
Harnessing LLMs for Verification-Guided
Specification Repair

Alberto Tagliaferro[0009−0004−4923−7831]

alberto.tagliaferro@polimi.it
Politecnico di Milano, Milan, 20133, Italy

Abstract. The increasing complexity of software-intensive systems ne-
cessitates efficient and user-friendly methods for specifying multi-agent
missions. This work envisions a framework exploiting generative AI to
generate formally-verified specifications based on a Domain-Specific Lan-
guage (DSL). The generated DSL specification is automatically trans-
lated into a selected formal model. The formal model undergoes verifica-
tion, yielding quality metrics regarding the specification and its correct-
ness. Results are examined to provide repair feedback actions, enhancing
the initial prompt for better performance.

Keywords: Multi-agent Systems · Domain-Specific Languages · Large
Language Models · Iterative Specification Repair

1 Motivations and Goals

The ever-growing complexity of software-intensive systems, such as Internet of
Things (IoT), smart manufacturing, healthcare, and assistive robotics, under-
scores the increasing need of solutions for specifying interactive multi-agent sys-
tem applications quickly and unambiguously, even for non-expert users. In addi-
tion to ensuring the accessibility of specifications for software-intensive systems—
e.g., System-of-Systems (SoSs)—it is crucial to guarantee systems’ reliability,
especially given their critical nature and operation in uncertain environments.
This requirement underscores the necessity for the proposed solution to facilitate
user-friendly specification and ensure the reliability and robustness of SoSs [2].

A common way to address these issues is the adoption (or the development
from scratch) of a Domain-Specific Language (DSL), providing a high level of
abstraction [1]. In a model-driven approach, a DSL specification can be compiled
to generate a formal model (e.g., based on automata or logics) or directly create
the code for the agents. In both cases, the artifacts generated are often com-
plex and challenging for users to specify directly. The obtained artifacts must
then be verified (e.g., through model checking or other techniques for program
verification) to compute quality attributes and assess their correctness.

However, existing approaches find limited applicability due to the complexity
of software-intensive systems. Specifically, we identify two pressing challenges:



2 A. Tagliaferro

Generative IA
(LLM)

Data
Analysis

Natural
Language

Prompt

Formal
Model

Textual
DSL

Formal
Verification

Prompt
Refinemet

DSL
Syntax and 
Semantics

Data
Visualization

Programming
Language

Program
Verification

Fig. 1: Envisioned framework. The color-coding is light blue boxes for the gen-
erative AI elements, the green elements for the DSL-based blocks, purple for
formal components, and red for the new main component of this proposal, used
for the visualization and refinement of the outcome.

I. Translating requirements expressed in natural language into a DSL can prove
challenging, time-consuming, and error-prone for users. Moreover, this pro-
cess demands that the user have a thorough understanding of language syn-
tax and semantics when using high-level DSLs [3].

II. Understanding the outcomes of the formal analysis can be hard to interpret
for humans [14].

This doctoral research proposal aims to address and investigate possible so-
lutions to these challenges, exploiting the combination of formal verification and
cutting-edge technologies such as generative AI and data analysis.

2 Envisioned Framework

The framework illustrated in Figure 1 outlines the key components necessary to
address the described issues, starting from a specification expressed with Natural
Language Prompt and incorporating a Prompt Refinement mechanism.

The entry point to the approach is the user prompting the Generative AI,
describing in natural language the agents’ goal and the operational environment.
The Generative AI, possibly taking as input also the foundation of the target
DSL Syntax and Semantics, provides as output the Textual DSL specification for
the mission defined by the user. The generation of the Textual DSL instead of
the target formal model offers two significant advantages. Firstly, the generated
outcomes are easier for the human user to modify once it is generated, as they are
more comprehensible compared to the final specification (i.e., Formal Model or
Programming Language). Secondly, Large Language Models (LLMs) have been
specifically developed for text generation, making a DSL a more suitable and



Harnessing LLMs for Verification-Guided Specification Repair 3

natural output compared to a mathematical formulation. The AI-generated DSL
specification is then translated into the Formal Model (resp., Programming Lan-
guage) and subject to Formal (resp., Program) Verification. The used verification
technique depends on the nature of the artifacts created from the DSL.

The outcome of the verification might be hard to interpret for the user,
especially concerning how to revise the generated DSL in light of such results.
The Data Analysis in Figure 1, combined with the Data Visualization element,
facilitates human interpretation. The analyzer yields the specification of repair
action to be forwarded to the Prompt Refiner. The latter, starting from the initial
Natural Language Prompt, implements the repair action and updates the prompt
for the Generative AI (LLM), aiming to obtain a revised specification. This
iterative process can be repeated multiple times to meet the user’s requirements.

A potential validation test for the envisioned framework is that of LIrAs,
a domain-agnostic DSL for the specification of multi-agent systems [12]. The
DSL is then translated into Stochastic Hybrid Automata (SHA) [5], exploiting
expert-defined formalizations of the agents’ primitive skill. However, depending
on the specific agent’s capabilities, the latter cannot be inferred directly from
the DSL. This challenge can be addressed by exploiting automata learning [8].
The iterative refinement approach shown in Figure 1, combined with automata
learning, has the potential to significantly reduce the end-user effort in specifying
and verifying multi-agent missions.

3 Related Works

This section reports an analysis of the state of the art concerning the potential
of generative AI in specifying agents’ tasks, focussing on the robotic field.

Stella et al. [11] analyze the potential changes that LLMs could bring in the
coming years, particularly in simplifying robotic design (e.g., GPT is an LLM
also utilized for robotics applications [13]). Singh et al. [10] introduce Prog-
Prompt, an LLM prompt structure designed to generate plans across various
situated environments, robot capabilities, and tasks. Notably, fed with a prompt
describing the goal and including primitives, objects, and example tasks, Prog-
Prompt generates a plan based on a specification. Similarly, Liang et al. [6]
present an approach to exploring LLMs to generate code for robotic specifica-
tions. CodeBolter and RoboEval [4] represent robot-agnostic tools for program-
ming services from natural language inputs and evaluating them. Luan et al.
[7] demonstrate how developing robot specifications can be enhanced by utiliz-
ing multiple LLMs rather than relying on a single one. Finally, Ross et al. [9]
demonstrate a different application of LLMs, focusing on program generation to
assist software development based on natural language inputs.

This brief analysis of LLMs for robot specifications underpins the need for a
structured and sufficiently flexible framework that combines LLMs and formal
verification with custom DSLs (unseen during LLM training). Such a frame-
work should also support sufficiently complex agent-based applications, includ-
ing multi-agent and human-agent systems.



4 A. Tagliaferro

4 Research Plan Status

This project is currently at the conceptual stage. The immediate focus is con-
ducting a comprehensive literature review (briefly summarized in Section 3) to
consolidate the identified challenges. Concurrently, generative AI development
and data analysis techniques will be evaluated to select the most appropriate
tools for developing and testing the proposed solutions. These foundational steps
are crucial for establishing a solid basis for the project’s subsequent phases, which
will involve designing, implementing, and validating the presented toolchain.

References
1. Dragule, S., Gonzalo, S.G., Berger, T., Pelliccione, P.: Languages for specifying

missions of robotic applications. Software Engineering for Robotics pp. 377–411
(2021)

2. Ferreira, F.H., Nakagawa, E.Y., dos Santos, R.P.: Reliability in software-intensive
systems: challenges, solutions, and future perspectives. In: Euromicro Conference
on Software Engineering and Advanced Applications. pp. 54–61. IEEE (2021)

3. Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.P.: DSLs: the
good, the bad, and the ugly. In: ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications. pp. 791–794 (2008)

4. Hu, Z., Lucchetti, F., Schlesinger, C., Saxena, Y., Freeman, A., Modak, S., Guha,
A., Biswas, J.: Deploying and evaluating LLMs to program service mobile robots.
IEEE Robotics and Automation Letters (2024)

5. Lestingi, L., Zerla, D., Bersani, M.M., Rossi, M.: Specification, stochastic modeling
and analysis of interactive service robotic applications. Robotics and Autonomous
Systems 163, 104387 (2023)

6. Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., Zeng,
A.: Code as policies: Language model programs for embodied control. In: IEEE
Intl. Conf. on Robotics and Automation. pp. 9493–9500. IEEE (2023)

7. Luan, Z., Lai, Y.: Automatic robotic development through collaborative framework
by large language models. arXiv preprint arXiv:2402.03699 (2024)

8. Narendra, K.S., Thathachar, M.A.: Learning automata: an introduction. Courier
corporation (2012)

9. Ross, S.I., Martinez, F., Houde, S., Muller, M., Weisz, J.D.: The programmer’s
assistant: Conversational interaction with a large language model for software de-
velopment. In: Intl. Conf. on Intelligent User Interfaces. pp. 491–514 (2023)

10. Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D.,
Thomason, J., Garg, A.: ProgPrompt: program generation for situated robot task
planning using large language models. Autonomous Robots 47(8), 999–1012 (2023)

11. Stella, F., Della Santina, C., Hughes, J.: How can LLMs transform the robotic
design process? Nature Machine Intelligence 5(6), 561–564 (2023)

12. Tagliaferro, A., Lestingi, L., Rossi, M.: Towards verifiable multi-agent interaction
pattern specification. In: IEEE/ACM Intl. Conf. on Formal Methods in Software
Engineering. pp. 122–126 (2024)

13. Vemprala, S., Bonatti, R., Bucker, A., Kapoor, A.: ChatGPT for robotics: Design
principles and model abilities. arXiv preprint arXiv:2306.17582 (2023)

14. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the readability of
state-based formal requirements specification languages. In: Intl. Conf. on Software
engineering. pp. 33–43 (2002)


	 Harnessing LLMs for Verification-Guided Specification Repair 

