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Abstract

Significance: Oxygen (O2) sensing is the fundamental process through which organisms respond to changes
in O2 levels. Complex networks exist allowing the maintenance of O2 levels through the perception, cap-
ture, binding, transport, and delivery of molecular O2. The brain extreme sensitivity to O2 balance makes the
dysregulation of related processes crucial players in the pathogenesis of neurodegenerative diseases (NDs).
In this study, we wish to review the most relevant advances in O2 sensing in relation to Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis.
Recent Advances: Over the years, it has been clarified that most NDs share common pathways, a great number
of which are in relation to O2 imbalance. These include hypoxia, hyperoxia, reactive oxygen species production,
metabolism of metals, protein misfolding, and neuroinflammation.
Critical Issues: There is still a gap in knowledge concerning how O2 sensing plays a role in the above indicated
neurodegenerations. Specifically, O2 concentrations are perceived in body sites that are not limited to the brain,
but primarily reside in other organs. Moreover, the mechanisms of O2 sensing, gene expression, and signal
transduction seem to correlate with neurodegeneration, but many aspects are mechanistically still unexplained.
Future Directions: Future studies should focus on the precise characterization of O2 level disruption and O2

sensing mechanisms in NDs. Moreover, advances need to be made also concerning the techniques used to assess
O2 sensing dysfunctions in these diseases. There is also the need to develop innovative therapies targeting this
precise mechanism rather than its secondary effects, as early intervention is necessary. Antioxid. Redox Signal.
38, 160–182.
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Introduction

The capacity to perceive and respond to changes in
oxygen (O2) levels is fundamental for the survival of

both prokaryotic and eukaryotic organisms. As the name
suggests, O2 sensing is defined as the ability to ‘‘sense’’ and,
consequently, ‘‘respond’’ to changes in O2 levels. In an or-
ganism, this is a key mechanism necessary to maintain cel-
lular and tissue homeostasis (Giaccia et al, 2004). Changes in
cellular O2 availability, secondary to environmental chal-
lenges or diseases, stimulate a vastitude of adaptive responses
that can be rapid (seconds) or more prolonged (weeks to
months) (Wilson et al, 2020). The molecules and mechanisms
involved in these versatile O2 sensing signaling pathways are
fundamental to the pathogenesis of highly prevalent medical
conditions, among which are respiratory depression, hyper-
tension, tumor progression, neurodegeneration, and inflam-
mation (Liao and Zhang, 2020; Semenza, 2014; Sieck, 2004).

In 1931, Otto Warburg was awarded the Nobel Prize in
medicine for identifying cytochrome aa3 (cytochrome oxi-
dase) as the carbon monoxide (CO)-sensitive respiratory
enzyme (Otto, 2016). Since then, many discoveries have been
made elucidating the mechanisms through which organisms
can perceive and adapt to O2 levels, but many questions
on this topic remain predominantly unanswered (Liao and
Zhang, 2020). What is currently known is that complex
networks exist, which allow to maintain O2 homeostasis at
the tissue level, through the capture, binding, transport, and
delivery of molecular O2 (Giaccia et al, 2004). Specifically,
the alterations in O2 levels can be perceived by ‘‘O2 sensing
organs’’ with a specific localization in the body and pre-
senting molecular entities, with specific electrophysiological
properties that enable O2-dependent modulation of cell ex-
citability and intracellular transduction mechanisms. These
can then lead to a specific regulation of gene expression and
cellular adaptations to O2 imbalance (Wilson et al, 2020).

In this review, we are presenting a brief overview of
mechanisms pertaining O2 sensing both in the periphery
and in the central nervous system (CNS). We also discuss O2

sensing intracellular mechanisms in both a physiological
state and in neurodegenerative diseases (NDs). Moreover,
in a specific section, we aimed to assess what molecular
signatures have been identified to be associated with ‘‘O2

sensing’’ and NDs and current advances/limitations in tech-
niques and therapeutic strategies for investigating O2 im-
balance in NDs. These are a heterogeneous class of disorders,
typically characterized by the progressive degeneration of
the structure and function of the CNS or peripheral nervous
system. The investigation of O2 sensing mechanisms appears
to be relevant in numerous NDs, and in this review, we focus
on three among the most studied diseases, namely Parkinson’s
disease (PD), Alzheimer’s disease (AD), and amyotrophic
lateral sclerosis (ALS).

Overview of O2 Sensing Mechanisms: Whole-Body
Response to Changes in O2 Levels

All living organisms can perceive changes in the partial
pressure of O2 (pO2) and are thus able to trigger a compen-
satory response and avoid systemic damage. Specifically, the
human body is a highly aerobic organism, with the necessity
to match O2 supply at the tissue level to the metabolic de-
mand. To ensure this, there are numerous organs defined as

‘‘O2 sensing’’ that can detect changes in O2 and thus elicit
specific responses. These are reviewed in detail in the next
section and include the carotid bodies (CBs), the pre-
Bötzinger complex (preBötC) in the CNS, the pulmonary and
cardiovascular system, and the kidneys (Fig. 1).

Acute neurological O2 sensing: role of the CBs

The primary O2 sensing mechanisms present in the human
body rely on the detection of changes in pO2. Small arterial
changes of pO2 are primarily detected in the CB, an organ
made of glomus cells, the main O2 sensing cells, and sup-
porting cells, both surrounded by a network of thin vessels
(López-Barneo et al, 2016). Glomus cells are electrically
excitable and present O2-sensitive potassium (K+) channels
in their membranes (Pardal and López-Barneo, 2002). The
two CBs are situated bilaterally at the bifurcation of the
common carotid artery. This anatomical structure favors
the detection of changes in the arterial blood composition
before the stimulus reaches the brain, which is highly de-
pendent on O2 and glucose (Teppema and Dahan, 2010). The
blood supply to the CB thus originates mostly from the ca-
rotid artery, which supplies the highest blood flow per tissue
weight in the whole body.

A low pO2, also known as hypoxia, leads to the inhibition
of K+ channels in the plasma membrane of glomus cells, with
the activation of cardiorespiratory reflexes through calcium
(Ca2+) entry, depolarization, and neurotransmitter release
(López-Barneo et al, 1988; Pardal and López-Barneo, 2002).
In turn, the CB activates the respiratory center in the brain
stem to induce adaptive ventilatory responses. Intrastriatal
grafting of the CB was performed in parkinsonian rats, an
in vivo model obtained treating the animals with the neuro-
toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
(Toledo-Aral et al, 2003; Villadiego et al, 2005). The ratio-
nale behind CB grafting relies on the fact that CB glomus
cells are highly dopaminergic and express the glial cell line-
derived neurotrophic factor (GDNF) (Mı́nguez-Castellanos
et al, 2007; Toledo-Aral et al, 2003; Villadiego et al, 2005). In
CB-transplanted parkinsonian rats, GDNF was still produced
with an increased glomus cell survival rate after transplan-
tation and a neurotrophic recovery of the treated animals.

This kind of approach was used in other murine and pri-
mate models of PD obtaining promising results (Espejo et al,
1998; Hao et al, 2002; Luquin et al, 1999; Shukla et al, 2004).
With this preclinical evidence, a phase I-II clinical study was
performed to assess the feasibility, long-term safety, and
clinical and neurochemical effects of CB autotransplantation
in PD patients (Mı́nguez-Castellanos et al, 2007). Blind tests
highlighted a clinical amelioration in PD outcomes in 10
out of 12 patients, with a mean improvement of 23% after
6 months (Mı́nguez-Castellanos et al, 2007). Interestingly, the
b-amyloid (Ab) precursor protein cleaving enzyme 1 (BACE1)
(Vassar et al, 1999) was recently found expressed in the rat CB,
with a reversible reduced expression following cyclic inter-
mittent hypoxia (Li et al, 2020a). BACE1 is able to generate the
Ab peptide, a crucial initiator of AD pathogenesis.

This evidence suggests that the CB may play a role in NDs,
but the exact molecular dysregulation of this organ in the
diseases is yet to be defined. These aspects are an interesting
and understudied research topic and still need to be evis-
cerated with further studies.
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O2 sensing in the brain

The brain is extremely sensitive to O2 balance, as it is
entirely aerobic (Bailey, 2019). Indeed, in humans, 20%–
25% of the resting metabolic rate, meaning the energy needed
when at rest, is reserved for brain functioning (Bailey, 2019).
This is necessary to support the high rate of ATP formation
and consumption, which allows the maintenance of ionic
equilibria and neurotransmitter uptake, both necessary pro-
cesses for synaptic transmission (Bailey, 2019). Even so, the
brain has limited O2 reserves, and if blood supply were to be
interrupted, it would be able to sustain cerebral metabolism
for 1 s only, subsequently resulting in neurodegeneration
(Bailey, 2019; Leithner and Royl, 2014). Indeed, neurons
require a constant supply of O2 along with a removal of
carbon dioxide (CO2) and other metabolites (Gourine and
Funk, 2017). For this reason, the oxygenation of the brain is
strictly monitored by the CBs.

Even so, there are more aspects that need to be considered
when thinking about the strict connection between the CNS
and its associated NDs and O2 intake and metabolism. In-
deed, the inspiratory rhythm of breathing is generated at the
level of a medullary structure in the brain stem called the
preBötC (SheikhBahaei, 2020; Smith et al, 1991). The ac-
tivity of this region is strictly regulated by inputs from other
brain regions, which include functional inputs such as voli-
tional, physiological, and emotional inputs, along with direct
projections from neurons throughout the brain (Yang et al,
2020). Specifically, excitatory and inhibitory preBötC neu-
rons receive projections from neurons in the breathing central
pattern generator (bCPG), including the contralateral pre-
BötC, the Bötzinger complex, the nucleus of the solitary tract,
the parafacial region, and the parabrachial nuclei (Yang et al,
2020).

In NDs affecting the brain stem such as multiple system
atrophy (MSA), preBötC neurons were reduced suggesting
that the central respiratory network primarily contributes to
breathing disorders in MSA (Schwarzacher et al, 2011).
Moreover, the 6-hydroxydopamine hydrochloride (6-OHDA)

rodent model of PD presents with a reduced respiratory fre-
quency and NK1r-immunoreactivity in the preBötC, indi-
cating that this decrease is an important contributor to the
development of breathing abnormalities in PD (Oliveira et al,
2021).

Along with the CBs, there is now mounting evidence
highlighting the existence of central respiratory O2 chemo-
sensors (Uchiyama et al, 2020). Interestingly, astrocytes have
been found to rapidly respond to moderate hypoxia via the
sensor cation channel transient receptor potential (TRP) A1
(Uchiyama et al, 2020). These appear to specifically respond
to a decrease of pO2 as they do not respond to hyperoxia,
carbon dioxide, and oxidant molecules (Uchiyama et al,
2020). Other evidences also highlight how changes in neu-
ronal–glial interactions can contribute to the hypoxic venti-
latory response, the ‘‘coping’’ mechanism that the brain
utilizes to respond to a decrease of pO2 (Angelova et al, 2015;
Rajani et al, 2018; Sheikhbahaei et al, 2018).

Studies also highlight how astrocytes can respond to
decreases in pO2 with an elevation in intracellular Ca2+,
and interestingly, this ‘‘sensor’’ is in the mitochondria, the
key organelle in O2 metabolism (Angelova et al, 2015).
Astrocyte–neuron interactions and mitochondria are relevant
mechanisms in the pathogenesis of NDs (Mulica et al, 2021).

Specific brain areas affected in NDs can also play a role in
O2 sensing mechanisms. Indeed, the hippocampus, primarily
implicated in AD, is extremely vulnerable to hypoxic insults,
and an impaired hypoxia-inducible factor (HIF)-a signaling
in this area may contribute to age-associated cognitive de-
cline (Snyder et al, 2022). Moreover, blood flow, blood ox-
ygenation, and neurovascular coupling were found to be
decreased in the hippocampus compared with the neocortex,
and features of the hippocampal vasculature may restrict O2

availability thus explaining its sensitivity to damage in AD,
where the brain’s energy supply results also decreased (Shaw
et al, 2021). PD loss of dopaminergic neurons in the sub-
stantia nigra (SN) is a primary hallmark of the disease, and
this area is extremely vulnerable to oxidative stress (Trist
et al, 2019).

FIG. 1. The human body
is a complex system that
largely depends on O2 for
its correct functioning. To
this end, numerous organs are
able to sense changes in pO2

and elicit responses to avoid
systemic damage. These in-
clude the carotid bodies, the
main organ with this function,
made up of glomus (O2-
sensing) cells, the preBötzinger
complex, a medullary structure
in the brain stem able to gen-
erate the inspiratory rhythm of
breathing, and the pulmonary,
the cardiovascular, and the re-
nal systems, which can induce
peripheric responses to these
changes. O2, oxygen; pO2, par-
tial pressure of oxygen. Created
with Biorender.com Color
images are available online.
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Interestingly, even though this is surely true, and hypoxia
plays a critical role in the pathogenesis of the disease, a novel
computational model of SN cells highlights how hypogly-
cemia plays an even more crucial role in leading to ATP
deficits (Muddapu and Chakravarthy, 2021).

Other mechanisms of O2 sensing: implications
for peripheral organs in NDs

Several organs can lead to changes in peripheral and
central O2 levels, with direct consequences in NDs. Periph-
eral organs include the kidneys, the cardiovascular circuitry,
and the pulmonary system, each presenting a specific re-
sponse to changes in O2 levels (Table 1). First of all, the
kidney is sensitive to falls in the pO2, and in a hypoxic
condition it can trigger reflex adjustments acting as an O2

sensor, increasing perfusion pressure chronically (Patinha
et al, 2017). A condition of hypoxia impairs hydrogen sulfide
metabolism and increases its concentration, leading to va-
sodilation and stimulation of chemoreceptor afferent neu-
rons, especially in the renal medulla (Bełtowski, 2010).

The kidney metabolism is also relevant in NDs, as kidney
injury was found to be a risk factor for the development
of both PD (Lin et al, 2016) and AD (Zhang et al, 2020).
Moreover, the receptor for advanced glycation end prod-
ucts (RAGE), critical for chronic kidney disease progression,
also mediates the transport of pathophysiologically relevant
concentrations of Ab into the CNS. RAGE has been found to
be involved in both AD and hypertension, inducing plaque
formation, Ab deposition around blood vessels, and cognitive
impairment (Carnevale et al, 2012). The RAGE pathway is
tightly connected to the renin/angiotensin/aldosterone axis,
which regulates systemic blood pressure, and it also has a role
in oxidative stress (Gugliucci and Menini, 2014; Pickering
et al, 2019).

Other peripheral organs relevant for O2 sensing are the
lungs, as it was also found that lack of O2 induces selec-
tive pulmonary vasoconstriction to redirect blood flow to
the most ventilated areas of the lung, promoting vascular
angiogenesis and vasodilation in the brain (Wang et al,
2001). The genetic relationship between chronic obstruc-
tive pulmonary diseases, lung function, and AD was recently
investigated without any specific evidence of association
(Higbee et al, 2021). Acute respiratory distress syn-
drome, a syndrome characterized by severe hypoxia re-
quiring intensive hospitalization, may result in long-term
(at least 2 years) neurocognitive morbidity and decreased
quality of life (Hopkins et al, 2005). Obstructive sleep
apnea syndrome (OSAS), an example of pathological in-
termittent hypoxia, can also be associated with mild cog-
nitive impairment.

Proteomic data suggest that OSAS and AD share bio-
markers, which include insulin, angiopoietin-1, and IL1B,
indicating also the possibility of a shared pathogenesis be-
tween these diseases (Lal et al, 2019). Ongoing studies
are also investigating the relationship between COVID19
hypoxic condition and consequent neurological impairment,
which, in the most severe cases, may resemble AD, or, as it
has been suggested, predispose to AD future development
(Almeria et al, 2020; Heneka et al, 2020).

Lastly, the cardiovascular response to hypoxia, similar
to other stress situations, is peripherally mediated through
chromaffin cells in the adrenal medulla. CB chemoreflex via
increased sympathetic activity regulates the ensuing tran-
scriptional regulation of pro- and antioxidant enzymes con-
tributing to oxidative stress in the adrenal medulla (Kumar
et al, 2015). Excessive afferent signaling from the CBs may
lead to the development of pathological conditions such as
hypertension (Patinha et al, 2017), a risk factor for NDs
(Bergantin, 2019). Treatment-resistant hypertension has been

Table 1. Contributions of Peripheric Organs to Oxygen Sensing

and Their Implications in Neurodegenerative Diseases

Organ Mechanism Implication in NDs References

Kidney It can act as O2 sensor during
hypoxia, increasing perfusion
pressure chronically;
erythropoietin production.

Kidney injury is a risk factor
for PD and AD. Receptor
for advanced glycation end
products mediates the
transport of Ab into the
CNS.

Carnevale et al (2012); Lin
et al (2016); Zhang et al
(2020)

Pulmonary
system

Lack of O2 induces selective
pulmonary vasoconstriction.

Acute respiratory distress
syndrome and obstructive
sleep apnea syndrome can
result in cognitive impair-
ment. COVID19 hypoxic
condition can lead to an
AD-like phenotype.

Almeria et al (2020); Heneka
et al (2020); Hopkins et al
(2005); Lal et al (2019)

Cardiovascular
system

Increased sympathetic activity
regulates the ensuing
transcriptional regulation of
pro- and antioxidant enzymes,
which contributes to oxidative
stress in the adrenal medulla.

Excessive afferent signaling
from the CBs may lead to
the development of patho-
logical conditions such as
hypertension, a risk factor
for NDs.

Bergantin (2019)

Ab, b-amyloid; AD, Alzheimer’s disease; CBs, carotid bodies; CNS, central nervous system; ND, neurodegenerative disease;
O2, oxygen; PD, Parkinson’s disease.
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shown to impact on blood–brain barrier integrity, inducing
changes in O2 delivery and altered neural signaling homeo-
stasis (Katsi et al, 2020).

In conclusion, many districts of the body are implicated in
sensing changes in O2 levels. These include the CBs, the
brain, and the pulmonary, cardiovascular, and renal system,
which can also work cooperatively to avoid the induction of
disruptive mechanisms. Alterations in these districts present
some correlations with NDs, but this aspect is currently un-
derstudied and would need further investigation.

Cellular Response to Imbalance in O2 Levels
and Its Correlation with NDs

We so far presented the mechanisms of O2 sensing at the
‘‘whole-body’’ level, attempting to eviscerate how our or-
ganism can respond to changes in O2 levels and how this
is connected to NDs. It is now worth focusing on the intra-
cellular responses to O2 as a signaling molecule, in normal
physiological conditions and in conditions of reduced (hyp-
oxia) O2 levels (Fig. 2).

Membrane-associated mechanisms of O2 sensing

The first question that needs to be answered is how O2

can enter the cell, and as we previously mentioned, the cell
membrane of O2 sensing cells contains O2-sensitive ion
channels, specifically K+ ion channels (López-Barneo et al,
1988). Following the first reported evidence, at least three
families of O2-sensitive K+ channels have now been identi-
fied (Prabhakar and Peers, 2014; Vjotosh, 2020). Specifically,
these channels are able to rapidly respond to a reduction in
O2 concentration.

Although to our knowledge, there is currently no direct
association between these specific channels and NDs, many
evidences connect K+ ion channels to O2 level imbalance
and to the pathogenesis of these diseases. For example, the
K(+) channels encoded by the Kv1.3 subtype of the voltage-
dependent Kv1 gene family, inactivated following an hypoxic
signaling (Conforti et al, 2003) (Fig. 2), have been found to be
highly expressed by activated and plaque-associated micro-
glia in AD postmortem brains (Rangaraju et al, 2015). The
selective inhibition of this channel through selective block-
ades with the small molecule PAP-1 leads to reduced

FIG. 2. Overview of O2 sensing at the cellular level. The image depicts the two scenarios to which cells respond. On the
left, at a normal O2 concentration, the O2-sensitive K+ channels are active. HIF-1a is thus hydroxylated by O2-PHDs that
enhance its binding with VHL, and by FIHs, inhibiting the binding of HIF with coactivators p300/CREB-binding protein.
The newly formed complex acts as substrate recognition component of the E3 ubiquitin ligase complex, which leads to
proteasomal degradation of HIF-1a. Under hypoxic conditions, the O2-sensitive K+ channels are inactive. The activity of O2-
PHDs and FIHs are suppressed, and HIF-1a subunits translocate into the nucleus to bind with HIF-1b. The heterodimeric
HIF-1a: HIF-1b transcription factor complex activates the HREs in HIF target genes to modulate their transcriptional
upregulation. This activates transcription of iNOS, VEGF, EPO, GLUT1, glycolytic enzymes, and many other HIF target
genes that are involved in glucose transport and metabolism. EPO, erythropoietin; FIHs, factors inhibiting hypoxia-inducible
factors; GLUT1, glucose transporter 1; HIF, hypoxia-inducible factor; HREs, hypoxia-responsive elements; iNOS, inducible
nitric oxide synthase; K+, potassium; O2-PHDs, O2-dependent prolyl-4-hydroxylases; VEGF, vascular endothelial growth
factor; VHL, von Hippel–Lindau protein. Created with Biorender.com Color images are available online.
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neuroinflammation, decreased cerebral amyloid load, en-
hanced hippocampal neuronal plasticity, and improved be-
havioral deficits in murine models of the disease (Maezawa
et al, 2018).

Along with Kv1.3, the inhibition of the cation channel
TRPV1 with 5-iodo-resiniferatoxin (I-RTX) leads to a re-
duction in microglial reactive oxygen species (ROS) pro-
duction following acute stimulation of microglial cells with
fibrillar or soluble amyloid fragments (Schilling and Eder,
2011). Modulation of TRPV1 with the agonist capsaicin in an
experimental model of PD also leads to a positive effect on
the survival of dopaminergic neurons in the SN (Park et al,
2012). Furthermore, K+ channels can be modified by oxi-
dizing agents, and recent evidence has shown that they un-
dergo an age-dependent oxidation, impairing neuronal
functions (Cai and Sesti, 2009; Sesti, 2016).

Even if the importance of K+ channels in O2 sensing has
been clarified, there is still a lot that needs to be discovered
about this mechanism (Vjotosh, 2020) and how it is related to
ND pathogenesis.

Cytoplasmic O2 sensors: the role of HIF-1

Changes in O2 levels typically converge to the activa-
tion of a specific transcriptional response aimed at counter-
balancing this dysregulation. It is well known that the central
elements of the cytoplasmic O2 sensor pool are the HIFs (Liu
et al, 2020). The human genome encodes three different HIF
subtypes: HIF-1, HIF-2, and HIF-3, which are heterodimers
composed of a functional a subunit and a stably expressed b
subunit (Dengler et al, 2014). Specifically, HIF-1a is the
main transcription factor involved in O2 sensing as it targets
genes that encode for proteins that increase O2 delivery and
mediate adaptive responses to O2 deprivation (Lee et al,
2019; Semenza, 2010; Semenza, 2000; Vjotosh, 2020). At
normal O2 levels, HIF-1a is hydroxylated by O2-dependent
prolyl-4-hydroxylases (O2-PHDs) that enhance its binding
with the von Hippel–Lindau protein (VHL).

The newly formed complex can be recognized by the E3
ubiquitin ligase complex, and thus ultimately leads to HIF
degradation by the proteasome (Sharp and Bernaudin, 2004).
Moreover, HIF-1a subunits are also hydroxylated by factors
inhibiting HIFs (FIHs), which inhibits the binding of HIF
with coactivators p300/CREB-binding protein. Under hyp-
oxic conditions, the activity of PHDs and FIHs is suppressed,
and HIF-1a subunits translocate into the nucleus to bind with
HIF-1b (Sharp and Bernaudin, 2004). The heterodimeric
HIF-1a: HIF-1b transcription factor complex activates the
hypoxia-responsive elements (HREs) in HIF target genes
to modulate their transcriptional upregulation. This activates
transcription of inducible nitric oxide synthase (iNOS), vas-
cular endothelial growth factor (VEGF), and erythropoietin
(EPO), which increases O2 availability by promoting eryth-
ropoiesis and angiogenesis, and inducing glucose transporter
1 (GLUT1), glycolytic enzymes, and many other HIF target
genes that are involved in glucose transport and metabolism
(Lee et al, 2019; Sharp and Bernaudin, 2004) (Fig. 2).

Furthermore, the translation of HIF-1a messenger RNA
(mRNA) into a protein is subjected to regulation by the PI3K/
Akt/mTOR and PI3K/Akt/FRAP signaling pathways. Among
the cellular processes activated in response to O2 imbalance,
a number of pathways are independent of HIF, such as the

nuclear factor-jB (NF-kB) pathway. Indeed, according to
early studies, IkBa is phosphorylated during hypoxia, al-
lowing the degradation of IkBa and the activation of NF-kB1
(Singh and Singh, 2020).

Since the brain is a great energy consumer it is particularly
susceptible to O2 imbalance and hypoxia. Consequently, the
decrease of O2 levels can contribute to brain damage by in-
ducing cell death and NDs. Hypoxia may influence many
pathological aspects of AD, including amyloid b metabolism,
tau phosphorylation, autophagy, neuroinflammation, oxida-
tive stress, endoplasmic reticulum stress, and mitochondrial
and synaptic dysfunction, which may collectively result in
neurodegeneration (Zhang et al, 2019). The activation of
HIF-1 through the repression of PHDs can provide neuro-
protection, ameliorate the outcomes, or prevent the patho-
genesis in these pathological conditions.

The beneficial effects of HIF-1 arise mainly from the
increased expression of HIF-1 target genes, which combat
oxidative stress, improve blood O2 and glucose supply, pro-
mote glucose metabolism, regulate iron homeostasis, activate
the synthesis of dopamine, and block cell death signal path-
ways (Merelli et al, 2018; Zhang et al, 2011). The HIF-1 ac-
tivation may be a potent strategy to ameliorate the outcomes of
AD. An association between decreased HIF-1 levels and an
increase in tau protein and neurofilament presence has been
reported (Mitroshina et al, 2021). These processes lead to a
decreased presence of a panel of genes, including HIF-1,
known for their role in maintaining the viability and synaptic
transmission of nerve cells (Mitroshina et al, 2021). Specifi-
cally, M30, one of the HIF-1a activators, increases the HIF-1a
protein expression and its target genes VEGF and EPO.
Moreover, M30 also attenuates tau phosphorylation and
protects neurons against Ab (Snell et al, 2014).

Furthermore, deferoxamine (DFO), another HIF-1 inducer,
has been used in a clinical trial in AD showing a slowed
cognitive decline, highlighting how an increased activity of
HIF-1 can prevent neuron death and improve AD symptoms
(Zhang et al, 2011). There are a high number of studies
highlighting the neuroprotective role of HIF-1a and its sub-
sequent signaling pathway, and for this reason, a novel ther-
apeutic strategy in NDs worth investigating is that aimed at
the stabilization of HIF-1 (Merelli et al, 2018). Specifically,
pharmacological activation of HIF-1 might be used in therapy
thanks to its neuroprotective effect. The increase in HIF-1
activity, along with that of its target genes, has been shown to
slow down the cognitive decline present in AD patients along
with the progression of the disease (Iyalomhe et al, 2017).

Furthermore, lactoferrin administration leads to ERK sig-
naling pathway transduction, activating ADAM10 through
the HIF-1a pathway (Mechlovich et al, 2014). This results in
a non-amyloidogenic processing of APP, which ultimately
leads to improved results in spatial learning tests and cog-
nitive outcome assessment (Mechlovich et al, 2014). The
most direct linkage between HIF-1 and PD is the tyrosine
hydroxylase (TH) activity, the rate-limiting enzyme in the
synthesis of dopamine in dopaminergic neurons, also con-
sidered to be a hypoxia response element (Schnell et al,
2003). As widely explained, hypoxia and DFO activate HIF-
1, which, in turn, has been seen to increase TH expression in
rat brains. Meanwhile, the knockdown of HIF-1a in mice
caused the decrease of TH expression in the SN (Milosevic
et al, 2007).
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Recent studies have shown that HIF-1 has a fundamental
role in both the differentiation and survival of dopaminergic
neurons, and for this reason, a reduction in HIF-1 could play a
crucial role in PD pathogenesis. Subsequently, increasing the
expression of HIF-1a could represent an innovative thera-
peutic approach for PD-affected patients (Mehrabani et al,
2020). These beneficial effects on dopaminergic neurons are
found in both in in vitro and in vivo PD models, and they seem
to be induced by HIF-1 complex activation in relation to the
expression of EPO and VEGF (Strowitzki et al, 2019). The
administration of EPO appears to result in long-term synaptic
plasticity, as well as an antioxidant effect, and a reduction
in the inflammatory responses, thus highlighting the impor-
tant role of HIF-mediated regulation of EPO in PD therapy
(Thompson et al, 2020).

Moreover, recent studies have also demonstrated that the
stabilization of HIF-1 may protect dopaminergic neurons
through the alteration in iron homeostasis and defense against
oxidative stress and mitochondrial dysfunction. Specifically,
the inhibition of PHD activities with 3,4-dihydroxybenzoate
(DHB) results in HIF-1a protein stabilization and thus leads
to the increase of HIF-1 target gene expression, such as fer-
roportin and HO-1, in the SN (Zhang et al, 2011). In addition,
HIF-1 can directly influence the expression of leucine-rich
repeat kinase 2 (LRRK2), involved in the pathogenesis of
autosomal dominant PD, whereas hypoxia can trigger beta-
synuclein accumulation (Bae et al, 2018). The proteins that
lead to HIF-1 degradation can be inhibited, thus allowing for
a modulation of its subsequent signaling and improving the
neuron protection from oxidative stress.

Several studies highlighted how it is possible to inhibit
HIF-specific prolyl hydroxylases with interfering RNA or
low-molecular-weight inhibitors (Aimé et al, 2020; Li et al,
2018; Mehrabani et al, 2020). Specifically, prolyl hydroxy-
lase allows the activation of TH, and this leads to an en-
hancement in dopamine synthesis and release. Moreover, in
in vivo models, the treatment with PHD inhibitors leads to a
reduction in the loss of TH-positive neurons in the SN, at-
tenuating behavioral deficits in murine models of the disease.
The inhibition of HIF PHD can also lead to an amelioration
in mitochondrial functions (Zhang et al, 2018). A decreased
expression of EPO and VEGF, which results in tissue hyp-
oxia, is also characteristic of ALS pathogenesis.

Thus, the lack of glucose and O2 caused by hypoxia can
lead to motor neuron death and to the occurrence of ALS.
HIF-1a is highly expressed before the onset of clinical ALS
symptoms, but its expression appears to be reduced in the
later stages of the pathology (Nomura et al, 2019). The al-
tered expression of HIF-1a leads to a subsequent dysregu-
lation of its downstream signaling pathway, which, as it is
implicated in the antihypoxic response, can worsen the motor
neuron degeneration observed in ALS (Nagara et al, 2013).
Many studies in the SOD1G93A animal model highlighted
hypoxia as the major cause of motor neuron death (Tan-
kersley et al, 2007). The SOD1G93A model is an in vivo
murine model of genetically manipulated mice harboring the
pathogenetic G93A mutation in the SOD1 gene, causative of
familial ALS (Marcuzzo et al, 2011; Rey et al, 2021a).

Indeed, SOD1 is transcriptionally regulated in response to
oxidative stress (Dell’Orco et al, 2016), and the activation
of the HIF-1-VEGF pathway can induce angiogenesis and
increase blood supply to motor neurons (Tankersley et al,

2007). Moreover, recent studies highlighted a negative cor-
relation between VEGF levels in neurons and the severity of
hypoxia in ALS patients, indicating a deregulation of VEGF
in ALS and suggesting that an impaired HIF-1-VEGF path-
way may contribute to the pathogenesis of ALS (Wang et al,
2007). The overexpression of VEGF in SOD1G93A mutant
mice delays the degeneration of motor neurons and neuronal
death and prolongs the survival of ALS mice (Wang et al,
2007).

Furthermore, numerous studies performed in in vitro and
in vivo models of ALS highlight a neuroprotective effect of
HIF activation. Indeed, the activation of HIF1–1a pathway of
action in an in vivo model of ALS leads to a reduction in
the hypoxic damage, ultimately resulting in neuroprotective
and anti-inflammatory effects, with a subsequent reduction
in motor neuron degeneration (Nomura et al, 2019). Re-
searchers also showed that inhibiting PHD in an in vitro
model of ALS can lead to the activation of HIF1–1a also in
astrocytes, and this in turn leads to the expression of VEGF
and GLUT, with an increased number of surviving neurons
(Wiesner et al, 2013).

Even so, it is important to note that there is some contro-
versial evidence, as the reduction of HIF-1a expression using
an analog of prostacyclin named ONO-1301-MS was found
to improve behavioral outcomes and survival in an in vivo
model of the disease (Tada et al, 2019). Furthermore, a
common shared pathway observed in the three NDs is the
decrease of HIF-1a levels, and an understudied, worth-
investigating part of research is represented by its potential
use as a biomarker and it would thus be worthy to keep a
lookout for studies analyzing HIF-1a expression in periph-
eral tissues.

Consequences of O2 imbalance: implications for NDs

Another important aspect to consider within the context of
O2 sensing is how the cell can ‘‘compensate’’ a disbalance in
O2 levels and whether this is related to ND pathogenesis. To
this end, it is worth mentioning what is the role of HIF-1
activators, which are strictly correlated with a response to
hypoxia (Bell et al, 2005). Among them, the mitochondrial
electron transport chain surely plays a role, as it is required
to regulate PHD activity and thus HIF-1 signaling (Bell et al,
2005). Interestingly, among the complex I inhibitors that
prevent hypoxic stabilization of HIF-1, there are MPTP and
rotenone, both PD-causing neurotoxins (Agani et al, 2000;
Bell et al, 2005).

These toxins, along with many others, can lead to the
presence of deficits in the activity of the mitochondrial
electron transport complex, reduce movement of mitochon-
dria, increase the mitochondrial permeability transition, in-
crease generation of ROS, and the activity of nitric oxide
synthase in the mitochondria. Complex I activity results
impaired not only in the SN but also in the skeletal muscles,
platelets, and leukocytes of PD patients (Monzio Compag-
noni et al, 2020). Indeed, studies suggest that mitochon-
drial dysfunctions may occur early in PD pathogenesis, and
moreover, these are present in both sporadic and familial
forms of PD (Malpartida et al, 2021).

The mitochondria are also relevant in HIF-1 hypoxic
stabilization as the electron transport chain can increase
the production of ROS during hypoxia, stabilizing the
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transcription factor (Brunelle et al, 2005; Chandel et al,
1998). This is also strictly related to the pathogenesis of NDs,
as the role of oxidative stress has been well documented in
the pathogenesis of AD and the first possible mechanisms
concern the relationship of ROS production with Ab plaques.
Similarly, many evidences demonstrated that PD patients
display increased levels of oxidized lipids, proteins, and
DNA, along with reduced levels of glutathione in the SN
(Nakabeppu et al, 2007).

Specifically, data collected from early-stage PD patients
show that oxidative stress is a robust feature of initial disease
stages, occurring before significant neuron loss (Ferrer et al,
2011). Lastly, evidence for ROS implication in ALS arose
from multiple pathological studies that reported data of in-
creased oxidative stress in ALS postmortem tissues compared
with control samples (Islam, 2017). Specifically, markers for
lipid oxidation were detected in the spinal cord from sporadic
ALS patients, but were absent in controls (Shibata et al, 2001).

There are other consequences of O2 disbalance that can
then impact on ND pathogenesis (Fig. 3), and among them
there is iron metabolism, as iron is the key component of
hemoglobin. Indeed, following a condition of hypoxia, there
is also an increased demand for iron, to limit the damage to
the neuronal system. On one hand, intraerythrocytic hemo-
globin, increased by HIF-induced EPO production, may
protect neurons against hypoxia and hyperoxia (van der Kooij
et al, 2008). On the other hand, extracellular free hemoglobin
and its degradation products (such as heme and free iron) may
trigger inflammatory immune and oxidative stress, and in-
teract with pathological processes such as the Ab deposition
in AD (Atamna, 2006). Moreover, the increase in ROS pro-
duction can lead at body level to the dysregulation of the
inflammatory response.

Indeed, many studies demonstrate the role of neuroin-
flammation to be essential in neurodegenerative processes in
all three NDs considered in this review (Carelli et al, 2018;

Hirsch and Hunot, 2009; Kinney et al, 2018; Liu and Wang,
2017). Moreover, it is relevant to point out that the activation of
HIF-1a may lead to the upregulation of proinflammatory cy-
tokines and macrophage migration inhibitory factors, thus in-
dicating that the rescue of HIF-1a needs to be well balanced to
avoid excessive neuroinflammation (Basile et al, 2020).

Lastly, oxidative stress and ROS production can lead to
impairment in processes such as calcium signaling, protein
misfolding, and synaptic dysfunction, all crucial players in
NDs (Merelli et al, 2018; Yeung et al, 2021). Nrf2 is a master
regulator in oxidative stress, as it is implicated in the Nrf2-
ARE pathway, an intrinsic mechanism of defense against
oxidative stress (Buendia et al, 2016). Compelling evidence
suggests that oxidative stress increases the damage in NDs
due to an increased production of oxidative species and the
failure of antioxidant defenses. Nrf2 is able to activate the
phase II antioxidant response declines with aging, thus con-
tributing to an exacerbated status of oxidative stress. There-
fore, the activation of the Nrf2–EpRE pathway has been
pointed as a key target for the development of new drugs for
NDs (Buendia et al, 2016).

This evidence highlights how changes in O2 levels can
perturbate the cells in different areas. Specifically, these
changes can be perceived primarily through the activation
of O2-sensitive K+ ion channels, which then lead to an in-
tracellular cascade through molecules associated with them
termed as ‘‘O2-susceptible’’ (heme oxygenase 2 [HO-2],
nicotinamide adenine dinucleotide phosphate [NADPH],
cystathionine-c-lyase [CSE], guanine-cytosine content [GC],
cyclin guanosine monophosphate [cGMP], and protein ki-
nase G [PKG]). There are also other cytoplasmic O2 sensors,
of which HIF-1 is the most relevant for its transcriptional
signature aimed at counteracting hypoxia. HIF-1 can be ac-
tivated by other intracellular organelles and mechanisms,
such as mitochondria and ROS production, and these are
tightly bound to ND pathogenesis.

FIG. 3. A condition of hypoxia can lead
to intracellular damages resulting in
neurodegeneration. A condition of constant
reduction in O2 levels, specifically hypoxia,
can lead to numerous intracellular perturba-
tions. These include oxidative stress, mito-
chondrial dysfunctions, autophagy, synaptic
alterations, inflammation, and, ultimately,
cell death. The concomitance of these ef-
fects leads to neurodegeneration, and these
pathways are often common players in NDs.
NDs, neurodegenerative diseases. Created
with Biorender.com Color images are
available online.
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Transcriptional Dysregulation of O2 Sensing in NDs

There is currently a consistent amount of evidence high-
lighting the role of transcriptional dysregulation in NDs, and
the impact that this has on their specific pathogenesis (Gar-
ofalo et al, 2020; La Cognata et al, 2021). Indeed, more and
more studies are now aimed at highlighting changes in the
gene expression signature in disease-affected patients, with
the hope to identify novel disease players and possible bio-
markers (La Cognata et al, 2021). Pathway analysis of dif-
ferentially expressed genes allows the identification of those
targets specifically involved in a certain process, and for this
reason, with this review, we aim to identify also the tran-
scriptional signature responsible for O2 sensing dysregulation
in the three NDs considered in this study (i.e., AD, PD, and
ALS).

Thus, the public RNA-Seq data stored on the GEO data
sets were interrogated following the workflow reported in
Figure 4A to search for dysregulated genes involved in O2

imbalance in a previously published experimental data set
(Butovsky et al, 2015; Simchovitz et al, 2020; Xicoy et al,
2020; Yang et al, 2021). The detailed analysis relative to
data set processing and quality is reported in Supplementary
Table S1.

The approach returned 104 dysregulated genes for PD, 53
for AD, and 187 for ALS. Among these, the analysis high-
lighted genes associated with HIF-1 and changes in O2 levels,
as reported in Table 2. Interestingly, among the genes asso-
ciated with HIF-1 and O2 imbalance, none of them was found
dysregulated in ALS.

Adra2b emerged as upregulated in PD. This is a G protein-
coupled receptor that regulates neurotransmitter release from
sympathetic nerves and from adrenergic neurons in the CNS
(Wang et al, 2002). Previous studies have demonstrated that
Adra2b levels are increased in hypoxic hepatic stellate cells
even if the upregulation occurred independently of HIF-1a
(Copple et al, 2011). Angpt2 emerged as upregulated in PD
and it has been correlated with HIF-1 as it is transcriptionally
activated with other angiogenic genes and receptors by HIF-1
expression during hypoxia (Zimna and Kurpisz, 2015).

Moreover, Cxcr4, found upregulated in PD, has been
linked to hypoxia and HIF-1 activation as it was observed
that hypoxia increased Cxcr4 expression through HIF-1a
activation in human monocytes, macrophages, endothelial
cells, and cancer cells, allowing the identification of a Hyp–

HIF-1a–CXCR4 pathway that controls cell migration and
localization and with a relevance in the pathogenesis of dif-
ferent human diseases (Schioppa et al, 2003). Gbe1 also
emerged as deregulated in PD and it has been associated with
hypoxia, as recent studies demonstrated that it is transcrip-
tionally regulated by HIF-1a and that it affects tumor pro-
gression (Li et al, 2020b).

Lastly, Cox2 and Tph2 emerged as deregulated in AD,
whereas no significant genes involved in O2 sensing emerged
in ALS. A condition of hypoxia leads to a TNF-a-induced
regulation of Cox2 in osteoblast, whereas the hypoxia-
induced impairment of Tph2 and serotonergic functions
can be mediated by NOS, involving the generation of free
radicals and decreasing the antioxidant status (Rahman and
Thomas, 2014; Xing et al, 2015) (Table 2).

The pathways analysis of the dysregulated genes previously
described allowed to extract those related to alterations due to
O2 imbalance. When considering NDs, there is often a com-
mon signature in the diseases as many pathways are shared
among the conditions (see the Cellular Response to Imbalance
in O2 Levels and Its Correlation with NDs section), but a se-
lective neurodegenerative pathogenetic mechanism is present,
which leads to the degeneration of specific cell types in each
disease. In support of this, it is interesting to note that alter-
ations in O2 levels cause the dysregulation of metabolic pro-
cesses. Moreover, the pathway analysis highlights how O2

imbalance alters not only processes involved in metabolism
and signal transduction, but also disease related such as
‘‘GABA receptor activation,’’ ‘‘NOTCH signaling,’’ and ‘‘do-
pamine receptors’’ (Fig. 4B–D and Supplementary Table S2).

Furthermore, it is interesting to observe that most path-
ways linked to O2 imbalance are specific for each disease
(Fig. 5A), while three of them are common between PD and
ALS (extracellular matrix organization, neutrophil degranu-
lation, and metabolism of carbohydrates) and five between
PD and AD [voltage gated K+ channels, G alpha (q) signaling
events, neuronal system, GPCR ligand binding, and signal
transduction] (Fig. 5A). This is even more remarked when
considering the gene signature responsible for the pathways’
dysregulation (Fig. 5B). Indeed, no dysregulated gene is
shared between the 3 NDs, while DSP (encoding for des-
moplakin) is the only one shared between PD and ALS
(Fig. 5B, C).

RNA-sequencing analyses provide researchers with an
extremely high amount of information, but there is often

‰

FIG. 4. Processing of RNA-Seq data sets for AD, PD, and ALS. (A) Workflow of processing pipeline: The GEO data sets
was interrogated with the terms ‘‘Alzheimer’s Disease’’ (AD), ‘‘Parkinson’s Disease’’ (PD) and ‘‘Amyotrophic Lateral Sclerosis’’
(ALS), filtering for ‘‘homo sapiens’’ and expression studies (microarrays, high-throughput screening, and genome tilting arrays).
The results were subsequently filtered for high-throughput studies and disease-specific affected tissues (e.g., hippocampus for AD,
substantia nigra for PD, and whole lumbar spinal cord for ALS) obtaining a final number of one AD data set, two PD data sets, and
one ALS data sets. The data sets were reprocessed to obtain comparable and homogeneous data. Specifically, the quality of
individual sequences was evaluated using FastQC software before and after overrepresented sequence removal with the Cutadapt
software. Reads were computed using the STAR software using Gencode Release 38 (GRCh38). Reads abundance was inspected
with FeatureCounts, whereas DGE analysis was performed through DESeq2 R package. Made with Biorender.com The dot plots
report the pathways pertaining to O2-sensing mechanisms in AD (B), PD (C), and ALS (D). Gene enrichment analysis was then
performed using g:Profiler, ranking terms according to their fold change, and using a Bonferroni–Hochberg false discovery rate
(FDR) of 0.05 as threshold and the R software was used to generate dot plot graphs (ggplot2 library). The y-axis represents the
name of the pathway, the x-axis represents the gene ratio, dot size represents the number of different genes, and the color indicates
the adjusted p value. AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; DGE, differential gene expression analysis;
FDR, false discovery rate; PD, Parkinson’s disease. Color images are available online.
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a lack of subsequent validation or data integration. The data
hereby presented provide a first inspection of the genes and
pathways pertaining to O2 sensing mechanisms in the three
considered NDs (AD, PD, and ALS), with the aim to iden-
tify selective regulators for each disease, which can then be
assessed functionally (see the Current Methodologies to In-
vestigate O2 Imbalance section) or even prove to be new
pharmacological targets (see the Pharmacological Targeting
of O2 Imbalance in NDs section). These preliminary results
shed light on the role of O2 sensing in NDs, and also indicate
a strong need for further studies to correlate these mecha-
nisms with ND pathogenesis.

Current Methodologies to Investigate O2 Imbalance

To gain further insights on O2 sensing, it is necessary to
discuss the possible approaches through which this can be
investigated in NDs, and indeed, experimental techniques
have been developed over the years to assess the level of
oxygenation in cells and tissues (Silva and Oliveira, 2018).
These techniques are depicted in Figure 6, and they can be
subdivided in direct O2 evaluation where microelectrodes
and Seahorse technique are highlighted; fluorescence ap-
proaches, with particular attention to innovative techniques
such as fluorescence lifetime imaging microscopy (FLIM)
and MitoTracker, and finally, magnetic resonance approaches
where the two most exploited techniques are pointed out.

Direct oxygenation evaluation

Microelectrodes are the most common method to measure
directly O2 consumption as they represent the gold standard
for tissue oximetry (Springett and Swartz, 2007). They con-
sist in an ultrafine tip of biopotential electrodes that can
be inserted directly into biological cultures (Springett and

Swartz, 2007). The O2 tension is measured in a wide surface,
and it is particularly used in neurophysiological studies.

In the recent years, extracellular flux (XF) analysis is be-
coming a gold standard method for the assessment of bio-
energetics in adherent cell in vitro and in vivo tissues (Salabei
et al, 2014). Furthermore, the mitochondrial activity can
also be assessed in vitro in real time using Seahorse XF and
this new setup is more suitable with primary neurons (Lejri
et al, 2019; Rey et al, 2022). Seahorse XF analyzers measure
O2 consumption rate (OCR) and extracellular acidification
rate (ECAR) of live cells in label-free conditions, evaluating
cellular functions such as mitochondrial respiration and
glycolysis. Sonntag et al exploited this innovative technique
to investigate bioenergetic profiles in late-onset AD.

In this study, fibroblasts from patients exhibited a peculiar
redox potential and an impaired mitochondrial metabolic
potential, associated with reduced nicotinamide adenine di-
nucleotide metabolism. Indeed, the OCR, the ECAR, and
proton production rate were increased in patients’ fibroblasts
respect to controls (Sonntag et al, 2017). Microglia activation
metabolic profiles were tested in primary microglia obtained
from murine brain using the Glycolysis Stress Test and Mito
Stress Test Kits using the Seahorse XFe96 analyzer, dem-
onstrating that higher levels of GLUT1 were expressed in
microglia (Wang et al, 2019).

Another interesting O2 evaluation method in vitro is high-
resolution respirometry to analyze mitochondrial respiratory
pathways (Burtscher et al, 2015; Connolly et al, 2018; Dja-
farzadeh and Jakob, 2017). In particular, this technique was
also exploited in ND studies. This technique can be applied to
measure respiration in a wide range of cell types and also
provides information on mitochondrial quality and integrity.
A challenge is to understand why mitochondria fail in par-
ticular brain regions under specific pathological conditions.
Risiglione et al (2020) deeply investigate O2 consumption in

Table 2. Dysregulated Genes Associated with Hypoxia-Inducible Factor 1 and Changes in Oxygen Levels

Gene
name AD PD Function References

Adra2b // [ G protein-coupled receptor involved in neurotransmission. Copple et al (2011)
Angpt2 // [ Angiopoietin family of growth factors, antagonist of

angiopoietin 1. It is implicated in the direct control of
inflammation-related signaling pathways.

Zimna and Kurpisz
(2015)

Cxcr4 // [ CXC chemokine receptor specific for stromal cell-derived
factor 1. It acts with the CD4 protein to support HIV entry
into cells and is also highly expressed in breast cancer
cells.

Schioppa et al (2003)

Gbe1 // Y Glycogen branching enzyme that catalyzes the transfer of
alpha-1,4-linked glucosyl units from the outer end of a
glycogen chain to an alpha-1,6 position on the same or a
neighboring glycogen chain.

Li et al (2020b)

Cox2 Y // Also known as cyclooxygenase, it is the key enzyme
in prostaglandin biosynthesis, and acts both as a
dioxygenase and as a peroxidase.

Xing et al (2015, p. 2)

Tph2 Y // The encoded protein catalyzes the first and rate limiting step
in the biosynthesis of serotonin, an important hormone
and neurotransmitter.

Rahman and Thomas
(2014)

Among all the deregulated genes found for the three specific NDs, six were related to HIF activation. The table reports the gene name, the
ND where it emerged and the specific dysregulation in terms of up ([) or downregulation (Y), the gene function, and the reference of source
where the finding is reported. // Means no available information in the specific ND.

HIF, hypoxia-inducible factor.
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differentiated neuroblastoma cells exposed to the neurotoxin
MPP+ and they highlighted the presence of mitochondrial
damages at the inner membrane level.

Fluorescence techniques

Miniaturized optical sensors have been tested and opti-
mized (Grist et al, 2010). These have as strongpoint the lack
of contamination, the fact that they do not require a direct
physical contact between the sensor and the optical detector,
and, moreover, they do not consume O2 (Papkovsky et al,
2000). They include fluorescence resonance energy trans-
fer and two-photon imaging using luminescent quenching.

Moreover, these methods are noninvasive and suitable for
sequential monitoring. Nowadays, sensor technologies and
advances in fiber optics improve the measurement of
dissolved O2 using stable phosphorescent dyes, such as ru-
thenium chloride, whose quenching is proportional to the
surrounding O2 level (Zeitouni et al, 2015). In 2021, Shin
et al. studied oxide-sensitive fluorogenic molecular probes,
benzenesulfonylated resorufin derivatives (BSRs), newly de-
veloped for optical bioimaging of oxidative events in neu-
rodegenerative processes, in particular for AD.

The researchers demonstrated by immunofluorescence
imaging the capability of this new probe to detect intracel-
lular O2 in vitro in inflammatory and microglia cells, and in

FIG. 5. The O2-related signa-
ture is divergent in the three in-
vestigated NDs. (A) The Venn
diagram displays how many path-
ways obtained with Reactome
filtered for their relevance with O2-
sensing mechanisms are shared
among conditions (http://bio
informatics.psb.ugent.be/webtools/
Venn, last accessed on October 4,
2021). (B) Genes pertaining to O2

sensing were extrapolated from
the respective pathways. The Venn
diagram displays how many of
these genes are shared among
conditions (http://bioinformatics.psb
.ugent.be/webtools/Venn, last ac-
cessed on October 4, 2021). (C)
Heatmap of DE RNAs related to
O2 sensing in AD, PD, and ALS.
The violet arrow indicates the only
term shared among PD and ALS.
DE RNAs, differentially expressed
RNAs. Color images are available
online.
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animal models upon treatment with an oxidative stimulus
(Ab) or the by-product of oxidative stress (4-hydroxynonenal,
HNE) (Shin et al, 2021).

The sensitivity of fluorescence O2 optodes can be tuned to
specific pO2 values, resulting in a higher resolution (Ndu-
buizu and LaManna, 2007). Indeed, Lubbers et al used pyrene
butyric acid to design a specific optode for the in vivo mea-
surements of O2 tension (Lübbers and Opitz, 1975; Opitz and
Lübbers, 1987). Furthermore, Nguyen and Hong (2016) set a
specific method based on functional near-infrared spectros-
copy with bundled optode for detection of the changes of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) con-
centrations to analyze brain activity with a higher spatial
resolution.

In the recent years, FLIM has become increasingly rele-
vant (Perottoni et al, 2021). Using this advanced imaging
technique and an independent O2 sensor, it is possible to
evaluate and measure changes in fluorescence dye lifetime
with corresponding changes in O2 level, specifically in NDs
(Sanchez et al, 2018). In this context, Pokusa and Kráľová
Trančı́ková (2018) provide data on localization of intracel-
lular changes of NADH associated with PD, finding a colo-
calization of the thioflavin fluorescence signal with those of
mitochondria and NADH. Furthermore, these evidences
corresponded to the accumulation of a-synuclein and of
NADH in rotenone-treated cells. Moreover, interesting re-
search published by Gomez-Virgilio et al investigated the
translational potential of analyzing patient-derived olfactory
neural precursors noninvasively isolated through NADH FLIM
to reveal AD-related oxidative stress. This innovative tech-
nique permits to discriminate between the contribution of the
cytoplasm and mitochondria (Gómez-Virgilio et al, 2021).

Another interesting approach to assess in vitro mito-
chondrial damage is the MitoTracker probe. MitoTracker is

chemically reactive, linking to thiol groups in the mito-
chondria, and the analysis can be performed alternatively on
both fixed samples and alive cells (Chazotte, 2011; Rey et al,
2022; Rey et al, 2021b). This approach was adopted to in-
vestigate mitochondrial dysfunction and mitophagy defects
in PD patients with heterozygous GBA mutations, finding
mitochondrial and autophagy deficits in brain tissues (Li et al,
2019). Moreover, a recent study by Sabogal-Guáqueta et al
(2019) analyzed with the abovementioned technique the role
of linalool on glutamate-induced mitochondrial oxidative
stress in AD.

Magnetic resonance techniques

The above-described techniques are widely used in in vitro
ND models, but are not exploited in preclinical studies. In this
context, another innovative method to quantify the O2 con-
sumption of cells is the electron paramagnetic resonance
(EPR) oximetry, widely used for mitochondria and submi-
tochondrial particles (Hyodo et al, 2010). This method is
extremely useful for detecting free radicals and ROS (He
et al, 2014). ROS are reactive and they also have limited half-
lives in biological environments. It is thus difficult to directly
measure these species, but the new rapid-scan EPR methods
can improve the sensitivity for these samples (Suzen et al,
2017).

Interesting research by Manabe et al. evaluated EPR com-
bined with a mitochondria-targeted redox-sensitive nitroxide
probe to elucidate the etiology of AD. With this technique,
they demonstrated that an increased oxidative stress was
observed in the brain mitochondria of a transgenic mouse
model of AD (Manabe et al, 2019). Moreover, with the
resonance technique, it is possible to evaluate O2 consump-
tion also in vivo in a preclinical animal model of AD under

FIG. 6. Overview of techniques and approaches used to assess O2 imbalance. These techniques can be subdivided in
direct O2 evaluation, where microelectrodes, Seahorse technique, and high-resolution respirometry are highlighted; fluorescence
approaches, with particular attention to innovative techniques such as O2 optodes, Fluorescence Lifetime Imaging Microscopy
and MitoTracker, and finally, magnetic resonance approaches, with the two most exploited techniques being electron para-
magnetic resonance and deuterium magnetic resonance. Created with Biorender.com Color images are available online.
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noninvasive conditions that could be a potential key for early
diagnosis and monitoring the progression of NDs. In this
study, researchers observed that mitochondrial dysfunction
and oxidative stress in early onset of AD and increased ROS
levels associated with defects of mitochondrial and cognitive
dysfunction (Fang et al, 2016).

A novel approach is based on deuterium magnetic reso-
nance: this noninvasive technique allows the detection of
stable deuterated compounds in vivo and therefore does
not decay during biological processing (Hartmann et al,
2021). This technique was exploited by Vilaplana et al (2020)
to investigate the neuroinflammatory mechanisms in early
stages of AD and in vivo patterns of neuroinflammation,
proteinopathies, and brain function in aging.

Clinical frontiers on O2 sensing

In patients with NDs, different parameters are often eval-
uated, but to our knowledge, O2 sensing is still understudied.
In Israel, during 2014–2017, on a small group of patients with
PD subjected to subthalamic deep brain stimulator surgery,
the brain O2 levels were measured with a noninvasive near-
infrared spectroscopy device, with results yet to be published
(NCT02278406).

In conclusion, several in vitro and in vivo studies ex-
ploit systems for O2 detection. In particular, magnetic reso-
nance techniques, widely used in preclinical research, are
also used in different phases of clinical trials, allowing direct
O2 sensing evaluations also on patients.

Pharmacological Targeting of O2 Imbalance in NDs

For years many researchers have been trying to de-
velop new pharmacological procedures aimed at modu-
lating O2 sensing mechanisms in the brain, specifically
targeting O2-related pathways (Ferrara and Adamis, 2016;
Li et al, 2018; Scheuermann et al, 2009). However, only
few successes have been reported, especially concerning
NDs (Fig. 7).

HIF-1 modulation as a potential therapeutic
target in NDs

Even if specific drugs modulating O2 sensing for NDs are
not commercially available, in the last decade of basic and
clinical research, a number of regulating responses (e.g., HIF)
have been found in cells exposed to hypoxia, which have a
relevant role in O2 metabolism. These processes have proven
to be highly important for neurodevelopment, neuronal sur-
vival, and neurodegeneration (Schmidt-Kastner et al, 2006).
It was first believed that as HIF acts as a DNA-binding
transcription factor, it would not be druggable. As a conse-
quence, for many years, researchers only tried to intervene
downstream against components that are under the control of
HIF, such as VEGF (Rey et al, 2022). This approach was
successful in oncology and ophthalmology, where it allowed
to develop many monoclonal antibodies (e.g., ranibizumab,
bevacizumab) and aptamers (e.g., pegaptanib) (Ferrara and
Adamis, 2016).

FIG. 7. Overview of possible innovative treatments for O2 imbalance or its metabolism. These approaches can be
classified into two main groups: HIF targeting drugs (left) and O2 metabolism targeting drugs (right). As the name suggests,
the first group acts on the HIF pathway, specifically on the activity of PHD protein. These drugs include FG-4592, which
inhibits the hydroxylation (OH) and degradation of HIF-a subunit leading to transcription of gene targets. On the contrary,
O2 metabolism targeting drugs have broad mechanisms of action, which include a decrease of ROS production and a
reduction of cellular senescence. This group includes drugs such as EPO, antioxidant nutrients, and nonpharmaceutical
approaches (e.g., diet and physical exercise) whose molecular effects are still to be fully discovered. FG-4592, roxadustat;
PHD, prolyl hydroxylase domain; ROS, reactive oxygen species. Color images are available online.
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On the contrary, it has been demonstrated, in preclinical
experimental models, that VEGF administration inhibits loss
of dopaminergic neurons (Kumar et al, 2022), while its an-
tagonism leads to the reduction of synaptic functions and
plasticity (Sharma et al, 2019). Indeed, it has been discovered
that the use of VEGF inhibitors may be linked to PD-like
events, dementia, or variants of these diseases (Sultana et al,
2020). Therefore, these approaches do not represent ap-
propriate treatments for NDs. Experimental and clinical
evidence has demonstrated that regulating HIF-1 might
ameliorate the cellular and tissue damage in the NDs. Thus,
it would be interesting to consider HIF-1 inducers as po-
tential strategies for NDs.

Specifically, iron chelators such as DFO and M30 pro-
vide neuroprotection by inhibiting the activation of PHDs.
DFO prevents formation of a catalytically active center in the
PHDs, thus enabling dopamine synthesis and secretion in PD
and slowed cognitive decline in AD, as emerged in clinical
trials. Moreover, M30, which upregulates HIF-1 expression,
protects NSC-34 motor neuron cells from oxidative damage
in vitro and significantly delays the onset of ALS in SOD1-
G93A mutant mice and simultaneously attenuates tau phos-
phorylation and protects cortical neurons against Ab toxicity
in AD experimental models (Zhang et al, 2011). These new
findings suggest HIF-1 as a potential medicinal target for
the NDs.

In 2009, Scheuermann et al. published a landmark study in
which they identified a druggable pocket in HIF-2a as well as
a compound that could bind to this site. This led to the dis-
covery of HIF-2 antagonists, such as roxadustat (FG-4592), a
small molecule for the treatment of anemia, which has been
recently approved by the EMA and currently under revision
from the FDA. FG-4592 acts as an antagonist reversibly in-
hibiting the activity of PHD in normoxia. When PHD is in-
hibited, all the three subtypes (1, 2, and 3), which compose
the HIF-a subunit, are not hydroxylated and degraded by the
proteasome. Therefore, the more stable HIF-a enters the
nucleus and forms heterodimers with HIF-2b (Haase, 2017;
Haase, 2013), which activates target gene expression, includ-
ing EPO, VEGF, and GLUT1 (Semenza and Wang, 1992;
Warnecke et al, 2004).

The effects of FG-4502 have been investigated also in PD
experimental models. Specifically, FG-4592 is able to exert
protective effects in the in vivo MPTP-induced PD model
reducing both the loss of TH-positive neurons in the SN and
the subsequent behavioral alterations in both in vitro and
in vivo experiments (Li et al, 2018). These evidences suggest
that this mechanism of action may lead to neuroprotective
effects on PD patients. The role of dysbiosis and its effect on
HIF have been investigated in AD experimental models, as
oral bacteriotherapy appears to be a promising preventive and
therapeutic strategy through the remodeling of gut micro-
biota. Indeed, this strategy appears to delay the onset and
progression of AD through a reduction of neuroinflammation
and protein aggregation.

Specifically, chronic supplementation with SLAB51 en-
hances the expression of HIF-1a and decreases the levels
of PHD2 in the brain. Moreover, it successfully counteracts
the increase of iNOS cerebral expression along with the
nitric oxide plasma levels in AD mice, highlighting another
mechanism through which SLAB51 can exert its neuropro-
tective and anti-inflammatory effects (Bonfili et al, 2021).

The implication for dysbiosis and gut microbiota highlights
how the environment and nutritional dysregulation could
impact on the O2 sensing process, and indeed, antioxidant
molecules and nutritional supplements could be used, in
combination, to address O2 dysfunctions in NDs.

Furthermore, given the importance of HIF-1, it would be
interesting to evaluate potential strategies that envisage its
production or availability in patients with NDs. To this end,
Xue et al. proposed a rational drug design of HIF-1a/VHL
inhibitors. Specifically, they developed an effective strat-
egy to identify and design new inhibitors for protein–protein
interaction targets. Through alanine scanning, site-directed
mutagenesis, and molecular dynamic simulations, they ob-
served that the interactions between Y565 and H110 played a
key role in the binding of VHL/HIF-1a. Based on the inter-
actions, they synthetized 8 derivates of VH032, 16a-h, by
introducing various groups bounded to H110, that exhibited
higher binding affinity to VHL and markable or modest im-
provement in stabilization of HIF-1a or HIF-1a-OH in HeLa
cells (Xue et al, 2022).

In conclusion, novel drugs for NDs could be highly
promising candidates in the treatment of these disorders, but
still much work is needed to discover new potential biolog-
ical targets.

Targeting of O2 imbalance: consequences
for the amelioration of ND symptoms

Since therapies that directly target O2 sensing are limited,
conventional drugs still remain the first-line treatment for
NDs. Sometimes, these approaches include molecules that
act against oxidative damage or its consequences, such as
antioxidants or EPO itself (Ehrenreich et al, 2007; Moussa
et al, 2017; Wüstenberg et al, 2011). Antioxidants are ex-
ogenous or endogenous molecules that can act against oxi-
dative stress neutralizing ROS and other kinds of free
radicals. These molecules are contained in numerous foods
we consume, including flavonoids and phenolic compounds,
lipoic acid (thioctic acid), ubiquinone and idebenone, b-
carotene, and vitamin C (Chen et al, 2012).

Even if there is no FDA-approved antioxidant therapy for
NDs yet, several clinical trials produced promising results in
animal models of AD (Rajasekar et al, 2013; Sancheti et al,
2014) and in PD patients (Fahn, 1991). These trials include
the use of vitamin E (alpha tocopherol) and vitamin C as
strong antioxidant agents. This has been investigated to
partially restore cognitive functions in individuals with early
PD (Fahn, 1991) and in patients with mild-to-moderate AD
(Dysken et al, 2014; Sano et al, 1997). Inconclusive results
were also obtained when considering clinical trials with the
polyphenolic compound curcumin, a molecule with antioxi-
dant and anti-inflammatory effects (Ringman et al, 2012).
Curcumin has indeed proved beneficial in multiple ND
models and it has been suggested that the improvement of
drug bioavailability could be effective in AD (Gagliardi et al,
2020; Gagliardi et al, 2018, Ringman et al, 2012).

Besides antioxidants, the research of molecules that act on
mitochondria represents an innovative approach aimed at
mitigating local ROS production or at reducing their induced
damage (Brieger et al, 2012). These compounds include
EPO, a cytokine induced by hypoxia expressed in the brain,
that has been demonstrated to exert many fundamental effects
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such as neuroprotection and neuroregeneration (Brines and
Cerami, 2005; Carelli et al, 2018; Digicaylioglu et al, 1995;
Rey et al, 2021b; Rey et al, 2019), neurodevelopment (Victor
et al, 2022), and neuroplasticity (Brines and Cerami, 2005),
when stimulated by mild local hypoxia (Wakhloo et al, 2020)
or when administered as recombinant human EPO (rhEPO)
in different in vitro and in vivo preclinical experimental
models (Fernando et al, 2018; Maurice et al, 2013; Rey et al,
2021b; Rey et al, 2019).

The neuroprotective effects of rhEPO have been demon-
strated also in two clinical trials in PD-affected patients ( Jang
et al, 2014; Pedroso et al, 2012).

Moreover, EPO and its receptor (EPOR) were found in
catecholaminergic glomus cell type I of CB (Soliz et al, 2005)
where they have been shown to regulate also the activity of
carotid sinus. Research highlights that systemic EPO can
activate the CB chemosensory activity after a hypoxic and
hypercapnic stimulation (Andrade et al, 2018). Recent find-
ings also suggest a dual effect of EPO in Carotid Sinus Nerve
(CSN) in mice, as it stimulates the CSN hypoxic response at
low concentrations (<0.5 IU/mL), while it inhibits hypoxic
and hypercapnic CSN activation at higher concentrations (>1
IU/mL) following an increase in NO production by type I
cells (Arias-Reyes et al, 2021). In conclusion, divergent re-
sults have been achieved during EPO and antioxidant re-
search on NDs, and many aspects regarding their role in the
CNS remain elusive and need to be elucidated.

Nonpharmacological treatments and lifestyle interven-
tions, which include exercise and caloric restriction, are
gaining increasing attention due to their overall beneficial
effect on O2 imbalance, health, and life span (Mendiola-
Precoma et al, 2016). Specifically, grounded on a population-
based perspective, the Alzheimer’s Association has identified
regular physical exercise as one of the strategies to reduce the
risk of cognitive decline and the development of dementia
(Baumgart et al, 2015). Indeed, regular physical activity was
associated with reduced oxidative stress, increased antioxi-
dant capacity, and anti-inflammatory effects (Baumgart et al,
2015). To sum up, the molecular mechanisms implicated in
the beneficial effects of exercise are not fully understood.
Therefore, a better understanding of lifestyle modifications is
needed to develop integrated strategies effective in the
counteraction of the evolution of neurodegenerations.

Concluding Remarks

O2 sensing mechanisms in the brain are crucial to maintain
tissue homeostasis and organ functionality. Even so, these
mechanisms do not strictly occur in the brain, but rather are
the result of the cooperation among different organs, which
primarily include the CB, preBötC, and the cardiovascular,
renal, and pulmonary systems. It is thus of course necessary
to consider the whole-body regulation of O2 sensing and its
implication in NDs, but there is also a need to identify the
cellular responses to these changes. Specifically, even if more
and more evidence is mounting each year concerning the
physiology of O2 sensing, the number of researches corre-
lating these evidences with the three NDs considered in this
review article, AD, PD, and ALS, is still limited.

On the contrary, literature evidence primarily focuses on
the dysfunctions induced by these processes, which include
the production of ROS, mitochondria’s health, protein mis-

folding, and neuroinflammation, all pathways characteris-
tic of NDs. These pathways are strongly altered also when
considering the transcriptional deregulation present in AD,
PD, and ALS. There is thus a crucial need to investigate O2

sensing mechanisms, and to identify novel strategies for the
detection of these altered pathways and their correlation with
specific NDs. Moreover, therapeutic approaches currently
primarily focus on the ‘‘correction’’ of the abovementioned
secondary effects of the dysfunction rather than the O2

sensing pathway itself. In our opinion, novel approaches
targeting this aspect would be of fundamental relevance.
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Wüstenberg T, Begemann M, Bartels C, et al. Recombinant
human erythropoietin delays loss of gray matter in chronic
schizophrenia. Mol Psychiatry 2011;16(1):26–36, 1; doi:
10.1038/mp.2010.51

Xicoy H, Brouwers JF, Wieringa B, et al. Explorative combined
lipid and transcriptomic profiling of substantia nigra and
putamen in Parkinson’s disease. Cells 2020;9(9):1966; doi:
10.3390/cells9091966

Xing Y, Wang R, Chen D, et al. COX2 is involved in hypoxia-
induced TNF-a expression in osteoblast. Sci Rep 2015;5:
10020; doi: 10.1038/srep10020

Xue X, Kang J-B, Yang X, et al. An efficient strategy for
digging protein-protein interactions for rational drug design—
A case study with HIF-1a/VHL. Eur J Med Chem 2022;227:
113871; doi: 10.1016/j.ejmech.2021.113871

Yang AC, Vest RT, Kern F, et al. A human brain vascular atlas
reveals diverse cell mediators of Alzheimer’s disease risk.
bioRxiv 2021;2021.04.26.441262; doi: 10.1101/2021.04.26
.441262

Yang CF, Kim EJ, Callaway EM, et al. Monosynaptic projec-
tions to excitatory and inhibitory preBötzinger complex neu-
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Abbreviations Used

Ab¼b-amyloid
AD¼Alzheimer’s disease

ALS¼ amyotrophic lateral sclerosis
BACE1¼b-amyloid precursor protein cleaving

enzyme 1
Ca2+¼ calcium
CBs¼ carotid bodies
CNS¼ central nervous system
DGE¼ differential gene expression analysis

DE RNAs¼ differentially expressed RNAs
DFO¼ deferoxamine

ECAR¼ extracellular acidification rate
EPO¼ erythropoietin
EPR¼ electron paramagnetic resonance
FDR¼ false discovery rate

FG-4592¼ roxadustat
FIHs¼ factors inhibiting hypoxia-inducible

factors
FLIM¼fluorescence lifetime imaging

microscopy
GC¼ guanine-cytosine content

GDNF¼ glial cell line-derived neurotrophic
factor

GLUT1¼ glucose transporter 1
HIFs¼ hypoxia-inducible factors

HREs¼ hypoxia-responsive elements
iNOS¼ inducible nitric oxide synthase

K+¼ potassium
MPTP¼ 1-methyl-4-phenyl-1,2,3,6-tetra-

hydropyridine
MSA¼multiple system atrophy
NDs¼ neurodegenerative diseases

NF-jB¼ nuclear factor-jB
O2¼ oxygen

OCR¼ oxygen consumption rate
OSAS¼ obstructive sleep apnea syndrome

PD¼ Parkinson’s disease
PHD¼ prolyl hydroxylase domain

O2-PHDs¼O2-dependent prolyl-4-hydroxylases
pO2¼ partial pressure of oxygen

preBötC¼ preBötzinger complex
RAGE¼ receptor for advanced glycation end

products
rhEPO¼ recombinant human erythropoietin

ROS¼ reactive oxygen species
SN¼ substantia nigra
TH¼ tyrosine hydroxylase

TRP¼ transient receptor potential
VEGF¼ vascular endothelial growth factor

VHL¼ von Hippel–Lindau protein
XF¼ extracellular flux
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