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Abstract
Resistive random access memories (RRAMs) constitute a class of memristive devices particularly
appealing for bio-inspired computing schemes. In particular, the possibility of achieving analog
control of the electrical conductivity of RRAM devices can be exploited to mimic the behaviour of
biological synapses in neuromorphic systems. With a view to neuromorphic computing
applications, it turns out to be crucial to guarantee some features, among which a detailed device
characterization, a mathematical modelling comprehensive of all the key features of the device both
in quasi-static and dynamic conditions, a description of the variability due to the inherently
stochasticity of the processes involved in the switching transitions. In this paper, starting from
experimental data, we provide a modelling and simulation framework to reproduce the operative
analog behaviour of HfOx-based RRAM devices under train of programming pulses both in the
analog and binary operation mode. To this aim, we have calibrated the model by using a single set
of parameters for the quasi-static current–voltage characteristics as well as switching kinetics and
device dynamics. The physics-based compact model here settled captures the difference between
the SET and the RESET processes in the I–V characteristics, as well as the device memory window
both for strong and weak programming conditions. Moreover, the model reproduces the correct
slopes of the highly non-linear kinetics curves over several orders of magnitudes in time, and the
dynamic device response including the inherent device variability.

1. Introduction

Resistive random access memories (RRAMs), belonging to the broader class of memristive devices, are two-
terminal devices able to settle in different resistance states upon proper voltage application [1]. These devices
have recently achieved a massive interest for non-traditional computing schemes, such as in-memory and
bio-inspired computing [2, 3]. Indeed, RRAMs can implement hardware synaptic elements in neural net-
works, by exploiting the possibility to achieve multiple conductance levels. As a matter of fact, neural network
applications have been growing in recent years, thus posing a severe problem of energy consumption, espe-
cially when dealing with the network training process. In this specific regard, training protocols are generally
implemented by exploiting the switching dynamics of the devices, i.e., the analog or multilevel operation in
RRAMs in response to repeated identical stimuli [4–10]. Such programming strategy is the main challenge
that distinguishes the use of memory devices for neuromorphic computing with respect to their employment
in non-volatile memory application, where only the static values of the resistance are strictly relevant. On the
other hand, the engineering and understanding of analog dynamics in RRAM devices is still ongoing, with the
specific need to join experiments with a device modelling able to address all the key features of analog RRAM
devices.

The aim of the present work is therefore to provide such a missing piece of information, i.e., the combina-
tion of an experimental characterization with a physics-based modeling for the dynamic behaviour of RRAM
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devices when programmed under trains of pulses. We consider RRAM devices based on filamentary switching
in oxide, which have reached good maturity as binary storage elements, and which have been recently studied
also as analog memories for neuromorphic computation [6, 11, 12]. The switching mechanism is related to the
formation and the dissolution of conductive filaments in oxide shorting two metal electrodes. The formation
and the dissolution of the conducting filaments is usually ascribed to the motion of oxygen vacancies [13–15].
For this class of RRAMs, also named valence change RRAMs in the literature, various compact models have
been proposed in order to reproduce the experimental quasi-static characteristic [16], the switching kinet-
ics (a measure of the switching speed) and the endurance of RRAMs with their statistical behavior [17, 18].
In turn, few works provide a comprehensive description of the device dynamics which includes also analog
resistance modulation [19, 20]. Moreover, the fitting of the experimental dynamics is usually performed by
means of analytical behavioral models [7, 21, 22], or using higher dimensional models [23, 24]. In this paper,
we show a detailed characterization of the device under various programming conditions. The physics-based
compact model we propose proves to be able to comprehensively reproduce the quasi-static device behavior,
the magnitude, the speed, and the time evolution of the device resistance variation during the switching, which
improves the existing literature with particular reference to [16]. The variability in response to repeated iden-
tical stimuli in binary and analog switching is correctly described by the model. The presented equations allow
to model the complex interplay between resistance and temperature dynamics, that eventually leads to the
resistive switching. The novelty of the work consists in highlighting that the same description of the feedback
processes involved during the quasi-static operational mode can be exploited to reproduce the device behavior
also in a pulse regime, in a wide range of time scales, and using a single set of model parameters. In partic-
ular, the actual shape of the time evolution of the resistance can be explained and reproduced with the same
mechanisms, even in presence of variability.

2. Experimental details and modelling framework

2.1. Device fabrication and testing
The devices considered in this work, both for experimental measurements and simulations, are based on the
40 nm TiN (top electrode)/10 nm Ti/5.5 nm HfO2/40 nm TiN (bottom electrode) structure (see figure 1(a)
for a sketch). HfO2 is grown at 300 ◦C by atomic layer deposition (in a Savannah 200 reactor, Cambridge)
using the MeCp2HfMe(OMe)Hf precursor as Hf source, and H2O as oxygen source. The Ti and TiN layers are
deposited by RF magnetron sputtering using only Ar and mixed Ar/N2 environment, respectively. The device
area is patterned by lift-off process. Device electrical testing, either in quasi-static conditions or under applied
trains of pulses, has been performed through a Keysight B1500A semiconductor parameter analyser. During
the forming process, a quasi-static voltage ramp from 0 to −2 V, with a current compliance of 1 mA (data
not shown), creates a conductive filament shorting the two electrodes. Then, RESET and SET operations par-
tially dissolve and re-instate the filament, respectively [25]. Figure 1(c) shows a representative experimental
quasi-static current–voltage (I–V) characteristic (with sweep rate |SR|= 0.1 V s−1) with negative voltage SET
transition, from high resistance state (HRS) to low resistance state (LRS), and positive voltage RESET transi-
tion, from LRS to HRS. It is worth noting that the devices we consider can be operated in bipolar switching
mode, namely with negative SET/positive RESET voltages or vice versa, thanks to a complementary switching
behaviour [4, 16, 26]. In particular, except for the data in figure 4, we refer to a negative SET/positive RESET
voltage case throughout the whole paper. The devices have been then characterized with trains of identical
pulses by a variable amplitude and width, as described in sections 3.2 and 3.3, and in the first section of the
supplementary material (https://stacks.iop.org/NCE/2/021003/mmedia).

2.2. Description of the modelling framework
The electrical experimental data have been simulated by resorting to a compact model implemented in MAT-
LAB. Before analyzing the simulation results into details, we provide a description of the adopted modelling
framework. It is based on the equivalent circuit (figure 1(b)) of the TiN/Ti/HfO2/TiN device (figure 1(a)).
According to [16, 27], we assume that the oxide of a filamentary RRAM can be divided into two regions, i.e.,
the gap, the part of the oxide near the active electrode where the switching is supposed to take place, and the
filament, which represents an extension of the electrode in the oxide. The filament region is supposed to act as a
reservoir of oxygen vacancies during the switching, and to well conduct for the whole duration of the switching
processes [17]. The gap region is modeled as a variable resistor which depends on the oxygen vacancies density
N, while the filament region is modeled as a resistor with a fixed oxygen vacancies density Nf . Moreover, we
suppose that the electron conduction mechanism in the filament is a thermally-enhanced ohmic conduction
[28], which can be described as conduction in band with temperature-dependent mobility [16, 24]. It follows
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Figure 1. TiN/Ti/HfO2/TiN device: (a) device structure; (b) equivalent circuit model; (c) experimental I –V characteristic;
(d) simulated I –V characteristic. In (a) the sketch of the filament is representative of the partially dissolved state after RESET.

that the gap and the filament resistances are defined by

Rgap = Rgap(N, T) =
Lgap

eμn0 exp
(

−ΔEac
kBT

)
NA

, (1)

Rf = Rf(T) =
Lf

eμn0 exp
(

−ΔEac
kBT

)
NfA

, (2)

respectively, where T is the temperature, Lgap = Lox − Lf is the length of the gap, with Lox the length of the oxide
and Lf the length of the filament, e is the elementary charge, μn0 is the electron mobility, ΔEac is the electron
activation energy, kB is the Boltzmann constant and A = πr2

f is the section area of the conductive filament,
with rf the filament radius. We consider also a series resistance Rs to take into account ohmic losses at the
contacts and potential resistive parasitics (we refer to figure 1(b) for a sketch of all the resistances involved in
the proposed model).

The dynamics of the two state variables, N and T, is described through the system of ordinary differential
equations ⎧⎪⎪⎨

⎪⎪⎩

dN

dt
= − 1

zV0eALgap
Iion(N, T)

dT

dt
=

Iel(N, T)VRgap

Cth
− T − T0

CthRth

(3)

where the equation for the state variable T coincides with the Newton’s law of cooling [29], whereas a standard
rate equation [16] is adopted to describe the dynamic of the oxygen vacancies density N. In more detail, zV0

denotes the charge number of the oxygen vacancies, Iion and Iel are, respectively, the ion and the electrical
currents (see figure 1(b)), VRgap is the voltage drop across the gap variable resistor, T0 is the room temperature,
while Rth and Cth denote the thermal resistance and the capacitance of the oxide, respectively. Rth is defined by
Lgap/(kthA), where kth is the thermal conductivity of the oxide here described by a piece-wise constant model,
with a higher value during the RESET phase (kRESET

th ) with respect to the SET transition (kSET
th ). This choice

takes into account that the accumulation of oxygen vacancies in the gap region enhances the heat conduction
during the transition from the HRS to the LRS. Concerning Iel flowing in the series of resistances, it is evaluated
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Table 1. Table of the model parameters used in the simulations.

Symbol Value Symbol Value

|SR| 0.1 V s−1 ΔEac,ion 0.95 eV
Rs 200Ω a 0.35 nm
rf 35 nm ν0 1 × 1012 s−1

Nf 5 × 1021 cm−3 Lgap 1.4 nm
zV0 +2 Lox 5.5 nm
T0 300 K kSET

th 0.9 W m−1 K−1

ΔEac 0.06 eV kRESET
th 1.1 W m−1 K−1

μn0 0.6 × 10−1 cm2 V s−1 Cth 1 × 1016 Ws k−1

through the Ohm’s law, by dividing the voltage V applied to the RRAM device (see figure 1(b)) by the sum of
the resistances, Rgap, Rf , Rs. Following [16], we define Iion as the sum of the drift and the diffusion contributions
to the ion hopping conduction, with an electric field-induced barrier lowering effect, being

Iion = Iion,drift + Iion,diffusion (4)

= AC

(
N̄ sinh

(
zV0eaE

2kBT

)
+

a

2

dN

dx
cosh

(
zV0eaE

2kBT

))
, (5)

with

C = 2zV0eaν0 exp

(
−ΔEac,ion

kBT

(√
1 − γ2 + γ arcsin γ

))
, (6)

γ =
zV0eaE

πΔEac,ion
, (7)

where N̄ is the geometric mean between N and Nf , a is the hopping distance, E denotes the electric field, ν0

is the attempt-to-escape frequency, and ΔEac,ion is the activation energy for ion hopping. The factor γ takes
into account the effect of the electric field when the hopping barrier is modified. For the sake of a compact
implementation of the model, we approximate the ion concentration gradient dN/dx in equation (4) by a
finite difference ratio,

dN

dx
≈ Nf − N

Lgap
. (8)

Finally, the electric field E is defined to be polarity-dependent, since we assume that the band bending occurs
entirely on the gap region during the SET transition, and along the whole extension of the oxide during the
RESET transition [27].

The discussed model has been validated on several experimental data. Table 1 summarizes the best model
parameters achieved after a thorough calibration of the model on experimental data. We resort to a unique set
of parameters to deal both with the quasi-static and the dynamic behaviour. The experimental results and the
corresponding simulation will be discussed into details in the following sections.

3. Results and discussion

3.1. Quasi-static I–V : experimental data and simulation
First, we show that the considered model is able to capture the main features of the quasi-static experimental
I–V characteristic (see figure 1(c)). In particular, figure 1(d) shows the simulated I–V curve which correctly
reproduces the SET and RESET voltages, as well as the difference between the abrupt SET and the gradual
RESET transition. It is worth noting that, at low voltages, the device conduction is symmetric with respect
to the origin in both the HRS and LRS. As a consequence, and differently from [16, 27], we do not need
to include a metal/oxide interface barrier in the model. The SET transition occurs sharply around −0.55 V,
due to the triggering of a positive feedback between resistance decrease and Joule heating [7]. During the
measurements, the SET transition is limited by the current compliance which prevents possible overshoots
[30, 31]. The RESET transition starts from about 0.55 V and gradually continues due to the set up of a negative
thermal feedback and the attainment of an equilibrium between the drift and the diffusion of oxygen vacancies
in the gap [7, 23, 32]. In particular, the diffusion process counteracts the drift, which tends to reduce the oxygen
vacancies concentration [33]. Therefore, maximum and minimum concentration values have to be evaluated
self-consistently through at least one complete SET and RESET cycle.
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Figure 2. Experimental (a)−(b) and simulated (c)−(d) memory windows for the SET (left) and the RESET (right) transition.
For each pixel, we provide the extracted RHRS/RLRS total variation, after applying 300 identical programming pulses at negative,
(a)−(c), or positive, (b)−(d), voltage polarity, for each pulse width/amplitude condition, following the procedure described in
the text.

3.2. Device operation under pulse programming: binary and analog switching
In the following, we discuss the device operation under pulse programming and the corresponding simulation
results (see figure A of the supplementary material for details on the program/read scheme). In particular, we
refer to figure 2 that reports the resistance window RHRS/RLRS for various combination of pulse voltages and
pulse widths. The panels (a) and (b) in figure 2 show the experimental resistance memory windows RHRS/RLRS

for both SET and RESET operations. To obtain a single experimental memory window, corresponding to a
single pixel in the figure, the following procedure is followed. For the SET transition, the device is set to the
HRS, in the 3 kΩ range. Then, 300 identical programming pulses at negative voltage polarity, spaced out by
reading phases at 100 mV, are applied to the device. The final resistance is read after the application of all the
pulses. Finally, the RHRS/RLRS total variation is evaluated as the ratio between the initial to the final device
resistance, i.e., before and after the application of the 300 programming pulses. The procedure is repeated,
starting from the same initial condition, for different combinations of pulse amplitudes (from 0.35 V to 0.95 V
in absolute value) and pulse widths (from 0.1μs to 300μs), thus obtaining a different memory window for each
pulse width/pulse amplitude combination, corresponding to a single pixel of figure 2(a). Figure 2(b) shows the
results associated with the RESET case. The adopted procedure is essentially the same as for the SET, starting
from positive programming pulses. The RHRS/RLRS total variation for the RESET case is evaluated as the ratio
between the final to the initial device resistance, i.e., after and before the application of the 300 programming
pulses. The experimental behaviour is accurately reproduced by the model as highlighted in the panels (c) and
(d) in figure 2. We notice that, while experimentally we apply trains of separate pulses, the simulations are
carried out by resorting to a single voltage pulse with a duration equal to the total experimental time span (i.e.,
the sum of the width of all the applied pulses).

Figure 2 emphasizes that the maximum resistance variation after 300 identical pulses, i.e., the maximum
memory window that we can set, is related to the programming condition (pulse amplitude/pulse width), and
that the maximum achievable (RHRS/RLRS) is slightly above 5. In particular, we observe that only if the pulse
voltage amplitude and the pulse width are sufficiently large (bottom right corners of the panels in figure 2),
a resistance variation close to the maximum resistance window can be obtained. In this case we can refer to a
strong programming condition, where the resistance variation is driven to the maximum value by the first or
by the first few pulses. This operation mode is the one usually employed in binary switching for storage appli-
cations. Otherwise, for intermediate values of the pulse voltage amplitude and of the pulse width, the resistance
variation after 300 pulses equals only a fraction of the maximum resistance window, i.e., a weak programming
condition is reached [4]. Under the latter programming condition, each pulse produces a small resistance vari-
ation and therefore multiple resistance states are achieved. The devices exhibit a gradual resistance dynamics as
a function of the number of applied pulses. This feature representing the key functionality for neuromorphic
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Figure 3. Comparison between experimental (black squares) and simulated (blue line) kinetics for SET (a) and RESET (b)
processes.

computing. Finally, for applied voltage and pulse width below a certain threshold, no variation of resistance is
measurable (actually, the values for RHRS/RLRS in figure 2 are close to zero).

To summarize, the proposed model captures the device resistance variation for all the investigated pro-
gramming conditions in a pulse regime, and figure 2 defines the existence of programming windows both for
analog and binary switching.

3.3. Switching kinetics, dynamics and variability of RRAM devices
A different way of describing the switching over different voltages and times is through the switching kinet-
ics, i.e., the time required by the device to get a certain resistance change, for a definite applied voltage. In
the present case, we consider a resistance change from the initial condition equal to a resistance window with
RHRS/RLRS = 2, namely we halve and double the initial resistance value in the SET and RESET experiments,
respectively. Figure 3 confirms the very good agreement between the experimental (symbols) and the simu-
lated (line) switching kinetics, over several orders of magnitude of switching times. The simulations correctly
reproduce the experimental slopes, by returning values of about 80 mV/dec and 100 mV/dec for SET and
RESET, respectively. In figure 3, each experimental value for the switching time (black squares) corresponds to
the total time taken by n pulses (at a fixed amplitude and time) when applied to the device in order to achieve
the specified memory window. Notice that trains of n pulses characterized by the same amplitude but with a
different pulse width can lead to the same total switching time, depending on the number of pulses. Therefore,
the observed variability in the switching time for a certain voltages depends on the combined effect between
the typical switching variability of RRAM devices programmed in a weak pulse regime [4, 34], and the differ-
ence in time resolution between series of applied pulses. In particular, the variability turns out to be higher
for the SET process than for the RESET one. This finding can be partially ascribed to the time resolution,
limited by the pulse width, which affects more the fast SET transition rather than the smooth RESET phase.
Moreover, apart from the experimental measurement error, it is well-known that RRAM devices exhibit a sig-
nificant intrinsic variability, ascribed to random changes in the filament geometry or to the density of oxygen
vacancies therein, when filaments are continuously formed and dissolved through SET and RESET operations
[17, 35, 36].

The developed compact model allows us to correctly include variability. This has been firstly validated on a
binary switching operation, and for the parameters rf , Nf and Lgap. In particular, figure 4(a) shows the variabil-
ity for parameter Lgap, by comparing experimental (empty symbols) with simulated (filled symbols) repetitive
binary switching between a high and a LRSs. Each parameter value is extracted from a normal distribution,
with mean equal to the value used in the deterministic simulations (see table 1) and a relative standard vari-
ation of 2.1%. The variation adopted for Lgap appropriately describes the measured experimental variability
also for the cumulative distributions considered in figure 4(b). Indeed, the simulated resistance spread, both
in the LRS and in the HRS, well reproduces the experimental values, with a larger deviation from the aver-
age value for the HRS than for the LRS, in agreement with other studies [34, 37]. In fact, after the RESET,
Rgap dominates the series of resistances, thus enhancing the effect of the variability in the Lgap parameter (see
equation (1)).

Finally, we discuss the RRAM device dynamics when programmed in the analog regime under weak pro-
gramming conditions. This operation mode represents the most challenging and useful kind of programming
for neuromorphic computing. Figure 5 shows representative dynamics curves which are yielded by different
sequences of trains of identical pulses at a fixed pulse amplitude (−0.85 V for the SET and 0.9 V for the RESET)
but with diverse pulse widths. In particular, for a given pulse amplitude, we first acquire the evolution of the
device resistance under the application of 300 consecutive pulses at a fixed pulse width equal to 0.1 μs. Then
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Figure 4. (a) Experimental (empty circles) versus simulated (filled circles) data for 1000 cycles of consecutive digital SET and
RESET transitions (VSET = 0.9 V, VRESET =−1.2 V, pulse width = 10 μs); (b) experimental (black lines) and simulated (blue
lines) cumulative distribution functions for the HRS and the LRS.

we plot the R values as a function of time, by considering the total time of voltage application equal to the
product between the pulse width and the number of pulses, which, e.g., for 1 μs pulse width leads to 300 μs.
Then, the device is reset to the initial resistance value by a controlled DC sweep. This procedure is repeated
for the same pulse amplitude but different pulse widths equal to 0.3, 3, 30 and 300 μs. In this way we can
assess how the resistance changes over a large time scale, but, at the same time, we have enough resolution
also to track small variations for shorter pulse width. It is worth mentioning that this procedure is necessary
since, for each pulse amplitude/pulse width, the maximum resistance variation that we can achieve is lim-
ited as shown in figure 2. Hence, it would not be possible to reproduce the entire resistance dynamics simply
by setting a specific pulse width and applying more than 300 pulses. Finally, all these data are plotted in the
same panel to achieve the overall R evolution from 100 ns to 100 ms. Such estimation of the overall dynam-
ics is correct under the assumption that the voltage/overall time pair solely determines the device behavior,
meaning that the pulse rate is not affecting the device response, as previously demonstrated in [38]. Notice
that each sequence of experimental data, related to a different pulse width, is represented in the figure by a
different marker. Concerning the experimental data variability observed for the resistance dynamics curves
(i.e., the different resistance values measured after a given time), we can distinguish two different origins. First
of all, dynamics variability is typical of a weak programming regime and is related to the intrinsic stochas-
ticity of the filament formation/rupture processes, as previously discussed. In addition, dynamics variability
can be caused by the lack of time resolution when applying pulses with a large pulse width. In fact, in such a
case, the switching transition could occur before the ending of the pulse, since we read the device resistance
after the pulse takes place. This fact can lead to an over-estimation of the time. The variability is higher for
the SET configuration with respect to the RESET phase. Figure 5 superimposes the simulated curves for the
device dynamics (coloured lines) to the experimental data (highlighted by different markers). It is evident
that the proposed model overall well reproduces the functional shape of the resistance evolution, as a func-
tion of time. In both SET and RESET transitions, the resistance curve changes slowly at the beginning, until
a positive feedback between resistance change and Joule heating sets up. At this point, the resistance varies
quickly, changes concavity and finally saturates to a LRS or to a HRS. The saturation of the resistance value
during the SET process occurs when the gap resistance becomes negligible with respect to those of filament
and series contributions. The RESET saturation occurs due to a negative thermal feedback and to the reached
equilibrium between the ion drift and the ion diffusion in the gap, as for the quasi-static case. Even though the
simulated resistance dynamics curves succeed in replicating the overall experimental behavior of the resistive
switching over several orders of magnitude in time, some discrepancies with experimental data can be noticed,
especially for the saturation part of the SET. Indeed, while the experimental dynamics curves saturate to the
LRS, the simulated resistances continue to decrease in value, even if with a considerably reduced trend with
respect to the transition slope. The sharp experimental saturation at the end of the SET can be ascribed to the
complementary resistive switching (CRS), exhibited by the investigated device [32]. The CRS is caused by the
presence of a TiOxNy interlayer formed in correspondence of the TiN/HfO2 interface. The TiOxNy interlayer
acts as a sink/source of oxygen vacancies during the SET/RESET, inducing an opposite transition that supports
the resistance saturation. The phenomenon is particularly evident for the SET transition in the pulse regime,
as the combination of short pulses with the CRS behavior prevents the device breakdown without current lim-
itation [32]. The inclusion of the effect of the TiOxNy interlayer in the model, as a variable resistor dependent
on the oxygen vacancies density of the interlayer, is a possible solution to improve the overall quality of the
fitting of the experimental dynamics curves, in particular for the saturation part of the LRS. Beside the gen-
eral shape of the resistance evolution curve, we studied the influence of intrinsic variability of the switching
process on the device dynamics. To this aim, in figure 5 we superimpose various simulated dynamic curves
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Figure 5. Experimental (black markers) and simulated (coloured lines) dynamics. The simulated dynamics are obtained by
introducing variability in three model parameters, namely (a)−(b) Lgap, (c)−(d) rf and (e)−(f) Nf .

to the data, as a function of some of the geometric parameters characterizing the filament, namely the gap
length Lgap (figures 5(a) and (b)), the filament radius rf (figures 5(c) and (d)), and the filament ionic density
Nf (figures 5(e) and (f)). We can draw the following conclusions. Both the SET and RESET transitions occur
earlier for large values of Lgap, even if the advance is more evident for the RESET. Concerning the speed of the
transition, the SET transitions are faster in the case of large values for Lgap, while the RESET transitions occur
with about the same resistance slopes. Further details and explanations on the role of the gap length in the
dynamics can be found in the second section of the supplementary material (see figures C–J). Similarly to the
case of digital transitions in figure 4, the difference between the curves becomes more evident as the device
resistance approaches the associated HRS. For large values of rf , the dynamics curves are translated vertically,
towards lower resistance values, and the transitions are delayed. Finally, for high concentrations Nf of ions, the
transitions occur early, and the curves saturate to lower resistance values.

4. Conclusions

In conclusion, modelling and simulation of the operative analog behaviour of HfO2-based devices have
been presented. The discussed model succeeds both in replicating the dynamical behaviour (analog and
digital) and in highlighting all the main characteristics of the device (abrupt SET and gradual RESET in
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quasi-static regimes, memory window in weak and strong pulse regimes, highly nonlinear kinetics with the
correct slope over several orders of magnitude in switching times). The stochasticity involved in the fila-
ment formation and dissolution has been also considered in the model, due to its relevant effect in dynamic
conditions.
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