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Abstract: Low-frequency tomographic synthetic aperture radar (TomoSAR) techniques provide an
opportunity for quantifying the dynamics of dense tropical forest vertical structures. Here, we com-
pare the performance of different TomoSAR processing, Back-projection (BP), Capon beamforming
(CB), and MUltiple SIgnal Classification (MUSIC), and compensation techniques for estimating forest
height (FH) and forest vertical profile from the backscattered echoes. The study also examines how
polarimetric measurements in linear, compact, hybrid, and dual circular modes influence parameter
estimation. The tomographic analysis was carried out using P-band data acquired over the Paracou
study site in French Guiana, and the quantitative evaluation was performed using LiDAR-based
canopy height measurements taken during the 2009 TropiSAR campaign. Our results show that the
relative root mean squared error (RMSE) of height was less than 10%, with negligible systematic
errors across the range, with Capon and MUSIC performing better for height estimates. Radiometric
compensation, such as slope correction, does not improve tree height estimation. Further, we compare
and analyze the impact of the compensation approach on forest vertical profiles and tomographic
metrics and the integrated backscattered power. It is observed that radiometric compensation in-
creases the backscatter values of the vertical profile with a slight shift in local maxima of the canopy
layer for both the Capon and the MUSIC estimators. Our results suggest that applying the proper
processing and compensation techniques on P-band TomoSAR observations from space will allow
the monitoring of forest vertical structure and biomass dynamics.

Keywords: forest structure; LiDAR; Polarimetry; SAR Tomography; TropiSAR

1. Introduction

Tropical forests are crucial for understanding the global carbon cycle and its impact
on climate dynamics [1,2]. Monitoring forest vertical structure and tree height plays a
vital role in the functioning and management of the ecosystem [3–5]. Knowledge about
the structural dynamics allows us to assess the impacts of natural and human-induced
processes on the evolution of forest ecosystems. Such information at fine spatial resolu-
tions serves as an indicator for detecting changes due to deforestation, degradation, and
regeneration phenomena [6,7], and helps in understanding how these changes influence
the forest function and the climate system [8,9]. Further, vertical forest structure is essential
information for the development of an accurate biomass map. Biomass estimates over
tropical forests are still a large source of uncertainty compared to their counterparts [10,11]
and have to be improved to better represent tropical forests for the projection of climatic
scenarios in global models. The spatial and temporal dynamic nature of the forest ecosys-
tem makes it challenging to monitor and characterize its structure via traditional field

Remote Sens. 2021, 13, 1485. https://doi.org/10.3390/rs13081485 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1229-3811
https://orcid.org/0000-0002-1228-9839
https://doi.org/10.3390/rs13081485
https://doi.org/10.3390/rs13081485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13081485
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13081485?type=check_update&version=1


Remote Sens. 2021, 13, 1485 2 of 22

sampling at regional or global scales. The complex, diverse, and dynamic nature of tropical
forests demands a new approach to surveying and examining the three-dimensional (3D)
distribution of the ecosystem. Remote sensing imaging techniques from active sensors
such as multi-baseline synthetic aperture radar (SAR) systems have been shown to be a
promising approach for monitoring forest 3D structures [12–18].

The traditional interferometric approach exploits the phase difference between two
images to retrieve the tree height [19–21]. However, it fails to differentiate targets along
the vertical direction. The tomographic approach overcomes this limitation and allows
separation of the target along the vertical direction by synthesizing an aperture in a vertical
direction using multi-baseline data acquired at a slightly different geometry [15]. The
first experimental validation of tomographic synthetic aperture radar (TomoSAR) was
demonstrated in [22] and realized for earth observation using airborne L-band data [15].
Subsequently, techniques for retrieving the vertical structure of forests from TomoSAR
observations were developed using non-parametric [15,23–27], parametric [23–25,27–29],
and hybrid [23,30–33] approaches. Non-parametric approaches do not rely on a priori
information about the forest structure, while parametric approaches are based on assump-
tions about the model used for the parametrization of forest media. While the former
suffers from the number and sampling of baselines [16], the later depends on the selection
of models. The hybrid approach provides a constrained solution without making any
assumptions [18,30,32,33].

The purpose of this article is two-fold. Firstly, we investigate and compare the perfor-
mance of the most commonly used tomographic inversion approaches (Back-projection,
Capon and MUSIC) to retrieve tropical forest vertical structure and tree height at different
polarizations. Here, the vertical forest structure is indicated by the 3D distribution of
backscattered power along the vertical direction. Even though these tomographic estima-
tors have been widely used to estimate the vertical structure of forests, here we put the
emphasis on the comparison of their performance to estimate the forest tree height. Further,
the estimation of forest vertical structure has been mostly limited to linear polarization data
and has ignored circular polarizations, particularly if they are important for improving low-
frequency (P-band) SAR radiometry in the presence of ionospheric interferences [34,35].
Secondly, the backscattered signal from the SAR data is influenced by both surface char-
acteristics, such as soil and canopy moisture, and topographic relief. The perturbation of
backscatter signal as a result of variation in surface and double-bounce scattering due to
local terrain relief was demonstrated in [36,37]. Such distortions have to be accounted for
before parameter retrieval. The slope compensation approach, such as that adopted in
Minh et al. [17], has been shown to minimize the effect of ground contribution. However, as
we move from near- to far-range, the irregular resolution cells in the cross-range direction
result in variable volume size, and its effect on backscattered power has not been addressed
yet. Hence, we plan to introduce a volumetric compensation approach to compensate for
the terrain relief on TomoSAR data. For super-resolution techniques such as Capon and
MUSIC, which do not preserve the radiometric property and provide pseudo-spectrum,
it is essential to provide a compensation approach to address the radiometric property
and provide reasonable correlation with different layers of the tomographic stack. Here,
we compare the effects of these compensation approaches on the backscatter power of
different layers and their influence on height and forest vertical structure estimation. The
analysis is performed using P-band airborne data from the ESA TropiSAR 2009 campaign
over Paracou, French Guiana.

This paper is organized as follows: In Section 2, we summarize the conceptual frame-
work of Tomographic SAR and the different inversion techniques adopted. Section 3
discusses three different compensation approaches adopted to compensate for the pertur-
bation in the backscatter power. The results and analysis of experiments performed on the
P-band dataset are presented and discussed in Section 4. Finally, in Section 5, conclusions
are drawn.
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2. SAR Tomography
2.1. Signal Model and Inversion Approaches

The fundamental objective of TomoSAR is to reconstruct the vertical reflectivity pro-
files for each range-azimuth pixel by focusing in the vertical direction. This is achieved
by using multiple SAR images acquired at different sensor positions. Let us consider a
simplified geometry of multi-baseline SAR acquisition with N-baseline (Figure 1). For
simplicity, we assume an ideal condition such that the wave penetration over the entire
volume and baselines is equally spaced. After SAR images are focused and co-registered
with respect to the master image, the resulting return in the nth SAR image from the
scatterers can be modeled as follows [38].

Sn
(

x′, r′
)
=

x
f
(
x′ − x, r′ − r

)
dxdr

∫
γ(x, r, v). e(−j 4π

λ Rn(r,v))dv; n = 1, 2 · · · , N, (1)
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Figure 1. Simplified geometry of multiple baseline synthetic aperture radar (SAR) tomography. Ltomo—Tomographic
aperture length, (X, Y, Z)—global coordinate system, (x, r, v)—SAR coordinates system, (∆x, ∆r, ∆v)—azimuth, slant- and
cross-range resolution, θ—radar look angle, (B, B‖, B⊥ )—baseline, parallel baseline, and perpendicular baseline, respectively.

Here, γ(·) is the scene complex reflectivity; x, r, and v are the azimuth, slant-, and
cross-range positions, respectively; Rn(r, z, v) denotes the distance between the sensor
position and the target (r0, v0) for the nth pass; and f is the space invariant post focusing
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two-dimensional (2D) point spread function (PSF). The calibration of the phase term
from topography and uncompensated phase disturbance (atmospheric delay and baseline
estimation error), which corrupts the phase of the image [39], will result in the calibrated
tomographic data stack that can be expressed as [38,39]:

Sn(x, r) =
∫

γ(x, r, v)ejKzvdv (2)

Here, Sn(x, r) denotes the complex-valued pixel located at azimuth-slant-range posi-
tion (x, r) from nth sensor, γ(x, r, v) is the average complex reflectivity within the azimuth-
slant-range resolution cell, v is the cross-range coordinate perpendicular to platform motion
and direction of the radar signal, and Kz represents the vertical wavenumber and is related
to the Height of Ambiguity (HoA) between the interferometric pair as:

Kz =
2π

HoA
=

4π

λr0
bn (3)

Here , bn is the perpendicular baseline with respect to the master image, λ is the signal
wavelength, and r0 is the distance from the sensor to the scatterer. For any fixed azimuth-
range index, the calibrated signal from different sensor positions can be represented as
samples of Fourier transform of the reflectivity function along the vertical direction [15].
The spectral analysis of Equation (1), using fast Fourier transform, results in a pixel of
focused SAR image from the nth pass that can be related to the vertical distribution of the
scatterer in the cross-range direction via Fourier transform.

PBP (z) = γ(x, r, v) =
N

∑
n=1

SN(x, r)e(−jKzv)dv (4)

The approach expressed in Equation (4) is known as the back-projection (BP) approach
or tomographic focusing [15,17,40,41], which allows us to retrieve the distribution of
backscattered power in the cross-range direction. The key parameters that characterize the
efficiency of the inversion approach is geometrical resolution in the cross-range and can be
expressed as [15]:

∆v ≈ λr0

2.Ltomo
≈ 2π

Max(Kz)−Min(Kz)
sin θ (5)

Here, Ltomo is the total length of synthetic aperture achieved in the vertical direc-
tion. However, the realistic multi-baseline scenario suffers from irregular baseline and
temporal decorrelation. This results in height ambiguities due to non-uniform sampling
and degradation of vertical resolution, resulting in anomalous sidelobes, which affects
the radiometric quality. The application of super-resolution techniques such as Capon
and MUSIC improves the imaging capability and provides better resolution than the BP
approach. Capon [23–25,42–44] is the most widely used non-parametric approach and
is viewed as a solution for the minimization problem, as defined in [23,44–47], which
constitutes the average power of the capon estimator.

PCapon(z) =
1

aH(z)·R̂−1·a(z)
(6)

Here, PCapon is the backscattered power estimated using the Capon estimator. The
MUSIC estimator is a subspace-based technique that exercises the Eigen-decomposition
of covariance, R̂, into orthogonal signal and noise subspaces. This estimation approach is
considered to be a model-based approach from the fact that they assume the signals to be a
superposition of multiple point-like sources.

PMUSIC(z) =
1

aH(z)·WH
n Wn·a(z)

(7)
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Here, PMUSIC is the backscattered power estimated using the MUSIC estimator, R̂
is estimated covariance matrix, a(z) denotes the steering vector given by Equations (8)
and (9), and Wn denotes the Eigenvectors of the noise subspace. The noise subspace is
estimated by the Eigen decomposition of the R̂ matrix.

R̂ =
1
N

N

∑
n=1

Sn(x, r)Sn
∗(x, r) (8)

a(z) =
[

1, exp(jKz2 z), exp(jKz3 z), . . . , exp(jKzK z)
]T (9)

The resolution in the vertical direction can be expressed by the exploitation of a simple
geometrical relation, z = v.sinθ, where θ is the elevation angle.

2.2. Tomographic Compensation

To achieve a robust solution and the accuracy of parameters within the desired values,
it is essential to account for factors that distort the tomographic signal. Before starting
the parameter retrieval, it is important to review the impact of different compensation
approaches used to minimize the effect of these distorting factors on the estimation of
biophysical parameters.

2.2.1. Radiometric Compensation

Although the Capon and MUSIC estimators provides better vertical resolution, the
radiometric quality is not preserved. The estimators provide a pseudo spectrum rather
than a true spectrum. Hence, when we relate a physical quantity such as the forest
structure or biomass to the backscatter power from the tomograms, it results in lesser
variations in correlation with different layers of the tomograms. To achieve a meaningful
relationship between backscatter values, scattering mechanism, and the physical quantity,
we compensate the backscatter at each layer by multiplying it by the backscattered power
of the master image. In this study, we have used the backscatter of the master image (IM)
in the linear unit. The compensation can be expressed as follows:

PR
E (x, g, z) = |γ(x, g, z)|2 ∗ IM;

Here, IM = |SM(x, g, z)|2

}
(10)

where, γ(x, g, z) denotes the complex-valued reflectivity corresponding to an azimuth-
ground range cell at an elevation, z, of a tomographic stack, PR

E (x, g, z) is the radiometri-
cally compensated backscattered power, E stands for Capon or MUSIC estimators, and
SM(x, g, z) is the master image.

2.2.2. Slope Compensation

The SAR signal from the vegetation is expressed as a sum of the contribution from
vegetation and underlying terrain characteristics [48,49]. The works by [36,37] discuss
the correlation of terrain slope with backscatter at different layers of tomograms. The
effect of topographic slope variation on tomographic backscatter layers is discussed and
validated from the above-ground biomass (AGB) estimation point of view in [40]. These
results indicate the importance of removing the terrain slope from the tomographic layers
when estimating forest structure and biomass. The tomographic slope compensation can
be expressed, as in [40], in the ground range geometry:

Ps
BP(x, g, z) = | γ(x, g, z)|2·sin(θ − α) (11)

Here, Ps
BP(x, g, v) is the slope compensated backscattered power. Further θ and α

denote the radar elevation angle and the local slope in the ground range geometry, respectively.
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2.2.3. Volumetric Compensation

As a result of geometric distortion due to incidence angle and slope, the cell resolutions
in a slant- and cross-range vary from near- to far-range, resulting in inconsistent volume
area covered on the ground. Hence, it is essential to compensate for the volumetric area
before relating the backscatter power to any geophysical parameter at the ground level.
Here, we begin by assuming that the volume layer is a collection of randomly oriented
identical scatterers exhibiting independent scattering effects on the total backscatter. Then,
the backscattering coefficient of the 3D resolution cell can be expressed as the summation
of backscattering from each scatterer within that resolution cell. Hence, to compensate for
the backscattering, volumetric content can be given as follows:

Pv
BP(x, g, z) = |γ(x,g, z)|2

Vc
;

Here, Vc = ∆x·∆g·∆z = ∆x ∗ ∆g ∗ ∆v
sin(θ−α)

}
(12)

Here, ∆x, ∆g, ∆z, ∆r and ∆v are the azimuth, ground, vertical, slant- and cross-range
resolutions, respectively. The cross-range resolution for the BP approach is expressed as in
Equation (4), and for other conventional covariance-based estimators, discussed above, is
given by the interval at which the tomograms are estimated in the vertical direction. For
example, we have estimated tomograms at an interval of 1 m for the Capon and MUSIC
estimators. Hence, in our case, both slope and volumetric compensations converge to
similar results scaled by a constant variable, Vc, at volume intervals ∆v = 1.

3. Materials and Methods
3.1. Materials

Our study site was over the Paracou field station (5◦18′N, 52◦55′W), located in a
lowland moist tropical forest with high above-ground biomass (up to 450 t/ha) near
Sinnamary, French Guiana. The elevation at the site is between 5 and 50 m, and the
mean annual temperature is 26 ◦C, with an annual range of 1.0–1.5 ◦C. Rainfall averages
2980 mm yr−1 (30-year period), with a three-month dry season (<100 mm month−1) from
mid-August to mid-November. The landscape is characterized by a patchwork of hills
(100–300-m wide and 20–35-m high), separated by narrow streams. The forest in Paracou
is classified as a lowland moist forest with 140–200 species per hectare, as specified in
the forest census of all trees with a diameter at breast height (DBH) >10 cm [50,51]. The
analysis of the vertical structure and tree height estimation were performed over the 16
permanent experimental plots, which were sub-divided into plots of 1-ha, 2-ha, 3-ha, and
4-ha resolutions. The average canopy height is marked at around 30 m, with a maximum
reach of up to 45 m and biomass varying between 200–450 t/ha across these plots. We also
had access to 2009 data from an airborne LiDAR scanning (ALS) system using a RIEGL
LMS-280i onboard a helicopter, which was collected over an area of 1100 ha at high spatial
resolution (1-m) with approximately 5.7 points/m2 [52]. LiDAR-derived Canopy Height
Model (CHM) was used to validate the forest height and vertical forest structure.

We used data from the P-band airborne TropiSAR campaign from the summer of
2009 from the framework of the European Space Agency BIOMASS mission calibration
and validation activities. The main campaign objectives were to evaluate how P-band
radar imaging of tropical forests in different polarimetric, interferometric, and tomographic
modes would perform in the estimation of forest height and AGB. The tomographic data
were acquired with six fully polarimetric images at P-band, each separated by 15.24 m
vertically above the master at equal intervals using a SETHI airborne SAR system from
ONERA. The mean values of the vertical wavenumber between the interferometric pair
over the region of interest, shown in Figure 2, were 0.0518, 0.1193, 0.1624, 0.1978 and
0.2747 rad/m, respectively. The sensor operated with a frequency centralized at 397.5 MHz
with a bandwidth of 125 MHz. The waveform is characterized by a typical swath of
5 km with an incidence angle ranging from 25◦ to 60◦ flying at an altitude of 4014 m.
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The SLC image had a pixel spacing of 1 m and 1.245 m in slant range and azimuth
direction, respectively.
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Figure 2. Paracou test site: (A) P-band SAR image (4000 × 8895 pixels) covering an area 6 km wide by 10 km long. The red 
box indicates the region of interest (ROI) of this study; (B) Pauli RGB (Red: |HH-VV|; Green: |2HV|; Blue: |HH+VV|) 
image over the ROI. Here, the lines aa’ corresponds to fixed azimuth value (1838.9 m) over which the tomographic profiles 
are displayed; (C) displays the slope over the ROI. The range has been scaled between −20 and 20 degrees for better visu-
alization. 

  

Figure 2. Paracou test site: (A) P-band SAR image (4000 × 8895 pixels) covering an area 6 km wide by 10 km long. The red
box indicates the region of interest (ROI) of this study; (B) Pauli RGB (Red: |HH-VV|; Green: |2HV|; Blue: |HH+VV|)
image over the ROI. Here, the lines aa’ corresponds to fixed azimuth value (1838.9 m) over which the tomographic
profiles are displayed; (C) displays the slope over the ROI. The range has been scaled between −20 and 20 degrees for
better visualization.

3.2. Methods

The extraction of forest biophysical parameters via the tomographic approach can
be divided into three main blocks, as shown in Figure 3: interferometric processing;
tomographic processing and parameter retrieval and validation. The interferometric
processing begins with the selection of a master image from the stack of SAR images
acquired at slightly different geometry (orbits from satellite, flight tracks from airborne
platforms). The selection of the master image plays a vital role as it influences the outcome.
The slave images are then co-registered at the sub-pixel level and resampled to the master
image geometry. Later, flat-earth corrections are applied to the interferometric stack.
Because radar techniques measure the phase delay, any occurring propagation disturbance
can corrupt the phase signals and has to be accounted for before further processing. The
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procedure for estimating and removing phase offsets due to propagation disturbances
is known as phase calibration [39,53,54]. In this work, the tomographic stack over the
Paracou study site was calibrated using the Phase Center Double Localization approach
(PCDL) [55]. This approach can be considered as a two-step procedure: (1) estimating the
phase-linked errors and (2) solving them to estimate the sensor and target positions.
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Figure 3. The flowchart of biophysical parameter estimation using SAR Tomography. Here, DEM and DTM represents
digital elevation and terrain models respectively, SRTM represents Shuttle Radar Topography Mission and InSAR and
TomoSAR represents interferometric and tomographic synthetic aperture radar.

The phase calibration procedure allows us to perform focusing along the elevation
direction. The tomographic processing begins with the removal of phase offsets due
to terrain topography. The knowledge of accurate terrain topography has a significant
impact on the TomoSAR focusing as it is essential for (a) removing terrain topography and
focus contribution with respect to zero references and (b) accounting for the contribution
of terrain slope on backscattered power. The terrain topography was estimated via the
approach discussed in Mariotti d’Alessandro and Tebaldini [56], which the reader can
refer to for further details. Once the data stack is corrected for propagation disturbance
and topographic offsets, the multi-baseline interferometric coherence is estimated. The
tomographic inversion is carried out, as discussed in the above section, to generate a
tomographic cube.
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To relate the tomogram to the in-situ data, it is necessary to convert the tomogram
from radar geometry to ground geometry. This procedure is performed by interpolating the
backscattered power from slant range-cross range geometry to the ground-elevation geom-
etry and requires the understanding of platform positions and terrain topography. Once the
tomographic cube is converted to ground geometry, the multi-layered backscattered power
stack is compensated for different normalization approaches. The algorithm for retrieving
forest canopy height using the tomographic approach, developed and validated using
airborne data collected over boreal and tropical forests [17,28,41], was used in this work.
The key idea behind this approach is to investigate the shape formed by the distribution of
backscatter power along the vertical direction, (P(z, x, r)), for each azimuth-range index.
Here, we assume that the shape of the backscattered power distribution function along the
vertical direction (at each azimuth-range index) can be broken down into three zones. The
first zone represents the contribution of backscattering from the canopy layer, primarily
from the phase center. As we move in the vertical direction from the phase center, the
backscatter profile exhibits loss of power value resulting from diminishing forest canopy
density. This constitutes the second zone, known as the power loss zone. The third zone lies
above the power loss zone and does not have any association with the physical parameters.
This is primarily due to the contribution of noise resulting in the backscattered power in
this region. Now, to retrieve the tree height, we begin with the estimation of the phase
center (Hc), an effective scattering center over which most of the backscattering power is
concentrated, and it is given by:

Hc(x, r) = argmax
z
{P(z, x, r)} (13)

Then we estimate the power loss (K) from the phase center location along the upper
envelope in the vertical direction to estimate the forest height (H). However, the value
of power loss is unknown and has to be estimated. In this work, we have used CHM
derived from LiDAR data for estimating the optimum value of power loss. This estimation
procedure can be formulated as:

H(x, r) = argmin
{∣∣P(z′, x, r

)
− P(Hc, x, r)− K

∣∣} (14)

Here, P(Hc, x, r) is backscattered power at Hc and P(z′, x, r) is backscattered power
values for elevation ranging from Hc to the upper limit of the profile.

4. Results and Discussions

The multi-baseline data stack was acquired with short temporal baselines obtained
within a total span of 2 h. Additionally, no rain events were recorded around the days of
data acquisition and hence no or negligible temporal decorrelation can be assumed. The
compact, hybrid, and dual circular polarizations (DCP) stack was synthesized from the
full polarimetric data and was used for further analysis. The holdout cross-validation
approach was performed iteratively by selecting 75% as training and 25% as testing data,
and accuracy was assessed using root-mean-square error (RMSE) and Pearson coefficient
(rp). Numerous research has discussed the tomographic analysis of forest over the Paracou
site in linear polarization mode [17,36,37,40,41]. However, for this study, from the point of
view of tomographic analysis, we are more focused on the compact (PiH & PiV), hybrid (RH
& RL), and DCP (RR & RL) modes. The analysis of tomograms is restricted to the patch of
the SAR image shown in Figure 2 because all the validation plots and LiDAR data available
falls within this region. We investigated the forest vertical profiles using tomograms
estimated over the kernel size of 9 × 9 pixels in range-azimuth direction, corresponding to
an area 9.0 m × 11.205 m (~100 m2). The vertical resolution of the BP approach depends
on the look angle variations from the near-range to the far-range, resulting in variations
of Rayleigh resolution from approximately 20 m within the image. However, over the
ROI shown in Figure 2, the vertical resolution varies from approximately 20 m in near-
range (4255 m) to 30 m in far-range (6255 m) of ROI. However, for the Capon and MUSIC
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estimators, we performed the retrieval of backscatter by sampling at 1 m in the vertical
direction. The tomograms are normalized such that summation of backscattered power
along the elevation direction is one for each voxel, assisting a better visual interpretation of
profiles. The LiDAR-derived canopy heights are overlaid over the tomographic profiles for
the validation of profile estimation.

4.1. Tomographic Profile and the Multi-Layer Stack

Figure 4 represents the tomographic profiles using BP (Figure 4a,b), Capon (Figure 4c,d),
and MUSIC (Figure 4e,f) estimation approaches along the range direction (of a constant
azimuth transect aa’ x = 1839 m) at PiH and PiV polarizations. The general observation
is that the signal was able to penetrate the volumetric layer to the ground and the scat-
tering is observed from both vegetation and ground surface for all polarizations, but the
total backscattered power varies with transmit-receive configuration. It was observed
that V-receive (HV, PiV, RV) and cross-polar channels (HV, RL) displayed strong volume
contribution with significant contribution from the ground. Further, H-receive (HH, PiH,
RH) and co-polar channels (HH, VV, RR) show dominant ground scattering behavior, with
HH exhibiting the strongest of them all. The tomographic profiles, estimated using Capon
in the range direction for a mid-azimuth section cut (aa’ x = 1839 m), displays a similar
overall vertical profile as the BP approach. They are able to better resolve the scatterers and
suppress sidelobes; however, they exhibit a loss of radiometric accuracy. For tomographic
profiles estimated using MUSIC, we have used a second-order estimator, which allows us
to retrieve both the ground and canopy scattering components. The second-order estimator
is constructed by spanning the noise subspace obtained by selecting the Eigenvectors
corresponding to N-2 smallest Eigenvalues. This allows the MUSIC estimator to locate
the position of the scatterer’s phase centers, resulting in better discretization of targets.
Figure 4 shows that the ground and canopy top positions can be clearly demarcated with
suppressed sidelobes for the MUSIC estimator, indicating that it may assist better retrieval
of terrain and height information.
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Each tomographic layer in the stack is related to backscattered power at a different
height (0 m, 10 m, 20 m, 30 m and so on), which are ground steered to the corresponding
terrain height values. The analysis of the multi-layer tomographic cube exhibited the
influence of terrain slope on the backscattering power at different layers. For the BP
approach, it is observed that the top and bottom layers of the stack displayed a strong
correlation with terrain slope, while the intermediate layers showed less sensitivity to
terrain slope. However, the backscattered power at different layers of tomographic cubes
using Capon or MUSIC showed no or negligible correlation with terrain slope, as shown
in Figure 5. This is because the super-resolution estimators provide pseudo-spectrums
such that the radiometric characteristics of the image are no longer preserved and therefore
result in a lack of sensitivity to the effect of the terrain slope. Similarly, for the middle
layers, the BP estimators show increased sensitivity to different scattering components of
the forest, whereas, in contrast, Capon and MUSIC show less sensitivity. Hence, to achieve
a meaningful relationship between backscatter values and the forest vertical structure and
tree height, radiometric compensation (R.C.) was applied to the tomographic cubes for the
super-resolution techniques. From Figure 5, it can be observed that the implementation
of R.C. results in a significant correlation between the backscattered power and terrain
slope. This is primarily due to the influence of ground contribution resulting from the
scatterer’s orientation within the pixel of the master image used for compensating the
tomographic layers. This effect was much more prominent in the ground and top layers
than in the middle layers. Additionally, it was observed that the radiometric compensation
in the co-polar channels is more influenced by the ground contribution than it is in the
cross-polar channels.

Figure 6 displays the vertical profiles of the tomograms generated for different polar-
izations over the 1-ha resolution validation plots using different estimators. The profiles
of Capon and MUSIC displays the radiometrically calibrated backscattered power of the
tomogram. Figure 6 shows that MUSIC and Capon estimators provide better separation
between the ground and volumetric contribution compared to the BP approach. It can be
observed that the maximum mean backscattered power for the volume contribution lies
between 20–21 m for all the polarization channels for different estimators. Additionally,
it is observed that the BP estimated backscattered power showed a dynamic range (Pmin,
Pmax) of −20 to −7 dB, whereas Capon and MUSIC displayed a larger dynamic range of
−32 to 3 dB and −11 to 26 dB, respectively, depending on the polarization. Figure 6 also
shows that the ground layer displays a strong backscatter. This is primarily due to the fact
that the ground scattering and the phase center of ground-trunk interactions is located on
the ground over flat terrain [36,37].
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Figure 5. Tomographic layers over the Paracou ROI-HH, HV, VV backscattered power associated with ground and 30
m layers estimated using BP, Capon and MUSIC estimator. Here, U.C., R.C. represent the uncorrected and radiometric
compensated backscattered power of different tomographic layers.

To assess the impact of slope and volumetric normalization on the backscattered
power of different layers, we consider the uncompensated backscattered power of BP,
and radiometrically calibrated Capon and MUSIC backscattered power (mentioned as
uncompensated in Figure 6 to maintain consistency in naming convention). Figure 7
displays the backscattered power at 0 and 30 m layers for PiV polarization. It is observed
that, for the BP approach, the ground layer shows a strong correlation with the terrain slope
when compared to Capon and MUSIC. Similar behavior is observed in the top layers but to a
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lesser extent. The intermediate layers are less affected by slope for all estimators. However,
normalizing the intermediate layers with respect to slope and volume resulted in decreased
backscatter values for BP and not much variation for Capon and MUSIC estimators.
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uncorrected, slope, and volume compensated backscattered power for ground and 30 m tomographic layers.

4.2. Tomographic Tree Height Estimation

The tree height is estimated with the assistance of LiDAR-derived CHM values over
the study site. The power loss value, in Equation (12), is varied from 0 to−15 dB for BP and
Capon and 0 to −30 dB for MUSIC estimator. Then the error statistics are calculated with
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respect to LiDAR-derived CHM over the training site. The power loss that corresponds to
the minimum root mean squared error (RMSE) value is selected as the optimum power
loss value. Finally, tree height for the rest of the image is estimated using the optimum K
value and validated over the testing sites. In order to understand the impact of different
compensation techniques on retrieval of tree height, we begin with comparing the results
of the Capon and MUSIC estimator with and without radiometric corrections. Applying
the radiometric correction resulted in increased power loss value for MUSIC; however, for
Capon, the minimal trend is shown. The height estimation from radiometrically corrected
backscattered power resulted in increased RMSE values, especially prominent in the co-
polarization channels at 1-ha resolution. Additionally, there was no difference in RMSE of
tree height values estimated using the uncompensated and slope compensated backscat-
tered power of the BP approach. However, the height estimates from volume backscattered
power displayed significantly higher RMSE values compared to its counterpart, as seen
in Figure 8d–f.
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Here, we make use of the tree height estimated using uncompensated backscattered
power for comparison of error statistics between estimators. Figure 8 displays the RMSE
and R2 of tree heights estimated using tomographic backscattered power at PiH and
PiV polarizations. For each polarization, the minimum RMSE value was achieved for
a power loss value with respect to a phase center height that falls within −2.88 ± 0.50,
−10.17 ± 0.83 and −17.64 ± 0.79 dB for BP, Capon and MUSIC estimator, respectively.
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Figure 9 shows that the increase in resolution not only improved RMSE value but also
the reliability of estimates. It was possible to retrieve the canopy height with an overall
accuracy of RMSE of about 12% at 1-ha resolution to 6.5% at 4-ha of average LiDAR
measured mean top canopy height, as shown in Table 1. Tree height retrieval using the
MUSIC slightly outperforms Capon for all polarization channels, with BP performing the
worst of the three. The right circular transmits consistently performed better, along with
the VV polarization. The validation of tree height estimates using different estimators was
also performed for different slope bins. It was noted that the bias of tree height estimates
shows a clear correlation with terrain slope. In the BP approach, most of the terrain areas
displaying positive slopes underestimated the tomographic-based heights compared to
the LiDAR canopy heights. Conversely, for most of the cases with negative slopes, the
tomographic-based height estimates showed higher values compared to LiDAR canopy
heights, resulting in an overestimation of forest heights. However, Capon and MUSIC both
show smaller bias values, with less dispersion.
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Table 1. Validation of forest tree height estimates at 4-ha resolution for different polarizations. Color coding by RMSE value
relative to mean LiDAR tree height over the plots: white for RMSE ≤ 10%, gray for 10% < RMSE < 15% and dark gray for
RMSE ≥ 15% of mean LiDAR tree height.

Polarization BP
RMSE (Power loss, rp)

Capon
RMSE (Power loss, rp)

MUSIC
RMSE (Power loss, rp)

HH 3.54 (−3.75, 0.983) 2.11 (−11.5, 0.994) 1.92 (−18.75, 0.995)
HV 2.59 (−2.5, 0.991) 2.33 (−9.25, 0.992) 2.25 (−16.5, 0.993)
VV 2.19 (−2.25, 0.993) 1.94 (−9.5, 0.994) 1.74 (−17.0, 0.995)
PiH 3.51 (−3.5, 0.983) 2.54 (−11.0, 0.991) 2.31 (−18.5, 0.992)
PiV 2.27 (−2.5, 0.993) 2.06 (−9.25, 0.994) 1.71 (−16.75, 0.996)
RH 2.86 (−3.25, 0.989) 1.92 (−10.75, 0.995) 1.77 (−18.25, 0.995)
RV 2.11 (−2.5, 0.994) 2.13 (−9.75, 0.994) 1.86 (−17.25, 0.995)
RR 3.02 (−3.5, 0.987) 1.89 (−11.0, 0.995) 1.79 (−18.75, 0.995)
RL 2.3 (−2.25, 0.993) 1.91 (−925, 0.995) 1.77 (−17.0, 0.995)

4.3. Forest Vertical Profile and Tomographic Metric

The forest vertical profiles in Figures 10 and 11 are from Plots 7, 8, 13 and 16 in
Figure 2. From Figure 10q–t, it is observed that Plots 7 and 8 characterize low biomass
density, whereas Plots 13 and 16 display higher biomass density. These plots are used to
understand the impact of different compensation approaches on the vertical profiles of
different estimators with different forest densities. Further, the histogram of tree heights
derived from LiDAR CHM over the plots are shown to compare the distribution of tree
structure within the plots. The maxima of the histogram of LiDAR CHM was observed
around 22, 26, 32 and 34 m for Plots 7, 8, 13 and 16, respectively. Figure 10 shows the forest
vertical profiles for HH (blue), HV (orange) and VV (green) polarization channels from
uncompensated and radiometrically compensated backscatter power using Capon and
MUSIC estimators. It is observed that, for uncompensated Capon and MUSIC, backscat-
tered power at different polarization shows a similar response. The distinct local maxima
are found at ground level of the vertical profile for all plot, indicating the capability of the
P-band to penetrate to ground level. For low-density plots, the demarcation of canopy
level was found to be difficult, especially when using the Capon estimator. This weaker
response to the canopy layer can be attributed to the sparse vegetation component in the
upper compartment of vegetation over these plots. However, for Plots 13 and 16, the
canopy maxima were observed around 24 and 22 m for both the Capon and the MUSIC
estimator, respectively. The radiometric correction resulted in an increase in backscatter
value of profiles with a shift in maxima of canopy layer between 27–29 and 24–26 for Plots
13 and 16 for both the Capon and the MUSIC estimators. Additionally, the cross-polarized
channel shows lower values of intensity along with the vertical profile compared to the
co-polarized channels for both estimators after radiometric compensation.

Figure 11 shows the forest vertical profiles for PiH polarization with no (red), slope
(green) and volume (cyan) compensated backscatter power using BP, radiometrically
corrected Capon, and MUSIC estimators. It is observed that, for Plots 13 and 16, irrespective
of the approach used, the maxima is achieved around a similar height, with Capon and
MUSIC distinctly demarcating the local maxima and canopy layer. Compensating for
slope and volume resulted in a decrease in the backscatter values of profiles with similar
profiles pattern. The higher decrease in volume compensated BP profile could be related to
coarse resolution in the vertical direction. For the radiometrically compensated Capon and
MUSIC estimators, the effect of slope and volume compensation resulted in much lesser
variation compared to BP, which can be related to the finer spacing in the vertical direction
for the super-resolution techniques.
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Figure 10. Forest vertical profiles from P-band tomographic data of low density (Plots 7 and 8) and high density (Plots 13 and
16) AGB plots for HH (blue), HV (orange), and VV (green) polarization channels from uncompensated and radiometrically
compensated backscatter power using Capon and MUSIC estimators at 2-ha resolution. The tree height histogram (navy
blue) from LiDAR CHM is also provided to give a representative tree height within the plot: (a–d) uncompensated
Capon profiles of Plots 7, 8, 13, and 16; (e–h) radiometrically compensated Capon profiles of Plots 7, 8, 13 and 16; (i–l)
uncompensated MUSIC profiles of Plots 7, 8, 13 and 16; (m–p) radiometrically compensated MUSIC profiles of Plots 7, 8, 13
and 16; (q–t) LiDAR derived AGB of Plots 7, 8, 13 and 16.
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Figure 11. Forest vertical profiles from P-band tomographic data of low density (Plots 7 and 8) and high density (Plots 13
and 16) AGB forest plots for PiV polarization channels with uncompensated (red), slope (green) compensated, and volume
(cyan) compensated backscattered power derived using BP, Capon, and MUSIC estimators at 2-ha resolution. The tree
height histogram (navy blue) from LiDAR CHM is also provided to give a representative tree height within the plot: (a–d)
BP uncompensated, slope, and volume compensated profiles of Plots 7, 8, 13 and 16; (e–h) Capon uncompensated, slope,
and volume compensated of Plots 7, 8, 13 and 16; (i–l) MUSIC uncompensated, slope, and volume compensated profiles of
Plots 7, 8, 13 and 16; (m–p) LiDAR derived AGB of Plots 7, 8, 13 and 16.

As we know that the tomographic layer provides the 3D distribution of backscattered
power of a volumetric media, we derive a tomographic metric, integrated tomographic
power (PIpq ) by integrating the backscattered power along the z-direction from half of the
vertical resolution from the ground to the tree height. The lower cut-off of half of the vertical
resolution was selected in order to reduce the impact of ground and double-bounce contri-
bution, which perturb the backscattered power at the lower tomographic level. Figure 12a
represents the uncompensated and radiometrically compensated integrated power using
the Capon and MUSIC estimators. Figure 12b shows tomographic integrated power using
BP, radiometrically corrected Capon and MUSIC estimators with uncompensated, slope
and volume compensation. It is noted that there is a decrease in backscatter power from
near- to far-range for all the estimators after slope and volume compensation. The large
decrease in integrated backscatter value after volumetric compensation over BP can be
attributed to the vertical resolution of the BP estimator.



Remote Sens. 2021, 13, 1485 19 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 23 
 

 

power ( ூܲ೛೜) by integrating the backscattered power along the z-direction from half of the 
vertical resolution from the ground to the tree height. The lower cut-off of half of the vertical 
resolution was selected in order to reduce the impact of ground and double-bounce contribu-
tion, which perturb the backscattered power at the lower tomographic level. Figure 12a rep-
resents the uncompensated and radiometrically compensated integrated power using the 
Capon and MUSIC estimators. Figure 12b shows tomographic integrated power using BP, 
radiometrically corrected Capon and MUSIC estimators with uncompensated, slope and 
volume compensation. It is noted that there is a decrease in backscatter power from near- 
to far-range for all the estimators after slope and volume compensation. The large de-
crease in integrated backscatter value after volumetric compensation over BP can be at-
tributed to the vertical resolution of the BP estimator. 

 
Figure 12. Tomographic derived metric over the Paracou ROI - HV backscattered power derived by integrated along the 
z-direction between half of the vertical resolution from the ground to tree height: (a) uncompensated and radiometrically 
compensated integrated power using Capon and MUSIC. The top left image represents the slope and the top right repre-
sents the vertical resolution. (b) uncompensated (represents radiometrically corrected for Capon and MUSIC). Uncom-
pensated, Slope corr., and Volume corr. represent the uncorrected, slope, and volume compensated integrated power 
using BP, Capon, and MUSIC estimator. 

5. Conclusions 
In this study, we present the comparison of different P-band tomographic SAR pro-

cessing and radiometric compensation techniques on the retrieval of the forest canopy 
height and vertical profile over a tropical forest site in French Guiana, with high biomass 
density variations. The tomographic P-band BP, Capon and MUSIC profiles at different 
polarizations showed a good correlation with the LiDAR CHM. The horizontal receive 
and co-polar channels better display the contribution of ground scattering, whereas the 
volume contribution is highlighted in V receive and cross-polar channels. The impact of 
different backscatter compensation approaches on parameter estimation was discussed 

Figure 12. Tomographic derived metric over the Paracou ROI-HV backscattered power derived by integrated along the
z-direction between half of the vertical resolution from the ground to tree height: (a) uncompensated and radiometrically
compensated integrated power using Capon and MUSIC. The top left image represents the slope and the top right represents
the vertical resolution. (b) uncompensated (represents radiometrically corrected for Capon and MUSIC). Uncompensated,
Slope corr., and Volume corr. represent the uncorrected, slope, and volume compensated integrated power using BP, Capon,
and MUSIC estimator.

5. Conclusions

In this study, we present the comparison of different P-band tomographic SAR pro-
cessing and radiometric compensation techniques on the retrieval of the forest canopy
height and vertical profile over a tropical forest site in French Guiana, with high biomass
density variations. The tomographic P-band BP, Capon and MUSIC profiles at different
polarizations showed a good correlation with the LiDAR CHM. The horizontal receive
and co-polar channels better display the contribution of ground scattering, whereas the
volume contribution is highlighted in V receive and cross-polar channels. The impact of
different backscatter compensation approaches on parameter estimation was discussed
and validated at different spatial scales relevant to the BIOMASS mission observational
configuration. The performance of forest height retrieval using P-band SAR data, assisted
by LiDAR CHM at different tomographic estimator- and polarization-resolutions was
compared and validated. The RMSE values of 1.71 m and 1.74 m were achieved using PiV
and VV polarization using the MUSIC estimator at 4-ha resolution, with corresponding
R2 values of 0.996 and 0.995, respectively. It is observed that estimating forest height from
radiometric or slope and volume compensated backscattered power does not significantly
improve the estimates, but rather resulted in the degradation of estimates in most cases.
Additionally, the height estimates from different polarizations fall within the error range,
suggesting that the scattering mechanisms seem to have a minor effect on polarization.
However, this needs to be further investigated. The analysis of forest vertical profile dis-
played strong contribution from the ground level. The plots with higher biomass density
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displayed stronger canopy demarcation compared to sparse density plots. Compared to
BP, Capon and MUSIC profiles showed a strong performance in demarcating the scattering
contributions. Applying radiometric correction to Capon and MUSIC profiles resulted in
the increase in backscatter intensity along the vertical profile, with the co-polar channel
showing higher increase values. Conversely, the slope and volume compensation resulted
in the decrease in backscatter power of the profile, with volumetric compensation of BP
showing a larger decline, which could be related to coarse vertical resolution. Similar
behavior was observed for the tomographic-derived metric. Note that, in this study, the
SAR data are used in their original bandwidths; any bandwidth reduction for space ob-
servations (e.g., 6 MHz for the BIOMASS mission) will impact the corresponding R2 and
RMSE but will not change the overall relative performance of the TomoSAR techniques
demonstrated here.
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