the mating bolts.

• E = 0 ± TE is the assembly shift between the left holes in 
the baseplate and the mating bolts.

• F = 0 ± TF is the assembly shift between the right holes 
in the baseplate and the mating bolts.

• G = 0 ± TG is the assembly shift between the holes in the 
right bracket and the mating bolts.

(21)Y = −A + B − C + D + E + F + G

Table 2  Tolerance allocation for 
the block assembly

Tolerance fM fF fA X S F [mm] Topt [mm] Callout

Ts1 1 1 6.3 20 3/2 1.85 0.14 ∅20 ± 0.15
Tp1 1 1 6.3 + 1.2 20 1/2 4.68 0.34 POS | ∅0.3(M) | A | B(M)
Ts2 1 1 1.2 10 2 0.74 0.05 ∅9.85 ± 0.05
To2 1 1 1.2 10 1 1.27 0.09 PER | ∅0.1(M) | A
Ts3 1 4 / 0.5 × 1 1.6 10 2 1.86 0.14 ∅10.4 ± 0.15
To3 1 4 / 0.5 × 1 1.6 10 1 3.19 0.23 PER | ∅0.25(M) | A
Tp4 1 6 5 + 1.6 15 1/2 8.76 0.63 PFS | 0.6 | A | B(M)
To5 1 1.5 20 (40) 1 4.91 0.36 POS | ∅0.3(M) | A

Fig. 6  Bracket assembly
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The following geometric tolerances have an influence on 
the above equivalent dimensions:

• Tp3f: feature-relating tolerance at MMC on the holes in the 
baseplate; in the composite tolerance frame, the pattern-
locating tolerance Tp3p is not related to the dimension 
chain as it references the edges of the baseplate.

• Ts3: size tolerance on the holes in the baseplate.
• Tp6p: pattern-locating tolerance at MMC on the holes in 

the bracket.
• Tp6f: feature-relating tolerance at MMC on the holes in 

the bracket.
• Ts6: size tolerance on the holes in the bracket.
• Ts7: size tolerance on the diameter of the M8 bolt (which is 

assumed to be specified at 7.9 ± 0.1 mm on the stock part).

The nominal dimensions X03 and X06 of the holes in 
the baseplate and in the bracket are set according to the 

floating fastener rule with the same virtual condition of 
8 mm as the bolt:

(22)
X03 = 8 + Ts3 + Tp3f
X06 = 8 + Ts6 + Tp6f

A particular aspect of this allocation problem is that 
the left and right brackets are two random parts from 
the same manufacturing process. They have the same 
tolerances but different deviations and must be treated 
separately in the calculation of the RSS stackup for the 
functional requirement Y. Therefore the geometric tol-
erances specified for the two parts have separate sen-
sitivities to take into account the statistical compensa-
tion between the corresponding deviations. Similarly, 
the geometric tolerances on the two pairs of holes in 
the baseplate have separate sensitivities. Based on these 
considerations, the vector of geometric tolerances is 
T = [Tp3f, Ts3, Tp6p_1, Tp6f_1, Ts6_1, Tp6p_2, Tp6f_2, Ts6_2, 
Ts7_1, Ts7_2]T, where the indices 1 and 2 refer to the left 
and right sides of the assembly. The corresponding vec-
tor of equivalent tolerances is Teq = [TA, TB, TC, TD, TE, 
TF, TG]T. The transformation of sensitivities from seq to 
s has the following result:

To construct matrix M, the following relationships are 
recognized between T and Teq:

• Tp3f influences TB (position tolerance on the holes in the 
baseplate) as well as TE and TF (assembly shifts of the 
left and right holes with respect to the mating bolts).

• Ts3 influences TB (bonus on the position tolerance Tp3f 
on the holes in the baseplate) as well as TE and TF 
(assembly shifts of the left and right holes with respect 
to the mating bolts).

• Tp6p_1 influences TA (position tolerance on the holes in 
the left bracket).

• Tp6f_1 influences TD (assembly shift of the holes in the 
left bracket with respect to the mating bolts).

• Ts6_1 influences TA (bonus on the position tolerance Tp6p 
on the holes in the left bracket) and TD (assembly shift 
of the same holes with respect to the mating bolts).

• Tp6p_2 influences TC (position tolerance on the holes in 
the right bracket).

• Tp6f_2 influences TG (assembly shift of the holes in the 
right bracket with respect to the mating bolts).

(23)
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Fig. 7  Dimension chain for the bracket assembly
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• Ts6_2 influences TC (bonus on the position tolerance Tp6p 
on the holes in the right bracket) and TG (assembly shift 
of the same holes with respect to the mating bolts).

• Ts7_1 influences TD (assembly shift of the holes in the left 
bracket with respect to the mating bolts) and TE (assem-
bly shift of the left holes in the baseplate with respect to 
the mating bolts).

• Ts7_2 influences TF (assembly shift of the holes in the 
right bracket with respect to the mating bolts) and TG 
(assembly shift of the right holes in the baseplate with 
respect to the mating bolts).

Again, the non-zero elements of M are set according to 
Table 1.

The geometric tolerances (except the stock tolerance 
Ts7 =  ± 0.1 mm) are now allocated by the optimal scaling 
procedure. Tolerances are listed in Table 3 without separate 
consideration of left and right instances. Feature data are 
shown with similar assumptions as in the previous example: 
fM assumes that both parts are made of low-carbon steel; 
fF correspond to holes for all features; a datum feature is 
included in the surface area fA only for a pattern-locating tol-
erance; basic dimensions along the direction of Y are consid-
ered as nominal dimensions X for the appropriate geometric 
tolerances. The sensitivities S are extracted from vector s. 
Using Eq. (16), these data provide the listed initial values F 
of the tolerances in optimal proportions.

Table 3 also lists the optimal values Topt of the geometric 
tolerances, which are calculated multiplying the correspond-
ing F values by the following scaling factor:

with c = 1.5. The numerator of (24) has a different expression 
from (20) as the variation specified on Y must be stripped 
of the contribution of the stock tolerance on the diameters 
of the two bolts (left and right side). This gives the actual 
variation to be distributed among the remaining dimensions.

The callouts shown in Table 3 are obtained by rounding 
the values of Topt and calculating the nominal sizes of the 
mating features from (22). Equal specifications are finally 
chosen for for the holes in the two parts although the optimal 
position tolerances would have been marginally different.

(24)
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In the results of the allocation problem, it can be noted 
that the pattern-locating tolerance Tp6p is correctly opti-
mized at a higher value than the feature-relating tolerance 
Tp6f of the same composite frame. Looking at Table 3, this 
is explained considering that it would cost more for the same 
allocated value, because it is associated with a larger area 
fA (as it also includes the datum surface) and with a larger 
nominal dimension X (as hole spacings are usually larger 
than hole diameters). Since the underlying cost-tolerance 
function takes these cost drivers into account, the optimal 
scaling procedure is able to loosen the tolerances having a 
greater impact on the total manufacturing cost.

6  Discussion

The method will now be compared with an alternative 
approach in order to validate its results and highlight differ-
ences in workflow and application potential.

The baseline method for the comparison is the numeri-
cal optimization of a cost function with stackup analysis by 
Monte Carlo simulation. This approach has the advantage of 
avoiding the issue mentioned in Sect. 3. As in the proposed 
method, it directly treats the geometric tolerances as optimi-
zation variables, avoiding to express the solution in terms of 
equivalent dimensional tolerances that would not be in one-
to-one correspondence with valid geometric specifications.

The objective function for the optimization is the 
extended cost-tolerance function proposed in [81] and 
recalled in Eqs. (28) and (29) of the Appendix. Since the 
same function is embedded in the optimal scaling method, 
this choice makes the two methods consistent with respect 
to the assumed cost drivers (type and size of the feature, 
nominal dimension, material).

The tolerance analysis on each candidate allocation is 
done on a set of equivalent dimensions (A, B, C, …), which 
are linked to requirement Y by the functional equation. 
Given a set of geometric tolerances, a sample of geometric 
deviations is generated from a normal distribution with zero 
mean and standard deviation equal to 1/3 of the tolerance; 
the sample includes 5000 instances corresponding to simu-
lated assemblies of manufactured parts. For each instance, 
the random deviations on the equivalent dimensions are cal-
culated according the considerations made in Sect. 3; the 
functional equation then provides the random deviation on 

Table 3  Tolerance allocation for 
the bracket assembly

Tolerance fM fF fA X S F [mm] Topt [mm] Callout

Tp3f 1 4 / 0.4 × 1 4 × 0.5 100 3/2 3.27 0.16 POS | ∅0.2(M) | A
Ts3 1 4 / 0.4 × 1 4 × 0.5 8 3 1.59 0.08 ∅8.3 ± 0.1
Tp6p 1 4 / 0.4 × 1 2 × 0.5 + 10 40 1/2 14.00 0.67 POS | ∅0.7(M) | A | B | C
Tp6f 1 4 / 0.4 × 1 2 × 0.5 8 1/2 4.90 0.23 POS | ∅0.2(M) | A
Ts6 1 4 / 0.4 × 1 2 × 0.5 8 2 1.66 0.08 ∅8.3 ± 0.1
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Y. Finally, the variation on Y is estimated as 3 times the 
standard deviation of the deviations on the sample. Again, 
the statistical assumptions are consistent with the proposed 
method although they would not be mandatory for Monte 
Carlo simulation.

To satisfy the stackup constraint, each candidate solution 
is scaled linearly to make the estimated variation on Y equal 
to the specified TY. This defines an unconstrained domain of 
input variables (the geometric tolerances) where the optimal 
solution is to be found. The search strategy was chosen con-
sidering the moderate dimension of the search space (8 and 
5 variables for the cases of Sect. 5) and the likely occurrence 
of local minima; these properties suggest to avoid classical 
algorithms with proven efficiency (downhill simplex, direc-
tion set) and prefer local search algorithms where an initial 
solution is randomly perturbed until reaching a termination 
condition (maximum number of iterations). For a more reli-
able convergence, the search is guided by a heuristic related 
to the tendency of the optimal solution (cited in the reviews 
[9–11]) to avoid strong differences in the derivative of the 
cost-tolerance function. After selecting the tolerance to be 
perturbed, the direction and extent of the change are chosen 
based on the current derivative; to avoid being trapped in 
local minima, this criterion is alternated with a totally ran-
dom perturbation.

For each of the two cases in Sect. 5, the above proce-
dure was coded into a MATLAB script with 50,000 itera-
tions, each including a stackup analysis and an evaluation 
of the objective function. The script was run 5 times, yield-
ing slightly different optimal solutions due to the stochastic 

nature of Monte Carlo simulation. Each time, the optimal 
solution turned out to have a cost 30–40% lower than the 
initial solution with equal tolerances. Computing times were 
in the range of 10–15 min per run.

Figure 8 shows the optimal tolerances found with the sim-
ulation-based method, compared to the Topt values already 
listed in Tables 2 and 3 for the two cases. The optimal toler-
ances are in good agreement with the proposed method, as 
was expected given the consistency of the main assump-
tions. The difference in cost from the solution of the pro-
posed method is within 2%, with the latter generally better 
as it derives from an analytical solution of the optimization 
problem.

On the application side, the proposed method seems to 
have some advantages over an approach based on numeri-
cal search and Monte Carlo simulation. Specifically, it pro-
vides roughly the same optimal allocation in a much shorter 
time. This is not just about computing time, which might 
be reduced using a more efficient search algorithm and 
faster computing hardware or tuning the simulation param-
eters more carefully. Most of the time saved is in coding 
and testing the optimization procedure, whereas geometric 
sensitivities and optimal scaling involve simple calculations 
that can be done manually or with the help of a spreadsheet 
even when the problem involves a larger set of tolerances. 
Further benefits could derive from a software implementa-
tion that guides the user in the correct setting of geometric 
sensitivities.

On the other hand, the less computationally efficient 
approach has the advantage of flexibility, as it is not bound to 

Fig. 8  Allocation results with the baseline method: a block assembly, b bracket assembly
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any of the simplifying assumptions of the proposed method. 
In principle, it can be suitable to 2D and 3D problems with-
out requiring a linearization of the dimension chain. It can 
allow a stackup analysis with statistical distributions and 
process capabilities consistent with the most likely produc-
tion settings for individual parts. As already noted in the 
literature review, it can allow an integration with CAT soft-
ware for stackup analysis in cases where the sensitivities are 
difficult to calculate due to the complexity of the assembly. 
The results of the tests reported in this section, however, 
suggest that long computing times could be required for 
the convergence of a CAT-based optimization procedure. 
In these cases, the proposed method could still be a useful 
support to numerical optimization if used as a means to get 
a quick initial solution close to the optimum.

7  Conclusions

The paper has proposed a different definition of sensitivi-
ties for geometric tolerance allocation. Traditionally used to 
allow the analysis of dimensional tolerances without resort-
ing to Monte Carlo simulation, the sensitivities express the 
linear contribution of deviations from individual part dimen-
sions to a functional requirement on the assembly. If geomet-
ric tolerances are specified on the parts, these must be trans-
lated into equivalent dimensions to analyze the stackup of 
geometric deviations. However, the same dimensions cannot 
be used as variables for the allocation, because an optimal 
solution could not be translated back into optimal values   of 
the original geometric tolerances. To solve this difficulty, 
the proposed method directly associates the sensitivities 
with the geometric tolerances and calculates them from the 
sensitivities related to the equivalent dimensions by means 
of a transformation matrix constructed with a rule-based 
procedure.

Some application examples prove that the use of “geomet-
ric” sensitivities solves allocation problems on one-dimen-
sional tolerance stackups without excessive complications. 
In doing so, it drives designer’s attention to the correct rela-
tionships between specified tolerances and dimensions of the 
stackup model, removing another possible obstacle to the 
treatment of geometric tolerances in allocation. It also allows 
a slightly better accuracy in estimating the variation on the 
functional requirement, as it ensures statistical independence 
between the geometric deviations allowed by the tolerances.

The proposed approach is suitable for any optimization 
method available for linear stackup models. The optimal 
scaling method used in this work, previously proposed for 
the allocation of dimensional tolerances, is based on detailed 
feature data for a more accurate estimation of cost-tolerance 
relationships. It is easily extended to geometric tolerancing 

by additional rules dealing with datum features and basic 
dimensions.

Future studies will try to remove some limitations of the 
work. Additional controls provided in geometric toleranc-
ing standards, such as the LMC modifier and the runout 
tolerance, will require additional rules for the transformation 
of sensitivities. More complex allocation problems will be 
addressed by integrating geometric sensitivities in available 
tolerance analysis methods for 2D/3D assemblies or under 
special assumptions on dimension chains and statistical 
distributions.

Although the method requires spreadsheet-like calcula-
tions on data that are easily obtained from engineering draw-
ings, a CAD integration could greatly help its deployment 
in design practice especially for future 2D/3D extensions. 
For that purpose, tolerance schemes could be extracted from 
tolerance annotations with procedures generally available in 
the application interfaces of commercial modelers. Feature 
data for optimal scaling could be collected through proce-
dural access to solid models with similarly available func-
tions. Functional equations and sensitivities could be set up 
interactively, although their automatic recognition might be 
a realistic objective according to available research studies.

Appendix: Extended cost‑tolerance function 
and optimal scaling

Some results from [81] are recalled below for a more com-
plete description of the allocation method described in 
Sect. 4. In a dimension chain

with sensitivities Si, the tolerances Ti on the dimensions Xi 
determine the variation TY on the functional requirement Y 
through the corrected RSS equation

where c > 1 is an inflation factor that takes into account any 
violations of some statistical assumptions on the dimensions 
(independence, normal distribution, no mean shift, standard 
deviation in a fixed and sufficiently low ratio with tolerance). 
In this paper, the factor is set to c = 1.5, as suggested by 
several studies reviewed in [86]; the same value is also used 
in some tolerancing handbooks [26, 27].

For the calculation of optimal tolerances, Eq. (26) is 
used as a constraint for the minimization of an objective 
function

(25)Y =

n∑
i=1

SiXi

(26)TY = c

√√√√ n∑
i=1

S2
i
T2
i
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where Ci(Ti) is the cost of tolerance Ti, i.e., the fraction of 
the manufacturing cost of the geometric feature associated 
with Xi that depends on the specified tolerance. A popular 
expression of the relationship between Ci and Ti is the recip-
rocal power function [87]:

In [81], the fixed cost ai is set to zero as it does not 
affect the result of the allocation problem. Furthermore, a 
regression analysis based on a known model for machining 
cost estimation provides the following expressions for the 
remaining two parameters:

where:

• β = 0.4 ⋅  10−3 (if Ci has the meaning of minutes of 
machining time).

• Xi is the nominal dimension of the feature in mm.
• fAi is the surface area of the feature in  cm2.
• fMi is a coefficient related to the machining difficulty of 

the material (e.g., 0.3 for aluminum alloys, 1 for low-
carbon steel, 2 for alloy steel).

• fFi is a coefficient related to the type of feature, with 
values listed in Table 4.

By solving the constrained optimization problem with 
the method of Lagrange multipliers [82], it turns out that 
the optimal tolerances are in the following proportions:

From (29) it follows that

(27)CT =

n∑
i=1

Ci

(
Ti
)

(28)Ci = ai +
bi

Tk
i

(29)
k = 0.55

bi = fMifFifAi�X
k∕3

i

(30)
(
Ti
)
opt

∝
(
biS

−2
i

) 1

k+2

In the optimal scaling method proposed in [81], the 
tolerances are first set to Fi, obtaining a tentative estimate 
on the variation of Y:

Optimal tolerances are finally calculated as

where the scaling factor s is
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