
A Non Profiled and Profiled Side Channel Attack
Countermeasure through Computation Interleaving

Isabella Piacentini, Alessandro Barenghi, Gerardo Pelosi
Dept. of Electronics, Information and Bioengineering - DEIB

Politecnico di Milano, 20133, Milano, Italy
{isabella.piacentini, alessandro.barenghi, gerardo.pelosi}@polimi.it

Abstract—Side channel attacks analyse devices to retrieve
secret informations. These attacks can be performed using either
a synthetic model or by profiling a specific instance of the targeted
design. Our proposal is a novel countermeasure characterized
by temporal interleaving of the computation. This approach
improves upon existing methods by rendering the profiled models
of a device non-portable and offering resistance against first-
order non-profiled attacks. The assessment of the security of
our proposed approach covers scenarios of profiled attacks with
feature reduction techniques, both under a single-device and
multi-device model, as well as first-order non-profiled attacks.
Our design demonstrates improved results in terms of resource
consumption and timing when compared to alternative solutions.

Index Terms—Hardware Security, Countermeasures, Side
Channel Attacks, Profiled Attacks

I. INTRODUCTION

Side channel attacks (SCAs) are one of the principal threats
to the security of digital devices. Their ability to extract
secret keys from a computing device executing the imple-
mentation of a target cipher, regardless of the correctness of
the implementation itself, and the absence of mathematical
vulnerabilities, makes them a source of prime concern. The
key working principle of an SCA is to model the expected,
secret-data dependent behavior of the side channel of a device,
and match it to the actual measurements taken from the
device itself. Traditionally SCAs are split into two categories,
depending on whether the model is synthetically obtained
(a.k.a. non-profiled SCAs) or derived in a data driven fashion
from a device identical to the one under attack, but fully
controlled by the attacker (a.k.a. profiled SCAs). Profiled
SCAs are often described as the most powerful ones, as
they derive a perfectly fitting model for the behaviour of the
device during the execution of a given cipher implementation,
known as a profile or template. Indeed, an a posteriori, data-
driven modeling method allows an attacker to capture also the
effects on the side channel of many countermeasures, albeit
at the cost of an increased number of measurements. One
notable hindrance to profiled attacks is the so-called portability
of the profiles from the device they are obtained from to
the one being attacked due to, e.g., process variability and
measurement setup differences. These facts may hinder or
prevent altogether the execution of a profiled SCA. However,
it has been experimentally shown in [1]–[5] that building a
profile employing measurements coming from multiple device

instances (Multi Device Model, MDM) and reducing the
measurement setup differences, leads to successful profiled
SCAs, regardless of the specific profiling technique (i.e.,
Bayesian templates or machine learning/neural networks based
classifiers). While natural inter-device variability was proven
to be manageable by an attacker, the authors of [6] report a
countermeasure against profiled attacks named Scramble Suit,
which introduces an approach to amplify the said inter-device
variability to the point where the profile distortion prevents
attacks in a systematic fashion. In [6], such amplification is
obtained computing two identical instances of the cipher to
be protected, one of which acts on a scrambling secret key
derived blending together a device-dependent element while
the other employs the actual user-supplied key. This approach
superimposes a device-and-computation dependent noise onto
the side channel signal coming from the computation with the
user key. Scramble Suit does not provide protection against
non profiled SCAs (the user supplied and the scrambling key
can be recovered), and was not validated against MDM attacks.

In this work, we propose an SCA resistant design for block
ciphers, that improves on Scramble Suit [6], as it combines the
resistance against profiled SCAs with a significant amount of
resistance against non profiled ones. The main idea is to exploit
the temporal interleaving of computations of the same cipher
with different scrambling keys, all-but-one of which depend
on both the device and the actual user-supplied key. Such
a computation interleaving also performs (pseudo) random
precharging of the datapath and computation state registers,
providing resistance to first-order non-profiled SCAs. Our
approach can be augmented with spatial redundancy, should
the designer be willing to raise the amount of distance among
the profiles of different devices. We also explore this av-
enue, providing quantitative results. Comparing our approach
with SCA countermeasures oriented at preventing non-profiled
SCAs (which also hinder to some extent profiled SCAs), such
as the combination of shuffling and (high-order) masking,
we report that our approach is a more efficient alternative
to first-order masking, obtained as a combination of random
precharging and redundant computation shuffling. Finally, our
design requires, as Scramble Suit [6] does, the presence of
a side channel resistant element generating a scrambling key
blending the user-supplied key value with a unique feature of
the device in a non-extractable fashion, even via side channel.
The authors of [6] noted that a strong PUF [7] was required for

this purpose, employing the user-supplied key as a challenge
and using the response as the scrambling secret key. While
there is a flourishing research on SCA resistant PUFs [7], we
highlight that a recent line of research proposed a design of
a component, which fulfills the requirement of generating a
scrambling key [8] without involving the process variability of
the device. Indeed, such a component can be used to generate
fresh scrambling keys starting from a randomly chosen secret
parameter securely stored on the device. The resistance against
SCAs of [8] hinges on the fact that extracting information from
side-channel data is equivalent to the computationally hard
problem known as Learning With Physical Errors (LWPE),
for which no efficient solution is known.
Contributions. We introduce a novel design aimed at counter-
ing both profiled and non-profiled SCAs with a single coun-
termeasure, by exploiting temporal computational redundancy.
We validate our security claims with an implementation onto
an FPGA target, employing as a case study the AES-128/-
256 cipher. We show that our design protected against profiled
SCAs exhibits a 50.7% classification accuracy across the board
in a two-class (single bit) classification with single- and multi-
device-models. At the same time, our design increases the
number of measurements to disclose security metric, against
non-profiled SCAs, up to 333× w.r.t. an unprotected design.
We evaluate the performance of our design, reporting a re-
source (LUT+FF) overhead, w.r.t. an unprotected design, equal
to 66%, comparing favourably with the overheads of common
masking countermeasures, which are in the 219% – 274%
range [9]–[11]. We note that our design has a 38× to 104×
lower pressure on the Random Number Generator (RNG)
throughput with respect to traditional masking schemes [9],
[10], and halvens the requirements with respect to the state-
of-the-art randomness reusing schemes [11]. Finally, our coun-
termeasure can also be augmented with spatial redundancy, in
turn providing a tunable increase of the security margin.

II. BACKGROUND

Side Channel Attacks exploit the link between the data
being processed by a device and one or more environmental
parameters, such as the power consumption, Electro-Magnetic
(EM) radiations or computation time. The device combines
the cryptographic key with known inputs (or producing known
outputs) when computing a publicly known implementation of
the cryptographic primitive. The attacker models a portion of
the side channel signal corresponding to the computation of a
sensitive intermediate value, which depends only on a small
portion of the secret key. In the following, we consider such
a portion to be a single bit for the sake of clarity. Consider a
cryptographic primitive with an l-bit key k and a set of inputs
P = {Pj , 0 ≤ j ≤ |P|−1} (e.g., plaintexts), |P|≫1. A time
series of s > 0 side channel measurements (samples) obtained
from the device executing the whole cryptographic primitive
is known as a trace. Traces are measured feeding the device
an input Pj and an (unknown) value for a single bit of the key
ki, 1≤i≤l, We thus denote a trace as T̂

(ki)
j ={T̂j(t) | 1≤t≤s},

with 1≤j≤|P| The sequence of measurements of the leakage

from the intermediate value of choice, while computing on
different plaintexts is identified by the time instant t = t∗,
i.e., T̂ (ki)(t∗) ={T̂j(t

∗), 1≤j≤|P|}. An SCA is usually split
into two phases: modeling and exploitation. In the modeling
phase the attacker builds as many models of the side channel
leakage as the possible values of ki (two in our case, i.e.,
M̂ (ki=0), M̂ (ki=1)) during the computation of the chosen
sensitive intermediate value. In the exploitation phase, the
attacker determines which model fits best the behavior of the
device as observed in a set of traces T̂ (ki), revealing ki.
Non-profiled Attack. In a non-profiled attack, the attacker
builds the models M̂ (ki=a), a ∈ {0, 1} according to a synthetic
computation. Considering the case of power consumption and
EM emission side channel attacks, the most common model
is the toggle-count of a portion of the logic circuit. This
corresponds to the Hamming distance between the values
held by the computing circuit before and after the sensitive
intermediate value is computed. To this end, the attacker picks
a sequence of random plaintexts P , computes the intermediate
computation values according to the postulated key value a,
and obtains M̂ (ki=a) as a set of expected power consumptions.
In the exploitation phase, the attacker collects the set of traces
T̂

(ki)
j , employing the sequence of plaintexts P used for the

computation of M̂ (ki=a). The attacker now considers sequence
of samples of a given time instant T̂ (ki)(t), 1≤t≤s, and the
values obtained through the models M̂ (ki=a), a ∈ {0, 1} as
samples from random variables, and tries to determine for
which value of ki M̂ (ki=a) fits best T̂ (ki)(t). To quantify
the fitness, a statistical tool, also known as distinguisher is
applied to the samples of the aforementioned random vari-
ables. Pearson’s linear correlation coefficient and the Mutual
Information (MI) are distinguishers applied by SCAs known as
Correlation Power Attack (CPA) [12] and Mutual Information
Analysis (MIA) [13], respectively. A large amount of research
effort was devoted to understand which distinguisher allows
to derive the secret key value with the least amount of traces.

Heuser et al. in [14] showed that, for 1st-order non-profiled
attacks, Pearson’s correlation coefficient is the information
theoretic optimal distinguisher, if the consumption model
is known on a proportional scale, while the noise follows
a Gaussian zero-average statistical distribution. In [15] the
authors derive relations binding together the Success Rate,
SR [16] metric (equivalently, the Guessing Entropy, GE [16])
and the mutual information (MI) distinguisher. They also
derive an upper bound to the MI starting from the Signal-
to-Noise (SNR) ratio of the measurements, and link the SNR
to the minimum number of traces (a.k.a. Measurements-To-
Disclosure, MTD) required to extract the secret key, with a
probability of success decided a priori. Since SR, GE, MI
and the SNR can all be expressed as a function of MTD, we
will employ the MTD with Pearson’s correlation coefficient as
figure of performance in withstanding non-profiled attacks. As
reported in [17], while MTD (in unprofiled attacks) and the
accuracy (in profiled ones) provide the same information as the
GE when the number of traces grows asymptotically, they may

yield different results if the amount of information available
to the attackers is relatively low. We will also measure the
effectiveness of the attacks in terms of GE.
A popular method to test for side channel vulnerability of
an implementation is the Test Vector Leakage Assessment
(TVLA), first proposed in [18]. TVLA assesses if two trace
populations have the same or a different time-wise mean
employing Student’s t-test. In the non-specific variant the two
populations are obtained as i) a repeated encryption of the
same plaintext under a fixed key and ii) the encryption of
random plaintexts under the same key. In the specific variant
the two populations are obtained classifying, according to an
intermediate computation value, a single set of traces obtained
encrypting random plaintexts under a fixed key. The specific
t-test conveys less information than a CPA attack: indeed its
results are not scale-invariant. Therefore, we do not report the
results of TVLA procedures on our implementations.

The described attack is denoted as a 1st-order non-profiled
attack. A d-th order attack, d > 1, is executed to overcome
the countermeasures against non-profiled SCAs in the cryp-
tographic implementation and consists in combining properly
the measurements in each trace coming from d distinct time
instants in order to define/compute properly the values of both
T̂ (ki)(t) and M̂ (ki=a). An implementation protected with a
d-th order masking countermeasure processes the sensitive
values of the implementation at hand through splitting the
original values in d randomized shares each. Thus, the higher
the value of d, the more difficult is to envision a recombination
function able to put together the measurements at different
time instants and the higher is the computational overhead.
Profiled Attack. In profiled attacks, the attacker derives
M (ki=a) applying Bayesian or machine learning strategies.
In the modeling phase, the attacker employs a copy of the
target device where the secret key k can be changed at will.
The attacker collects traces from the device for a large set of
plaintexts P and all possible values of ki, and obtains M (ki=a)

through either descriptive statistics methods, or trains a ML
model with the traces. The a posteriori model M (ki=a) of
the device obtained is also commonly known as a profile or
template of the device. In the exploitation phase the attacker
collects traces from the target device where the value of ki is
unknown, and tries to determine the best fitting model for the
collected traces belong, revealing the value of ki.

The first profiled attack was first introduced in [19] with the
name of template attack (TA). In a TA, the attacker employs
a multivariate Gaussian distribution, which is fully described
by its s-dimensional mean vector µ(ki),(s≫1), and covariance
matrix Σ(ki), as the model M (ki=a) of an entire trace. We thus
have T (ki)∼N (µ(ki),Σ(ki)), with probability density function

Pr(T (ki) = x) =
exp

(
− 1

2
(x− µ(ki))(Σ(ki))−1(x− µ(ki))tr

)√
(2π)ndet(Σ(ki))

.

TAs assume that the additive zero-average Gaussian mea-
surement noise affects each component independently.

In the modeling phase, the attacker derives, for each value
of ki, a profile through a sample estimate of both µ̂(ki) and
Σ̂(ki), from sets of traces T (ki=a) collected from the controlled
device, setting ki = a and feeding it with uniformly randomly
selected plaintexts. In the exploitation phase, the attacker de-
termines the likelihood of a trace T̂ of being an instance (i.e.,
sample) of one of the random vector variables representing
the models M (ki=a) = T (ki)={T (t) | 1≤t≤s}, exploiting
Bayes’ theorem: Pr(ki | T̂) = Pr(T (ki)=T̂)·Pr(ki)∑l

h=1 Pr(T (kh)=T̂)·Pr(kh)
where

Pr(ki) is the a priori probability associated to the specific
key-bit value ki that does not consider T̂ . Typically, all key
values are equally likely, therefore Pr(ki)=

1
2 . The value ki

which maximizes the aforementioned a posteriori probability
is selected as the value of the i-th bit of the secret key
employed by the device under attack.

While TAs are information theoretically optimal, they have
constraints on the measurement setup. The sets of traces in the
modeling phase and the one(s) in the exploitation phase should
be perfectly aligned, measured on the same vertical scale, and
the clock jitter should be negligible. Furthermore, no DC drifts
(e.g., due to thermal effects) should be present [1]. TAs are
also influenced by the profile variability coming from process
variation across different devices. Finally, TAs suffer from a
superlinear increase in the amount of traces for the modeling
phase when dealing with d > 1 masked implementations.

Profiled attacks executed applying machine/deep learning
techniques were employed to overcoming the adverse effects
on TAs provided by masked implementations of cryptographic
primitives [20] as well as to well manage difficulties due
to trace misalignments, clock jitter of the device [21] and
even insertion of artificial independent noise [22], during the
modeling or the exploitation phases. The authors of [2]–[4]
consider the cases where a mismatch between the modeling
and exploitation phase is caused by the inter-device process
variability, and no clock jitter and misalignments are present.
In this case, the mismatch between modeling and exploitation
can be compensated building a leakage model that makes use
of traces collected from multiple attacker-controlled devices
(Multi-Device Model, MDM). The same conclusions is also
confirmed by [5], where the authors recommend a MDM
approach to overcome the issue of device portability of profiled
attacks even when making use of deep learning strategies.
The authors suggest to use three devices: two in the modeling
phase, one in the exploitation phase.

Since the aim to amplify the intrinsic inter-device variability
we will evaluate its effectiveness against TAs [19], while
physically removing all the setup-dependent factors being a
hindrance for them. To this end, our setup is untouched during
all the measurements, is done on a single physical FPGA
device, clock jitter and misalignment effects are carefully
avoided, and we experimentally checked that no DC drift takes
place. We also do not consider the combined action of our
countermeasure and masking techniques, as it would prevent
from singling out the effectiveness of our countermeasure
alone. In our setting, we did not encounter numerical issues in

instance
sel. (rng)

driver

contents

contents

computation computation

clock
cycle 0 1 2 3 4

Time

driver

contents

contents

computation computation

clock
cycle

instance
sel. (rng)

0 2 41 3

Time

Case 1: driver not violating P3 Case 2: driver violating P3

Fig. 1. Simplified timing diagram showing the contents of an iteratively
computed block cipher interleaving two cipher executions, for the computation
of f0 and f1 on both states. The grey highlight underlines the only transition
requiring random precharging to remove leakage to non-profiled attacks

estimating the full covariance matrices of the profiles, in turn
allowing the use TAs as our security gauge.
Feature Selection. A concrete way to improve the overall
Signal-to-Noise Ratio (SNR) of the traces employed in both
the modeling and exploitation phase is to perform a feature
selection pass. Feature selection is performed either keeping
only the samples of a trace in time instants where the SNR
is high (known as points of interest (PoIs)), or combining
together the trace points to obtain synthetic values with higher
SNR. The first approach requires to compute either the SNR
or an equivalent score for each time instant. To this purpose,
Bhasin et al [23] proved that the use of the Normalized Inter-
Class Variance (NICV) index is a low computational footprint
method to detect PoIs for which it holds NICV = 1/(1+ 1

SNR).
A score similar to NICV, widely used, albeit not directly
relatable to the SNR is the Sum Of Squared T (SOST)
differences proposed by [24], deriving its name to the relation
with the score of Student’s test. The algorithm considered to be
the most effective in the literature for the second approach is
the Principal Component Analysis (PCA). PCA considers the
samples within a trace as a set of interrelated random variables,
and aims to reduce their number while retaining the informa-
tion included in their variation. This is done transforming the
original data into a new set of variables, known as principal
components, which are mutually uncorrelated, and sorted in
decreasing order of their variation. This linear transformation
has the potential to single out into few components the signal
variation due to the computations, decoupling it from the
signal variation due to signal-independent additive noise.

III. PROPOSED ARCHITECTURE

We describe the principles of our countermeasure relying
on introducing algorithmic noise in the side channel signal,
interleaving in time two computations of a block cipher. We
define the reference computation pattern of a block cipher with
iterative structure. Subsequently, we define the properties that
our countermeasure will fulfill, and detail the realization with
AES-128/-256 as a case study.

10

AES comp. combinatorial

10

10 1 0

Fig. 2. Architectural view of of a single CIU unit for AES

A. SCA Countermeasure Strategy

Definition 1 (Reference computation pattern of an iteratively
computed block cipher): An iteratively computed block cipher
is realized through the execution of a sequence of n > 0
Boolean functions f0(·), . . . , fn−1(·), each of which is applied
in a single clock cycle to a binary string S known as the
cipher state. Therefore, function fi+1(·) takes as input the
output value of fi(·), 0 ≤i≤n−2. The sequential application
of the n functions is logically organized into r rounds, each of
which may prescribe the application of a different number of
functions. One or more functions per round take as additional
input the bitstring corresponding to the so-called round keys:
k, k.1, k.2, . . . k.r, which are in turn prescribed by the
KEYSCHEDULE algorithm of the cipher, starting from the
user key k. We will denote the states traversed by a cipher
computation as Si,k, where i is an integer matching the one of
the Boolean function to be applied next, and k is the user key
bound to the current computation of the cipher. The states S0,k
and Sn,k denote the initial input and the final output state when
employing the user key k (i.e., the plaintext/ciphertext pair in
an encryption computation). The Si,k values are stored in a
memory element, which we denote as reg: its contents drive
the datapath containing the combinatorial implementations of
the Boolean functions at each function computation.
Secure Design Properties. To obtain the desired effect of
blending data dependent noise into the computation of a block
cipher as per Definition 1, and providing protection against
first-order side channel attacks, we interleave two block cipher
computations acting on the same plaintext and on two different
keys, k, and k′. While k is the actual user key, k′ is derived
from a device-dependent computation such that: i) given k
it is not feasible for an attacker to derive k′, ii) if k is
generated as uniformly distributed over {0, 1}|k|, then so is
k′. Such a key generation can be obtained either using k as a
challenge for a strong PUF, which emits k′ as a response, or
feeding k as the key to be refreshed into an LWPE protected
key refreshing mechanism [8], where the secret parameter of
the LWPE module acts as the device- dependent component.
Considerations on the most efficient strategy to implement the
derivation of k′ given k are out of scope for this work.

We consider an interleaving of two block cipher compu-
tations on the same datapath, thus requiring the duplication
of the state-value-holding register. We will denote the two
registers holding the states as rega and regb. To achieve the
effectiveness of our countermeasure, the architectural inter-
leaving realization should respect the following properties:
Property 1 (P1): the order in which any given function fi
is sequentially applied to Si,k and Si,k′ must be randomized,
as doing otherwise would allow an attacker to easily separate
their contribution in time
Property 2 (P2):it must never hold that two subsequent states
of the same cipher computation, e.g., Si,k and Si+1,k, are
stored one after the other in the same register, as this would
result in a first-order non profiled attack vulnerability from the
register switching activity;
Property 3 (P3):each combinatorial Boolean function in the
datapath should never be driven by two subsequent values of
the computation of the same cipher, e.g., Si,k and Si+1,k, in
two consecutive clock cycles, as this would result in a first-
order non profiled attack vulnerability from the combinatorial
logic switching activity.
Computation Interleaving Unit. We design a Computation
Interleaving Unit (CIU) so that it enjoys the aforementioned
properties, while minimizing the number of involved registers.
A simplified timing diagram of the hardware unit behaviour
is depicted in Fig. 1. First of all, fulfilling P1 requires that the
order in which fi(Si,k) and fi(Si,k′) are computed is randomly
chosen: we therefore employ a RNG to select which one of
the two computations is performed first. We note that every
other computation of fi is uniquely determined: if fi(Si,k)
was computed first, fi(Si,k′) will be computed afterwards and
vice-versa. This requires one random bit every two cycles.

Fulfilling P2 is achieved by our design taking care of alter-
nating which computation is being stored in a given register
at each clock cycle. This is achieved with two fixed update
rules, depending on which computation between fi(Si,k) and
fi(Si,k′) goes first. In particular, if fi(Si,k) is selected to be
the first computation (left timing diagram in Fig. 1), rega
is filled with the contents of regb, i.e., Si,k′ , while regb
receives the result of fi(Si,k) = Si+1,k. The same update
rule is applied again during the subsequent computation of
fi(Si,k′), bringing back the computation on k in rega, and the
one on k′ in regb. If fi(Si,k′) is the first one to be computed
in the computation of fi (as in the computation of f1 in the
right timing diagram in Fig. 1), the destination registers in the
previous rule are swapped, yielding the behaviour depicted
in clock cycles 2 and 3 in the right diagram of Fig. 1.
As a result, regardless of the order being chosen for the
computation of fi(Si,k) and fi(Si,k′) no register experiences
a transition from a value of the computation on k and a
value of the computation on k′ directly, thus resulting in
a switching activity (and information transmission) always
depending on both computations preventing first-order non-
profiled leakage. The correctness of the strategy can be easily
observed considering all fis identity functions. In this case,
the alternating rule just keeps on swapping the contents of

rega and regb, which start by containing states belonging to
different computations.

Finally, willing to fulfill P3, we analyze the behaviour of
our CIU for two subsequent fi, fi+1 computations. Figure 1
reports two of the four possible sequences of computations
for fi and fi+1, namely the one where the same ordering
between the computation on k and on k′ takes place both for
fi and fi+1 (left) and the one where opposite orderings are
selected (on the right). We note that the same line of reasoning
we now follow applies to the remaining two cases thanks
to the symmetry of the operating logic: they correspond to
a simple renaming of the keys. Observing the sequence of
values driving the combinatorial component which computes
fi (fourth row from top of the timing diagram) we note that
P3 is violated whenever the last state on which fi is computed
belongs to the same computation of the first state on which
fi+1 (highlighted in grey in Fig. 1). Preventing this unwanted
violation by restricting the possible sequences of computations
is not possible, as it would imply violating P1. We solve this
issue adopting a strategy from the random precharging coun-
termeasure. Random precharging consists in briefly driving
the inputs of either combinatorial cones or write lines of a
register with random values, before actually driving them with
relevant values. This causes an uncorrelated switching activity
for the component, removing first-order leakage. In our case,
we precharge the combinatorial component with the contents
of regb whenever the first computation of a pair is the one on
k′ and with rega otherwise. This precharging has no adverse
effect when P3 is not violated, while it actually removes the
P3 violation whenever happening.

B. Architectural Countermeasure Design

We now consider a concrete implementation of a CIU,
taking as our case study the AES-128/-256 block cipher. AES-
128 (equiv. AES-256) is composed of r = 10 (equiv. r = 14)
rounds, of which the first 9 (equiv. 13) have the same structure,
while the last round computes a different function. The r
rounds are preceded by a single addition of the first round
key, via xor, to the plaintext. As our CIU design is generic, we
chose the same unprotected AES implementation as the one
of Scramble Suit, as it is both compliant with Definition 1,
and allows a fair comparison. This implementation considers
each one of the r rounds of AES as split into five functions
each: the first four compute the SUBBYTES transform on
four state bytes at once, while the last function computes
all the remaining AES round primitives (SHIFTROWS, MIX-
COLUMNS and ADDROUNDKEY) as a single combinatorial
net. The key addition before the first round is treated as
the first Boolean function f0 to be computed, while the last
function of the last AES round omits the MIXCOLUMNS
as prescribed by the standard. Figure 2 reports the structure
of our CIU unit, omitting the control signals, which select
which AES fi function is to be computed depending on the
round counter for the sake of clarity. The design relies on
the value of a single RNG bit driving the selection of which
computation should be performed, in combination with a

TABLE I
FPGA RESOURCE USAGE, WITH AND WITHOUT THE RESOURCES FOR THE
SCRAMBLING KEY GENERATOR. RESOURCES ARE SHOWN AS ABSOLUTE
VALUES AND PERCENTAGES OF THE ENTIRE DEVICE RESOURCES, WITH

THE FREQUENCY (f) AND THE CRITICAL PATH SLACK (CPS)

Circuit Scrambling LUTs FFs f CPS
key gen. No. (%) No. (%) (MHz) (ns)

plain AES-128/-256 – 3, 997 (6.3 %) 3, 392 (2.9%) 100 0.85

Our AES-128/-256 × 5, 938 (9.4 %) 5, 644 (4.5%) 100 0.12
1 CIU unit ✓ 7, 690 (12.1%) 8, 629 (6.8%) 100 0.24

Our AES-128/-256 × 12, 022 (18.9%) 11, 207 (8.8%) 95 0.66
2 CIU units ✓ 17, 189 (27.1%) 18, 610 (14.7%) 95 0.68

Our AES-128/-256 × 25, 828 (40.7%) 22, 831 (18.0%) 85 0.44
4 CIU units ✓ 38, 357 (60.5%) 38, 565 (30.4%) 85 0.48

plain AES [6]
– 8, 700 (18%) 3, 081 (3%) 48 1.72Spartan 6 FPGA

AES-128 Encryption only

Scramble Suit [6]
× 11, 201 (24.0%) 5, 464 (5.0%) 48 3.70Spartan 6 FPGA

AES-128 Encryption only

single-bit counter, is second half, to select both the driving
value for the combinatorial path, and the location into which
the result should be stored. The precharging required to fulfill
P3 is performed acting on the control of the topmost mux of
Fig. 2, so that the AES combinatorial logic is driven by the
correct register. The plaintext S0,k = S0,k′ is loaded with a
dedicated path, which is only enabled at the beginning of the
computation to avoid potential glitches in the multiplexer at
the end of the AES fi combinatorial component.
Adding Spatial Redundancy. Given the depicted CIU design,
it is possible to scale-out the amount of device dependent side
channel distortion introduced by means of multiple CIU units
running in parallel. All but one of the computations being
performed in this case will be employing keys generated from
a user key, and a separate PUF/device dependent key generator.
To prevent an attacker from separating the contribution of the
parallel CIU units, the mapping of the computations onto the
CIU modules is randomized after each AES execution. To
achieve this, a register keeping the locations of the current
computations is generated at synthesis time, fitting the number
of CIUs. The indexes contained in it are randomized em-
ploying a modified bitonic sorting network, which, instead of
comparing the index values, employs a randomly generated bit
as the comparison outcome. The sorting network architecture
allows us to compute a random permutation in a single clock
cycle. This in turn raises the randomness requirement by 2 bits
per AES computation, if two CIUs are present, and by 4 bits
per computation with four CIUs, in addition to the baseline
cost of 0.5 per clock cycle for each CIU to fulfill P1.

IV. EXPERIMENTAL RESULTS

We chose as target platform the Digilent Arty A7 board,
based on the Xilinx Artix-7 A100 (xc7a100tcsg324-1)
FPGA. We implement our countermeasure in the SystemVer-
ilog HDL, performing a classic manual design of the CIU,
with a controller-datapath structure. We employ the on-board
100 MHz quartz oscillator for clock generation, performing
both the synthesis and implementation of our SystemVerilog
design with AMD/Xilinx Vivado HLx 2020.2.

TABLE II
COMPARISON OF MULTIPLE STATE-OF-THE-ART FIRST-ORDER MASKING
IMPLEMENTATIONS AND OUR WORK. WE REPORT THE AREA OVERHEAD

WITH RESPECT TO THE UNPROTECTED IMPLEMENTATION AS PERCENTAGE,
THE RANDOMNESS PER CLOCK CYCLE AND THE CLOCK LATENCY.

Countermeasure Datapath Area Randomness Clock
approach width overhead(%) (bit/clock cycle) cycles

De Cnudde et al. [9] 8 256 54 276
De Meyer et al. [10] 8 219 19 256
Shahmirzadi et al. [11] 8 274 1 246

Our work 32 66 0.5 102

We instructed Vivado with the following directives. Syn-
thesis phase: keep equivalent registers, avoid resource sharing
and no hierarchy flattening; implementation phase: explore
optimization directive. We avoided BRAMs in our design with
the intent of providing a design which may be fit both on
FPGAs and ASIC targets alike, as we have no requirements for
large memories. Our choice directly exposes the cost for the
memory elements as FFs in table Table I. All our designs were
tested for functionality deploying the bitstream on the actual
FPGA. Our AES design includes encryption, decryption, and
key scheduling for both 128 and 256 bit key sizes with the
same design. To perform our evaluation we implemented two
ancillary components: the scrambling key generator, and a
RNG. The scrambling key generator is realized with an AES
component taking as plaintext the user key, and employing
as device-specific element a fixed key for each instance. The
RNG is built with a 32b long LFSR with maximum period.

Table I reports the required resources and attained working
frequency of our design. A single CIU protected design re-
quires 48% more LUTs and 66% more FFs than its unprotected
counterpart, while reaching the same working frequency (100
MHz). To provide an overview on the efficiency of our
approach, Table II provides a comparison with the state-of-the
art results in masking countermeasures, providing protection
against both profiled and non-profiled attacks. All the reported
masking schemes have an area overhead in the 219% –
274% range, i.e., three to four times higher than our solution.
Comparing the requirements on the random number generator,
we note that our CIU approach has a 38× – 104× lower
pressure than traditional masking schemes such as the ones
of [9] and [10], and is also able to halven the requirements with
respect to masking schemes designed to employ the minumum
amount of randomness such as [11]. Finally, we note that
our CIU based design allows us to realize a 32-bit datapath
AES engine with less resources than the masked counterparts,
in turn obtaining a better latency with respect to the 8-bit
datapaths employed in designs in Table II.

Multiple-CIU designs scale almost linearly in resource
demands, with the 4 CIU design requiring little less than twice
the resources of a 2 CIU design. The higher resource gap
between a single CIU design and a multiple one is due to
the external randomization structure distributing computations
across CIUs. No direct comparison can be made with [6], due
to target device differences: Scramble Suit [6] is implemented
with Xilinx ISE on a Spartan-6 XC6SLX75-2 FPGA, which is

10 20 30 40 50 60 70 80 90 100
0

2

4

6

Number of traces (×103)

C
or

re
la

tio
n

C
oe

ff
.(
×
1
0
−
2

)

MTD GE=0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

2

4

6

Number of traces (×103)

C
or

re
la

tio
n

C
oe

ff
.(
×
1
0
−
2

)

Fig. 3. Non-profiled CPA against an unprotected (left) and protected implementation (right): correlation coefficient as a function of the number of traces.
Measurements to disclose for the unprotected implementation (99.9% confidence level): 15k, blue line; amount of traces where the GE is null for all 5
experiments: 20k, green line. For the protected implementation 5M traces do not allow the CPA to succeed; GE > 0 in 20 experiments with 250k traces

not supported by Vivado. However, we note that we obtain a
lower overhead in FFs (66% vs 77%), while Scramble Suit [6]
achieves a better margin with respect to LUTs usage(28% vs
48%). We also note that the combinatorial logic of the base
design in Scramble Suit appears to have been less optimized by
ISE, as the critical path slack of the protected implementation
is twice as high as the one of the unprotected one. The gap in
the FF usage between us and Scramble Suit is to be ascribed
to the longer keyschedule required by AES-256. Finally, that
our design achieves roughly twice the working frequency of
Scramble Suit (albeit on a newer FPGA model).
Experimental workbench. We validate the effectiveness of
our countermeasure collecting EM emission traces with a
100A Beehive near-field probe placed on top of the Artix-7
A100 package front. The signal is amplified via two cascaded
Agilent INA-02186 (31.5 dB gain each) and measured by
a Picoscope 5244D DSO sampling at 500 Msamples/s. The
trigger signal for the oscilloscope is generated driving a GPIO
pin of the Arty board. To avoid signal pollution due to the
EM emissions of the GPIO lines, we employed a hardware
counter to delay the start of the computation by a fixed
amount of cycles. We experimentally observed a perfect trace
alignment at 500 MSamples/s and no visible clock jitter. For
each one of our design instantiations (1, 2 and 4 CIUs), we
synthesized three different bitstreams (labelled as a,b, and c
in the following), randomly generating the device-dependent
keys employed in the scrambling key generation unit.
Non-profiled attack security validation. We collected 5M
measurements for each bitstream and performed a CPA. We
employed as a synthetic model the Hamming distance between
the first byte in input to the first SUBBYTES primitive and the
output byte of the same SUBBYTES, matching the switching
activity of the unprotected state register. Figure 3 reports the
results of the CPA against the unprotected baseline (left) and
the 2-CIU design, bitstream a (right). The MTD value for
the unprotected design is 15k traces, considering a 99.9%
confidence in the correlation of the correct key being the
highest. By contrast, performing a CPA on the protected
implementation does not disclose the key value even when all
the 5M traces are employed, thus yielding a > 333× increase
in the MTD metric. The same results are achieved on all
protected bitstreams, we omit the figures for space reasons.
Concerning the security evaluation with the GE metric, we

performed CPA attacks with single key byte hypothesis: we
thus have that the possible values taken by the GE are
between 0 (successful attack) and 255 (the correct key is
systematically reported with the lowest rank). We note that
uniformly randomly drawn key-ranks in our scenario (i.e.,
the result of a perfectly unsuccessful attack) have a GE of
127.5, with a standard deviation for the key rank of 73.61.
We report that the GE obtained performing 5 experiments (i.e.,
CPAs) on the unprofiled device, each one with 20k traces is
0 with standard deviation 0, i.e., all attacks are systematically
successful. Conducting 20 CPAs, each one with 250k traces
each on our single-CIU protected device, we obtain a GE of
129.9, with a standard deviation of the key rank equal to 68.62
(with negligible variance across the three single CIU devices).
Profiled attack security validation. We evaluate the re-
sistance against profiled attacks employing TAs, and four
different feature reduction approaches: sample selection with
the maximum SOST/NICV score, PCA, and taking all the
samples. We note that the only obstacle to template portability
in our setup is our countermeasure: the setup employed to
collect traces is untouched between different collections, no
clock jitter or misalignment is present, we verified the absence
of DC drift due to thermal effects, and no process-variation
is present as we employ the same Arty A7 board to record
all the measurements. For all device instances, we build
two device profiles, selecting the first round key bit as the
target of our attack, employing 2k traces to build the device
profile. We build multi-device models computing the profiles
from the interleaving of 2k traces for each protected device
instance pair. Subsequently, we classify 20k traces (none in
common with the set used in the modeling phase) coming from
different device instances. Table III reports the outcome of
both single- and multi-device model TA results. TAs succeed
with perfect accuracy against the unprotected device instance,
while they obtain an accuracy in the 47.9%–51.7% range for
all protected implementations, regardless of the use of a single-
device model or an MDM. This provides strong evidence of
the non-effectiveness of TAs against our countermeasure, as
the fluctuations around the accuracy of a random guess are
within a range of plausibility for statistical artifacts. Table III
reports the effectiveness results against TAs of Scramble Suit:
we achieve the same effectiveness, as it can be noticed by
the small fluctuations in the results of Scramble Suit (when

TABLE III
CLASSIFICATION ACCURACY OF TAS VS. AN UNPROTECTED (u) AND 3

PROTECTED DEVICES (a,b, c) WITH 1, 2 AND 4 CIU EACH. MOD. IS THE
DEVICE(S) EMPLOYED TO BUILD THE PROFILE; EXP. LISTS ATTACKED

ONES. TEMPLATES WITH 2K TRACES; ATTACKS PERFORMED AGAINST 20K
TRACES PER DEVICE. RESULTS FROM [6] FOR COMPARISON

No. of Mod. Exp. Accuracy of TA with feature selection (%)
CIU None NICV SOST PCA

0 u u 100.0 100.0 100.0 100.0

1

a b, c 47.9, 49.4 50.3, 49.9 49.7, 50.1 49.9, 50.4
b a, c 48.7, 50.0 50.5, 49.1 50.2, 51.3 49.9, 50.0
c a,b 49.9, 49.9 49.9, 50.1 50.0, 50.0 50.0, 50.0
ab c 50.1 49.7 48.5 49.8
bc a 49.2 48.3 50.2 50.0
ac b 49.1 49.3 50.1 50.0

2

a b, c 50.1, 50.1 50.2, 49.6 50.7, 50.5 50.0, 50.0
b a, c 50.7, 50.5 50.0, 49.9 50.2, 49.7 50.0, 50.0
c a,b 50.2, 49.9 49.7, 50.1 49.5, 49.8 50.0, 50.0
ab c 50.1 48.8 50.1 50.0
bc a 49.7 50.0 51.0 49.9
ac b 50.1 49.3 49.6 50.0

4

a b, c 49.8, 51.7 50.3, 50.4 51.1, 49.9 48.7,50.0
b a, c 49.2, 48.8 49.9, 49.2 50.8, 50.0 49.8,50.0
c a,b 50.9, 50.3 49.6, 50.0 49.2, 49.7 50.0,49.8
ab c 49.0 50.0 49.8 50.0
bc a 49.8 49.2 49.9 49.7
ac b 50.1 50.1 50.4 49.9

Scramble a a n.a. n.a. 98.5 100.0
Suit b b n.a. n.a. 50.3 93.5
[6] a b n.a. n.a. 50.0 50.2

(1 equiv. CIU) b a n.a. n.a. 50.0 50.0

employing their best feature selection approach, PCA). We
note that, in our scenario where single-bit (i.e., two-class)
template attacks are performed, the Guessing Entropy and the
accuracy scores coincide. Indeed, computing the GE in our
template attacks (with the possible key ranks being only 0
and 1) yields 0.5 as the average rank.
Security scalability. While our solution with a single CIU
already withstands first-order non-profiled and profiled attacks,
as multi-CIU designs do, we note that adding multiple CIU
units further increases the inter-virtual device distance between
the profiles. To provide quantitative substantiation to this
claim, we computed the Euclidean distance between the mean
vectors of the templates for our virtual devices. Increasing
the number of CIUs increases the Euclidean distance between
the means of the templates by ≈ 50%. To put this increase
in perspective, we report that the Euclidean distance between
two means of the templates of the same device with different
key values is roughly 10× smaller than any of the distances
between the means of the templates coming from different
devices with a single CIUs. As a consequence, we have that
devices with two CIUs have profiles which are 15× farther
apart than the distance caused by key values, while devices
with 4 CIUs have template means which are ≈ 33× farther
apart than the distance caused by the key values.

V. CONCLUDING REMARKS.

We presented a SCA countermeasure proving it robust
both against single/multi device model TAs and non-profiled
attacks. Our countermeasure yields a ≥ 333× increase in the
MTD metric vs. an unprotected implementation, and results in
TAs having an ≈ 50% accuracy in retrieving a correct key bit.
Our solution provides a less expensive alternative, when put

in the ballpark of masked implementations. In particular, we
obtain a 66% area overhead, comparing favourably with the
219% – 274% overheads of masking countermeasures [9]–
[11], and require 38× to 104× less RNG throughput w.r.t.
traditional masking schemes [9], [10], and 2× less RNG
throughput w.r.t. the state-of-the-art [11].

REFERENCES

[1] M. A. Elaabid and S. Guilley, “Portability of templates,” J. Cryptogr.
Eng., vol. 2, no. 1, 2012.

[2] D. P. Montminy, R. O. Baldwin, M. A. Temple, and E. D. Laspe,
“Improving cross-device attacks using zero-mean unit-variance normal-
ization,” J. Cryptogr. Eng., vol. 3, no. 2, 2013.

[3] O. Choudary and M. G. Kuhn, “Template Attacks on Different Devices,”
in COSADE 2014, ser. LNCS, vol. 8622. Springer, 2014.

[4] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-DeepSCA: Cross-Device Deep Learning Side Channel Attacks,” in
DAC 2019. ACM, 2019.

[5] S. Bhasin, et al., “Mind the Portability: A Warriors Guide through
Realistic Profiled Side-channel Analysis,” in NDSS 2020. The Internet
Society, 2020.

[6] A. Barenghi, W. Fornaciari, G. Pelosi, and D. Zoni, “Scramble Suit:
A Profile Differentiation Countermeasure to Prevent Template Attacks,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 39, no. 9,
2020.

[7] R. Maes and I. Verbauwhede, “Physically Unclonable Functions: A
Study on the State of the Art and Future Research Directions,” in
Towards Hardware-Intrinsic Security. Springer, 2010.

[8] D. Bellizia, C. Hoffmann, D. Kamel, P. Méaux, and F. Standaert, “When
Bad News Become Good News Towards Usable Instances of Learning
with Physical Errors,” IACR TCHES, vol. 2022, no. 4, 2022.

[9] T. De Cnudde, O. Reparaz, B. Bilgin, S. Nikova, V. Nikov, and
V. Rijmen, “Masking aes with shares in hardware,” in CHES 2016, Santa
Barbara, CA, USA, August 17-19. Springer, 2016, pp. 194–212.

[10] L. De Meyer, O. Reparaz, and B. Bilgin, “Multiplicative masking for
aes in hardware,” IACR TCHES, pp. 431–468, 2018.

[11] A. R. Shahmirzadi and A. Moradi, “Re-consolidating first-order masking
schemes: Nullifying fresh randomness,” IACR TCHES, 2021.

[12] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a
Leakage Model,” in CHES’04, ser. LNCS, vol. 3156. Springer, 2004.

[13] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F. Standaert, and N. Veyrat-
Charvillon, “Mutual Information Analysis: a Comprehensive Study,” J.
Cryptol., vol. 24, no. 2, 2011.

[14] A. Heuser et al., “Good Is Not Good Enough - Deriving Optimal
Distinguishers from Communication Theory,” in CHES’14, ser. LNCS,
vol. 8731. Springer, 2014.

[15] E. de Chérisey, et al., “Best information is most successful mutual
information and success rate in side-channel analysis,” IACR TCHES,
vol. 2019, no. 2, 2019.

[16] M. Rivain, “On the Exact Success Rate of Side Channel Analysis in the
Gaussian Model,” in SAC 2008, ser. LNCS, vol. 5381. Springer, 2008.

[17] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for
side-channel evaluations,” IACR TCHES, vol. 2019, no. 1, 2019.

[18] J. Coron, D. Naccache, and P. C. Kocher, “Statistics and secret leakage,”
ACM Trans. Embed. Comput. Syst., vol. 3, no. 3, pp. 492–508, 2004.

[19] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in CHES’02,
ser. LNCS, vol. 2523. Springer, 2002.

[20] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking Cryptographic
Implementations Using Deep Learning Techniques,” in SPACE 2016,
ser. LNCS, vol. 10076. Springer, 2016.

[21] E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks with
Data Augmentation Against Jitter-Based Countermeasures - Profiling
Attacks Without Pre-processing,” in CHES’17, ser. LNCS, vol. 10529.
Springer, 2017.

[22] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make Some
Noise. Unleashing the Power of Convolutional Neural Networks for
Profiled Side-channel Analysis,” IACR TCHES, vol. 2019, no. 3, 2019.

[23] S. Bhasin, et al., “Side-channel leakage and trace compression using
normalized inter-class variance,” in HASP 2014. ACM, 2014.

[24] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. Stochastic
Methods,” in CHES’06, ser. LNCS, vol. 4249. Springer, 2006.

