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Achieving the full potential of therapeutic proteins to access and target
intracellular receptors will have enormous benefits in advancing human health
and fighting disease. Existing strategies for intracellular protein delivery, such as
chemical modification and nanocarrier-based protein delivery approaches, have
shown promise but with limited efficiency and safety concerns. The development
ofmore effective and versatile delivery tools is crucial for the safe and effective use
of protein drugs. Nanosystems that can trigger endocytosis and endosomal
disruption, or directly deliver proteins into the cytosol, are essential for
successful therapeutic effects. This article aims to provide a brief overview of
the current methods for intracellular protein delivery to mammalian cells,
highlighting current challenges, new developments, and future research
opportunities.
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1 Introduction

In the last years, protein-based therapeutics have gained an increasing interest in all areas
of medicine (Lv et al., 2019; Zhang S. et al., 2020), attracting the attention of the major
pharmaceutical industries (Ren et al., 2022; Pandya and Patravale, 2021), due to their
remarkable potentials for treatment, diagnosis, and even prevention (Pakulska et al., 2016; Sá
et al., 2021; Tan et al., 2021) of several human pathologies (Liu et al., 2022). Protein
therapeutics show notable pharmacological efficacy (Pakulska et al., 2016; Liu X. et al., 2019)
combined with high therapeutic potency and selectivity with respect to traditional low
molecular weight drugs (Cheng, 2021). Compared to small synthetic molecules (Mitragotri
et al., 2014; Slastnikova et al., 2018), proteins offer the advantage to be active and effective at
lower concentration with high substrate specificity, favoring minimal adverse effects (Leader
et al., 2008) and reduced risks of off targets (Hou et al., 2016; Gao et al., 2018).

Previous studies show that most attractive targets are typically located inside the cell
(Postupalenko et al., 2015; Tan et al., 2022), thus, in order to exploit full potential of protein-
based therapeutics, intracellular protein delivery is fundamental to target intracellular
biomolecules (Gu et al., 2011; Mitragotri et al., 2014; Scaletti et al., 2018; Liu X. et al.,
2019; Lv et al., 2019). This represent one of the major challenges to overcome since proteins
are large and complex biomolecules (Lee et al., 2019; Goswami et al., 2020; Raman et al.,
2021; Davis et al., 2022), with markedly hydrophilic features (Lv et al., 2020), resulting in
poor cell membrane permeability (Postupalenko et al., 2015; Wang and Yu, 2020). Hence,
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the not spontaneous crossing of the anionic-hydrophobic cell
membrane (Mulgrew-Nesbitt et al., 2006) will limits the currently
marketed protein drugs to extracellular targets (Marschall et al.,
2014; Mitragotri et al., 2014; Slastnikova et al., 2018; Gaston et al.,
2019; Qin et al., 2019).

The objective of this concise review is to outline the existing
techniques for delivering proteins inside mammalian cells, aiming to
highlight the current challenges, recent advancements, and potential
research prospects in this field.

2 Developments and challenges in
intracellular protein delivery

Different exogenous proteins have been recently explored for
intracellular delivery, to modulate cell function and fate, by targeting
disease-relevant intracellular receptors. Various strategies for
intracellular targeting of antibodies, their fragments, or antibody-
like molecules have been extensively reported in other works
(Stewart et al., 2016; Slastnikova et al., 2018; Xie et al., 2020).
Due to their remarkable specificity and affinity for a target
molecule, antibodies are widely used for inhibiting specific
activity and for diagnostics, as well as for basic experimental
tools, given their role in unveiling cell signaling pathways and

diseases mechanisms. Moreover, other therapeutic proteins have
been investigated for targeting intracellular sites, including systems
for genome editing, induction of apoptosis or toxicity, and blocking
specific protein expression, as summarized in Table 1.

The clinical applications of these protein drugs face several
limitations in terms of delivery efficacy, stability, and final
intracellular activity. Additional obstacles, such as fast enzymatic
degradation in the bloodstream (Yan et al., 2022) and possible
immune system response [common to therapeutic proteins for
extracellular delivery (Parodi et al., 2017; Moncalvo et al., 2020)],
must be considered.

Although delivery vehicles can help transporting proteins across
cell membranes (Luther et al., 2020), the limited number of binding
sites on protein surface represents a key issue that hinders the
efficient transport of the cargo proteins by the appropriate carrier
(Lv et al., 2020). In fact, the surface of proteins is notoriously
heterogeneous, being covered by cationic, anionic, and
hydrophobic groups. For this reason, carriers often rely on
covalent conjugation of functional molecules (Loibl and Gianni,
2017), although critical disadvantages of such systems include the
limited availability of residues for conjugation, potential effects on
protein folding and function (Weiner, 2015) [given their sensitivity
to chemical modifications (Zhang et al., 2018)], and complex
workflow steps. Moreover, cellular internalization often brings

TABLE 1 Examples of therapeutic proteins with intracellular target.

Therapeutic protein Advantages Cells/Animal model References

Clustered regularly interspaced
short palindromic repeat-
associated nuclease Cas9

CRISPR-Cas9 Gene editing Human U2OS cells, T-cell Zuris et al. (2015), Wang et al. (2016),
Stadtmauer et al. (2020)

CRISPR-Cas9-single guide RNA
complex

CRISPR–Cas9-
sgRNA

Gene editing Human U2OS-EGFP cells, U2OS-
EGFP xenograft tumors in nude mice

Sun et al. (2015)

Transcription activator-like
effector nuclease

TALEN Gene editing HEK 293T cells, human T-cell Zuris et al. (2015), Stadtmauer et al.
(2020)

Antigen from enterovirus 71 VP1 Cellular vaccines BALB/c mice Qiao et al. (2018)

Protein phosphatase 1B Ppase 1b Suppresses tumor necrosis factor-
α-induced systemic inflammatory
response

HEK 293T cells, mouse model Yu et al. (2021)

Ribonuclease A RNase A Toxic effects in cells MSC, CD4+ T-cell, cancer cells, HeLa
cells

Wang et al. (2014), Liew et al. (2020),
Barrios et al. (2022)

Saporin Sap Blocks the synthesis of proteins in
cells

MSC, CD4+ T-cell, cancer cells Wang et al. (2014), Barrios et al.
(2022)

Cre recombinase Cre Induce site-specific DNA
recombination

HEK cells, HeLa cells, MDA-MB-
31 cells, RAW 264.7 cells,
mammalian cells, HEK 293T cells

Cronican et al. (2010), Kaczmarczyk
et al. (2011), Zuris et al. (2015),
Goswami et al. (2023)

Caspase-8 CASP8 Apoptosis-inducing protein
Susceptible to inactivation during
delivery process

HEK 293T cells Kaczmarczyk et al. (2011)

TRAIL protein TRAIL Amplify apoptotic signal Cancer cells Sun et al. (2016)

Caspase 3 CASP3 Apoptosis-inducing protein
Susceptible to inactivation during
delivery process

HeLa cells Tang et al. (2013), Ventura et al.
(2015)

TRAIL Apo2 ligand TRAIL-Apo2 Cytotoxic protein C6 glioma cells Prasetyanto et al. (2016)

Onconase Onc Cytotoxic protein C6 glioma cells Prasetyanto et al. (2016)
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the nanocarrier to the cytoplasm via endosomes, by means of
naturally occurring endocytosis processes, such as clathrin-
mediated endocytosis (Kaksonen et al., 2006), caveolae-mediated
endocytosis (Nabi and Le, 2003) or micropinocytosis (Kerr and
Teasdale, 2009). Endosomes will ultimately be transformed into
lysosomes, with a consequent increase of the environment acidity
and the secretion of various proteases (Niamsuphap et al., 2020),
causing protein degradation. Nonetheless, endosomal discharge is
generally an inefficient process, with only ~1% of the total cargo
being released intact into the cytoplasm excluding deterioration or
expulsion by exocytosis (Stewart et al., 2016). Non-specific clearance
by the reticuloendothelial system (RES) after systemic
administration of protein-loaded carriers generally causes a
significant decrease of the delivery efficiency into the target
tissues. To address this issue, strategies as a transient stealth
coating of liver reticuloendothelial cells by two-arm-PEG-
oligopeptide may be effective in preventing the clearance of
nonviral and viral nanovectors by the liver sinusoidal
endothelium (Dirisala et al., 2020).

Therefore, the development of efficient and versatile delivery
strategies is crucial for an effective use of protein drugs (Feng et al.,

2022). They need to reach cytoplasmic targets safely (Wang and Yu,
2020) by encapsulating the desired cargo into cell-degradable
nanocarriers (Tsao et al., 2020; Liu et al., 2022), able to trigger
endocytosis and endosomal disruption (Zhang et al., 2018), or
capable to directly deliver proteins into the cytosol (Sun et al., 2022).

3 Intracellular protein delivery
techniques: An overview

During the past decade numerous prominent techniques have
been proposed for intracellular delivery of proteins (Fu et al., 2014;
Bruce and McNaughton, 2017; Ray et al., 2017; Tian et al., 2022),
involving physical methods to cross cell membrane, protein
chemical modification and protein transport through carriers
(Scaletti et al., 2018; Lee et al., 2019; Goswami et al., 2020) or a
combination of the three types. Some examples of the strategies
proposed in the next sections are depicted in Figure 1.

In most cases, model proteins have been tested rather than more
expensive therapeutic proteins, which are often difficult to track
both in vitro and in vivo. Fluorescent albumin and IgG antibody

FIGURE 1
Examples of (A) therapeutic proteins encapsulated in polymersomes and in polymeric nanoparticles; (B) therapeutic proteins conjugated to
amphiphilic polymers and to cell-permeable peptides; (C) therapeutic proteins forming non-covalent complexes with polymers; (D) nanosystem
delivered across the cell membrane via endocytosis to release the therapeutic cargo in proximity of a cytosolic target; (E) protein-polymer conjugate and
protein-peptide conjugate entering the cell via direct translocation/transduction and delivering the therapeutic material to nucleus receptors.
Created with BioRender.com.
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(Tian et al., 2013; Sarker et al., 2014; Liew et al., 2020; Barrios et al.,
2022; Davis et al., 2022), (enhanced) green fluorescent protein (GFP)
(Fuchs and Raines, 2007; Kaczmarczyk et al., 2011; Sarker et al.,
2014; Zuris et al., 2015; Kube et al., 2017; Liew et al., 2020; Davis
et al., 2022), streptavidin (Shi et al., 2017; Davis et al., 2022),
horseradish peroxidase (DePorter and McNaughton, 2014),
lysozyme (Tian et al., 2013), and ovalbumin (Goswami et al.,
2023) are among the typical model proteins used.

3.1 Physical membrane crossing methods

Most of the physical approaches for overcoming cell
membrane deal with chemical (Stewart et al., 2018) membrane
disruption (Mukherjee et al., 2018) or perforation (Chen N. et al.,
2022). Although membrane perforation with electroporation
(Mukherjee et al., 2018) and microinjection (Keppeke et al.,
2015; Chen N. et al., 2022) or sonoporation (Togtema et al.,
2012) is the most straightforward method for cytosolic delivery,
these strategies are highly efficient in in vitro studies (Tan et al.,
2022), but generally toxic, only suitable for introducing a small
number of specific proteins into incubated cells and can hardly be
used in vivo.

3.2 Chemical modifications of proteins

Protein modification strategy directly features protein with
membrane-permeable ligands, such as cell penetrating peptides
(Dixon et al., 2016; Su et al., 2018), chimeric peptides (Yu et al.,
2021), cationic peptides or polymers (Su et al., 2018), amphiphilic
polymers (Liu X. et al., 2019) and protein transduction domains
(Caffrey et al., 2016). Alternatively, the chemical alteration consists
in supercharging the protein with cationic groups (Horn and
Obermeyer, 2021). The biomodification success depends on the
availability of reactive protein handles, located on their surface as
free amino acid sides, including amine, hydroxy and thiol groups, or
functional moieties present at the protein termini (Stephanopoulos
and Francis, 2011). There are many covalent methods available for
the modification of protein reactive groups including click
chemistry, oxime/hydrazone chemistry (Lutz and Börner, 2008),
and strategies such as grafting-to, grafting-from and grafting-
through for bioconjugation of proteins with polymers (Stevens
et al., 2021).

The amended proteins are capable of entering the cells via
cellular membrane transduction and translocation (Horn and
Obermeyer, 2021) or through endocytosis, achieving high
cytosolic delivery (Posey and Tew, 2018) by increased membrane
affinity. Sometime covalent modification of proteins is also applied
with anionic species, such as carboxylic acid (Wang and Yu, 2020),
boronic acid (Liu X. et al., 2019), anionic peptides and polymers
(Zelikin et al., 2016), or nucleic acids (Eltoukhy et al., 2014) to
strengthen their negative charge intensity, and thus increase their
binding affinity with suitable positively charged carriers that
enhance endocytosis (Lv et al., 2020). However, covalent
modifications often result in a distribution of products with
different degrees of modification, owing to chemically identical
active sites distributed on the protein surface (Horn and

Obermeyer, 2021). Protein alteration can be designed to be
reversible, via moieties which can be cleaved by intracellular
stimuli such as reduction (Qian et al., 2018), reactive oxygen
species (ROS) (Liu X. et al., 2019), enzyme (Chang et al., 2019)
and endo/lysosomal acidity (Maier and Wagner, 2012), however
covalent modifications may alter protein structures and related
biofunctions (Zhou et al., 2019; Tan et al., 2022). Moreover, the
technique requires complex synthesis and purification procedures
which may impede the potential clinical translation (Frokjaer and
Otzen, 2005; Stevens et al., 2021). A meaningful example of protein
alteration for cytosolic delivery involves charge-conversional
modification of cationic lysine surface moieties by cyclic
anhydrides (Obermeyer et al., 2016; Zhang M. et al., 2020; Tao
et al., 2020), which is pH-reversible at late endosomal pH. For
instance, IgG was modified with citraconic anhydride to encapsulate
it in pH-sensitive polyion micelles, capable of transferring active IgG
to the nuclear envelope (Kim et al., 2016). Esterification of
carboxylic acid groups of aspartate and glutamate simultaneously
decrease negative charge and increase hydrophobicity, promoting
direct protein translocation across the cell membrane (Sangsuwan
et al., 2019).

Stable and simultaneously reversible conjugation is critical
to translocate proteins across a cellular membrane and release
them without losing activity (Dutta et al., 2021). Liu B. et al.
(2019) developed a click chemistry approach for generating
functional polymer–protein conjugate as nanoassemblies of
different sizes and isoelectric points, which release in
response to three different stimuli: presence of ROS, reducing
environment, and pH variations. Arylboronic acid was
employed for lysines modification, given the possibility of
inserting a stimuli-responsive linker in the polymer-protein
conjugate, required for a residue-free release (Stephanopoulos
and Francis, 2011). They successfully delivered ribonuclease A
(RNaseA) via endosomal escape, employing hydrogen peroxide
(H2O2) as the stimulus to reverse the bioconjugation. Similarly,
Dutta et al. (2021) designed a self-immolative polymer
presenting activated carbonate moieties for covalent self-
assembly with the lysines displayed on antibodies surface.
The reactive side-chain functionalities were responsive to
redox stimuli, and the encapsulated antibodies were released
preserving their biological activity. However, slow
macromolecular reaction kinetics due to the high acid
dissociation constant (pKa) of lysine amines (Koniev and
Wagner, 2015), incomplete reactivity of activated carbonate
groups with lysines (Dutta et al., 2017), and competitive
hydrolytic degradation of polymer, are some of the major
obstacles for large biomacromolecules conjugation such as
antibodies (Dutta et al., 2021). Considerable attention has
been given to enhancing the endosomal escape ability of
nanocarriers by incorporating pH-buffering (Lee et al., 2021),
membrane-disturbing (Han et al., 2021) or fusogenic
(Nishimura et al., 2014) materials. pH-responsive polymeric
micelles were designed to promote electrostatic and covalent
interactions with anti-nuclear pore complex antibodies (Chen P.
et al., 2022). This design reached selective delivery into the
cytosol and subsequent nucleus targeting was achieved in
cancer cells, rather than non-cancerous cells, both in vitro
and in vivo.
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3.3 Non-covalent assembly of proteins and
carriers

Alternatively, proteins could be transported by carriers through
physical encapsulation or complexation. The protein cargoes can be
loaded into the inner aqueous/hydrophilic cavities or pores (Tang
et al., 2017;Wang and Yu, 2020) of synthetic nanocarriers (Qin et al.,
2019), such as liposomes (Wang et al., 2016), polymers (Zhou et al.,
2019), polymersomes (Jiang et al., 2018), organic or inorganic
nanoparticles (Leader et al., 2008; Zelikin et al., 2016; Lee et al.,
2019; Zhang S. et al., 2020), and nanogels (Dutta et al., 2017). These
nanomaterials allow intracellular delivery of native proteins without
any chemical modification, preventing denaturation (Dutta et al.,
2017). This approach is generally suitable for in vivo applications (Lv
et al., 2020), although it often requires complex syntheses and
purification processes with low protein loading efficiency (Liu
et al., 2022). On the other hand, protein-based nanocomplexes
can be formed via non-covalent interactions with polymers,
functionalized nanoparticles, peptides, and lipids. Amino acid
residues may interact via salt bridge, boronate-nitrogen (Liu X.
et al., 2019; Liu et al., 2022) or metal-nitrogen (Ren et al., 2022)
coordination interactions, electrostatic forces (Rui et al., 2019),
inter-macromolecular ionic, hydrophobic (He et al., 2019), and
hydrogen-bond interactions (Lv et al., 2020). Such assemblies
should provide stability during cell membrane penetration and
protein release (Yu et al., 2018), via reversible binding (Stevens
et al., 2021). They are obtained via simple mixing under mild
aqueous conditions, avoiding complex purification steps, without
altering the proteins native functions (Posey and Tew, 2018; Lv et al.,
2019; Lv et al., 2020; Pasut, 2014). While chemical modification is
often limited by the vast heterogeneity in composition, structure,
and stability of proteins, non-covalent strategies can be applied to a
wide variety of protein cargoes (Posey and Tew, 2018).

In the last years, different nanocomplexes formed via simple
self-assembly have been developed (Liu X. et al., 2019; Lv et al., 2020;
Wang and Yu, 2020). Hyperbranched polymer with phenylboronic
acid (PBA) was developed to coordinate with protein cargoes (Liu
et al., 2022), and degrade by over-produced H2O2 in cancer cells,
releasing the proteins (BSA and a monoclonal antibody). Following
a similar idea, boronated polymers formed a complex with proteins
via nitrogen-boronate coordination and ionic interaction (Yan et al.,
2022). Promising cytosolic delivery of cargo proteins and peptides
was achieved with maintained bioactivity (Liu X. et al., 2019; Lv
et al., 2020). Relying on the same principles, guanidyl groups can
strongly bind the residual moieties of protein by a combination of
salt bridge and hydrogen bonding interactions. When grafting
guanidyl ligands onto nanoparticles or polymers at a high ligand
density, the multivalent effect of guanidyl groups allows efficient
protein binding (Hatano et al., 2016) and endocytosis (Stanzl et al.,
2013; McKinlay et al., 2016). Lv et al. (2020) synthesized guanidyl-
grafted polyethylenimine (PEI) to form positively charged
nanoparticles with BSA, for an efficient cell membrane
penetration. Protein delivery systems poorly performing in
serum-containing media were improved by introducing
carbamoylated guanidine-containing polymers (Barrios et al.,
2022), by chemical modification with fluorous ligands (Zhang
et al., 2018) and zwitterionic moieties (Wu et al., 2019), thus
decreasing the positive charge density of the nanocomplex (Rui

et al., 2019). A rational guanidine modification approach also
enhanced the efficiency of proteins delivery in serum-containing
media (Li et al., 2015; Keller et al., 2016; Davis et al., 2022). Tan et al.
(2022) proposed boronate-decorated poly-L-lysine (PLL) to
efficiently deliver cargo proteins into living cells. Positively
charged PLL spontaneously form complexes with negatively
charged proteins (Abbas et al., 2017). These nanoparticles can
release proteins by intracellular ROS after internalization, with
maintained activity and minimal toxicity. Amphipathic poly-b-
peptides (Pbps), with designable structures, controllable
molecular weights, and proteolysis resistant properties, were also
investigated for protein delivery (Ren et al., 2022). Pbps amphipathic
and positively charged structures promote non-covalent interactions
with proteins and membrane disruption (Tezgel et al., 2017),
showing successful delivery of EGFP into osteosarcoma cells.

4 Discussion

Significant progress has been made in the field of intracellular
delivery in recent years, however the clinical applications of protein
drugs are still limited by their real delivery efficacy, stability, and
intracellular activity. Therefore, research is moving in various
directions with the aim of identifying more appropriate delivery
tools. The delivery of proteins into cells is challenging due to two
major requirements: efficient uptake and rapid cytosolic delivery
without being trapped in the endosomes. Many research efforts have
been made regarding protein conjugation with cell-penetrating
peptides, and more recently with multifunctional chimeric
peptides, which can be designed to accomplish different tasks
during cellular uptake and endosomal escape. Other methods for
the delivery of purified proteins include protein chemical
modification and resurfacing approaches. These methods often
need to overcome the limits of toxicity and possible immune
activation. Nanocarrier-based protein delivery approaches, such
as liposomes, polymer-based nanocarriers, and nanoparticles, are
attractive due to the tunable properties of the nanomaterials. It is
important to consider additional obstacles such as the rapid
enzymatic degradation of therapeutic proteins in the bloodstream
and potential immune system responses (Moncalvo et al., 2020).
Meanwhile, a significant effort has been dedicated to the design of
engineered proteins that can be used to modulate intracellular
targets (Miersch and Sidhu, 2016). Co-delivery of protein and
nucleic acids has also been examined in the context of targeted
genomic editing (Bruce and McNaughton, 2017). Moreover, new
intracellular targets within subcellular compartments may be
identified for a therapeutic use (Fasciani et al., 2022). Delivery of
transcription factors also holds the potential to revolutionize the
biomedical field (Ulasov et al., 2018), although the major challenge
lies in the delivery process, as it requires proteins transport not only
across the cell membrane and the endosome, but also into the
nucleus, which represents an additional barrier to overcome.

The field of intracellular protein delivery is still a relatively
young area of research and further advancements in this field will
require the integration of chemistry, materials science, formulation
science, nanomedicine, and biomedical engineering. Enabling
therapeutic proteins to access and target intracellular receptors
has enormous potential for improving human health and fighting
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diseases, as well as for gaining knowledge in this significant area of
research.
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