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Abstract— Full teleoperation of mobile robots during the
execution of complex tasks not only demands high cognitive
and physical effort but also generates less optimal trajectories
compared to autonomous controllers. However, the use of the
latter in cluttered and dynamically varying environments is still
an open and challenging topic. This is due to several factors
such as sensory measurement failures and rapid changes in task
requirements. Shared-control approaches have been introduced
to overcome these issues. However, these either present a strong
decoupling that makes them still sensitive to unexpected events,
or highly complex interfaces only accessible to expert users.
In this work, we focus on the development of a novel and
intuitive shared-control framework for target detection and
control of mobile robots. The proposed framework merges
the information coming from a teleoperation device with a
stochastic evaluation of the desired goal to generate autonomous
trajectories while keeping a human-in-control approach. This
allows the operator to react in case of goal changes, sensor
failures, or unexpected disturbances. The proposed approach
is validated through several experiments both in simulation and
in a real environment where the users try to reach a chosen
goal in the presence of obstacles and unexpected disturbances.
Operators receive both visual feedback of the environment and
voice feedback of the goal estimation status while teleoperating
a mobile robot through a control-pad. Results of the proposed
method are compared to pure teleoperation proving a better
time-efficiency and easiness-of-use of the presented approach.

I. INTRODUCTION

Mobile manipulators, either wheeled such as MOCA [1],
or legged such as ALMA [2], are becoming ubiquitous plat-
forms in semi-structured (e.g., industrial [3]) or unstructured
(e.g., urban [4]) environments. To operate such systems,
several approaches have been proposed that range from
teleoperation to autonomous control. In teleoperation, an
operator, usually equipped with a motion capture system,
generates movements for a follower robot to accomplish
a desired task [1], [5]. Teleoperation systems have been a
topic of research for a long time, with a particular focus
on their stability and transparency [6]–[8]. In return, little
to no attention has been given to the problems derived from
their usability and intuitiveness of use [9]. Indeed, cognitive
and physical fatigue are common issues [10] when users are
faced with the operation of multi degrees-of-freedom (DoF)
follower systems (see Fig. 1). Nonetheless, simpler systems
with less DoF can also become bothersome during prolonged
or repetitive tasks, e.g., for long-distance target reaching
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Fig. 1: Concept illustration for remote locomotion control of mobile robots
in cluttered spaces. A pure teleoperation interface to navigate robots through
long distances can be bothersome and frustrating.

operations. On the other hand, fully autonomous systems
provide a practical solution to these problems. Autonomous
controllers are fast and effective and most suited for highly
structured environments that are subject to few variations
[11]. Still, they are highly vulnerable to unexpected changes
in the environment and very dependent on the system’s
sensing capacities [12].

To benefit from the advantages of both teleoperated and
autonomous systems, several controllers have been proposed
[13]–[17]. In [14], the authors developed a complex frame-
work able to predict the human intention from visual data
and to correct the robot motion based on preliminary learning
algorithms that must be re-calculated to adapt to each user’s
movements. Moreover, the method must reinforce the user’s
teleoperation role as a way to avoid wrong inputs from their
loss of motivation. Other works [15], [16] propose different
levels of abstraction for the human user to command the
desired objective of the robot, specifying particular goals
and paths or high-level actions such as pick and place of
an object. Nonetheless, these methods suffer from the lack
of a human-in-control approach, meaning that the user is
not able to interactively change the goal, and in the case
of unexpected disturbances, the autonomous plan cannot be
changed. A more complete method is presented in [17],
where the user selects a command with an object-centered
point-and-click approach from a visual Graphical User In-
terface (GUI), and the robot autonomously drives the action.
During the autonomous execution, the user can react to
unexpected errors by choosing new available actions on the
GUI that affect robot navigation, camera position, etc. This
type of approach requires very skilled users (in this case
an astronaut) that are familiar with the GUI and the robot
controls.

With the aim to simultaneously improve the performance
and usability of teleoperation interfaces for mobile robots,



in this manuscript, we propose an intuitive shared-control
framework based on a probabilistic target estimation algo-
rithm. This allows the operator to progressively drive the
robot towards the desired goal while interfacing through a
control-pad device and receiving feedback from a GUI. Once
the goal is detected, the robot drives autonomously towards
it. This goal can be changed dynamically by the user while
the controller adapts seamlessly and autonomously between
the different needs, always maintaining a human-in-control
structure. This means that at any point, the operator can take
full control of the platform, changing the goal or modifying
the generated trajectory because of unexpected disturbances.

The controller is also capable of autonomous obstacle
avoidance through real-time laser data. In the case where
laser information cannot detect fast disturbances (e.g., sudden
human movements, or in presence of transparent objects
along its path), the user can easily and immediately take con-
trol, avoid the obstacles and switch back to the autonomous
mode. The framework is validated through virtual and real-
world experiments in which several users drive a mobile
robot towards a desired goal in the presence of obstacles
and unexpected disturbances.

II. METHODOLOGY

The overall structure of the proposed shared-control
framework is shown in Fig. 2. The user starts the navigation
in the teleoperation mode with full control over the robot’s
motion. Meanwhile, the target estimation block looks for
available targets (if any), and evaluates the user’s desired
goal through laser and odometry sensors. Once the target
pose pg = [xg, yg, θg]

T is estimated, the user can release
the control-pad device. This activates the navigation stack
where the robot moves autonomously towards the target. If an
obstacle appears in the robot’s path, the obstacle-avoidance
algorithm embedded in the navigation stack tries to recognize
it and re-plan the trajectory towards the goal. If the algorithm
fails to detect the obstacle, our framework allows the user to
take back the full control over the robot motion and navigate
around the obstacle safely in the teleoperation mode. To
retake the control of the platform, the user simply needs to
touch the motion buttons of the control-pad. In this case, the
robot’s autonomous movement stops and the user controls
it directly to a safe location. The autonomous mode then
navigates the mobile platform towards a newly identified
goal by checking the goal’s likelihood (if no target is found,
the user should further explore the environment with the
teleoperation mode). A detailed description of each element
of the control framework is given hereafter.

A. State monitor

The state monitor block reads the status of the control-
pad, and transforms it into meaningful information for the
framework. The percentage of the desired linear vp and
angular ωp velocities are updated by the left and right dual-
shockers of the pad, respectively. While the user controls the
platform’s motion, the mode flag is triggered indicating that
the platform is in teleoperation mode.
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Fig. 2: The block diagram of the proposed shared-control framework. The
user actuates the robotic platform by means of a control-pad. During
teleoperation (mode = 1), the developed algorithm estimates his/her
intention simultaneously. Once a target has been recognized (S = 1),
the user can release the pad and the robot reaches the goal autonomously
(mode = 0).

If the user releases the control-pad, the mode flag resets
and based on the estimation status S, the state monitor
decides about the next phase. In this situation, if the target
goal is estimated (S = 1), the mode flag is reset and
the autonomous part is activated. This block autonomously
controls the motion of robot towards the new target pose
(received from the target estimation block).

B. Teleoperation mode

During the teleoperation mode (Fig. 2), two main opera-
tions are performed: (i) the inputs from the user are sent to
the mobile robot through the velocity map block, and (ii) the
most likely target is constantly being estimated based on the
input commands and the processed laser sensor data.

The velocity map block converts the received data to the
robot’s twist command ([vt, ωt]) based on the maximum
values allowed for the mobile platform vt = vp vmax and
ωt = ωp ωmax.

The target estimation block is in charge of evaluating
the user intention based on the laser sensor data and the
commands being sent by the user through the pad. As
illustrated in Fig. 3, while the robot, with frame {R}, moves
in an area with respect to (w.r.t.) the fixed frame (odometry
frame) {O}, its laser sensor scans a subsection of that area
within a specific range (rmin < r < rmax) and angle
(φmin < φ < φmax). As a result, a 2D point cloud of the
environment is generated, whose points are defined in the
polar coordinates of the laser frame {L} as Lpj = [rj , ψj ]

T .
At each scanning step, if there is no point in one of the
laser measurements, rj = +∞. This is used to classify the
points into different 2D clusters (γγγi). Still, in some cases two
different clusters might be classified as one because of their
proximity (in polar angle). To handle this issue, a threshold
rtsh is defined between two consecutive points rj and rj+1

of the scan stream. If |rj − rj+1| > rtsh, the new point is
considered as part of a new cluster.

The centroid of the i-th cluster γγγi, Lcγi = [xγi , yγi ]
T ,

is obtained by averaging the cluster’s points given by the
laser (xγj , yγj ), where j = 1 · · · ργi , being ργi the number
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Fig. 3: Diagram of the different Cartesian frames during navigation. Some
graphical elements have been distributed among the different robot poses
for clarity. New clusters are recognized by the laser sensor in its frame {L}
(in red) while the robot moves and transformed into the {O′} frame (in
light blue). The pose of these clusters in {O′} is analyzed w.r.t. that of the
robot {R} (in black) to estimate the most likely target (green arrow in the
upper robot drawing). The pose of the clusters are stored in the fixed frame
{O} (in dark blue) to create a fix database that enables the comparison of
already recorded and new clusters.

of points in the cluster i. These are transformed to frame
{O} using the transformation matrix between both frames:
Ocγi = OTL

Lcγi , being OTL = OTR
RTL. RTL is a

constant matrix given by the robot dimensions and the laser
placement and OTR is given by the odometry measurements
of the robot. This centroid is recognized as a new one if its
Euclidean distance to all of the previously stored centroids is
greater than a specific threshold: ||Ocγi−Ocγ1,··· ,n || > γtsh,
being n the number of clusters. As a result, the centroid and
the minimum and maximum values of the xy coordinates
of the cluster’s points (xi, yi), are added to a framework’s
look-up table Γ:

Γ =


xγ1

xγ2
· · · xγn

yγ1 yγ2 · · · yγn
x1,min x2,min · · · xn,min
x1,max x2,max · · · xn,max
y1,min y2,min · · · yn,min
y1,max y2,max · · · yn,max

 . (1)

Once the clusters’ look-up-table Γ has been built, the
target estimation problem is formulated from a probabilistic
approach. To be able to compare the robot orientation to the
clusters, a frame {O′} is considered, that is the result of
translating {O} to the origin of {R} (see Fig. 3). At each
instance k, the robot’s heading angle θ(k) is given by the

robot odometry sensors w.r.t. the z axis of {O′}. Besides,
the j-th detected point of the cluster γγγi, can be expressed
in {O′} using the corresponding transformation matrices:
[O
′
pγi,j , 1]T= O′TL [Lpγi,j , 1]T , with O′TL = O′TR

RTL.
O′TR is constructed from the odometry measurement of the
robot corresponding to the rotation angle, as {O′} is trans-
lated to the robots frame (Fig. 3). Moreover, the direction
of each vector O′pγij w.r.t. the z axis of {O′} , ψγij (k), is
obtained by using the trigonometric functions:

ψγij (k) = tan−1
(
O′pγi,j y,

O′pγi,jx

)
. (2)

At each instant k, direction angles of the i-th cluster are
stored in the corresponding vector ψψψγi(k). To calculate the
cluster’s mean µγi(k) and standard deviation σγi(k), the
following equations are used:

µγi(k) =
1

ργi

ργi∑
j=1

ψγi,j (k),

σγi(k) =

 1

ργi

ργi∑
j=1

[
ψγi,j (k)− µγi(k)

] 1
2

.

(3)

To account for the possible changes along time in the
points detected for the cluster γγγi, the average value of the
standard deviation over the last N samples is computed:

σ̄γi(k) =
1

N

k∑
i=k−N+1

σγi . (4)

The likelihood that the user target g belongs to a particular
cluster γγγi is given by [18]:

L(g|γγγi)(k) =
1√

2π σ̄γi(k)
e

−1

2 σ̄2
γi

(k)
δ2
γi

(k)
. (5)

δγi(k) is the average error between the robot’s heading angle
θ and the mean of the cluster points directions µγi over the
last N samples:

δγi(k) =

(
1

N

k∑
i=k−N+1

[θ(k)− µγi(k)]
2

) 1
2

(6)

If the maximum likelihood value among all clusters
L(g|γγγi)(k) is greater that a threshold Ltsh, the cluster γγγi
is selected as the desired goal of the user. This target is
estimated only based on the robot’s heading angle, which
is governed by the angular twist velocity. To determine the
user’s intention to actually go towards the target, the average
linear velocity over the last N samples is calculated:

v̄(k) =
1

N

k∑
i=k−N+1

v(k), (7)

If v̄(k) is greater than a threshold vtsh, the estimated target
is activated and the user can release the control-pad device.



C. Autonomous mode

Once the autonomous block (Fig. 2) is activated, the robot
navigates autonomously towards the estimated target pose
pg = [xg, yg, θg]

T . To do so, we use the algorithm presented
in [19], [20] which employs the timed-elastic-bands (TEB)
concept to have an efficient online path and motion plan-
ning. In their optimization problem formulation, transition
time, path length, and control efforts are considered as the
minimizing objectives, and the clearance from the obstacles,
which are set of points, circles, lines, and polygons, is
the constraint of the optimization problem. To create the
set of continuous points out of the available obstacles, the
algorithm uses the laser scan data to calculate the Euclidean
distance between the robot and each obstacle, and in turn,
the controller generates the deviating control efforts to bypass
the obstacle in an optimized manner.

Therefore, the navigation stack takes in the information
from the robot’s odometry sensors, laser sensor (to build the
environment map and avoid the obstacles), and the goal pg .
As an output, it gives the safe and optimized twist commands
which are then sent to the mobile platform [va, ωa]. During
the navigation task, the obstacle detection algorithm [20]
enables the robot to avoid static and dynamic obstacles. If
an obstacle is not detected, the human-in-control approach
of our framework allows the user to come back to the
teleoperation mode controlling the motion of the robot.

III. EXPERIMENTS

Several experiments are performed to validate the per-
formance and intuitiveness-of-use of the proposed shared-
control framework focusing on the remote navigation control
of the mobile robots. In the first step, a complex virtual en-
vironment envisaging multiple goals, changes between them,
and unexpected disturbances are tested. In this scenario, we
compare our method with a full teleoperation one to examine
the advantages of the shared-control approach. Second, we
develop a set of real-world experiments to validate the
introduced framework in the presence of disturbances and
sensor failures. In all the experiments, the goals are defined
as the position of the target face nearer to the user with 0
deg orientation.

For the real experiments, we use the mobile manipulator
MOCA [1], which is an integration of a SUMMIT-XL
STEEL mobile base, a Franka Emika manipulator, and the
under-actuated Pisa/IIT soft hand as end-effector [21]. On
the other hand, a virtual model of SUMMIT-XL STEEL
mobile base1 is considered in the simulation experiments.
To control the robot in the teleoperation mode a Sony
PlayStation4 dual-shock control-pad device is used in both
virtual and real experiments. Moreover, the controller (Fig.
2) is implemented in C++ using the ROS framework.

In the following, both experimental sets are described and
then the results are given. A discussion is added to evaluate
the performance of the experiments.

1www.github.com/RobotnikAutomation/summit xl sim

Fig. 4: The simulation environment in Gazebo. The user controls the virtual
model of the SUMMIT-XL STEEL mobile robot towards his/her desired
goals. Six target goals (boxes) are considered in this environment: b1 =
[5,−2] m, b2 = [9,−5] m, b3 = [6, 5] m, b4 = [3, 8] m, b5 = [9, 9] m,
and b6 = [2,−8] m.

.

A. Multi-target experiments in the virtual environment

The virtual environment is developed within the Gazebo
software, where a virtual model of the SUMMIT-XL STEEL
platform is utilized to simulate the mobile robot. Fig. 4
displays a screenshot of such environment. The area con-
sidered is 10 × 10 m and six different boxes of size 1 ×
1 × 1 m are placed as possible targets. This simulates a
typical industrial set-up, where the possible target locations
are quite structured. Nonetheless, obstacles and unexpected
disturbances are likely to happen, specially if humans are
present in the working environment.

The different targets are divided into two main groups
(left and right targets in Fig. 4) to test two different kind
of disturbances: on the left side, fixed obstacles, and on
the right, dynamic (unexpected) obstacles. In the first case,
obstacle avoidance is performed in an autonomous way. We
forecast that the proposed multi-target estimation method
will have a higher performance than the full teleoperation
one. In the second case, we aim to additionally prove the
usefulness of the shared-control with the human-in-control
approach, as the autonomous control is not able to react fast
enough to the disturbance and teleoperation (human decision
making) is needed.

12 subjects participated in the virtual experiments and
performed 4 different trials: reaching 3 left-side targets
with full teleoperation (LT ) and shared-control (LS) with
fixed obstacles, and reaching 3 right-side targets with full
teleoperation (RT ) and shared-control (RS) with unexpected
obstacles. Each of the 4 trials is executed once by each
subject. To render the results as less biased as possible,
the order between the full teleoperation and shared-control
trials is randomized, also starting arbitrarily from the left
or right targets. Nonetheless, we decided not to alternate
between teleoperation and shared-control methods for the
same subject. This decision is made to reduce the adaptation
needed between both methods and to simplify the subjective
questionnaires (see Section III-C). For each trial, the operator
is commanded to reach a particular sequence of goals whose
order is determined randomly. The same order of targets
is used for the teleoperated and the shared-control cases to
allow a better comparison of execution times and errors. The



TABLE I: Age, sex, trials and target order bi for the left L and right R
targets for each subject Si.

Subject Age Sex Trials L targets R targets
S1 36 F LT -RT–LS-RS b3-b4-b5 b1-b2-b6
S2 37 M RT -LT–LS-RS b4-b3-b5 b2-b6-b1
S3 26 M LS-RS–RT -LT b4-b3-b5 b6-b2-b1
S4 56 M RS-LS–RT -LT b5-b4-b3 b1-b2-b6
S5 27 M LT -RT–LS-RS b4-b3-b5 b1-b6-b2
S6 25 F RT -LT–LS-RS b4-b5-b3 b2-b6-b1
S7 25 M LS-RS–RT -LT b3-b4-b5 b2-b6-b1
S8 26 F RS-LS–RT -LT b5-b3-b4 b6-b1-b2
S9 31 F LT -RT–LS-RS b5-b4-b3 b1-b2-b6
S10 30 M RS-LS–LT -RT b4-b3-b5 b1-b2-b6
S11 30 M LS-RS–LT -RT b5-b4-b3 b2-b1-b6
S12 34 M RT -LT–RS-LS b4-b3-b5 b1-b6-b2

obstacles are represented by a sphere of 1 m diameter placed
randomly between targets. The same position for the obstacle
is kept for the teleoperated and the shared-control trials. For
the right-side targets, as obstacles must appear dynamically,
the position in the first mode is stored to later release it
again in the same position. The characteristics of the subjects
performing the experiments and the randomized variables are
presented in Table I. Subjects are allowed to get used to the
environment and the controllers in the preferred mode for
3 minutes before the start of the experiments. 7 of the 12
subjects declared themselves as ''experts'' whereas 5 subjects
had not previous or very little experience with control-pad
devices.

For these trials, the control parameters are selected
as follows: vmax = 0.35m/s, ωmax = 0.30 rad/s,
[rmin, rmax] = [0.5m, 8.0m], [φmin, φmax] = [−π, π],
vtsh = 0.2m/s, Ltsh = 1.5, rtsh = 1.0, and N = 25. The
maximum velocities are set to allow the subjects to react
to possible obstacles while being fast enough not to render
the experiments tedious. The threshold values are chosen
empirically based on the previous experiments and analysis
of the processed data.

B. Real-world implementation

Two sets of experiments are carried out in a laboratory
setting. These aim to prove the validity of the approach in
a real-world scenario where inaccuracies and sensors’ faults
are more frequent. The experimental set-up is shown in Fig.
5. The MOCA mobile manipulator starts from the origin
within an area of 10 m length and 6 m width. Several objects
are placed in the environment which can be considered as
the target goals. When the experiment starts, the laser sensor
scans the environment constantly. The initial laser scan of the
environment is displayed in Fig. 6 which keeps generating
a 2D point cloud of the environment until the task is done.
The locations of the targets are estimated by means of the
constant update of these detected points (Section II).

For these set of experiments, the user is instructed to go
first to the nearer right target and then to the left one (see Fig.
5). by using the control-pad device while the shared-control
framework is activated. Once the target is estimated, the user
is informed to release the control-pad device after which the
robot goes to the target autonomously. For the rest of the
navigation (from right target to left one), 4 different scenarios

left 

target
right 

target

Fig. 5: The laboratory experimental setting considered for the real-world
implementation. The MOCA mobile manipulator starts from the displayed
position in all trials. Several objects are placed in the environment which
can be considered as the target goals.

Fig. 6: The initial laser sensor scan result creating the 2D point cloud of
the environment. The locations of the targets are estimated by means of the
constant update of these detected points.

are considered. In the first two scenarios (Set 1), a laser-
detectable object is considered which is suddenly pushed into
the robot’s path. This is done by placing a box not high
enough for the laser to detect it. In the other two scenarios, a
non-detectable object is employed (Set 2) which is in a fixed
position. Each set starts with the human-in-control obstacle
avoidance in which the user reacts to the sudden obstacle
(Set 1) or the detection failure (Set 2). These trials are later
repeated allowing the controller to perform the autonomous
obstacle-avoidance.

For these experiments, the control parameters are set as:
vmax = 0.25m/s, ωmax = 0.20 rad/s, [rmin, rmax] =
[0.5m, 8.0m], [φmin, φmax] = [−π, π], vtsh = 0.15m/s,
Ltsh = 1.5, rtsh = 1.0, and N = 25. Here, for safety rea-
sons, lower values for velocities are chosen, and accordingly,
the velocity threshold vtsh is decreased to 0.15.

C. Experimental results

In this section, the results of the virtual and real-world
experiments are presented.



TABLE II: the mean (µ) and standard deviation (σ) of the task execution
time, teleoperation mode percentage, and the target pose error in the
simulation experiments.

LT LS RT LS
Task µ 42.12 37.45 41.09 34.80

execution time [s] σ 15.64 26.11 11.17 15.27
Time in µ 100 43.52 100 41.41

teleoperation mode (%) σ 0 20.05 0 19.94

Pose error

x [m] µ 0.046 0.14 0.075 0.12
σ 0.15 0.045 0.17 0.019

y [m] µ 0.073 0.13 0.056 0.068
σ 0.051 0.16 0.039 0.041

θ [deg] µ 2.18 3.062 1.87 3.31
σ 2.96 2.60 1.92 2.27

(a) (b) (c)

Fig. 7: Increment in the execution time when comparing full teleoperation
and shared-control approaches. ∆T (%) represents the execution time
difference between two control modes, being the shared-control ∆T (%)
faster than the pure teleoperation mode. The Left and Right scenarios are
separated. As the goal numbers are randomized during each mode, each Gi

indicate the goal’s reaching order, e.g. G1 is the first goal reached which
can be any of the bi. (a) Overall results. (b) Results for ''experienced'' users.
(c) Results for ''naive'' users.

First, a quantitative analysis of the virtual experiments is
performed. Three variables are evaluated: pose error between
the desired final pose (pg) and the reached one by the
platform, time needed to execute the task (task execution
time), and percentage of time that users where employing the
teleoperation (for the shared-control trials). These variables
are compared between the pure teleoperated mode and the
proposed shared-control framework. The mean (µ) and stan-
dard deviation (σ) of these variables are displayed in Table II.
Additionally, Fig. 7 shows the execution time comparison in
the order of the goals to be reached (which changes randomly
for each subject). This figure also shows the differences
between the ''expert'' and ''naive'' users.

Fig. 8 shows an example case of the evolution of the
control signals over time for one possible virtual task (target
sequence: b4 − b3 − b5). As it can be observed, the user
starts the task in the teleoperation mode at k ≈ 200
(mode = 1). Consequently, the likelihood value of each
target is constantly being updated while navigating the robot
in the environment (L(g|γi), i = 3, 4, 5). When the user
tries to drive the robot towards the first goal (b4), the
value of L(g|γ3) (black line) increases due to the robot’s
heading angle getting closer to b3. However, the robot’s linear
velocity (v) is not greater than the specified threshold vtsh,
so the estimation is not activated for b3 and the algorithm
continues to estimate the goals. At k ≈ 650, the L(g|γ4) (red
line) and v are greater than Ltsh and vtsh, respectively. Thus,
the estimation is activated and the user, who is informed by
the voice feedback, releases the control-pad device (mode =
0). The robot then goes autonomously towards the target.
When the robot reaches its goal (k ≈ 1700), the user moves

Fig. 8: The evolution of the control variables in time (the logger sample-rate
is 50 Hz). There are two threshold values, one for likelihood Ltsh and the
other for the platform’s linear velocity vtsh. If these thresholds are satisfied
at a specific moment, the user is informed by voice feedback and he/she
can release the control-pad device. The mode variable is 0 when the user
releases the device.

the robot backwards between 1800 < k < 1900 (negative
values in v) to select another goal, and repeats this cycle
to end the task. It should be noted that in each phase of
the task, an obstacle is placed on the way of robot’s path.
This leads to the current active goal’s likelihood becoming
approximately 0. (e.g., L(g|γ4) ≈ 0 in 950 < k < 1400)

Finally, a subjective questionnaire is carried out to eval-
uate the perceived effort, usefulness, and demand of both
methods. This questionnaire includes the Official NASA
Task Load Index (TLX) [22] survey, plus an additional one-
question test. The latter was chosen to be as simple as
possible, giving an overview of the methods. The question
is: Overall, this task was?, and users can rate it from 1-
Very difficult to 7- Very easy. The whole survey is filled by
the subjects twice: once after the full teleoperation trials and
once after the shared-control ones. The results of NASA TLX
are presented in Fig. 9. In addition, the results of the one-
question test, which is normalized to 100%, give a 67.86% of
easiness to the full teleoperation, and 89.28% to the shared-
control mode.

Regarding the real experiments, Fig. 10 shows the position
of the robot over time while executing the 4 described
scenarios. For both kind of obstacles, when the user takes
control the robot can reach the goal. When the autonomous
controller is used, even if the obstacle is detected and the
avoidance algorithm re-plans the trajectory, the platform still
hits the obstacle from one corner (Fig. 10b). If the obstacle
is not detected (Fig. 10d), the algorithm does not re-plan
the trajectory. In this case, since the obstacle is a box, it is
pushed along the path until the emergency button is pressed.

D. Discussion

As it may be seen in Table II, the overall time to execute
the trial is lower for the shared-control than for the full
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Fig. 10: Traces of the MOCA’s odometry while accomplishing the tasks in
the real world experiment. Gray rectangles show the target and the green ?
shows the safe position of the robot before the estimated pose. We used two
sets of experiments; in the first one, a detectable obstacle (black rectangle)
is thrown to the path of the robot while in the second one, a non-detectable
obstacle (white rectangle) is set in the area ahead of the robot. In both sets,
the user was first asked to avoid the obstacle himself/herself (left figures).
After that, we repeated the similar scenarios while this time, the obstacle
avoidance algorithm takes care of avoiding the obstacle.

teleoperation scenarios, which is related to the use of the
autonomous (and therefore faster) mode. For the left trials,
shared-control is 15.51% faster than teleoperation, while for
the right ones is 16.56% faster. However, as it can be seen
in Fig. 7, for the case of unexpected obstacles (right trials),
when the users have to teleoperate around it, they seem
to learn to take advantage of the shared-control over time,
being the difference bigger in the last goal. This learning
is evident in the ''naive'' users, but for the ''expert'' users
the trend is the opposite. This means that while the ''naive''
users clearly learn to take advantage of the autonomous mode
(from a negative difference to a bigger improvement) over
time, the ''expert'' users produce more random patterns. With

the fixed obstacles (left trials), while all the users are able to
execute the task faster with the shared-control, ''naive'' ones
tend to rely less on the autonomous mode over time, which
could be related with them getting used to the teleoperation
device. However, the final pose accuracy (Table II) is lower
in shared-control. This is due to the fact that the desired
goal is estimated from the detected points of the cluster, and
therefore, subject to errors, while for the teleoperation mode
the subjects used the visual feedback that provided them with
a more accurate position of the target. Nonetheless, the errors
in position are always kept below than 10 cm and 3.5 deg.

In addition, the amount of time in which the users drive
the platform through the control-pad during the proposed
method (LS, RS - Table II) accounts for less than 50% of
the total execution time. This means that even if teleoperation
mode is needed to detect the target, the user still favored the
autonomous mode when possible.

Results from the subjective questionnaires show an outper-
forming shared-control. As expected from the quantitative
results, the perceived temporal demand is higher in the
full teleoperated than in shared-control trials (see Fig. 9).
Moreover, overall, the subjects perceive less physical and
psychological demand with our proposed method. Users also
report better performance during the shared-control trials
(note that a higher index means more perceived failure),
while feeling less effort and frustration. The one-question test
confirmed these results as users give a higher mark (meaning
easier to execute) to our method than to the full teleoperated
one. It must be pointed out that these experiments took less
than 30 mins for each subject, so bigger differences could be
expected for longer times, i.e., in normal working conditions.
The high standard deviation present all along the results is
due to the high randomization of the experiments and the
variability of the users’ profiles.

Finally, real-world experiments validate the functioning of
the proposed framework. Furthermore, they show the need
for the human-in-control approach during the shared-control,
as when obstacles are unexpected or the sensors fail to detect
them, the robot collides with the obstacles if the human does
not take charge of the motion of the platform.

IV. CONCLUSION

In this work, we introduced a shared-control framework
for the locomotion control of mobile manipulators in the
presence of unexpected disturbances. The developed frame-
work proved to successfully identify the target goals by
using the robot’s odometry and laser data. Moreover, the
users could take over the control of the robot at any time,
e.g., when an obstacle was observed through the monitor
which may have been neglected by the autonomous obstacle
detection system due to the sensor failures or the rapid
change of environment’s features. After releasing the control-
pad device, the controller smoothly switched back to the au-
tonomous mode and navigated the mobile platform towards
the previously identified goal. Similarly, it was proven that
the user could dynamically change the goal by executing a
continuous path of several targets.



Overall, the experiments revealed the time-efficiency and
ease-of-use of the proposed interface, with a low perceived
cognitive effort and a high-performance estimation.

The proposed framework can be easily extended to cope
with manipulation tasks (employing 3D point cloud data), as
the targets are continuously updated and can be used to com-
mand the loco-manipulation unit from the end-effector in-
stead of the base. Therefore, future works will concentrate on
the manipulation aspects towards the development of whole-
body shared-control of mobile manipulators. Furthermore,
enhanced activation techniques such as image augmentation
will be studied to highlight the current estimated target in
highly cluttered environments and to notify the user about
detected obstacles.

REFERENCES

[1] Y. Wu, P. Balatti, M. Lorenzini, F. Zhao, W. Kim, and A. Ajoudani,
“A teleoperation interface for loco-manipulation control of mobile col-
laborative robotic assistant,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3593–3600, Oct 2019.
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[19] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online
trajectory planning and optimization in distinctive topologies,”
Robotics and Autonomous Systems, vol. 88, pp. 142 – 153, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0921889016300495
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