
 

Permanent link to this version 

http://hdl.handle.net/11311/1230206 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
A. Capannolo, G. Zanotti, M. Lavagna, G. Cataldo 
Model Predictive Control for Formation Reconfiguration Exploiting Quasi-Periodic Tori in the 
Cislunar Environment 
Nonlinear Dynamics, published online 02/01/2023 
doi:10.1007/s11071-022-08214-8 
 
 
 
 
 
This is a post-peer-review, pre-copyedit version of an article published in Nonlinear 
Dynamics. The final authenticated version is available online at: 
https://doi.org/10.1007/s11071-022-08214-8 
 
Access to the published version may require subscription. 
 
 
  
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Model Predictive Control for formation

reconfiguration exploiting quasi-periodic tori
in the cislunar environment

Andrea Capannolo1*, Giovanni Zanotti1, Michèle Lavagna1 
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Abstract

Given the numerous possibilities that formation flying space missions can
enable, being able to design and govern relative trajectories in this sce-
nario is fundamental. Particularly interesting, due to the installation and
operation of the Lunar Gateway, which will represent the next human
outpost in the cislunar environment, will be the exploitation of forma-
tion flying missions in the vicinity of this lunar station. The nonlinear
dynamics by which the Earth-Moon system is characterised offers the
possibility to find bounded relative trajectories which can be used to
design the formation. In order to best exploit the formation potential,
some reconfiguration manoeuvres can be used, which by changing the
relative geometry can increase the versatility and adaptation of the mis-
sion. In this paper, a Model Predictive Guidance and Control strategy is
proposed and applied to perform rephasing manoeuvres in the harsh envi-
ronment of the Near Rectilinear Halo Orbits. By including first a limited
thrust constraint and then a collision avoidance, a more mission-oriented
approach is provided to the system. To further increase the robustness
of the on-board algorithms, an adaptive logic is provided to the differ-
ent tuning weights involved in the Model Predictive Control scheme. In

1



2 Article Title

this way, a more flexible s ystem i s o btained, w hich i s c apable o f opti-
mally working also in the presence of a high-fidelity simulation scenario, 
including discrepancies with the simplified o n-board d ynamical model.

Keywords: Formation Flying, multi-body gravitational dynamics,
Quasi-periodic Tori, Model Predictive Control

1 Introduction

In the space research community, a strong interest has always been posed to the
relative dynamics of two objects flying in close proximity. Indeed, this peculiar
dynamical condition applies to a large number of mission scenarios, including
both multiple cooperating spacecraft and a single probe orbiting a different
uncooperative object, such as a small solar system body or a space debris. In
the recent years, however, this kind of operational conditions keeps becoming
more and more interesting, due to the vast possibilities that are unleashed
by the exploitation of smaller, thus cheaper, spacecraft working and acting
together as agents of a constellation [1] or formation [2–4]. Employing a fleet
of flying objects is advisable for many different scientific or Earth Observation
purposes, due to the possibility of exploiting stereo-vision with the possibility
to control and adapt the relative distance. To benefit from such high versatility,
the on-board avionics shall be capable of handling the complexities that the
harsh environment poses to the system.

The dynamics governing the relative position and velocity between two
objects orbiting in the same gravitational field can be expressed in many dif-
ferent fashions and during the years various models have been used, with an
increasing level of complexity. Starting from the very first Clohessy-Wiltshire
linearised model [5] presented in the sixties for rendez-vous guidance for-
malisation and going to the full nonlinear model with the effects of Earth
non-spherical gravity field as in [6], it becomes more and more difficult to
develop algorithms to synthesize controlled trajectories. Moreover, if the two
flying objects are located in a multi-body gravitational regime, the complexity
is further exacerbated, due to the chaotic nature of the dynamical system [7–
9] for which small deviations in the initial conditions of a spacecraft grow
exponentially, leading to completely different outcomes.

A very challenging space mission scenario that has been brought into
attention during the last decade is the Lunar Orbital Platform – Gateway
(LOP-G) [10], which will be a human outpost in the cislunar environment. The
lunar Gateway will fly a Near Rectlilinear Halo Orbit (NRHO) which has been
deemed the most suitable environment for its extremely high performances
in terms of stability. Relative dynamics in this multi-body gravitational envi-
ronment has been directly addressed only recently (see e.g., [11]), where the
trajectory analysis to perform rendez-vous with the LOP-G has been stud-
ied deeply. Additional possibilities to be investigated concern the exploitation
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of the quasi-periodic motion provided by the N-dimensional relative invariant
tori, which provide a region in the phase space that remains bounded. In such a
way it is possible to exploit the nonlinear dynamics to keep a stable formation
naturally [12, 13].

In order to exploit such interesting features of this environment in a real
mission scenario, given also the high sensitivity of the nonlinear dynamical
system to the initial conditions, it is fundamental to employ specific on-board
algorithms able to cope with the complex dynamics. The recent advancements
in Guidance Navigation and Control in this environment (see [14, 15]) went
in the direction of increasing the spacecraft autonomy. This topic is indeed
fundamental to provide additional flexibility and versatility to space missions,
increasing the performances and responsiveness of the agents while reducing
the operational costs.

The goal of the paper is to provide a cost effective guidance and con-
trol strategy to perform reconfiguration manoeuvres, or rephasing, of a chaser
spacecraft around a target, with specific application to the Lunar Gateway
scenario. First, a scheme is built to target and move between natural rela-
tive trajectories around the Gateway orbit, exploiting the peculiar features
of quasi-periodic invariant tori. Then, the design of the guidance and control
scheme is tackled. To choose the most suitable strategy, importance is put
on the three concepts of speed (computationally light algorithms), optimality
(cost effective transfers), and robustness (against model errors).

The guidance law main objective is to determine the necessary trajectory
and its potential correction to successfully arrive at the target position or orbit.
In some specific cases, when the orbital transfer relies on ground optimization
of impulsive maneuvers, a simple guidance algorithm with strong flight heritage
is represented by the bi-impulse guidance or Fixed Time of Arrival (FTOA),
where the control action is determined to target and reach a specific point
in a given Time-of-Flight (TOF). This approach has the advantage of being
computationally light, as it does not require any closed loop logic, and has
also a high flight heritage; however, it relies on linearized models and assumes
impulsive manoeuvres, thus limiting the range of possible applications. Because
the resulting control action is trivial, it does not necessitate any feedback
control algorithm, other than the actual execution of the thrusting action for
the small time window envisioned by the guidance.

In case of continuous or quasi-continuous control across the transfer arcs,
a different approach must be adopted. The typical approach is the on ground
computation of a reference trajectory, which is then targeted by the on-board
controller. A very common type of on-board scheme is represented by the Pro-
portional Integrative Derivative controller (PID). This kind of strategy relies
as well on linearized models, but possess also good reliability and versatility.
In turn, the scheme does not rely on an optimality-driven approach, hence the
overall cost tends to be higher than other more recent techniques.

Indeed, control techniques can embed the mathematical description of the
dynamical model (or parameters related to it), to approach a more optimal
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solution. Among them, well known controllers are the Linear Quadratic Regu-
lators (LQR) [16] and the Floquet-Based Controllers [17]. The aforementioned
controllers, although computationally light, rely on linear expression of the
dynamics, preventing their usage in case of wide formations (where dynamics
nonlinearities can be detected from spacecraft to spacecraft). A well-known
scheme to deal with nonlinear dynamics is represented by Sliding Mode Con-
trol, which demonstrated to be also a robust approach if properly designed [18].
Nevertheless, it typically provides non-optimal solutions, leading to overall
higher costs. Recent studies explored the concept of zero-effort-miss/zero-
effort-velocity (ZEM/ZEV) controller which has been successfully employed
for optimal spacecraft formation control. The main drawbacks are the loss of
optimality in non uniform gravitational fields [19], and the lack of parame-
ters to tune (reducing the adaptation margins to different scenarios). A good
compromise is represented by the State Dependent Riccati Equation (SDRE)
controller [20], where a linearization at each time step allows to leverage the
LQR formulation and approach its optimality, while limiting the increase of
computational cost. Previous studies showed that this approach leads to very
good results in the scenario under study, especially when introducing adap-
tive weights of the cost function [21]; however, the study did not explore the
sensitivity to errors with respect to the on-board dynamical model. Further-
more, the scheme itself does not allow a direct implementation of state and/or
control constraints.

For these reasons, the paper introduces a Model Predictive Guidance and
Control scheme (MPC). Although computationally heavier, the computational
cost is mitigated by recasting the problem in the form of a Quadratic Pro-
gramming (QP) problem. The new scheme is tested in the same fashion of
the SDRE, comparing adaptive and non-adaptive weights in the cost function,
and measuring the performance variation in presence of state-input constraints
(maximum thrust level and collision avoidance between the spacecraft). The
new controller’s performance is also compared with the ones of the SDRE,
assuming a perfect knowledge of the dynamical environment. Then, a high
fidelity model is introduced to assess the robustness properties of both schemes,
and identify the best controller for the studied scenario.

The paper is structured as follows. Section 2 briefly describes the dynamical
model, the methodology to develop quasi-periodic tori in such framework, and
the operative scenario selected for the study. Then, Section 3 presents the
overall guidance and control scheme, and describes the derivation of the MPC
and its constraints in quadratic and linear form respectively. The results of
the analyses are presented in Section 4 for what concerns the influence of the
constraints, and in Section 5 for the assessment of robustness in the high-
fidelity dynamical model. Finally, critical analysis and comments about the
study and its results are drawn in Section 6.
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2 Formation Design

This section introduces the models and methods for the design of the reconfig-
urable formation. The study considers a leader-follower formation type in the
Earth-Moon binary system, taking the Lunar Gateway and the Orion capsule
as spacecraft. To build the formation, the approximated model of the Circular
Restricted Three-Body Problem (CRTBP) is adopted (Section 2.1), such that
periodic and quasi-periodic natural motion can be easily identified. Then, it is
assumed that the main spacecraft (Gateway) is located on a periodic orbit, and
that the Orion capsule flies in formation around it, on a quasi-periodic natu-
ral motion described in the CRTBP as Quasi-Periodic Invariant Tori, or QPT
(Section 2.2). The operative orbit and QPT are then obtained and described
in Section 2.3.

2.1 CRTBP Dynamics

The design of trajectories to host the formation is based on the Circular
Restricted Three-Body Problem (CRTBP) [22], as it provides an autonomous
dynamics system, not explicitly dependent on time. This allows one to eas-
ily define continuous families of periodic and quasi periodic natural motion.
When switching to more accurate models, such trajectories are not natural
anymore, but the deviations will be small enough to require a limited station-
keeping effort. The CRTBP predicts two massive attractors describing circular
orbits around their center of mass. The third body (in this case, the space-
craft) is assumed to have a considerably lower mass not to interfere with the
natural motion of the massive bodies. With these assumptions, the equations
of motion (properly made non-dimensional according to the attractors’ mass,
distance and characteristic time) read:

ẍ− 2ẏ = Ux

ÿ + 2ẋ = Uy

z̈ = Uz

(1)

where the right-hand side terms are the spatial derivatives of a pseudo-
potential function U , defined as:

U =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
(2)

with µ = m2

m1+m2
being the ratio between the smaller attractor of the binary

system, and the overall system’s mass, and r1 and r2 being the third object’s
distance from the primary and secondary attractors respectively.

2.2 Quasi Periodic Tori

Quasi periodic invariant tori are closed surfaces that describe the bounded
subspace covered by specific quasi periodic, non resonant trajectories (i.e.,
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a quasi periodic trajectory in the CRTBP would exactly describe a QPT if
propagated for an infinite time). Differently from their periodic counterpart,
they are associated with two angles (θ) and relative frequencies (ω):

• Longitude (θ0, ω0): direction of the main motion which follows the reference
trajectory

• Phase (θ1, ω1): secondary direction, describing the winding motion around
the main trajectory

The ratio of the two frequencies is an irrational number, causing the trajectory
to never close itself. Also, a useful parameter to characterize the torus is the
rotation number, which measures the change in the phase angle at every orbital
turn (i.e., at 2π variation of the longitude). The development of QPT families
follows the typical Initialization-Correction-Continuation scheme adopted for
generating periodic orbital families in the CRTBP [23, 24]. The family is ini-
tialized by creating a grid of states around the reference periodic trajectory,
at a specified time, leveraging the center manifold of the latter. Such grid is
then corrected by enforcing the following equations:

D−1R(ρ)DXf −Xi = 0 (3)

< Xi − X̃i,
∂X̃i

∂θ0
> = 0 (4)

< Xi,
∂X̃i

∂θ1
> = 0 (5)

τ − τp = 0 (6)

which respectively ensure that the final states (propagated for one orbital
period) belong to the same stroboscopic map (the locus of states with same
longitude and variable phase), that such map is fixed in space (avoiding drifts
along the two dimensions of the torus), and that the overall torus’ period
matches the one of the periodic orbit (or, equivalently, that the longitude fre-
quency does not change). Notice that the last constraint is included to limit
the search of QPT families to the ones suitable for formation flight, as hav-
ing the same longitude frequency as the reference periodic orbit ensures the
absence of secular drifts between the agents of the formation. Finally, the con-
tinuation is typically performed through perturbations of the previous solution
along tangent direction of the family. More details about the development of
QPT families can be found in [12, 13, 25, 26].

2.3 Operative Scenario

The Lunar Gateway is located on a Nearly Rectilinear Halo Orbit (NRHO),
with a resonant period with the Moon (9:2), a perilune and an apolune of
3200 km and 70 000 km approximately, and an orbital period of 6.5 d. The
orbit is reconstructed leveraging the initialization, correction, and continua-
tion scheme of orbital families, starting from the bifurcation point between
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Lyapunov and Halo orbits [27]. Figure 1 depicts the operative NRHO in the
CRTBP and in a high fidelity model, including Earth and Moon ephemerides,
Sun fourth-body gravity, and Solar radiation pressure. It can be observed how

Fig. 1: NRHO in the CRTBP, and in high-fidelity dynamics

the high-fidelity motion mildly deviates from the CRTBP solution (∼ 2300 km
at the apolune in a time range of 30 days), thus substantiating the validity of
the latter model for the analyses.

The selected QPT to locate the follower spacecraft (the Orion capsule)
is depicted in Figure 2 around the NRHO, and in a relative-state form with
respect to the Gateway. The operative torus is characterized by an excursion of
the relative distance between the formation’s agents from 102 km to 1824 km.
The orbital period is the same of the reference NRHO, coherently with the
constraint of Eq. (6), and has a rotation number of 46.9◦ per orbit.

To reconfigure the formation, transfer arcs are foreseen for the follower
spacecraft (the Orion capsule), that depart from the torus surface and arrives
at the same surface on a different location. The final point is defined by the
target phase angle, while the longitude angle evolves linearly in time as both
spacecraft move along their respective orbits. Notice that, to avoid relative
drifts during the transfer, it must be ensured that the transfer “time of flight”
(ToF ) matches the natural longitude drift of the leader spacecraft along the
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(a) Torus view from Moon-centered frame

(b) Torus view from Gateway-centered frame

Fig. 2: Torus around the Gateway NRHO.
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reference orbit, i.e.:

ToF =
θ0
ω0

(7)

3 On-Board Controller Design

Previous work demonstrated the relatively low cost of impulsive reconfigura-
tion maneuvers leveraging phase targeting on the toroidal surface, thanks also
to the symmetry properties of QPT [26]. Figure 3 depicts optimal impulsive
reconfiguration costs to ensure a 180° phase shift, given a ToF of 48 h (com-
patibly with manned operations for approaching the Lunar Gateway), on the
operative torus described in Section 2.3. Limited costs are observed across

Fig. 3: Cost map for a 180°phase shift as function of initial phase and longitude
angles. Time of flight of 48 h.

the whole torus, with peaks below 15m s−1. Nevertheless, such optimal trans-
fers rely on ground-based optimization and planning, and require systematic
refinements to accommodate the differences between the CRTBP model (on
which the maps are based) and the actual real-world dynamics of the forma-
tion. Frequent contacts between ground and the formation may result in more
complex and expensive operations (especially if formations of several agents
are employed), therefore it is desirable to have a (computationally) light and
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effective on-board control model, which allows a follower spacecraft to perform
a full reconfiguration transfer with minimal data exchange with ground.

The present section describes a closed loop scheme for formation recon-
figuration maneuvers, with emphasis on the actual controller design, based
on a Model Predictive Control (MPC) strategy, showing its strengths and
weaknesses. Furthermore, a classical and an adaptive design is proposed, to
highlight the benefits from the adaptive approach to the studied scenario.

3.1 Closed loop scheme

The implemented loop consists of a main block comprising the Guidance and
the Control (G&C), an Inputs block which includes all the parameters needed
by the G&C, and a Plant describing the dynamics of the spacecraft. Figure 4
depicts the three blocks, hereafter described in detail.

INPUTS

Spacecraft
Parameters

Target
Configuration

Main S/C
State

ON-BOARD G&C

Guidance

Control
Pulse-Width
Modulation

(PWM)

PLANT

Controlled nonlinear
dynamics

+
-

Natural nonlinear
dynamics

Fig. 4: Closed loop scheme

Inputs

The inputs block collects the full set of parameter on which the G&C loop is
based. First, Orion’s technical characteristics are required to provide the true
control action. Some assumptions are made within this study:

• Maneuvers are small enough not to cause a relevant variation in the wet
mass of the spacecraft

• Engines are able to provide a fixed thrust value
• A discrete control system is employed

Such assumptions allow one to initialize fixed values of mass m and thrust F
for the whole transfer time. In particular, a mass of 25 855 kg, corresponding
to the full wet mass of the spacecraft, is considered. Also, limited thrust capa-
bilities are planned for the analyzed scenario: it is assumed that only auxiliary
thrusters are available for the maneuvers, and that only half of them (four) are
active, delivering a total thrust of 4×490N [28]. The combination of high mass
and low thrust provides an overall acceleration of 0.076m s−2, and represents
a worst-case scenario, to guarantee the effectiveness of the developed control
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scheme in any spacecraft condition. Finally, a sampling time of Ts = 600 s is
here set for the update of the discrete control system. This value is derived
from tests at various frequencies, to minimize the effort of the control system,
while ensuring the capability of reaching the target state. Table 1 summarizes
the platform parameters used for the transfer.

Table 1: Spacecraft parameters

Quantity Value

Mass [kg] 25855
Thrust [N] 4× 490
Sampling Time [s] 600
Acceleration [m s−2] 0.076

Then, it is required to provide the information needed to reconstruct the
time-varying target state on the torus. To avoid the computational burden
deriving from numerical propagation, the torus surface and its angular param-
eters are leveraged to define the motion of the target state over time; this
corresponds to a specific quasi-periodic orbit associated with the target phase
value (θ1f ), hence a single parameter is needed from the guidance. Notice that
to identify a specific state along the target trajectory, the longitude angle would
be also needed; however, the guidance works on the local stroboscopic map at
each time step (as will be explained in the next paragraphs), thus imposing
the same longitude as the one of the spacecraft itself.

Finally, the full state of the leader spacecraft (xref ) is needed as well.
Indeed, the parametrization of the torus is done in the context of the CRTBP,
and its direct exploitation in a more realistic dynamics scenario would lead to a
drift between leader and follower spacecraft of the formation. To work around
the problem, the parametrization is performed to the relative torus (where the
states are expressed relative to the leader spacecraft), then the true state of
the leader is added. This strategy anchors the torus’ states around the leader
regardless of the real dynamics, although it demands an a-priori knowledge of
the leader state evolution, which shall be provided to the follower spacecraft.

On-Board G&C

The G&C block represents the core of the study, and it is mainly composed of
three sub-blocks:

• A guidance sub-block
• A control sub-block
• A pulse-width modulation sub-block

The guidance block takes the phase of the desired final trajectory as input,
and provides the time-varying point (on such trajectory) to be tracked during
the transfer. To always ensure the maintenance of the formation, regardless of
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the controller architecture, the target point shall always belong to the same
stroboscopic map of the follower spacecraft. In this way, the transfer may
take variable time, and yet prevent relative drifts between spacecraft. For this
reason, the target point can be uniquely identified along the target trajectory
(at phase θ1f ) by setting the longitude as

θ0f = θ0i(0) + ω0t (8)

with θ0i being the longitude of follower and leader spacecraft at the beginning
of the transfer. Given the two angles, the target state can be extracted through
a proper parametrization of the toroidal surface. In the present work, the torus
is parametrized using 2D cubic splines, from a pre-defined grid of phase and
longitude values. The resulting interpolating function, s(θ0, θ1), maps the R2

space of the torus’ angular variables to the R6 state space in the CRTBP
rotating frame, and relatively to the leader spacecraft. The angles defining the
grid do not follow the natural evolution of trajectories on the torus. For this
reason, the correct reconstruction of the target phase over time can be attained
by including the winding frequency of the torus, i.e.:

θ1f (t) = θ1f (0) + ω1t (9)

with θ1f (0) being the initial target phase value. Considering the real state of
the leader spacecraft , the guidance block returns the final state to be targeted
by the controller as:

xT (t) = xref (t) + s(θ0i(0) + ω0t, θ1f (0) + ω1t) (10)

The controller block defines the law that computes the needed control
action from the current error (the difference between the target state and the
current state). Since the target state is not a constant quantity, the controller
must solve a reference tracking problem [16, 29, 30]. In the present work, a
Model Predictive Control scheme is employed (the details of the design are
explained in Section 3.2). It is here important to stress that the output control
action is an impulsive∆v with a variable magnitude, which cannot be provided
by the spacecraft engines in the current form.

In this regard, the pulse-width modulation block is implemented to translate
the variable input into a fixed value, which matches the engine characteristics
(Table 1). At every sampled time the controller returns the required control
in the form of an impulsive ∆v. The pulse-width modulation translates the
impulsive value into an equivalent finite-time maneuver by providing the cor-
rect thrust time according to the achievable acceleration of the spacecraft,
namely:

∆Tu =
∆v

ũ
(11)

where ũ is the fixed acceleration of the platform. Consequently, at each interval
between consecutive sampled times (from t0 to t0 + Ts), the spacecraft will
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perform a powered branch first (from t0 + ∆Tu), then a free drift through
natural dynamics until the next time sample (from t0 +∆Tu to t0 + Ts).

Plant

The plant block describes the “true” dynamics of the chaser spacecraft in the
binary system. The dynamics propagation is split in two sub-blocks to take
into account the alternate powered branches and coasting branches at each
sampling time. In the present work, two dynamics models are employed:

• CRTBP
• High-Fidelity (ephemerides with perturbations)

The CRTBP is used to simulate a perfect accuracy of the on-board model with
respect to the real dynamics. This allows a direct evaluation and comparison of
the controller performances with respect to the optimized impulsive transfers
(Fig. 3), to address the feasibility of the proposed architecture. Then, high-
fidelity dynamics (with true positions of the attractors, and with perturbation
from Sun gravity and Solar radiation) is taken into account, to verify the
robustness of the scheme against dynamics model errors.

3.2 MPC Formulation

The Model Predictive Control scheme computes a control action as the result
of a minimization of a cost function, which is directly discretized within a spe-
cific time horizon, and solved through a numerical optimization algorithm [31].
Hence, at each time step, a discrete prediction window is generated, for which
a finite-time control sequence is searched. Generally, only the first control
action from the found sequence is executed, and a new time window is gen-
erated afterwards to repeat the procedure. This allows the MPC to adapt its
response to the variation of the real dynamics from the on-board model. Fur-
thermore, the numerical optimization executed in the MPC scheme allows one
to include state or control constraints, making this approach more versatile
than simpler schemes such as Linear Quadratic Regulator. Indeed, the MPC
scheme demonstrated to be successful for various applications in the field of
autonomous GNC, for both UAVs and spacecraft [32, 33]. With the clear objec-
tive of developing a light, on-board implementable control scheme, the design
process described hereafter addresses three main aspects:

1. Management of the Time Horizon for the optimization
2. Formulation of Objective and Constraint
3. Tuning of the cost function’s Weights for the optimization problem

Time Horizon

There are two commonly employed schemes for the management of the con-
troller’s prediction window, namely the Receding Horizon and the Shrinking
Horizon.
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The Receding Horizon scheme is based on a fixed size window that moves
at each time instant, shifting its start and end points by one sample time [34],
as represented in Figure 5. Such scheme is continuously looped until a certain

Finite Horizon at    -th step

Finite Horizon at    -1-th step

Finite Horizon at    +1-th step

Fig. 5: Receding horizon MPC guidance scheme.

stopping criterion is satisfied, e.g., when reaching a specific relative chaser-
target distance. The nature of this approach does not allow a direct control
over the ToF ; however, accuracy and speed of the process can be easily tuned
by properly setting the length of the time window, and the number of steps
within it.

The Shrinking Horizon scheme [15, 35], instead, leverages a variable-
dimension prediction window where the initial time shifts forward, while the
final time is fixed to the instant of desired transfer completion (Fig. 6). The

Finite Horizon at    -th step

Finite Horizon at    -1-th step

Finite Horizon at    +1-th step

Fig. 6: Shrinking horizon MPC guidance scheme.

main advantage is a direct control over the ToF ; nevertheless, this approach
may require several points within the time window, if the transfer time is long,
and increasing the time step between the points may lead to large inaccura-
cies in the optimization process. Given the greater flexibility of the Receding
Horizon approach (in terms of accuracy vs. computational cost), this scheme
has been selected for the controller design of the present work.
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Objective and Constraints

The nonlinear formulation of the reference tracking optimal control problem
(with discrete quantities) reads:

min
∆xk,∆uk

np−1∑
k=0

[
∆x⊤

k Qk∆xk +∆u⊤
k Rk∆uk

]
+∆x⊤

np
Qnp

∆xnp
(12a)

s.t. ∆ẋk = f(∆xk) + g(∆uk), ∀k (12b)

hk(∆xk,∆uk) = 0, ∀k (12c)

ck(∆xk,∆uk) < 0, ∀k (12d)

Equation (12a) is the cost function to be optimized, in the Bolza Problem
form. Here, ∆x and ∆u are the relative state and relative control between
the spacecraft (x,u) and the target point (xT ,uT ) respectively, while Q and
R are the corresponding weight matrices. Equation (12b) describes the on-
board implemented dynamics, where f(∆xk) and g(∆uk) are the collection of
nonlinear terms, function of the state and of the input respectively. Equations
(12c) and (12d) are the set of equality and inequality constraints respectively.

Notice that, according to the problem analyzed in this paper, the target
point is defined for each time step as Eq. (10), and the corresponding control
action is null (uT = 0), being the target a natural trajectory in the dynamics
model of the controller (CRTBP). Also, the control actions within the MPC
are modeled as impulsive maneuver, therefore they can be expressed as

∆uk = ∆vkδ(tk) (13)

where δ(tk) is the Kronecker’s delta.
Problem (12) could be directly solved within a MPC scheme by using a

Nonlinear Programming methodology; however, this typically leads to high
computational burden and makes the overall process unsuitable for on-board
implementation. To make the problem more tractable, modifications are
introduced to recast the problem in a Quadratic Programming form.

First, the nonlinear dynamics of Eq. (12b) is recast as a sequence of local
linearizations, to avoid numerical integration of the state and of the State
Transition Matrix (STM). At each time step, the linearized dynamics reads:

∆xk+1 = eAk(tk+1−tk)∆xk +

∫ tk+1

tk

eAk(tk+1−τ)Bkuk dτ (14a)

Ak =
δf(∆xk)

δ∆xk
(14b)

Bk =
δg(∆uk)

δ∆uk
(14c)
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Approximating the exponential terms as I + Ak(tk+1 − tk), and recalling Eq.
(13), the expression (14a) becomes

∆xk+1 = Ak+1
k ∆xk +Bk+1

k ∆vk (15a)

Ak+1
k = I +Ak(tk+1 − tk) (15b)

Bk+1
k = Ak+1

k Bk (15c)

Then, a generic (k+j)-th state can be expressed as function of the initial state
∆xk and the sequence of control actions from initial node to the (k+j-1)-th
node

∆xk+j = Ak+j
k+j−1∆xk+j−1 +Bk+j

k+j−1∆vk+j−1

= Ak+j
k+j−1

(
Ak+j−1

k+j−2∆xk+j−2 +Bk+j−1
k+j−2∆vk+j−2

)
+Bk+j

k+j−1∆vk+j−1

...

=

0∏
i=j−1

Ak+i+1
k+i ∆xk+ (16)

+

[
1∏

i=j−1

Ak+i+1
k+i Bk+1

k ,

2∏
i=j−1

Ak+i+1
k+i Bk+2

k+1 , . . . , B
k+j
k+j−1

] ∆vk

...
∆vk+j−1


If the expression (16) is computed for all states of the prediction window (from
0 to np) the full stack of the states X reads

X = Ak∆xk + BkU (17)

with

X =
[
∆xk+1,∆xk+2, . . . ,∆xk+np

]⊤
(18)

U =
[
∆vk,∆vk+1, . . . ,∆vk+np−1

]⊤
(19)

Ak =



Ak+1
k

Ak+2
k+1A

k+1
k

0∏
i=2

Ak+i+1
k+i

. . .
0∏

i=np−1

Ak+i+1
k+i


(20)
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Bk =


Bk+1

k 0 ... 0

Ak+2
k+1B

k+1
k Bk+2

k+1 ... 0

...
...

...(∏1
np−1 Ak+i+1

k+i

)
Bk+1

k

(∏2
np−1 Ak+i+1

k+i

)
Bk+2

k+1 ... B
k+np
k+np−1

 (21)

Similarly, the cost function (12a) can be expressed through the stack of
states and inputs as

min
X,U

=
1

2

(
X⊤Q̂X+ U⊤R̂U

)
(22)

Q̂ =


Q 06×6 . . . 06×6

06×6 Q . . . 06×6

...
. . .

06×6 06×6 . . . Q

 (23)

R̂ =


R 03×3 . . . 03×3

03×3 R . . . 03×3

...
. . .

03×3 03×3 . . . R

 (24)

where all the weights have been set equal for all nodes (Qk = Qnp
= Q,

Rk = R).
After substituting the stack of states from (17) in the cost (22), a quadratic

form as function of the control stack U is obtained, and reads1

min
U

1

2
U⊤HkU+ l⊤k U (25)

with

Hk = B⊤
k Q̂Bk + R̂ (26)

l⊤k = ∆x⊤
k A⊤

k Q̂Bk. (27)

Regarding the constraints (Eq. (12c) and (12d)), a linearization is required
to fully define the Quadratic Programming Problem. In the present study, no
equality constraint is included, while two inequality constraints are considered:

• Maximum thrust
• Leader-Follower collision avoidance maneuvers (CAM)

The maximum thrust constraints ensures that every ∆vk does not exceed
the value that can be provided by the fixed thrust within a full sample time
Ts, namely:

∥∆vk+i∥2 < ũTs , i ∈ 0 : j (28)

1The additional, constant term 1
2∆x⊤

k A⊤
k Q̂Ak∆xk would be present in the final cost expression;

however, it does not affect the minimization process, hence it can be omitted.
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The constraint is nonlinear as it involves the 2-norm of a vector. Hence, it
needs first to be linearized, according to the formulation of the Quadratic Pro-
gramming Problem. In particular, a simplification is introduced by imposing
that the ∞-norm of every ∆vk in the prediction window, i.e., every compo-
nent of the control stack, shall be lower than the right term of Eq. (28) divided
by the square root of three, namely:

∥U∥∞ <
ũTs√
3

(29)

Notice that this formulation makes the constraint anisotropic. In fact, any
control action aligned with one of the Cartesian directions is required to be less
than the actual maximum control that the spacecraft can provide; nevertheless,
when the control vector is aligned with the trisectrix of any octant (defined by
the three Cartesian axes), it is ensured that its 2-norm stays below the max
value:

∥∆vk+i∥ =
√

∆v2x +∆v2y +∆v2z <

√(
ũTs√
3

)2

+

(
ũTs√
3

)2

+

(
ũTs√
3

)2

= ũTs

(30)
The collision avoidance constraints imposes a minimum distance between

the leader and the follower of the formation for the whole transfer arc. In
general, the distance constraint is expressed in nonlinear form as follows:

∥C∆xk+i∥22 = ∆x⊤
k+iC

⊤C∆xk+i > R2
KOZ , i ∈ 0 : j (31)

where C :=[I3×3 03×3]
⊤, while RKOZ is the radius of the Keep Out Zone

(KOZ) sphere. To embed the constraint in the Quadratic Programming for-
mulation, a linearization is again needed. In this regard, the paper exploits the
methodology proposed by Morgan et. al. [36]. The KOZ sphere is approximated
into a plane tangent to it, and normal to the ∆xk+i vector. In such a way, the
constraint can be expressed in a convex form as per Eq. (32), leveraging the
(known) initial value of the prediction window, ∆xk.

−∆x⊤
k C

⊤C∆xk+i < −RKOZ ∥C∆xk∥2 (32)

Note that, to express the constraint as an upper boundary inequality, the sign
of both sides of the equation have been inverted.

Equation (32) is applied to each step of the time window, hence the con-
straint can be formulated as function of the control stack, leading to the
following expressions:

ACAMU < bCAM (33)

with

ACAM = −Inp×np
⊗∆x⊤

k C
⊤CBk (34)
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bCAM = −RKOZ ∥C∆xk∥2 1np×1 + Inp×np
⊗∆x⊤

k C
⊤CAk∆xk (35)

where the symbol ⊗ denotes the Kronecker product.
Finally, the complete problem, with quadratic cost function and linear

constraints, reads:

min
U

1

2
U⊤HkU+ l⊤k U

s.t. ∥U∥∞ <
ũTs√
3

ACAMU < bCAM

(36)

The algorithm that solves Problem (36) returns the full stack of optimal control
Uopt; however, only the first control is applied before a new optimization is
performed.

Weight Tuning

The solution of Problem (36) is strongly dependent on the selection of weights
Q and R.

The common approach is to search for Fixed Weights which ensure the
completion of the transfers with the desired performance. In this paper, the
main objective is the minimization of costs and the completion of the transfers
within a specified ToF of 48 h. The transfers are considered completed when
the position error between follower spacecraft and target point falls below
2 km. The weights are obtained through an optimization process as well. To
set up the optimization, some simplifications are introduced. Considering that
state (Q) and control (R) weights act on a cost function to be minimized,
we can set R equal to identity matrix and tune Q relatively to it without
any loss of generality. Furthermore, no coupling between the state terms is
considered, thereforeQ is a diagonal matrix. As an additional simplification, all
the diagonal terms associated with the position terms of the state are assumed
equal, and the same assumption is applied to velocity-related weights as well.
As a result, the weight arrays read:

Q =

[
qrI3 03
03 qvI3

]
R = I3

(37)

where qr and qv are the two scalars to be tuned and optimized. Then, the
optimization problem reads

min
qr,qv

∆v s.t. ∆T ≤ ToF (38)

where ∆v is here the overall scalar cost of the transfer, and ∆T is the time
required to reach the target point within a specified tolerance.

Despite the simplicity of the approach, this strategy suffers from a lack of
robustness against deviations in the trajectory, for example due to errors in the
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dynamics model. Furthermore, the fixed values may not capture variations in
the controller behavior during each transfer, as a consequence of large relative
position displacements and changes in speed. For these reasons, the paper also
implements a strategy to modify the weights on-board while performing the
transfer, leveraging the adaptation law developed in [21] for a State Dependent
Riccati Equation controller in the same scenario. The Adaptive Weights strat-
egy is designed to require a single initial tuning of some terms, and provides
efficient transfers of the spacecraft anywhere along the quasi-periodic torus. In
particular, the position terms qr of the weight matrix Q are scaled through a
coefficient which is directly related to the spacecraft-target relative state, and
to the available time to complete the transfer within the ToF:

qr = γ(∆r,∆ṙ, t)qMAX (39)

with qMAX being a user-defined upper limit for the weight, and γ being the
adaptation coefficient, explicitly defined as:

γ = αβ (40)

α =

(
∆rT
∆r

)
(41)

β = 1 +
∆ṙ

∆r
(ToF − t) (42)

Here, ∆r and ∆ṙ respectively represent the radial distance and speed from
spacecraft to target point, ∆rT is the distance threshold which determines the
end of the transfer, and t is the time passed from the beginning of the transfer.
As a result, this scaling law makes the control action smaller at large dis-
tance from target and at recently begun transfers, to avoid large initial control
actions, while it brings the weight closer to its max value when approaching
the target and/or when the time left is short. In addition, the local evaluation
of radial relative velocity adapts the coefficient to avoid excessively slow or
excessively high approaching speed. In addition, a reduction step saturation
∆β from consecutive sample points is set to avoid large control cost increments
caused by local low approach speed of the target ([21]):

β = max

([
1 +

∆ṙ

∆r
(ToF − t) , β0 −∆β

])
(43)

where β0 denotes the β exponent from the previous step. The velocity-related
weights (qv) are instead tuned once and remain constant across the transfer.
Figure 7 depicts the update scheme of the weights according to the adaptation
law. Overall, the initial parameters to be set are:

• qMAX

• qv
• β0
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User-defined
parameters

Inputs 
(from G&C loop)

Fig. 7: Adaptation law scheme.

• ∆β

The present study develops the transfers and maps the costs for both
strategies, highlighting the advantages of the latter technique.

4 Simulations and Results

This section reports on the performance (in terms of maneuver cost) of the for-
mation reconfiguration transfers leveraging the closed-loop scheme described
in Section 3.

The first part shows a performance comparison between a MPC with Fixed
Weights and with Adaptive Weights. Here, only the maximum thrust constraint
is considered in the MPC optimization process, to decouple the effect of CAM
from the intrinsic differences of the weights management. Furthermore, the
CRTBP dynamics model is leveraged as both on-board and “real” dynamics,
to avoid cost variation from model errors.

Then, collision avoidance is included in the controller, to highlight the cost
variation and assess the validity of the weights tuning in the presence of large
trajectory detours.
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As a final part of the study, high-fidelity dynamics are introduced to prop-
agate the spacecraft state, and the robustness of the controller is tested in the
presence of model errors.

All the previous analyses are performed with a parallel comparison with
a SDRE control approach, to address the advantages and disadvantages in
exploiting an MPC scheme for the case study.

4.1 Fixed Weights vs Adaptive Weights

Before proceeding with the analysis, it is important to mention a particular
behavior that characterizes the on-board scheme with respect to the offline
optimization of the transfer of Figure 3, regardless of how the weights of the
cost function are designed. Because of the local-optimizing nature of the MPC,
the scheme is not able to locate the best points where to maneuver, and it
will provide a control action at every sampled point for the whole transfer.
This leads to unacceptably high costs when the spacecraft is flying across the
perilune of the NRHO, as the high speed and low distance from the Moon make
most of the maneuvers very expensive. To work around the problem a limiter
in the ToF is here implemented, which always ensures the completion of the
transfer before crossing the perilune, for all transfers that foresee a perilune
passage within the default ToF of 48 h.

Weights Setup

The first step of the analysis of the MPC scheme involves the setup of the fixed
and of the adaptive weights.

The fixed weights approach required a dedicated tuning for every transfer,
according to optimization problem (38). The output is a map of position- and
velocity-related weights as a function of the initial angular coordinates of the
transfer along the torus, as depicted (in logarithmic scale) in Figure 8. Ranges
of approximately 100 − 103 are observed across the torus, with peaks nearby
perilune, and significantly lower value on the rest of the surface. The velocity
weights follow the same trend of the position weights, with values scaled down
to the 10−2.4 − 10−0.7 range. Their lower values ensure a prompter transfer to
achieve the target point within the time limit, but provide a minor control over
the relative speed, preventing overshooting issues. In general, negligible to no
influence of the initial phase was observed on the weights, and minor scattered
variations can be attributed to the optimization process and to the tolerances
associated with it. It is, however, important to stress how such minor variations
do not have macroscopic influence on the costs for the transfer, as it will be
shown later in this section.

The adaptive weights setup consists of a single tuning process, which is
done for the whole transfer map at once. First, the maximum position weight
(qMAX) and the velocity weight (qv) are tuned to ensure transfer times below
the limit, and minimize the ∆v over the entire torus as much as possible. This
is done repeatedly for different values of β0, to find the initial exponent value
which improves performance the most. The previous search is done with a total
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freedom of the coefficient β to adapt to any value (i.e., without setting the
exponent limiter ∆β). This inevitably leads to local isolated peaks due to the
β overshoot problem described in Section 3.2. In the final step of the design,
the limiter is introduced and modified until the isolated cost peaks disappear.
Following the described procedure for the case under study, the parameters
reported in Table 2 are obtained: Notice that the maximum position weight

qMAX qv β0 ∆β
[−] [−] [−] [units/h]

106 10−2 2 2

Table 2: Parameters for the adaptive weights MPC.

is far higher than the fixed weights case. This is explained by the variability
of the actual weight along the transfers, which starts from very low values at
the beginning (large distance from target), and needs to be very high at the
end (to complete the transfer before the time limit when the spacecraft is very
close to the target point).

Performance Comparison

The costs to reconfigure the formation using a fixed or adaptive weights
approach are depicted in Fig. 9.

From a direct comparison of the costs from Fig. 9a with the optimized
impulsive maneuvers of Fig. 3, the fixed weights approach shows an overall
increment in costs, which however is fairly contained in the most suitable
regions for performing the transfers (nearby the apolune and after passing the
perilune). In particular, lower costs of ∼ 13m s−1 are observed in the apolune
surroundings, centered at phase values θ1i of 90° and 270°. Here, despite the
relative uniformity in the weights maps, a sensitivity is observed with respect to
the phase, as the cost of maneuvers begun at the apolune raise above 20m s−1

when crossing θ1i = 0° and θ1i = 180°. This is directly related to the larger
initial distance from target point at such phases, which leads to a higher control
action when the weights are constant values (as it is for the fixed weights
strategy). Cost rapidly ramps up to above 50m s−1 when approaching the
perilune, with peaks at ∼ 450m s−1. Such values suggest how a constantly
executed on-board control is not a viable option when close to the Moon, and
should be restricted to the rest of the orbit; nevertheless, it is worth stressing
that the high cost region occupy a small portion of time (few hours) with
respect to the orbital period of 6.5 d, and therefore does not globally hinder
the applicability of this control scheme.

The adoption of the adaptive weights mostly solves the initial distance-
related issues, by providing a milder control action at the beginning of the
transfer. This is directly observable in Fig. 9b: not only are the cost glob-
ally lowered (far from perilune), but also a lesser dependence on the phase is
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here measured. More in detail, the vast majority of transfers costs less than
20m s−1, with very low-costs regions (< 10m s−1) after the perilune passage,
nearly approaching the optimal impulsive maneuver cost. On the other hand,
costs at the perilune appears to be far higher than the ones displayed by the
fixed weights MPC, with peaks at > 800m s−1. This is caused by the direct
dependence of the adaptation coefficient to the relative velocity from target,
which achieves high values in this orbital region.

Overall, the adaptive scheme demonstrated to be more effective than the
fixed weights approach. Firstly, it allows, from a first design perspective, a
faster tuning process which identifies a single group of parameters for all the
possible reconfigurations along the quasi periodic torus. Secondly, its capability
to reduce the control effort at larger distances from target, while ensuring
the success of the transfer in the given time, makes the MPC scheme less
sensitive to the follower spacecraft location around the leader, and globally
more convenient in terms of cost (with the only exception of the perilune
region, where maneuvers should be avoided).

By comparing the MPC-based transfers with previously developed SDRE-
based reconfigurations [21], it is observed a mild increment of transfer costs,
justified by the finite nature of the optimization window of the MPC, against
the infinite-window formulation of the SDRE. The presence of a final time of
the prediction window, shorter than the real final time allowed for the transfer,
makes the MPC-computed control generally prompter than the SDRE’s. This
difference is more evident as the initial distance of the transfers increases,
as observed in one of the most expensive transfers, depicted in Figure 10.
Regardless, the cost increase is compensated by the capability of dealing with
constraints. In particular, the thrust limit helped to avoid saturation of the
control action that occurred in some cases for the SDRE control.

4.2 Collision avoidance

The great advantage of the MPC is the possibility to solve constraints in an
exact way. In particular, collision avoidance is of the utmost importance when
dealing with relative displacements of multiple spacecraft. Given the success
of the adaptation of weights shown in Section 4.1, it is of interest to assess the
capability of the adaptation law to withstand the CAM and the large deviation
that the follower spacecraft may be subjected to when a KOZ is placed around
the leader spacecraft. For the problem under study, a KOZ of 100 km has been
selected, to enforce CAM around to the majority of the transfers, compatibly
with the natural distances of the torus from the leader (i.e., avoiding excessive
and unjustified deviations). Figure 11 depicts the changes in the minimum
distance between leader and follower for transfer with and without CAM.
One can notice the large involvement of most of the post-apolune regions
(θ0i ∈ [0° 180°]), and some zones after the perilune. Furthermore, the absence
of values below 100 km from Fig. 11b demonstrates the effectiveness of such
constraint within the MPC scheme.
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Fig. 9: Cost maps for the MPC-based formation reconfiguration in the
CRTBP. Resutls in logarithmic scale to highlight differences in the low-cost
region.
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Fig. 10: Comparison between SDRE- and MPC-based transfers. Circles rep-
resent initial points, while diamonds the end of the depicted trajectories.

Despite the success in the CAM execution, it is of interest to address
whether it hinders the completion of the transfers, and how the costs are
affected by it. Regarding the former aspect, the adaptive weights MPC demon-
strated its capability to complete the transfers in the vast majority of locations
along the torus. The only exception is given by the perilune, where the dif-
ficulty of the transfer, due to large velocity differences between spacecraft
and target point, is exacerbated by the path changes imposed by the CAM.
Concerning the cost variation, Fig. 12 depicts the increment caused by the
introduction of the KOZ. Cost increments are observed in those regions affected
by the presence of CAM, going from 5m s−1 nearby the apolune, ramping up
to 20 − 50m s−1 as the spacecraft approach the perilune region. While the
former value indicates a realistic feasibility of such transfers, the latters corre-
spond to an increment of 75%− 100% with respect to the no-KOZ costs, thus
further enforcing the necessity to avoid transfers when close to the Moon. The
two blue regions at the perilune (θ0i = 180°), at the phases of 90° and 180°
indicate the aforementioned zones of failed transfers, and shall not be confused
with possible low cost solutions across the perilune.

In general, the analysis of the formation transfers with distance constraint
highlighted the good capabilities of the adaptive weights controller to with-
stand distance constraints between spacecraft. Recalling the sampled transfer
from Fig. 10, Fig. 13 adds the new result obtained from the MPC scheme with
CAM. It can be observed how, despite large changes in the trajectory direc-
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Fig. 11: Minimum distance map between leader and follower spacecraft.
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Fig. 12: Transfers cost increment due to CAM at 100 km.

Fig. 13: Transfers modification due to collision avoidance. Circles represent
initial points, while diamonds the end of the depicted trajectories.
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tions, the arrival point almost coincides with that of the MPC without CAM.
In fact, the longer time taken to fly around the KOZ makes the adaptation
law provide larger weights in the second half of the transfer trajectory, thus
allowing the completion of the reconfiguration in nearly the same time.

5 High-Fidelity Dynamics

The previous sections proved that the proposed MPC scheme, with the adap-
tation of weights, is able to fulfill the requirements of the transfers, at feasible
costs, and with the additional advantage of dealing with collision avoidance.
Also, the results showed similar costs than those of an SDRE scheme. Nev-
ertheless, it is of the utmost importance to address the feasibility of such a
scheme (and its differences with the SDRE) in the presence of discrepancies
between the on-board dynamics model and the “true” dynamics. In partic-
ular, it is assumed to design the controller schemes in the context of the
CRTBP, while the spacecraft dynamics is propagated in a higher fidelity model.
This model comprehends the gravity from Earth, Moon and Sun, with their
ephemerides-based motion, and the Solar Radiation Pressure.

First, the SDRE controller, with the setup proposed in [21], is tested in
the new environment, to provide a baseline for comparison with the MPC
scheme. Then, the MPC setup proposed in previous sections is introduced, and
differences with the SDRE are highlighted. The performance of both controllers
are evaluated in terms of fulfillment of the position constraint at the end of
the transfer (final displacement from target below 2 km).

5.1 SDRE

With reference to the setup of the SDRE in [21], the SDRE scheme is tested in
the new high-fidelity environment. Figure 14 displays the constraint violation
for all transfers in the new dynamics, with controller parameters optimized
in the context of the CRTBP. The first observable outcome is the inability
of the SDRE controller of withstanding the changes in the dynamics itself,
generating a large region of failed transfer for most of the perilune-approaching
part of the orbit, and some regions after the perilune. This demonstrates the
high sensitivity of the adaptive weights SDRE controller with respect to the
dynamical model.

It is possible to partially recover the performance of such controller by
tuning the higher threshold of the position weight (qMAX), as shown in Tab.
3.

With the new setup, it is possible to partially recover the old performance
of the controller, despite the persistent infeasibility across the perilune region
(Fig. 15). Nevertheless, it shall be highlighted how this generally brings the
costs of the transfer to a higher value, thus making the SDRE less convenient
than the MPC scheme. Furthermore, this approach defeats the purpose of an
automatized control design, as a dedicated tuning is required for each epoch,
given the non-autonomous nature of the real dynamics of celestial bodies.
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Fig. 14: Position constraint violation with CRTBP-optimized SDRE

Table 3: Revised parameters for the “adaptive weight” SDRE control strategy
in the high-fidelity dynamics.

qMAX qv β0|init ∆β
[−] [−] [−] [units/h]

Old Setup 109 102 2 2
New Setup 1011 102 2 2

5.2 MPC

Following the same procedure, MPC scheme (including the CAM constraint) is
tested in the high-fidelity dynamics of the Earth-Moon scenario. By exploiting
the same tuned parameters from the CRTBP case, the maps of Figure 16 are
obtained. It can be noticed how such control scheme behaves in a more robust
way against changes in the dynamical model, with limited failure zones, all
nearby the perilune region. Of particular interest is the fact that negligible
cost variation was observed, with respect to the CRTBP-based cost map, and
that the controller is still able to perform the CAM due to the KOZ from the
leader spacecraft
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Fig. 15: Position constraint violation with high fidelity dynamics-optimized
SDRE
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Fig. 16: Position constraint violation with CRTBP-optimized MPC
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6 Conclusions

The present work aimed at the design of a control scheme for formation
reconfiguration around the Earth-Moon Nearly Rectilinear Halo Orbit, with
application to the Lunar Gateway scenario. In particular, a Model Predictive
Control is implemented to enable a direct management of collision avoidance
and thrust constraints, and provide a scheme capable of withstanding model
uncertainties. The MPC has been recast into a Quadratic Programming prob-
lem, to partially recover the main drawback of such scheme, the computational
cost, and make it more competitive for a potential on-board implementation.
To further improve autonomy, a self-adaptation of the cost function weights,
developed in previous works for an SDRE controller has been extended to the
MPC case.

The study confirmed the success of the adaptation law also in the MPC
case, given the faster setup and the generally lower costs with respect to fixed-
value weights. The additional presence of constraints in the MPC formulation,
and in particular the collision avoidance constraint, did not pose any problem
to the adaptive weights formulation. Indeed, the variability of the weights
along the transfer revealed to be effective in completing the reconfiguration
within the available time, despite the large trajectory deviation posed by such
constraint. Furthermore, the costs fromMPC-controlled transfers was observed
to be similar to the ones of the SDRE scheme (although slightly higher).

Finally, emphasis was put on the robustness of the MPC with respect to
the SDRE scheme, and of the adaptation of weights, in presence of discrep-
ancies between the on-board and the true dynamics. Here, the true difference
between SDRE and MPC scheme (both with adaptive weights) was observed.
In fact, the SDRE revealed to be too sensitive to the changes in the dynamics,
demanding a dedicated tuning and leading to inevitably higher costs. On the
contrary, the MPC proved to be more robust, succeeding at the completion of
transfers in the new, high-fidelity dynamics, with its parameters still tuned in
the simpler CRTBP model.

Overall, the proposed MPC design demonstrated to be a suitable scheme
to be embedded in future spacecraft approaching the Lunar Gateway, provided
sufficient computational capabilities of the spacecraft, and, more important,
provided a sufficiently accurate orbit determination process . As future steps,
the navigation aspects will be addressed to quantify the needed accuracy not
to hinder the stability of the GNC loop, then computational aspects of the
process will be explored to preliminarily define hardware requirements for the
implementation.

7 Declarations

7.1 Funding

The authors did not receive funding from any organization for the submitted
work.



34 Article Title

7.2 Data Availability

The datasets analyzed during the current study are available from the
corresponding author on reasonable request.

References

[1] Scala, F., Zanotti, G., Curzel, S., Fetescu, M., Lunghi, P., Lavagna, M.,
Bertacin, R.: The hermes mission: A cubesat constellation for multi-
messenger astrophysics. In: 5th IAA Conference on University Satellite
Missions and CubeSat Workshop, vol. 173, pp. 57–73 (2020)

[2] Kapila, V., Sparks, A., Buffington, J., Yan, Q.: Spacecraft formation fly-
ing: Dynamics and control. Journal of Guidance, Control, and Dynamics
23(3), 561–564 (2000). https://doi.org/10.2514/2.4567

[3] Wang, W., Li, C., Guo, Y.: Relative position coordinated control
for spacecraft formation flying with obstacle/collision avoidance. Non-
linear Dynamics 104(2), 1329–1342 (2021). https://doi.org/10.1007/
s11071-021-06348-9

[4] Silvestrini, S., Lavagna, M.: Neural-aided gnc reconfiguration algorithm
for distributed space system: development and pil test. Advances in Space
Research 67(5), 1490–1505 (2021). https://doi.org/10.1016/j.asr.2020.12.
014

[5] Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite
rendezvous. Journal of the Aerospace Sciences 27(9), 653–658 (1960).
https://doi.org/10.2514/8.8704

[6] Wang, D., Wu, B., Poh, E.K.: Dynamic models of satellite relative
motion around an oblate earth. In: Satellite Formation Flying: Relative
Dynamics, Formation Design, Fuel Optimal Maneuvers and Formation
Maintenance, pp. 9–41. Springer, Singapore (2017). https://doi.org/10.
1007/978-981-10-2383-5 2

[7] Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map
representations for application to multi-body gravitational regimes. Acta
Astronautica 94(2), 592–607 (2014). https://doi.org/10.1016/j.actaastro.
2013.08.020

[8] Zanotti, G., Lavagna, M.: Science opportunities in the Didymos binary:
the role of post-impact ejecta long-term dynamics in the proximity opera-
tions definition. In: 71st International Astronautical Congress (IAC 2020),
pp. 1–15 (2020)

[9] Ferrari, F., Lavagna, M.: Periodic motion around libration points in the

https://doi.org/10.2514/2.4567
https://doi.org/10.1007/s11071-021-06348-9
https://doi.org/10.1007/s11071-021-06348-9
https://doi.org/10.1016/j.asr.2020.12.014
https://doi.org/10.1016/j.asr.2020.12.014
https://doi.org/10.2514/8.8704
https://doi.org/10.1007/978-981-10-2383-5_2
https://doi.org/10.1007/978-981-10-2383-5_2
https://doi.org/10.1016/j.actaastro.2013.08.020
https://doi.org/10.1016/j.actaastro.2013.08.020


Article Title 35

elliptic restricted three-body problem. Nonlinear Dynamics 93(2), 453–
462 (2018). https://doi.org/10.1007/s11071-018-4203-4

[10] Coderre, K., Edwards, C., Cichan, T., Richey, D., Shupe, N., Sabolish, D.,
Ramm, S., Perkes, B., Posey, J., Pratt, W., Liu, E.: Concept of operations
for the gateway. In: Pasquier, H., Cruzen, C.A., Schmidhuber, M., Lee,
Y.H. (eds.) Space Operations: Inspiring Humankind’s Future, pp. 63–82.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11536-4 4

[11] Colagrossi, A., Lavagna, M.: Dynamical analysis of rendezvous and
docking with very large space infrastructures in non-keplerian orbits.
CEAS Space Journal 10(1), 87–99 (2018). https://doi.org/10.1007/
s12567-017-0174-4

[12] Olikara, Z.P.: Computation of quasi-periodic tori in the circular restricted
three-body problem. PhD thesis, Purdue University (2010)

[13] Baresi, N., Olikara, Z.P., Scheeres, D.J.: Fully numerical methods for con-
tinuing families of quasi-periodic invariant tori in astrodynamics. The
Journal of the Astronautical Sciences 65(2), 157–182 (2018). https://doi.
org/10.1007/s40295-017-0124-6

[14] Colagrossi, A., Pesce, V., Bucci, L., Colombi, F., Lavagna, M.: Guid-
ance, navigation and control for 6dof rendezvous in cislunar multi-body
environment. Aerospace Science and Technology 114, 106751 (2021).
https://doi.org/10.1016/j.ast.2021.106751

[15] Ceresoli, M., Zanotti, G., Lavagna, M.: Bearing-only navigation to sup-
port proximity operations on cis-lunar non-keplerian orbits. In: 2021
SpaceOps – The 16th International Conference on Space Operations,
SpaceOps-2021,7,x1630 (2021)

[16] Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic
Methods. Prentice-Hall, Inc., USA (1990)

[17] Montagnier, P., Spiteri, R.J., Angeles, J.: The control of linear time-
periodic systems using floquet–lyapunov theory. International Journal of
Control 77(5), 472–490 (2004)
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