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Abstract. We study the energy transfer in the linear system
{

ü+ u+ u̇ = bv̇

v̈ + v − ǫv̇ = −bu̇

made by two coupled differential equations, the first one dissipative and the
second one antidissipative. We see how the competition between the damping
and the antidamping mechanisms affect the whole system, depending on the
coupling parameter b.

1. Introduction. The purpose of this work is to better understand the mutual
interaction of two coupled equations, in terms of the behavior of the associated
energy. What one typically finds in the literature is a system of (ordinary or partial)
differential equations, one of which is conservative and the other one dissipative.
The coupling allows the transfer of dissipation, so that the system becomes globally
stable as time tends to infinity. Just to quote some results in this direction, we
mention the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 19] and the book [14],
but the list is far from being exhaustive.

Perhaps, the simplest example is given by an ideal oscillator without damping,
coupled by velocities with a physical oscillator subject to dynamical friction, with
initial conditions assigned at time t = 0. This is a system of two second-order ODEs
of the form

{

ü+ u+ u̇ = bv̇,

v̈ + v = −bu̇,
(1)

where b > 0 is the coupling constant. One is interested to study the longtime
behavior of the associated energy E = E(t) given by

E =
1

2

[

u2 + u̇2 + v2 + v̇2
]

.

Although if b = 0 the energy of the second equation is conserved, the effect of the
coupling is able to drive E(t) to zero exponentially fast as t → ∞, no matter how
small is b. This result is well known, and can also be obtained as a byproduct of
the forthcoming analysis.
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Here, instead, we focus on a quite different issue: namely, we want to analyze
the effect of the coupling between a dissipative oscillator and an antidissipative one.
To this end, we address a simple (yet not so simple) model: namely, we consider
for ǫ > 0 and b > 0 the system

{

ü+ u+ u̇ = bv̇,

v̈ + v − ǫv̇ = −bu̇.
(2)

The situation now is much more intriguing, as we have a competition between an
equation whose solutions decay exponentially fast (in absence of the coupling), and
an equation whose solutions (except the trivial one) exhibit an exponential blow
up.

Introducing the four-component (column) vector z = (u, x, v, y), system (2) turns
into the ODE in R4

ż = Az, (3)

where the (4× 4)-matrix A reads

A =









0 1 0 0
−1 −1 0 b
0 0 0 1
0 −b −1 ǫ









.

System (3) generates a uniformly continuous semigroup

S(t) = etA,

acting by the rule

S(t)z0 = z(t),

where z(t) is the solution to (3) at time t, subject to the initial condition z(0) = z0.
In particular, the energy corresponding to the initial datum z0 ∈ R4 reads

E(t) =
1

2
‖S(t)z0‖2.

Moreover, the asymptotic properties of S(t) are fully described by the eigenvalues
λi of the matrix A. Indeed, recalling that the growth bound ω⋆ of the semigroup is
defined as

ω⋆ = inf
{

ω ∈ R : ‖S(t)‖ ≤ Meωt
}

,

for some M = M(ω) ≥ 1, we have the equality

ω⋆ = max
i

ℜλi.

Here, ‖S(t)‖ denotes the operator norm of S(t), that is,

‖S(t)‖ = sup
‖z0‖=1

‖S(t)z0‖.

In particular, when ω⋆ = 0 the semigroup is bounded (i.e., the energy is bounded for
any initial datum) if and only if all the eigenvalues with null real part are regular.
Otherwise, the norm of S(t) exhibits a blow up of polynomial rate d, where d is the
maximum of the defects of those eigenvalues. We address the reader to any classical
ODE textbook for more details (e.g., [12, 17]).

In summary, the problem reduces to finding such λi, which are the roots of the
fourth-order equation

λ4 + (1− ǫ)λ3 + (2 + b2 − ǫ)λ2 + (1− ǫ)λ+ 1 = 0. (4)
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Unfortunately, equation (4) is not so simple to handle, and the analysis requires
some work.

Remark. Note that the characteristic equation (4) depends only on b2. Hence,
although we assumed for simplicity b > 0, all the subsequent results hold with
b 6= 0, just replacing every occurrence of b with |b|.

2. Description of the results. Before entering into technical details, let us antic-
ipate what happens. When b is small, the two equations do not quite communicate.
The result is that the explosive character of the second equation is predominant,
pushing the energy to infinity exponentially fast for certain initial data. The two
equations start to share the respective energies when b overcomes a certain critical
threshold, precisely, when

b >
√
ǫ.

At this point, the picture strongly depends on the antidamping parameter ǫ.

⋄ When ǫ < 1, the dissipation is stronger than the antidissipation, and the
global energy E(t) undergoes an exponential decay. The best decay rate is
obtained in correspondence of

b =
1 + ǫ

2
.

⋄ On the contrary, when ǫ > 1 the dissipation is not enough to contrast the
antidissipation, and the result is an energy which is (generally) exponentially
blowing up for all possible values of b.

⋄ The limiting situation is when ǫ = 1, as in that case the damping and the
antidamping perfectly compensate. Here, the system is not conservative, but
nonetheless the energy remains bounded. Besides, when b → ∞, the energy
E(t) turns into the sum of a highly oscillating term, possibly vanishing for
some particular initial values, and a sinusoid with a period tending to infinity
as well.

3. A detailed discussion. We now proceed to analyze more deeply the three
cases.

A word of warning. In what follows, for any z ∈ C, the symbol
√
z will always

mean the value of the complex square root of z whose argument belongs to (−π

2 ,
π

2 ].
With this choice, for any α, β ∈ R we have

ℜ
√

2(α± iβ) =
√
ρ+ α where ρ =

√

α2 + β2.

Calling now

a =
√

(1 + ǫ)2 − 4b2,

the four complex roots λi of equation (4) read:

λ1 =
1

4

(

ǫ− 1 + a+
√

2 (−7 + ǫ2 − 2b2 − (1 − ǫ)a)
)

,

λ2 =
1

4

(

ǫ− 1− a+
√

2 (−7 + ǫ2 − 2b2 + (1 − ǫ)a)
)

,

λ3 =
1

4

(

ǫ− 1 + a−
√

2 (−7 + ǫ2 − 2b2 − (1 − ǫ)a)
)

,

λ4 =
1

4

(

ǫ− 1− a−
√

2 (−7 + ǫ2 − 2b2 + (1 − ǫ)a)
)

.
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I. The case ǫ > 1. For every value of the coupling parameter b, we have ω⋆ > 0,
meaning that the norm ‖S(t)‖ of the semigroup blows up exponentially fast as
t → ∞. To show that, it is enough checking that at least one of the four eigenvalues
has positive real part. Indeed, since by our convention the square roots have always
nonnegative real parts, we readily get

ℜλ1 ≥ ǫ− 1

4
> 0.

II. The case ǫ = 1. Here the four eigenvalues simplify into

λ1 =
1

2

(
√

1− b2 +
√

−3− b2
)

, λ4 = −λ1,

λ2 =
1

2

(

−
√

1− b2 +
√

−3− b2
)

,λ3 = −λ2.

We shall distinguish three situations:

• If b < 1, then
√
1− b2 > 0. So ℜλ1 > 0, telling that ω⋆ > 0.

• If b = 1, then
λ1 = λ2 = i and λ3 = λ4 = −i.

Besides, both the eigenvalues ±i are not regular, hence with defect 1. Accordingly,
‖S(t)‖ blows up at infinity with polynomial rate t. In fact, in this case we can
easily write the explicit solution corresponding to the generic initial datum z0 =
(u0, x0, v0, y0) ∈ R4 as

u(t) =
1

2

[

(2u0 − tu0 + tv0) cos t+ (u0 − v0 + 2x0 − tx0 + ty0) sin t
]

,

v(t) =
1

2

[

(−tu0 + 2v0 + tv0) cos t+ (u0 − v0 − tx0 + 2y0 + ty0) sin t
]

.

• If b > 1, then we have four distinct, hence regular, purely imaginary eigenvalues.
This means that there is no uniform decay of the energy, although the energy
remains bounded.

We conclude the analysis of the case ǫ = 1 by examining the qualitative behavior
of the solutions for large values of b. When b → ∞, we readily get

λ1 ∼ ib, λ2 ∼ i

b
, λ3 ∼ − i

b
, λ4 ∼ −ib.

With the aid of Mathematica™, one can compute the asymptotic form of the matrix
U of the eigenvectors, along with its inverse. Calling D the diagonal matrix of the
eigenvalues, one can determine explicitly S(t) via the formula

S(t) = U etD U
−1.

For b → ∞, this yields

S(t) ∼









cos t

b
0 − sin t

b
0

0 cos bt 0 sin bt
sin t

b
0 cos t

b
0

0 − sin bt 0 cos bt









.

Hence, splitting any initial datum z0 = (u0, x0, v0, y0) into the sum

z0 = u0 + x0,

where u0 = (u0, 0, v0, 0) and x0 = (0, x0, 0, y0), we obtain the solution

z(t) = S(t)z0 ∼ u(t) + x(t),
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having set

u(t) =
(

u0 cos
t

b
− v0 sin

t

b
, 0 , u0 sin

t

b
+ v0 cos

t

b
, 0

)

and

x(t) =
(

0, x0 cos bt+ y0 sin bt, 0, −x0 sin bt+ y0 cos bt
)

.

So we have the sum of the highly oscillating function x(t) and the sinusoidal function
u(t) of period 2πb → ∞. Choosing an initial datum with null velocities, namely,
taking x0 = 0, in the limiting situation b = ∞ we boil down to the constant solution
z(t) = u0.

III. The case ǫ < 1. We show that the exponential decay of the energy occurs
when b >

√
ǫ. We shall distinguish two situations, depending on the value

η =
1 + ǫ

2
>

√
ǫ.

• If b ≤ η, then 0 ≤ a ≤ 1 + ǫ. In turn,

−7 + ǫ2 − 2b2 ± (1 − ǫ)a ≤ −7 + ǫ2 + (1− ǫ)(1 + ǫ) = −6 < 0,

and consequently

ℜλ1 = ℜλ3 =
1

4
(ǫ− 1 + a) and ℜλ2 = ℜλ4 =

1

4
(ǫ − 1− a).

At this point, it is convenient to further split the analysis into three subcases.

- If b <
√
ǫ, then a > 1− ǫ. Thus ℜλ1 = ℜλ3 > 0, implying that ω⋆ > 0.

- If b =
√
ǫ, then a = 1− ǫ. Therefore,

ℜλ1 = ℜλ3 = 0 and ℜλ2 = ℜλ4 =
1

2
(ǫ− 1) < 0.

Besides, the four eigenvalues are all distinct, hence regular. This tells that the
energy is bounded, and there exist trajectories not decaying to zero.

- If
√
ǫ < b ≤ η, then a < 1 − ǫ, which immediately gives ℜλi < 0 for all i. The

energy undergoes an exponential decay.

• If b > η, then

a = i
√

4b2 − (ǫ+ 1)2.

Therefore,

ℜ
√

2 (−7 + ǫ2 − 2b2 ± (1− ǫ)a) =
√

ρ− 7 + ǫ2 − 2b2,

where

ρ = 2
√

b4 + 2b2(4− ǫ) + 3(4− ǫ2).

Accordingly,

ℜλ1 = ℜλ2 =
1

4

(

ǫ − 1 +
√

ρ− 7 + ǫ2 − 2b2
)

,

ℜλ3 = ℜλ4 =
1

4

(

ǫ − 1−
√

ρ− 7 + ǫ2 − 2b2
)

.

It is then clear that ℜλ3 = ℜλ4 < 0, and with standard computations we readily
check that ℜλ1 = ℜλ2 < 0 as well.
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IV. The best decay rate. Once we know that when ǫ < 1 and b >
√
ǫ the

exponential decay occurs, it is interesting to establish for which value of the coupling
parameter b the best decay rate is attained. From the previous discussion, it is
readily seen that when η 6= b >

√
ǫ then

ℜλ1 >
ǫ− 1

4
⇒ ω⋆ >

ǫ− 1

4
.

Accordingly, the smallest possible value is exactly

ω⋆ =
ǫ− 1

4
,

which is achieved when b = η. In this case,

λ1 = λ2 =
1

4

(

ǫ− 1 +
√

−15 + ǫ2 − 2ǫ
)

,

λ3 = λ4 =
1

4

(

ǫ− 1−
√

−15 + ǫ2 − 2ǫ
)

,

and the two distinct eigenvalues, sharing the same real part, can be shown to be
nonregular, hence with defect 1. Then the optimal exponential decay rate (1−ǫ)/4 =
−ω⋆ for the semigroup norm is polynomially penalized, yielding the best possible
decay estimate

‖S(t)‖ ≤ C(1 + t)e−
1−ǫ

4
t,

for some C ≥ 1. Observe also that ℜλ1 = ℜλ2 → 0 when b → ∞, telling that the
exponential decay rate tends to zero when b becomes large. Indeed, we have the
asymptotic expansion ρ = 2b2 + 8− 2ǫ+ o(1) as b → ∞.

Remark. The reader will have no difficulty to ascertain that the analysis made in
the previous points III and IV covers the limit value ǫ = 0 as well, corresponding to
problem (1). Here, b = η = 1

2 , and the two (nonregular) distinct eigenvalues read

1

4

(

−1± i
√
15
)

.

The optimal decay estimate becomes

‖S(t)‖ ≤ C(1 + t)e−
1

4
t.

4. The infinite dimensional case. The finite-dimensional analysis carried out
so far, besides having an interest by itself, can also be extended to cover some
infinite-dimensional models. Indeed, in greater generality, one might consider the
same problem for the system

{

ü+Au + u̇ = bv̇,

v̈ +Av − ǫv̇ = −bu̇,
(5)

where A is a strictly positive selfadjoint operator acting on a Hilbert space H ,
with compactly embedded domain D(A) ⋐ H . From the classical theory of semi-
groups [16], system (5) is well known to generate a strongly continuous semigroup
S(t) acting on the product Hilbert space

H = D(A
1

2 )×H ×D(A
1

2 )×H.

A concrete realization of (5) is the system of PDEs
{

utt −∆u+ ut = bvt,

vtt −∆v − ǫvt = −but,
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where ∆ is the Laplace-Dirichlet operator acting on the Hilbert space L2(Ω), for
some bounded domain Ω ⊂ RN with boundary ∂Ω smooth enough.

Here the picture is exactly the same as in the ODE system considered before.
The desired results can be proved by projecting the equations on the eigenvectors of
A, and then by computing the decay rate of each single mode. The only difference
occurs in the case ǫ < 1, where b = (1 + ǫ)/2 is still the value corresponding to the
best exponential decay rate, but the decay rate itself can be affected by the first
eigenvalue λ1 > 0 of A. This happens when λ1 is small. Indeed, if λ1 ≥ (1− ǫ)2/16,
then we recover the exponential decay rate (1− ǫ)/4, up to a polynomial correction.

Remark. In fact, the request that A has compact inverse is not really needed,
although this assumption greatly simplifies the analysis, since in this case the spec-
trum of A is made by eigenvalues only. If A−1 is not compact, a deeper use of
the spectral theory and the related functional calculus is required. We refer the
interested reader to the paper [10], where these techniques have been successfully
exploited in the analysis of the best exponential decay rate for an abstract weakly
damped wave equation.

5. Some figures. We conclude the paper with some figures illustrating our anal-
ysis. We will concentrate on the two more interesting cases ǫ = 1 and ǫ < 1.

The first set of figures concerns with the case ǫ = 1.

⋄ In Fig. 1 we see the behavior of the energy E(t) corresponding to the initial value
z0 = (1, 0, 0, 0), for b < 1 (exponential blow up), b = 1 (polynomial blow up of rate
t2), and b > 1 (bounded energy).

0 10 20 30 40 50 60

200

400

600

800

Fig. 1 Plot of E for ǫ = 1 and b = 0.99 (black), b = 1 (blue) and b = 1.01 (red).

⋄ In Fig. 2, again for the initial value z0 = (1, 0, 0, 0), we represent the phase
portrait of the first component u(t) of the solution along with its derivative u̇(t).

If one takes (as in the figure) b =
√

q + q−1 − 1, with q rational number, then the
phase portrait becomes periodical.
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u

u


Fig. 2 Parametric plot of t 7→ (u(t), u̇(t)) for ǫ = 1 and b =
√

23

13
+ 13

23
− 1.

⋄ In Fig. 3 and Fig. 4 we plot the energy E(t) for three values of b > 1. In Fig.
3 the initial value is z0 = (1, 0, 0, 0). Here, we see that as b increases the energy
becomes sinusoidal. Instead, in Fig. 4 we take the initial value z0 = (1, 0.5, 0, 0).
We observe that the oscillations about the sinusoid persist, and their frequency
increases dramatically as b → ∞.

50 100 150 2000.5

1.0

1.5

2.0

2.5

3.0

b=1.5

50 100 150 200

0.9

1.0

1.1

1.2

b=5

50 100 150 2000.90

0.95

1.00

1.05

1.10

b=10

Fig. 3 E for ǫ = 1 and z0 = (1, 0, 0, 0) with different values of b.

50 100 150 200

1.0

1.5

2.0

2.5

3.0

3.5

b=1.5

50 100 150 200

1.1

1.2

1.3

1.4

1.5

b=5

50 100 150 200

1.15

1.20

1.25

1.30

1.35

1.40

b=10

Fig. 4 E for ǫ = 1 and z0 = (1, 0.5, 0, 0) with different values of b.



ENERGY TRANSFER IN COUPLED SYSTEMS 9

⋄ In Fig. 5 and Fig. 6 we compare for different values of b the numerical solutions
u(t) and v(t) with their asymptotic counterparts found in Section 3 part II. In both
cases, we take the initial value z0 = (1, 0.1, 0, 0). As predicted, the two curves
overlap when b → ∞.

5 10 15 20 25 30

-1.0

-0.5

0.0

0.5

1.0

b=1.5

10 20 30 40 50 60

-1.0

-0.5

0.0

0.5

1.0

b=5

100 200 300 400

-1.0

-0.5

0.0

0.5

1.0

b=30

Fig. 5 Numerical u (blue) vs asymptotic u (red) for ǫ = 1 with different values of b (and different time-scales).

10 20 30 40 50

-0.4

-0.2

0.2

0.4

b=5

0.5 1.0 1.5 2.0

-0.10

-0.05

0.05

0.10

b=20

0.02 0.04 0.06 0.08 0.10

-0.10

-0.05

0.05

0.10

b=200

Fig. 6 Numerical v (blue) vs asymptotic v (red) for ǫ = 1 with different values of b (and different time-scales).

Finally, we focus on the case ǫ < 1.

⋄ In Fig. 7 we plot the energy corresponding to the initial value z0 = (1, 0, 0, 0) for
b <

√
ǫ (exponential blow up), b =

√
ǫ (bounded energy), and b >

√
ǫ (exponential

decay).

0 5 10 15 20

2

4

6

8

10

Fig. 7 Plot of E for ǫ = 0.5 and b =
√

0.5 − 0.1 (black), b =
√

0.5 (blue) and b =
√

0.5 + 0.1 (red).

⋄ In Fig. 8 and Fig. 9, taking ǫ = 1
2 and the initial datum z0 = (1, 1, 1, 1), we

represent the phase portrait of the first component u(t) of the solution along with
its derivative u̇(t) for b = 1 and b = 2, respectively.
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u

u


Fig. 8 Parametric plot of t 7→ (u(t), u̇(t)) for ǫ = 1

2
and b = 1.

u

u


Fig. 9 Parametric plot of t 7→ (u(t), u̇(t)) for ǫ = 1

2
and b = 2.
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