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Different types of adaptive tuned mass dampers have been recently proposed
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in the literature. One of the most promising approaches to make tuned mass
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dampers adaptive is the use of shape memory alloys. In this class of tuned mass
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dampers, different layouts have been proposed. This paper aims at comparing
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the two main layouts (wire-based and beam-based) in terms of adaptation ca-
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pability, exerted force and electrical power consumption. To this purpose, the
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models of the two layouts are developed. These models minimise the number
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of required inputs, which basically are only related to device geometry, shape
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memory alloy characteristics, and vibration input. After an experimental val-
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idation, the models are employed for the mentioned comparisons between the
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two considered layouts.
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1. Introduction

The use of tuned mass dampers (TMDs) is widely accepted for attenuating
vibrations of a primary structure (PS). The basic principle that allows for a
proper functioning of the TMD is that its eigenfrequency must be tuned close
to the eigenfrequency of the PS to be attenuated, e.g., [1, 2].

The main issue related to these devices is that, when a mistuning between
the TMD and the PS eigenfrequencies occurs (e.g., due to thermal shifts causing
changes of the eigenfrequencies), the effectiveness of the control action worsens.
To solve such a problem, adaptive tuned mass dampers (ATMDs) can be built.
These devices are able to change their dynamic features and, particularly, they
can change their eigenfrequency (e.g., [3]) to follow the change of the PS eigen-
frequency. Different methods and physical principles can be employed to build
ATMDs. As examples, the use of servo-actuators (e.g., [4]), piezoelectric (e.g.,
[5-7]) and magnetorheological (e.g., [8, 9]) elements, tensioning systems [10]
and pneumatic springs (e.g., [11]) can be mentioned. A very promising ap-
proach for attenuating vibrations, and more specifically for developing ATMDs,
is the use of shape memory alloys (SMAs) (e.g., [12-14]), whose features are
suitable for easily changing the TMD eigenfrequency. This change can be ob-
tained exploiting different properties of the SMAs and this allows for different
layouts of the ATMD. Nevertheless, in all the possible layouts, the change of
the dynamic features of the ATMD is obtained by heating/cooling the SMA
element by increasing/decreasing the current flowing through the SMA element
itself.

The two main layouts discussed in the literature are SMA cantilever beams
[15-17] and SMA wires [18-20], even if other layouts are possible (e.g., [21-
23]). Even if both cantilever beams and wires showed to provide good vibration
attenuation capabilities, no detailed comparisons are available between the two
of them. This paper aims at filling this gap, comparing the two layouts under
different points of views. Particularly, the following aspects will be addressed

in this work:
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e adaptation capability which indicates how much the ATMD eigenfrequency
can be changed. It is noticed that, for damping adaptation, both the
ATMD layouts can be easily coupled to similar additional devices such as,

e.g., eddy current devices [18];

o force exerted by the ATMD on the PS, which is related to the attenuation

performance that can be achieved;

e power consumption related to the need of having electrical current flowing

through the SMA elements.

The mentioned comparisons are made possible by developing detailed models
of the two types of ATMDs. Compared to models already available in the liter-
ature, those proposed here minimise the number of inputs, which will result in
the need of knowing only geometrical and material characteristics, as well as the
vibration input. Particularly, it will be shown how to estimate, through models,
quantities involved in the thermal exchange with the environment, which are
usually characterised by significant uncertainty when directly estimated exper-
imentally. The developed global models will allow for directly linking the input
quantity (i.e., electrical current flowing through the SMA element, as explained
further in the manuscript) to the dynamic behaviour of the ATMD.

The structure of the paper is as follows: Section 2 recalls the main features
of the SMA elements and presents the two ATMD layouts considered here,
Section 3 presents the models of the two ATMD types and Section 4 discusses
the experimental validation of the proposed models. Then, Section 5 addresses

the comparisons between the two types of ATMDs using these models.

2. SMA features and ATMD layouts

This section aims at explaining which SMA features are exploited to de-
velop the two different ATMD layouts. Figure 1 presents the typical stress-
temperature plot of SMA materials [24], where the three possible phases of
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Figure 1: Principles of SMA phase transformations used in this paper.

the material are evidenced: austenite (AU), twinned martensite (TM) and de-
twinned martensite (DM). The symbols in the figure represent the following
quantities: og and o are the stress values at which the transformation from
TM to DM starts and ends, respectively, at the environmental temperature Ty,
while Ag and A; are the temperature values at which the transformation from
TM to AU starts and ends, respectively, at null stress. Mg and M: have the
same meaning of Ag and Ay, but for the transformation from AU to TM. Finally,
C, and Cy, are the angular coefficients of the transformation lines and H"" is
the strain due to the change of shape during the phase transition between TM
and DM (see the vertical red dashed arrow in Figure 1), named the current
maximum transformation strain. More details about this plot can be found in,
e.g., [18, 19, 24].

It is possible to pass from TM and AU and vice versa by changing the
temperature at null stress (see the thick red solid double arrow in Figure 1).
Since the SMA material has the same shape in AU and TM, the main change
in the SMA element during the mentioned transformation is related to the
Young’s modulus. This principle is used to build SMA cantilever beams, whose

eigenfrequency is changed by changing the temperature of the beam. The change
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Figure 2: Layouts of ATMDs: single cantilever beam (a), double cantilever beam (b) and wire

with central mass (c).

of temperature is achieved by changing the value of the electrical current flowing
through the beam. A single cantilever beam exerts a force and a torque on the
PS (see Figure 2a). Therefore, in this paper, a configuration with a double
cantilever beam is considered in order to have only a linear force, avoiding the
torque (see Figure 2b).

Another way to have a phase transformation in the SMA material is to
apply a stress over oy and then change temperature to pass from DM to AU
and vice versa, as evidenced by the thin red solid double arrow in Figure 1. This
double arrow does not mean that the temperature-stress states experienced by
the SMA element are the same in both the directions of transformation, but
only that, changing temperature, also a change of stress occurs. In this case,
the eigenfrequency change is mainly related to the change of shape (between AU
and DM), even if also a change of the material parameters occurs [18]. Relying
on this principle, it possible to build an ATMD by means of an oscillating SMA
wire with a central mass. The SMA wire is pre-stressed over o¢ by employing
elastic elements which also connect the SMA wire to the PS (see Figure 2c).
Also in this case, the change of temperature is achieved by changing the value

of the electrical current that is made flow through the SMA wire.
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Finally, it is noticed that the treatment used here always considers small am-
plitude vibrations (e.g., those obtained when random excitation is considered)
and, thus, stress-induced phase transformations (e.g., [25]) are neglected here.
Nevertheless, the models described in this paper can be considered as a starting
point for more complicated ones accounting also for the case of large amplitude

vibrations.

3. Analytical models of the ATMDs

The model of the ATMD must describe the relationship between the input
parameter, which is the current made flow through the SMA component, and the
dynamics of the ATMD, with special focus on the value of its first eigenfrequency
and the frequency response function (FRF) between the imposed motion y(t)
(see Figure 2, t is time) and the force exerted on the PS by the ATMD.

To obtain this global model, different aspects must be addressed, from the
thermal effects to the dynamics of the vibrating structure. For this reason, the
global model is split as the sequence of three different submodels: a thermal
model, a material model and a dynamic model. Subsections 3.1 to 3.3 will treat
in detail the three submodels, while subsection 3.4 will explain how to link them
to obtain the final global model. In each of these subsections, both the types
of ATMDs discussed previously will be considered. It is noticed that parts
of the models discussed here were already developed in previous works (e.g.,
[18, 24]). Nevertheless, some parts of the models presented in the following
subsections either are new or have been further developed in order to minimise
the number of inputs required to estimate the ATMD dynamics. As an example,
the convective coefficient (see Section 3.1) is now directly derived through the
model by only measuring y(¢), avoiding to experimentally estimate quantities

whose measurements are affected by significant uncertainty.

3.1. Thermal model

This submodel aims at describing how to link the input current ¢ flowing

through the SMA element to the achieved temperature. Considering at first to
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have a cylindrical shape for the SMA element, the power balance in steady state

can be written as:

At h(T — Tp) = Ri? (1)

where T, R and Agy are the temperature, the resistance and the outer area
of the SMA element, respectively. Finally, h is the convective heat transfer
cocfficient. It is noticed that the left-hand term of Eq. (1) is related to the
energy output, while the right-hand term to the energy input (i.e., Joule’s effect).
Furthermore, being D the external diameter of the SMA element and Ly its
global length (i.e., Lot = 2L for the beam-based ATMD, see Fig. 2b, and
Lot = L for the wire-based ATMD, see Fig. 2c, considering the wires/beams
electrically connected in series), Agxt can be expressed as mD Liot. Obviously, in
case the SMA element is a hollow cylinder, A.x would be equal to m(D +d) Lot
(being d the internal diameter). Nevertheless, since D is higher than d and
the internal outer surface is expected to have less heat exchange with the air
compared to the outer external surface of the cylinder (due to, e.g., less relevant
air flux inside than outside), here Aqyy will be always considered equal to wD Lyt
even in case of hollow cylinder.

To calculate T' by means of Eq. (1) once i has been fixed, h and R must be

determined. Concerning R, it can be calculated as:

R = pLio /A (2)

where A is the cross-section of the SMA element and p is its resistivity. There-
fore, to obtain the value of R, the value of p must be estimated. The trend
of the resistivity depends on the entire history of the specific SMA element,
from the processing technology to the heat treatments. Therefore, to simplify
the model in order to make it easy enough to be applied in practice, a linear
variation of p between austenite and martensite is used here. This assumption
is reasonable for the sake of the paper aim and it is often employed also for

other material parameters (e.g., for the Young’s modulus [24], see also Section
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3.2) for mono-dimensional elements like beams and wires. Thus, the expression

of p becomes:

p = pa+E&pm — pa) 3)

where the subscripts ’a’ and 'm’ indicate austenite and martensite, respectively.
Moreover, ¢ is the martensite volume fraction (i.e., {=0 when the material is
fully austenitic, and £=1 when it is fully martensitic).

Therefore, to estimate the value of p while heating/cooling the SMA element,
it is only necessary to know p, and py,, whose values can be estimated through
experiments, and £ which can be deduced from the material model (see Section
3.2).

The other parameter that must be estimated in order to find T using Eq. (1)
is h. To derive the h value, the following procedure is employed. Considering
the SMA eclement as a cylinder (see previously) vibrating in air, the Nusselt
number N, can be defined as:

hD

where ¥, is the thermal conductivity of air. Therefore, h can be estimated by
means of Eq. (4) and knowing in advance the value of the Nusselt number.
Considering a forced external cross flow over a cylinder, N, can be estimated

as [26]:

0.62R/? p/3)
[+ (%5 @/3]074)

Ny =03+ [1 4 (R.,/282000)(%/®))(4/5) (5)

where R, and P, are the Reynolds and Prandtl numbers, respectively. Their

expressions are:

R, — AU D (6)
ba
naba
b = 7
= (7)
8
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where r4 is the density of the air, by is its dynamic viscosity and 7 is its specific
heat. Finally, v, is an index expressing the velocity of the cylinder (in vertical
direction that is the velocity related to vibration, see Fig. 2). Equations (4) to
(7) allow calculating h once v, is known. One must consider that the velocity
of the beam/wire is a function of time ¢ and space (for beams and wires, it
means that the velocity is a function of the coordinates x, z1 and x5 along the
clements, refer to Fig. 2). Thus, a synthetic expression must be found for wv..

The velocity v of each point of the beam/wire can be expressed as:

" O[F {Gwy (+.i2,T)}8y(t)
v, 7) = 200 A G R DIV (8)

where w(z,t,T) is the vertical displacement of the beam/wire as function of x
(see Figs. 2b and c), ¢, and T, ® indicates the convolution operation, F~1{-} is
the inverse Fourier transform of a complex quantity, ¥ is the displacement of the

PS (see Fig. 2), Q is the angular frequency, j is the imaginary unit and Gwy is

the following FRF":

W (z,jQ.T)
v v

where Y and W are the Fourier transform of y and w, respectively. The way to

G\)Vy(il?,jQ, T) =

derive Gwy (z,j2,T) is discussed in Section 3.3. At first, the average-rectified
value of v, named v,, is calculated on the considered time interval 0-t¢. For the

case of the two beams, for each of them v, is:

1 [
o (x,T) = tf/g |o(a,t,T)| dt (10)

For the case of the wire, v, is:

1 [ 1 [
vr(ml,T):tf/O lv(z1,t,T)| dt, vp(x9,T) = tf/o |v(xe,t,T)| dt  (11)

Then, v, is obtained averaging v, over the length of the SMA element. For
the double beam and thanks to the system symmetry (i.e., assuming the same

motion for the two beams, see Section 3.3.1), it is:
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vo(T) = %/0 v (z, T) dz (12)

For the case of the wire, it is:

L2 L/2
/ v (1, T) day —|—/ vp(22,T) dag
0 0

It is noticed that y(t) must be estimated/measured to derive v, (see Eq.

(8))-

ve(T) = (13)

==

3.2. Model of the material

The material model is here based on the Experimentally-Based 1-D Material

Model [24], where the following assumptions are considered:

e the Young’s modulus E of the SMA material is linearly dependent on &:

E=FE,+&FEn—E,) (14)
e the thermal expansion coefficient « is constant

e the 1-D transformation strain ' is linearly dependent on ¢:

el =EH" (15)

Tt is noticed that Eq. (15) is related to cases in which the SMA element is
stressed and the phase transformation between TM and DM is triggered.
When this does not occur and only transformations between TM and AU

and vice versa are considered, €t is null.

e the starting and ending transformation temperatures (i.e., M7, M{, A7,

A7) are linearly dependent on the stress o into the SMA element (see Fig.

g g o
M? = Mg+ ——, M{ = My+——, A% = A+ —, A7 = A+ — (16
10
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e the value of ¢ during transformation from martensite to AU (i.e., either
increase of temperature T or decrease of stress o, see Fig. 1) is described

as:

1, T<A®

ff_‘;{s, AT <T < A? (17)

0, T'> A7
while during transformation from AU to martensite (i.e., either decrease

of temperature T or increase of stress o) it is assumed as:

0, T>M?

MI-T o o
e Mg < T < M (18)

1, T <My
It is noticed that Eqs. (17) and (18) are valid for transformations starting
from homogeneous material (i.e., either £&=1 or £=0). When transfor-
mations starting from a non-homogeneous material (i.e., 0< £ <1) are
considered, these equations can be slightly complicated in order to ad-
dress also these additional cases, making the equations general. These
general expressions can be found in the literature (see, e.g., [18, 19] for
more details), but they are neglected here for the sake of conciseness and

because they are not the focus of this paper.

When an ATMD based on an SMA beam is considered, o is assumed to be
null, because no external stress is applied and that caused by vibrations is as-
sumed to be small enough for being neglected, and ' is null as well. Therefore,
using the previous equations, one can estimate the value of E once the temper-
ature T is known thanks to the thermal model of Section 3.1. Moreover, the
influence of T on the length L is assumed negligible here (i.e., L is constant).

When an ATMD based on an SMA wire is considered, the analytical treat-

ment becomes more complicated because o is not null due to the elastic elements

11
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(see Fig. 2c¢). In this case, the global strain e of the wire is:

AL

t e th
E=¢ +e +e =
Lunst

(19)

where £° and '" are the elastic strain and the thermal strain (i.e., due to thermal
expansion), respectively. Finally, AL indicates a change of L and Ly is the
length of the non-strained SMA wire.

When the value of T passes from Tj,; to Tqy, the following equation can be
written (noticing that an increase of temperature generates a shortening of the
wire, which passes from DM to AU, and vice versa):

Liin/2—Lini /2 — —(Ftin—Fini) —
Lunst/2 K Luynst/2 (20)

(7 — 32) + [(Thn — Tini)] + (§in — &ini) HO

where K indicates the elastic constant of each spring in Fig. 2c, while F is the

Ae = €fin — €ini =

axial force in the wire (F is positive when tensioning the wire, see also [18]).
All the variables at the new state ”fin” in Eq. (20) are dependent on Ty
and og, through the equations presented in this subsection. Therefore, knowing
the previous situation of the ATMD at state ”ini”, and estimating Tg, with the
thermal model of Section 3.1 (see Section 3.4.2 for more details), it is possible
to calculate ogy. Then, also Fqy (i.e., Fan = 0n/A) and Lg, (see Eq. (20)) can

be calculated.

8.8. Dynamic model

This section presents the dynamic model for the beam (Section 3.3.1) and

the wire (Section 3.3.2).

3.8.1. Vibrating beam
At first, a single cantilever beam is considered (see Fig. 2a) and then the
results are extended to the double cantilever beam (see Fig. 2b). The dynamic

model of the vibrating beam is developed under the following hypotheses:

12
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Figure 3: Forces and torques acting on the infinitesimal portion of beam (a) and wire (b).

e the beam is homogeneous, with constant bending stiffness E.J (where J
is the cross-section moment of inertia), cross-section A and mass per unit

length p (with p = 6, A, being 6, the mass density);

e the beam is slender (i.e., its length is much greater than the dimensions

of the cross-section);
e the sections perpendicular to the axis remain plane;

e even under dynamic conditions, the beam undergoes always to bending in

a plane of symmetry;

e the amplitude of vibration is small enough to assume non-linearity as

negligible;

e axial load is absent;

damping is neglected.
Under these hypotheses, the equation of motion of the beam is [27, 28]:

4
EJa w(z,t)

0%w(x,t)
Qb
ox*

+ Om prS

=0 (21)

13
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Equation (21), that results from the equilibria of force and momentum on an
infinitesimal beam element of length dz (see Fig. 3a for the convention of sign,
where Z and () are the internal actions), can be written as a function of the
relative displacement wye(x,t) = w(x,t) — y(¢) (thus, in a frame moving with

the PS):

0*Mwyel (0, 1) 0wy (z,1) d2y(t)
Ox* Ot? de?
It is noticed that the term in the right-hand side of Eq. (22), due to the inertia of

EJ + 0 A

=—0nA

(22)

the beam, is related to an external distributed force (constant along the beam)
acting on the beam. In order to derive the eigenfrequencies and mode shapes,
the free vibrations of the beam have to be studied and, thus, this forcing term
is neglected. The solution of this problem is provided in Appendix A and the
FRF between Y and W results equal to:

. W (2,jQ n Q2¢i(2)[0mA [ ¢pi(x)dz+Magi(L)
Gwy (z,jQ) = Y((jsz)) =143 771[13(—923-2j§,¢wr;,9+wf) ] (23)

where (; is the non-dimensional damping ratio associated to the i-th eigen-
frequency w; (proportional damping is added in the mathematical treatment in
Appendix A); moreover, ¢;(x) and m; are the i-th mode shape and modal mass,
respectivley. Finally, M, is the value of the additional mass at the beam tip (see
Fig. 2a) and n is the number of modes. Furthermore, the FRF between Y (j€2)
and the vertical force exerted on the PS S(j2) (S(j€?) is the Fourier transform
of the force s(t) exerted by the ATMD on the PS, see Appendix A) can also be

found and results equal to:

) — SGQ) 226, (0)[0mA [ ¢i(x)da+Madi(L)
Gsy (i) = Y(gﬂ) =—2EJ 22;1 mz[(fs'ﬂizjciw,-snwf) ] (24)
with
o/ (0) = £2: (25)
¢ dz3  lz=0
14
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It is noticed that Eq. (24) accounts for the presence of two SMA beams as in

Fig. 2b.

3.3.2. Vibrating wire
The dynamic model of the vibrating wire is developed under the following

hypotheses:

e the mass density 6, and the cross-section A of the strings are constant

along the length of the strings;
e the shear force and bending moment are neglected;

e the amplitude of vibration is small enough to assume non-linearity as

negligible;

e the axial force F into the wire is high compared to the static load of
the central mass, so that the wire configuration in equilibrium can be

approximated as rectilinear;

e the central mass is a concentrated mass;

damping is neglected.
Under these hypotheses, the equation of motion of the wire is [19, 27-29]:
Fazw(x, t) 0%w(x,t)

Ox? ot?

Equation (26), that results from the equilibrium of vertical force on an infinites-

=0, A (26)

imal element of length dz (see Fig. 3b for the convention of sign), can be written

as a function of the relative displacement wye (z,t) = w(z,t) — y(t) (thus, in a

frame moving with the PS):

O wyel (,t) 0 Adzy(t) O wyel(,t)
A ot?

Equation (27) is valid for both the wires, i.e. that between the left constraint

— 0,A (27)

and the central mass, and that between the central mass and the right constraint

15
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(see Fig. 2¢). The solution of the dynamic problem for each of the wires can be
found (e.g. [27, 28]) and it is provided in Appendix B.
The FRF between Y and W for the first wire is (introducing proportional

damping in the mathematical treatment, see Appendix B):

Gwy (z1,jQ) = %&i)ﬂ) =

n Vi(z1) [9mA(f0L/2 bi1(@)dzy+[7° ¢r;,,2(-”02)d«7‘/2)+Ma¢1:,1(L/z)] (28)
1+ Zz’:l 771i(—Q2+2jCiw1Q+w;2)
and for the second wire is:
Gwy (72,jQ) = 7W1%zd)ﬂ) =
n P6u(@2) [0 A dia (1) Aot [ b2 (2)d2)+ Madi2 (0)] (29)
1+ 273:1 m; (=2 42j¢iw; Q+w?)

The FRF between Y (j€2) and the vertical force exerted on the PS S(jf2)
(S(jQ) is the Fourier transform of s(t), see Appendix B) is

Gsy (j0) = S(GR)

Y ()

n , , GmA(fL/2 ¢i1(z1)de1+ L/2 ¢i2(x2)daa)+Maci 1(L/2)
FQO? Z¢=1 {[¢i,1(0) - ¢i,2(L/2)] [ : vm(—Q2i2j€lwiQ+w§) ]

(30)

with:
’ dgi1(z1) : dg; o (x2)
: = v/ R o(L/2) = ———=2 1
d)l,l(o) dxl ‘7:1=0/ ¢l,2( / ) dx2 22=L/2 (3 )

It is noticed that, for the first eigenmode, that is the interesting one in this case,

¢, 1(0)— ¢;72(L /2) reduces to 2@5;,1 (0) because of the symmetry of the mode and
the system.

3.4. Global model

The three submodels described so far are now assembled in order to derive a
general model which enables estimating the ATMD FRFs Gwy and Ggy once
i is set by the user. Subsections 3.4.1 and 3.4.2 describe the global model for

the case of the beam and the wire, respectively.

16
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Table 1: Input data for the global model.

Beam Wire

Msa Mf, ASa Af, Ci,aa Ci,mv Pa; Pm, Msa Mf, Asa Af, Cnu Ca,y chr7 K, Eini; ,I’inia
Ea; Em7 J? Ma, L, em, A7 D; d; Tinj, giniv Cz',av Ci.m? Pas Pm, Ea; Em7 J? Ma)
Aext» T07 ’(/JAa rA, bA7 na, y(t) Lunsta Hma A7 D7 Aext7 T07 lpA? TA, bA7 A, y(t)

3.4.1. Global model for the beam

The input parameters of the global model, which have to be either esti-
mated/known in advance or measured are gathered in Table 1. At first, Egs.
(17) and (18) are used to find the link between 7" and & for the two types of
transformation and the considered T values (when using these equations, L is
considered as constant and the stress into the beam as null; see Section 3.2).
Then, Egs. (3) and (14) are employed to estimate p and E, respectively, for
each considered T value and type of transformation. Then the FRFs of Eqgs.
(23) and (24) can be estimated. This procedure allows to find two FRFs for
each T value in each transformation. These FRFs are then used to estimate
h through Egs. (4) to (12). The knowledge of h then allows for finding the
relationship between i and T' by means of Eq. (1) for the two transformations.
The knowledge of these relationships enables estimating the beam temperature
and its FRFs when a given value of 7 is set by the user.

One further notation is worth being mentioned. In Egs. (23) and (24), (;
must be calculated for all the possible values of ¢ and T. This is a compli-
cated task and, according to previous considerations, in this work the following

approximation is adopted:
Ci = Ci,a + f(@z,m - gz,a) (32)

3.4.2. Global model for the wire
The input parameters of the global model, which have to be either esti-
mated /known in advance or measured are presented in Table 1. At first, Egs.

(17) and (18) are used in Eq. (20) to find the link between T" and ¢ for the two

17
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types of transformation and the considered T values. Once the link between T’
and o is known, also the links of 7" with £ (using again Egs. (17) and (18)), F'
and L can be derived. Moreover, the link between 7" and p, E and (; can be
found with Egs. (3), (14) and (32), respectively. Then the FRFs of Egs. (28),
(29) and (30) can be estimated. This procedure allows finding the FRFs for
each T value and each transformation. These FRF's are then used to estimate
h through Egs. (4) to (12). The knowledge of h then allows for finding the
relationship between i and T' by means of Eq. (1) for the two transformations.
The knowledge of these relationships enables estimating the wire temperature

and its FRFs when a given value of ¢ is set by the user.

4. Model validation by means of experiments

This section addresses the validation of the previous models by means of
experiments on tailored set-ups. Section 4.1 presents the tests for the beam-

based ATMD, while Section 4.2 those related to the wire-based ATMD.

4.1. Tests with a beam-based ATMD

Figure 4: Experimental set-ups: beam-based ATMD (a) and wire-based ATMD (b).

18
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Table 2: Identified/nominal parameter values for the SMA elements.

Beam Wire
A [°C) 55.0 68.6
A [°C] 65.0 78.9
M [°C] 40.0 55.2
M; [°C] 28.5 42.7
Ca [MPa/°C] - 9.90
Cn [MPa/°C] - 6.83
He [ - 4.39-1072
a[C] - 10-6
Ey [GPa) 32.3 32.1
E, [GPa] 52.7 39.5
pm [2m] 90-10~8%  110-10~8
pa [Qm] 100-1078  100-10~8
Cim [ 1.22:1072  0.60-102
Cra [ 0.90-1072  0.40-10~2
19
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Table 3: Nominal values of the imposed electrical current i during tests presented in Figs.
5 and 9 and consequent electrical power P values calculated as P = ¢V, where V is the

voltage provided by the power supply and measured across the electrical circuit made from

the electrical series of either the two beams or the two wires.

Beam Wire
Heating Cooling Heating Cooling
i[A] P[W] ¢[A] P[W] i[A] P[W] i[A] P [W]
0.00 000 750 12.00 0.00 0.00 1.85 795
1.00 0.10 7.00 1050 0.25 042 1.50  5.55
200 060 400 320 050 220 1.00 285
3.00 165 3.00 150 075 295 090 243
4.00  3.20 090 270
5.00  5.00 1.00  2.90
6.00 7.50 1.10  3.63
6.50  8.77 1.25  4.00
7.00  10.50 1.50  5.55
7.50  12.00 1.85  7.95
20
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Figure 5: Experimental amplitudes of FRFs Ggy while heating the beams (see Table 3) (a)

and comparison between experimental (exp) and theoretical (th) FRF amplitudes (b).

The set-up is made from two NiTiNOL beams, both characterised by a length
equal to 140 mm and a circular hollow cross-section with an outside diameter of
4 mm and a thickness of 0.5 mm. At the two ends, there are two masses (0.176
kg each) made from plastic. The two beams are mounted on an electro-dynamic
shaker which provides the input in the form of random signal between 4 and 100
Hz with a root mean square (RMS) value usually close to 5 m/s?. The h values
for both martensite and austenite were estimated as approximately equal to 15
W/(m?K) with the approach described in Section 3.1. An impedance head was
placed between the shaker and the clamping system, measuring the vibration

in input to the ATMD and the consequent force exerted by the beams on the
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Figure 6: Experimental amplitudes of FRFs Ggy while either heating or cooling the beams
(see Table 3).

shaker. The two beams were electrically connected in series to a power supply
which made electrical current flow in the circuit. The whole set-up is presented
in Fig. 4a. The main parameters of the NiTiNOL beams are reported in Table
2.

Figure 5a shows the experimental FRFs Ggy (after having removed the
contribution of the clamping system and obtained using H; estimator [30]) for
increasing values of current ¢ applied to the beams, passing from martensite
to austenite. The corresponding electrical power consumption P values are
reported in Table 3. The figure evidences that no phase transition occurs for
values of current up to 5 A (i.e., FRF peaks almost at the same frequency
value). Over this threshold, the phase starts changing. It is thus possible to
conclude that the phase transformation starts for values of ¢ between 5 and 6
A. The model predicts the start of the phase transformation for i values not
far from 5.5 A. Therefore, there is a good agreement with the experiments.
During phase transformation, the peak height increases and the eigenfrequency

moves towards higher frequency values, as expected from the previous models.
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Figure 7: Heating/cooling paths followed by the SMA elements (solid line for beam and dashed
line for wire) for going from ambient temperature to a a temperature where the transformation
in AU is completed and, then, back to ambient temperature. The arrows indicate the paths

followed increasing/decreasing the current ¢ and, thus, the temperature 7.

The austenite phase is reached for ¢ approximately between 7 and 7.5 A and
the model expectation is at 7 A, still with a good match. Figure 5b shows the
comparison between some experimental and numerical FRFs, evidencing a good
match.

Another interesting plot is that reported in Fig. 6, which shows that higher
eigenfrequency values are obtained with lower electrical current ¢ and power P
values when cooling (i.e. passing from austenite to martensite), compared to
heating (i.e. passing from martensite to austenite); see Table 3. This evidences
the advantage of reaching a desired eigenfrequency value while cooling, that
is mainly because My is lower than Ag (see Fig. 1; see also Section 5 for more
details). Basically, this effect is mainly related to the material model (see Section
3.2). If one heats the SMA beam (increasing ) from ambient temperature until
AU phase is reached (from point 1 to point 2 in Fig. 7), the eigenfrequency of
the first mode (but the same applies to the eigenfrequencies of higher modes)

gradually increases from a given value (generically defined as w{’l) to a higher
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Figure 8: F values estimated through models for some tests in which the SMA beams/wires

were in phase transition (see Table 3).

value wi’z during phase transformation (i.c., for Ay < T < Af) because of the
higher E value in AU than in martensite (see Table 2). If, then, i is decreased,
also the temperature of the SMA element decreases. During the first part of the
decrease (from point 2 to point 3 in Fig. 7), there is no change of phase and,
thus, the change of eigenfrequency value is null (or, actually, slight). In point 3
of Fig. 7, the corresponding eigenfrequency value w?® is equal to wb?. Hence,
the same eigenfrequency value is obtained with a lower current value. Then,
a further decrease of i (and, thus, of temperature T') generates a shift of the
eigenfrequency towards wi’l. Therefore, it is possible to mention that the same
1 value is able to give rise to different eigenfrequency values according to the
sign of the change of ¢ (and T') and also that cooling can provide eigenfrequency
values as those obtained by heating, but with smaller values of i.

The FRFs in Fig. 6 related to cooling shows slightly lower peaks because of
poorer capability of power supply to keep the nominal current value, generating
broader peaks (this could be easily improved by implementing a feedback control
on the action of the power supply, which instead worked in open loop in the

presented tests).
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Finally, Fig. 8 presents the values of E estimated through the model for
some tests in which the SMA beams were in phase transition. Furthermore, the
value of the non-dimensional damping ratio ¢; was estimated for the tests in
which the beam was heated and in phase transition for different values of the
electrical current 4: at 6 A the value of (; was approximately equal to 1.19-1072,

at 6.5 A approximately equal to 1.12-1072, and, finally, at 7 A about 0.92-1072.

4.2. Tests with a wire-based ATMD

4
10 x10
(@) 0.00A
8 ~ 025A
_ 0.50 A 5
E - = 0.75A
= 8 0.90 A
100 A ‘

Figure 9: Experimental amplitudes of FRFs Gsy while heating the wires (see Table 3) (a)

and comparison between experimental (exp) and theoretical (th) FRF amplitudes (b).

The set-up was made from NiTiNOL wires with a length of 143 mm each
and a diameter of 0.5 mm. The central mass (0.018 kg) was made from plastic

and steel. The springs were built using steel thin cantilever beams [18]. The
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Figure 10: Experimental amplitudes of FRFs Ggy while either heating or cooling the wires
(see Table 3).

whole set-up was mounted on a thick steel bar used only as a support. The
random input was provided again with a shaker between 4 and 100 Hz, with
an RMS value usually close to 0.5 m/s?. In this case, the RMS was decreased
compared to the case of the beam in order to have h values not too far between
the two cases. In the wire case, the h value for martensite was estimated close
to 50 W/(m?K), and close to 75 W/(m?K) for austenite. The whole set-up
is presented in Fig. 4b and the main parameters of the NiTiNOL wires are
reported in Table 2. Tt is also noticed that the beam-like springs were built such
that the stress in the wire in martensite phase was approximately equal to 58.6
MPa and about 190.5 MPa in austenite phase.

Figure 9a shows the experimental FRFs Ggy (after having removed the con-
tribution of the bar used for the connection to the shaker) for increasing values
of current 4 applied to the beams. The corresponding P values are reported in
Table 3. The figure evidences that no transition of material phase occurs for
values of current up to approximately 0.5 A (i.e., FRF peaks almost at the same

frequency value) and, over this threshold, the phase starts changing. According
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to Fig. 9, the start of the phase transformation occurs between 0.5 and 0.9
A. The model predicts the start at about 0.8 A, showing a satisfactory match.
During phase transformation, the peak height increases and the eigenfrequency
moves towards higher frequency values, as expected. The austenite phase is
reached for i not far from 1.85 A, and the model predicts the transformation
stop for i approximately equal to 1.3 A, with an acceptable approximation. Fig-
ure 9b shows the comparison between experimental and numerical FRFs while
heating. The match during phase transformation is not as satisfactory as in the
case of the beam ATMD. This is again mainly related to the power supplier
used, which could not maintain a constant current value with enough accuracy.
Indeed, in this case, even slight changes of the current (e.g., 0.05 A) were able
to generate non-negligible FRF changes. These changes are evident in Fig. 9b,
where some resonance peaks are broad because of a non-constant current value.
This evidences the need of a feedback control on i for a fine tuning of the ATMD
eigenfrequency in real applications. Even if the match between theoretical and
experimental FRF's is not as good as in the case of the beam-based ATMD, the
model proves to correctly describe the trend of the eigenfrequency values and
of the corresponding peak height.

Figure 10 confirms a fact already noticed for the beam-based ATMD (see
Section 4.1): cooling allows obtaining higher eigenfrequency values with a lower
¢ value (and, thus, electric power P; see Table 3), compared to heating, as
expected because of the hysteretic behaviour in the temperature-stress plane
(see also Section 5 for more details). Indeed, heating from ambient temperature
to austenite (i.e., from point A to point B in Fig. 7), the first eigenfrequency
(the same occurs for higher eigenfrequencies) gradually increases from w{’A to
w{’B during phase transformation because of the stress increase in the SMA wire
generated by the phase transition from DM to AU. Then, lowering i, T' decreases

and point C in Fig. 7 is reached, where wlfc

is almost equal (actually, slightly
different, see Section 3.2) to wlfA because the stress does not change significantly
due to the fact that the material phase is not changing. Then, a further decrease

of i allows lowering the stress value and, therefore, the eigenfrequency value
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Table 4: Values of RMS of y(¢) and frequency band of the same signal.

RMS of y(t) lower frequency higher frequency

[m] bound [Hz] bound [Hz]
ATMDs tuned at 15 Hz  0.30 x 1073 5 38
ATMDs tuned at 35 Hz  0.25 x 1073 10 45

Table 5: Parameter values for both SMA beams and wires used for the comparisons.

Parameter Value
Aq [°C] 68.6
As [°C] 78.9
M, [°C] 55.2
M; [°C] 42.7

Cx [MPa/°C] 9.90
OM [MP&/OC] 6.83

HO [] 4.391072
a [°CT) 10-¢
B [GPa] 32.1
E, [GPa] 39.5
Pm [$2m)] 90-10~8
Pa [2m] 100-10~8

towards w{)A because of the phase transition from AU to DM.
Finally, as already done for the beam, Fig. 8 shows the values of E estimated

through the model for some tests in which the SMA wire was in phase transition.

5. Comparison of beam- and wire-based ATMDs

The models validated in the previous section are now employed to the aim of
comparing the two types of ATMD. As mentioned in Section 1, the comparison

is carried out in terms of:
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e adaptation capability which indicates how much the ATMD eigenfrequency

can be changed;

o force exerted by the ATMD on the PS, which is related to the attenuation

performance which can be achieved;

e power consumption related to the need of having current flowing through

the SMA elements.

To perform a comparison, the two types of ATMD are initially tuned at the
same frequency value (i.e., first eigenfrequency of the ATMD tuned to a given
predefined value). The cross-section of the beam- and wire-based ATMDs are
the same as those considered in the previous experiments: diameter of 0.5 mm
for the wire and circular hollow section with an outside diameter of 4 mm and
a thickness of 0.5 mm for the beam. These values have been used because they
can be easily found in commercial products. However, the previous models can
be employed for simulations with different cross-sections (i.e., different diameter
values but also different cross-section shapes for the beam).

Moreover, the comparison is performed with the following two constraints:

e the two ATMDs have the same mass (global mass given by the sum of
concentrated masses and the mass of the wires/beams, referred to as Mi).
The two constraints on both the eigenfrequency value and the total mass
involve that the length of the ATMD is adjusted in order to meet the two of
them. It is noticed that the concentrated mass value ranges approximately
between 0.02 and 0.30 kg for the wire ATMD and between about 0 and
0.15 kg for the beam ATMD in the simulations;

e the RMS value of the input random signal y(t) is the same for the wire-
and beam-based ATMDs. Furthermore, also the frequency band of the

disturbance is the same (see Table 4).

In all the simulations, the value of (; is set to 10~2 for both the ATMDs and

the value of the spring constant K for the wire-based ATMD is set in order to
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satisfy the constraint of having a stress value equal to 50 MPa at environmental
temperature in DM and 200 MPa in AU. Finally, the same material parameter
values were used for the two ATMDs and they are reported in Table 5.

At first, the two ATMDs are compared in terms of adaptation capability
(Section 5.1) and, then, in terms of force exerted (Section 5.2) and power con-

sumption (Section 5.3).

5.1. Comparison in terms of adaptation capability

The two ATMDs are initially tuned at either 15 or 35 Hz at environmental
temperature. Then, current is increased until complete transformation in AU
occurs. To quantify the adaptation capability comparison, the ratio Reig is
defined as:

A, wire M,wire

_ 1 1
Relg ~  Abeam M,beam (33)
1 —w

which is the ratio between the adaptation span of the first eigenfrequency (eigen-
frequency in AU minus eigenfrequency in martensite at environmental temper-
ature) for the wire ATMD and that for the beam ATMD. It is noticed that
in these simulations both w)"*™™ and w)"""® are equal to either 27 x 15 or
27 x 35 rad/s.

For the two initial eigenfrequency values (i.e., 15 and 35 Hz) and all the con-
sidered M, values (i.e., approximately between 0.02 and 0.3 kg), the value of
R results approximately equal to 9.5, evidencing that the wire-based ATMD

provides a much larger adaptation capability, as already evidenced by the ex-

periments (compare Figs. 5a and 9a).

5.2. Comparison in terms of exerted force

To the purpose of exerted force comparison (and also for the comparison in
terms of power consumption, see Section 5.3), it is important to evidence that
different tuning strategies are possible. The starting point is the eigenfrequency
range covered by the beam-based ATMD. Indeed, according to Section 5.1, it

is the layout with the narrower range of frequency adaptation, varying from
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Figure 11: Paths followed by the SMA elements for reaching eigenfrequency at 15.00 Hz (or
35.00 Hz) and 16.64 Hz (or 38.82 Hz). Wire-based ATMD with tuning approach 1 (a), wire-
based ATMD with tuning approach 2 (b) and beam-based ATMD (c). The arrows indicate

the paths followed increasing/decreasing the temperature.

M,beam

W) to wi**™  The wire-based ATMD can be tuned correspondingly in

the two following ways:

e it isinitially tuned to w

M,beam
1

at environmental temperature (i.e. w

M,wire M,beam
1 =Wy

(point 1 in Fig. 11a). For the considered cases, the corresponding numer-

ical values are 15 and 35 Hz (see Sections 5 and 5.1). Then, the tempera-

ture of the wire is increased until complete AU transformation is obtained.

A, wire A, beam

Being w; > w) , the temperature of the wire is then decreased.

When transformation to DM starts, the value of w}'™ significantly de-

wire

creases, where w)"*® without superscripts A and M refers to a generic

phase situation in which AU and DM are both present. The temperature

decrease is stopped when w

wire
1

A beam
= wl
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102k

107 F

— — —-beam
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Figure 12: Relationship between Mjiot value and ATMD global length Lot for the ATMDs
working between 15.00 and 16.64 Hz (a) and those working between 35.00 and 38.82 Hz (b).

considered cases, the frequency values result equal to approximately 16.64
and 38.82 Hz. Therefore, the comparison of the two ATMD layouts is
performed at 15 and 16.64 Hz in one case and at 35 and 38.82 Hz in the

other.

it is initially tuned to w’"** when in AU (i.e. wire=gPeam

, point 1
in Fig. 11b). For the considered cases, the corresponding numerical values
are 16.64 and 38.82 Hz. Then, the temperature of the wire is decreased.
When transformation to DM starts, the value of w}''*® significantly de-
creases. The temperature decrease is stopped when wyre= wMP*™ (point
2 in Fig. 11b). For the considered cases, the frequency values result equal
to 15 and 35 Hz. Therefore, the comparison of the two ATMD layouts is

performed again at 15 and 16.64 Hz in one case and at 35 and 38.82 Hz
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Figure 13: Trend of the peak values of |Ggy|, named Psy, for all the considered cases for the
ATMDs working between 15.00 and 16.64 Hz (a) and those working between 35.00 and 38.82
Hz (b).

in the other.

The two above-mentioned tuning approaches for the wire-ATMD will be referred
to as approach 1 and 2, respectively.

First of all, the relationship between M., and the corresponding global
length Lo of the ATMD is presented in Fig. 12 for all the different cases (it
is remembered that the global length is 2L for the beam, see Section 3.3.1, and
L for the wire, see Section 3.3.2; see also Fig. 2). It emerges that approach
1 provides shorter ATMD configurations compared to approach 2 for the wire-
based device. Furthermore, the wire-based layout results shorter compared to
the beam-like ATMD. Even if the advantage provided by the wire is evident in

terms of bulk, it is worth noticing that for larger and larger M. values and
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Figure 14: Trend of the peak values of |Gywy|, named Pyy, for the ATMDs working between
15.00 and 16.64 Hz. The results related to apporach 2 for tuning the wire-based ATMD are
not presented here because they are almost equal to those of apporach 1. It is noticed that
the two curves related to the beam-ATMD are almost superimposed. The same occurs for the

curves of the wire-ATMD.

higher and higher eigenfrequency values, the length of the wire-ATMD becomes
too short and, thus, not feasible. Therefore, when the needed eigenfrequency
value increases and a large My value is required in order to increase the exerted
force (see further in this sub-section), the wire-based ATMD could become not
feasible and the only usable layout is that based on the beams. Furthermore, in
a situation like this, tuning approach 2 could become advantageous compared
to approach 1. Furthermore, it is noticed that additional possibilities for still
using the wire-based ATMD with the tuning apporach 1 are to either employ a
wire with a larger diameter or add wires in parallel.

Figure 13 shows the peak values of |Ggy| (i.e., the values at resonance),
named Psy, for all the considered cases. As expected from the experimental
results, the mentioned peaks are higher at higher frequency (compare plots a
and b in Fig. 13 and also the curves related to different frequency values in the
same plot). Furthermore, the differences for the wire-ATMD between approach
1 and 2 are not significant. Wire- and beam-based ATMD provide similar forces,

when the M, value increases, while higher forces are produced by the wire-
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based ATMD for low values of M. Another interesting result is provided in
Fig. 14, where the peak of |Gwy| (considering the displacement of the central
mass for the wire-based ATMD and of mass at the beam tip for the beam-based
ATMD), named Py, is shown for the case of the ATMD working between 15
and 16.64 Hz, chosen as an example. At high M, value, the displacements
tend to be equal, as in the case of the exerted force, but, at low values of M.,
the wire-based ATMD tends to move less, even if it provides higher forces. This

is also related to the different global lengths of the ATMDs (see Fig. 12).

5.8. Comparison in terms of power consumption

(@) (b)
DN K
N\ 0
o ol ~ 10°N
10 N - S beam - 38.82 Hz
i S - N wire, approach 1 - 38.82 Hz
=~ o = = wire, approach 2 - 38.82 Hz
A beam - 16.64 Hz - 10 —
wire, approach 1 - 16.64 Hz = -
10 = = wire, approach 2 - 16.64 Hz
0.05 0.1 015 02 025 03 0.05 0.1 015 02 025 0.3
107 107
() (d)
8 8L
N
— 6 6
<< beam - 38.82 Hz
beam - 16.64 Hz wire, approach 1 - 38.82 Hz
S 47 wire, approach 1 - 16.64 Hz 4r = = wire, approach 2 - 38.82 Hz
= = wire, approach 2 - 16.64 Hz
2 2r
0 0
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
Moy [ke] Mior  [kg]

Figure 15: Trend of P as a function of Mot for the ATMD working between 15.00 and 16.64
Hz (a) and for that working between 35.00 and 38.82 Hz (b). Corresponding trend of ¢ as a
function of Mot for the ATMD working between 15.00 and 16.64 Hz (c) and for that working
between 35.00 and 38.82 Hz (d).

This subsection aims at comparing the two ATMD layouts in terms of power
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consumption, also considering the electric current value involved.

The comparison is carried out in terms of power and current needed to bring
the ATMD at the maximum eigenfrequency value (i.e., 16.64 and 38.82 Hz for
the two considered cases). Regarding the wire-based ATMD, these eigenfre-
quency values correspond to point 2 in Fig. 1la and point 1 in Fig. 11b for
tuning approach 1 and 2, respectively. Regarding the beam-based ATMD, the
considered point in the temperature-stress plot is point 2 in Fig. 1lc. Point
2 is reached after increasing the temperature from environmental temperature
(point 1 in the figure) until transformation in AU is completed and, then, de-
creasing temperature and stopping the decrease just before transformation to
TM starts (point 2). On the whole horizontal part of path leading to point 2
from AU phase, temperature changes while exerted force and eigenfrequency do
not because the model related to the beam does not consider thermal expansion
(its influence is assumed as negligible); see Section 3.

No comparison is performed at 15 and 35 Hz because there is no power
consumption for the beam- and the wire-ATMD with tuning approach 1 in
these cases.

Figures 15a and b show the power consumption P as a function of M. for
all the considered cases, while Figs. 15¢ and d show the trend of i. Tuning
approaches 1 and 2 for the wire-based ATMD show significantly different values
of both P and i, especially at low values of M., evidencing the benefit provided
by tuning approach 1.

Addressing the comparison between wire- and beam-ATMD, the former re-
sults much less expensive in terms of electrical consumption. Often, the power
consumption required by the wire-ATMD (with tuning approach 1) is almost
ten times lower than that of the beam-ATMD.

Finally, it is noticed that another tuning strategy was considered for the wire-
ATMD. This is equal to tuning strategy 1, with the exception that the value
of the spring elements K was lowered so that the ATMD only worked between
either 15.00 and 16.64 Hz or 35.00 and 38.82 Hz. The results associated to

this further case are not shown in the paper because they lead to slightly worse
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results in terms of power consumption, compared to tuning strategy 1, and to

similar results in terms of exerted peak force Psy.

6. Conclusion

The paper addressed the comparison between the two main layouts (wire-
based and beam-based) for developing adaptive tuned mass dampers based on
shape memory alloys. To perform such a comparison, the models of the two
types of adaptive tuned mass dampers were developed. These models allow for
reconstructing the device dynamics as function of the provided electrical current.
The models require in input the parameters of the shape memory alloy used,
the geometrical features and the input vibration. An experimental validation
was carried out for the models of both the devices, with satisfactory results.

The wire-based layout shows much greater adaptation capability and much
smaller electrical power consumption compared to the beam-layout. The de-
veloped models allowed quantifying these differences, which were shown to be
able to reach even one order of magnitude. Regarding the force exerted on the
primary system by the tuned mass damper, the two layouts are not so differ-
ent, even if the wire-based layout is able to provide a larger force compared
to the beam-based configuration when the mass of the tuned mass damper is
small. Furthermore, in such a case, the global size of the wire-based device
is consistently lower than that of the beam-based layout and it shows smaller
oscillations.

Nevertheless, some disadvantages related to the use of the wire-based layout
must be evidenced as well. The first one is that it has a higher construction
complexity, e.g., due to the presence of additional elastic elements, the need of
either two connection points or an additional frame. Furthermore, when the
value of the required eigenfrequency increases, the size of the wire-based tuned
mass damper can become so small that it is not feasible in practice. Finally, the
wire layout is more sensitive to electrical current changes and, therefore, more

stringently requires the use of feedback control on the value of the supplied
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electrical current.

Appendix A. FRFs for the beam-based ATMD

The solution of the problem in Eq. (22) can be found in different references

(e.g., [27, 28]) and is in the following form:

wrel (2, t) = [Bysin(yax) + Bacos(yx) + Bssinh(yz)
+ Bycosh(yx)][Bscos(Qt) + Bgsin(t)]

(A1)

where v = QU1/2)[(0,,4)/(EJ)]/Y | while By to Bg are constants to be deter-

mined. The boundary conditions of the problem are the following:

Wrel(z,8) =0, =0 (A.2)

Owrel(w,t) B

0w - 0, z=0 (A.3)
Z(x,t) =0, x =1L (A4)

O wyel (1)
ot?

where M, is the value of the additional mass (see Fig. 2a), that is considered

Q(z.t) + M, =0,z=1L (A.5)

as a concentrated mass for the sake of simplicity.
Considering that:

Bw(x,t
Q@J):—EJ—%éTl (A.6)

the use of these boundary conditions leads to the following matrix system:

A U, =100 00 0] (A7)

where T indicates the transposed matrix and:
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Ay

0 1
1 0
—sin(yL) —cos(yL)

0
1
sinh(yL)

—7cos(yL) + Asin(yL) 7sin(yL) + Acos(yL) Tcosh(yL) 4 Asinh(yL) 7sinh(yL) 4+ Acosh(yL)

Uy, = [By By By By*

r=FEJy, A=Q>M,

1
0
cosh(yL)
(A8)
(A.9)
(A.10)

The eigenfrequencies w; (and the corresponding -y; values) of the beam can

be found solving det(Ay,)=0 for 2. Then, using the obtained w; values in Eq.

(A.7), setting one of the unknowns to a given value (e.g., By=1), and discarding

one of the four scalar equations in Eq. (A.7) because of the additional constraint

det(Ay,)=0, it is possible to derive the other three unknowns and thus the mode

shapes ¢; associated to w;:

¢i(x) = [Bysin(yix) + Baicos(yix) + Bssinh(vy;2) + By cosh(v;x)]

(A.11)

It is now possible to use the modal coordinates ¢; to express wye(,t):

Wrel (2, 1) = Z bi(x)qi(t)
i=1

(A.12)

where n is the number of modes (that is infinite in theory). Defining the velocity

of the mass as:

Owyel (z, 1)

‘/mass = ot

=L

®(z) = [¢1(2), .., $i(2), oo ()]

a(t) = [q1(t), s qi(t), ooy g ()] T
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and relying on the modal approach, the kinetic energy Ey can be derived:

Ei [[0 O A (M) dz + M, VH%W] =
14T(1) [ JE 0 A® (2)®" (z)dar + J\ffa<I>(L)<I>T(L)] alt) (A.16)
— 14" (HM4()
Given the orthogonality of the vibration modes, M results being a diagonal
matrix, having the modal masses m; on the diagonal. Similarly, the modal
stiffness values k; can be obtained writing the potential energy relying on the
modal approach. Finally, it is possible to derive the Lagrangian components L
of the external forces (see Eq. (22)). Assuming a mono-harmonic law for y(t)

(at Q, with amplitude yo), the following expression is derived:

L(t) = [amA JE®(@)de + M, <I>(L)] 2400 (A.17)

Applying the Lagrange’s equation, it is then possible to express the system

dynamics with n single-degree-of-freedom equations:

mads(t) + kiai(t) = [0 f)' 0:(@)de + Magi(L)| Qo) (A18)

If proportional damping is now introduced in the mathematical treatment,
the modal damping values ¢; can be obtained writing the dissipation function
relying on the modal approach and Eq. (A.18) can be modified as follows (see,
e.g., [27, 28]):

miGi(t) + ciqi(t) + kigi(t) = [QmA fo ¢i(x)da + Magi(L )] Zyeleh
(A.19)
Rearranging Eq. (A.19), moving to the frequency domain and considering
again the absolute displacement w(z,t) as a function of y(¢t) and wye (2, t), the

FRF between Y and W is obtained as in Eq. (23), with:

[ k; ci m;
w m; Gi 2m; | k; (A-20)
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being (; the non-dimensional damping ratio associated to the i-th eigenfrequency
w;. Once the Gwy (z,jQ) FRF is known, the FRF between Y and the action
exerted on the PS can be derived, noticing that the two cantilever beams of
Fig. 2b generate the same vertical action and two moments that cancel out

each other. Being s(t) = Q(x = 0,t) and considering Eq. (A.6), then:

q:(t) (A.21)

=0

= —2EJZ i

dx3

Therefore, the FRF between Y (j©?) and the vertical force exerted on the PS
S(39Q) (S(GQ) is the Fourier transform of s(t)) is obtained as in Eq. (24).

Appendix B. FRFs for the wire-based ATMD

Analysing the free vibrations, the solution of the problem in Eq. (27) for

each of the wires is in the following form (e.g. [27, 28]):

wrel(z,t) = [Brsin(xx) + Bgcos(xx)][Bgcos(Qt) + Bigsin(Qt)] (B.1)

where xy = Q\/W, while B; to By are constants to be determined. Four
boundary conditions are needed to find the eigenfrequencies and eigenvectors
with the same approach used for the vibrating beam (see Section 3.3.1). In-
deed, two unknown constants must be found for the left wire, and two for the
right wire. These boundary conditions are that w., must be null at the two
constraints, that w.e must be the same for the two wires at the concentrated
central mass, and finally the vertical dynamic equlibrium of the central mass.
More details can be found in [19]. These boundary conditions lead to a matrix

equation like that of Eq. (A.7), where:

0 1 0 0
A — 0 0 sin(xL/2) cos(xL/2) (B.2)
sin(xL/2) cos(xL/2) 0 -1
—xFcos(xL/2) xFsin(xL/2) xF %M,
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Uy, = [B; Bg By Bio)" (B.3)

where By; and Bj, are the constants related to the mode shape of the second
wire to be determined.
Once eigenfrequencies and eigenvectors have been deduced, modal coordi-

nates can be introduced:
Wrel,1 xh Z¢z 1(T1 Qz 7 wrel? To,l Z(sz xQ QZ t (B4)

where the subscripts 1 and 2 refers to wire 1 (that between the left constraint
and the central mass, see Fig. 2c¢) and 2 (that between the central mass and
the right constraint, see Fig. 2c), respectively.

According to Eq. (B.4), kinetic energy can be written as follows:

fL/2 0., A (5wre1 2(x2,t)

ot mass ot

By =1 [ P G A ((Dmigfent) 1““7”) dy + M, V2

%qT(t)[ L2 0y A®y (1) BT (21)day + M, By (L/2)®T(L/2) + [/

= 34" (H)Mq(t)
(B.5)

where ®; and ®, are related to the first and second wire, respectively, and:

®1(z1) = [p1,1(21), s Gi1 (1), ey Pra (21)] " (B.6)

(1)2(1?2) = [Qj)l‘yz(m‘z), ceey (ﬁi’z(.’ll’z), cees (ﬁnyz(fﬂg)]T (B?)

Again M is a diagonal matrix with the modal mass values m; on the diagonal.
Finally, considering the Lagrangian components of the external forces (see Eq.
(27)), n single-degree-of-freedom equations can be derived (also introducing

proportional damping in the mathematical treatment):

m;Gi (t) + cigi(t) + kiqi(t) =
[9mA(f $ir(w1)dey + [ ¢y o(x2)dws) + Madh, 1(L/g)] Yoeli2)
(B.8)
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Using the same approach already adopted in Section 3.3.1, the FRF between
Y and W is obtained for the first and the second wire are in form of Eqgs. (28)
and (29), respectively.

Being the amplitude of the vibration small by hypothesis, the following sim-
plification can be taken into consideration for the force exerted by the ATMD
on the PS s(t):

_ awre172(w27t)
F 63:2

~ 8'lUrelA,l(mli)
S(0) = F5, ro=L/2

FYL, { [“%;ﬁ”“ /] %-<f>}

According to Egs. (B.8), (B.9) and (A.20), the FRF between Y (j2) and the

vertical force exerted on the PS S(j©2) (S(j©2) is the Fourier transform of s(t))
is as in Eq. (30).

11:0
B.
_ doia(z2) (B.9)

dIQ

1 =0
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