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A B S T R A C T   

The Teaching-Learning-Based Optimization (TLBO) algorithm is being extended to a broader range of applied 
optimization problems in the literature, mimicking the teaching-learning process. This paper proposes an 
Advanced Teaching-Learning-Based Optimization (Ad-TLBO) algorithm to enhance the efficiency and perfor
mance of the original version of TLBO in terms of accuracy, convergence rate, and reliability characteristics. The 
advancement is obtained by modifying the initialization, search approach, and structure of the two main phases 
of this algorithm in four steps to improve exploration and exploitation capability. Efficiency comparisons are 
shown in four challenges with various benchmark functions with multimodal, separable, differentiable, and 
continuity characteristics. The results are compared with several intelligent optimization algorithms. It is also 
deduced that this algorithm outperforms all investigated optimization algorithms in terms of accuracy, 
convergence speed, and success to reach acceptable solutions for various benchmark functions.   

Introduction 

Many advanced optimization algorithms have been proposed to 
solve optimization problems so far. These algorithms are classified into 
different categories. Population-based heuristic algorithms are one of 
the essential groups among these categories. Genetic Algorithms (GA), 
Artificial Bee Colony (ABC), and Particle Swarm are some recognized 
algorithms in this group. Most of these algorithms require specific 
control parameters. For instance, mutation probability, selection oper
ator, and crossover probability are particular control parameters for the 
Genetic Algorithm. There are no general guidelines on tuning these 
parameters, while the values of these control parameters directly affect 
the algorithm performance. This issue led to the attraction of researchers 
to develop algorithms with less specific parameters. 

In 2011 Rao et al. (2011) introduced an optimization algorithm 
called Teaching-learning-based optimization (TLBO) that only requires 
common control parameters such as initial population size, maximum 
iteration, and so on as the input (Rao & Patel, 2013). It is inspired by the 
teaching-learning process and falls within the population-based heu
ristic stochastic optimization algorithms (Zou et al., 2019). 

Some characteristics such as simple concepts, no requirements to 

specific parameters, rapid convergence, easy implementation, and 
effectiveness have led to the widespread use of this algorithm in various 
fields, even in recent years. Since introducing the TLBO method until 
now, many researchers have tried to improve the algorithm’s perfor
mance with many ideas. Usually, these improvement ideas either lead to 
changing the structure and basic concepts of the algorithm, such as 
search and initialization techniques, adaptive parameters, and modi
fying the structure of the two phases of teaching and learning, or lead to 
combining this algorithm with other optimization algorithms or search 
techniques and creating hybrid methods (Zou et al., 2019). In the 
following, prominent examples of each type of change are mentioned. 
Rao (2016) provided a list of 200 papers on the application of this al
gorithm. Moreover, a survey paper was published in 2019 (Zou et al., 
2019) that more comprehensively studied this algorithm’s modification 
and engineering applications. In Shao et al. (2017) proposed an 
initialization technique of combining a modified Nawaz-Enscore-Ham 
(NEH) heuristic and the opposition-based learning (OBL) to generate 
the initial population. To improve the exploration and search capability, 
convergence, and maintain the diversity of the population, many re
searchers, such as Ji et al. (2017), have used genetic algorithm operators 
such as the mutation and the crossover operators into TLBO. Bureerat 

* Corresponding author. 
E-mail address: Niaki@Sharif.edu (S.T.A. Niaki).  

Contents lists available at ScienceDirect 

Intelligent Systems with Applications 

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications 

https://doi.org/10.1016/j.iswa.2022.200163 
Received 3 January 2022; Received in revised form 4 October 2022; Accepted 1 December 2022   

mailto:Niaki@Sharif.edu
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2022.200163
https://doi.org/10.1016/j.iswa.2022.200163
https://doi.org/10.1016/j.iswa.2022.200163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200163&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Intelligent Systems with Applications 17 (2023) 200163

2

et al. in 2021 (Bureerat & Sleesongsom, 2021) proposed a new 
self-adaptive TLBO with a diversity archive (ATLBO-DA) and employed 
it for the four-bar linkage path generation problem. Chen et al. (2016b) 
proposed the VTLBO method, which uses a variable population scheme 
in a triangle form. Decreasing the computational cost and extending it 
for parameters optimization of artificial neural network (ANN) are the 
objects of this proposed method. Algorithms (TLBO-MA) (Qu et al., 
2017), (HTLBO) (Tang et al., 2017), and Das & Padhy (2018) can be 
mentioned as prominent examples of developed hybrid TLBO algorithms 
with search techniques. Qu et al. (2017) proposed a novel TLBO mem
etic algorithm (TLBO-MA) that combined TLBO and Multi-meme 
learning based on meta-Lamarckian. Tang et al. (2017) proposed a 
hybrid TLBO (HTLBO) approach by combining TLBO, VNS1 and cross
over operator. Das & Padhy (2018) developed a novel hybrid model 
using TLBO and SVR2 (Zou et al., 2019). Refs. (Chen et al. 2018, Dib & 
Boumhidi 2017, Patel et al. 2017) are examples of the hybrid method of 
TLBO with other optimization methods, which are combined with Dif
ferential Evolution (DE), Artificial Bee Colony (ABC), and Particle 
Swarm Optimization (PSO) methods, respectively. Even recently, 
investigation on this method continues in papers such as (Ahmadi-Ne
dushan & Fathnejat, 2022; Bui et al., 2022; Kumar et al., 2022; Ren 
et al., 2022; Wu et al., 2022). The proposed method has been compared 
with some of these mentioned methods, such as original TLBO, ETLBO, 
sawTLBO (Rao & Patel, 2012), VTLBO (Chen et al., 2016b), and 
ATLBO-DA (Bureerat & Sleesongsom, 2021), in the second challenge. As 
shown in Tables 5–8, the proposed method outperformed the other 
methods for most benchmark functions. 

Although researchers have many studies on the development of the 
original TLBO method and have obtained acceptable results, none of the 
versions of this method have been able to outperform the leading opti
mization algorithms that have been ranked in competitions such as the 
CEC competition. This paper proposes an advanced version by 
combining improvement in the search and initialization techniques and 
the main concept of the algorithm in two phases of teaching and 
learning, leading to a method that can have more acceptable results 
compared to the leading optimization algorithms in competitions like 
CEC. The proposed method’s results are compared to the CEC compe
tition’s best-ranked methods and other recently advanced optimization 
algorithms in the third challenge. 

Improving algorithm performance in terms of initialization, 
convergence rate, and exploration and exploitation characteristics are 
the main goals of the proposed method. This advancement is performed 
in two general parts. The first part is the internal restructuring of the 
initial TLBO algorithm, which is done in four steps. The second part is 
related to the search method in the possible space and includes two 
techniques of initialization and searching. This part is not limited to the 
TLBO method and can be applied to other methods, but the convergence 
speed of the TLBO method makes this part more efficient. Although this 
advanced method has more control parameters than the original 
method, these changes significantly increase the approach efficiency 
and quality of answers. 

The article structure is expressed as follows: After this introduction, 
Section 2 provides a brief description of the original TLBO. The details of 
the advanced version of TLBO are explained in section 3. In Section 4, 
four challenges are used to investigate the performance of the proposed 
algorithm. The proposed algorithm results are compared with some of 
the most widely used intelligent optimization algorithms in these chal
lenges. Subsequently, in Section 5, the results are discussed, and we 
conclude the work by summarizing the performance of the proposed 
version. 

Teaching-learning based optimization 

The TLBO algorithm is based on increasing the knowledge of the 
class population by the Teacher’s influence on the learners and learners’ 
influence on each other. Hence the structure of this algorithm has two 
main parts. The first part is the teaching phase, which expresses the 
Teacher’s interaction with other members. The second part is the 
learning phase, which represents the interaction of members with each 
other. The process of this algorithm is as follows: in the first step, an 
initial population is generated randomly, and then the mean value of 
this population is calculated. The best member of the population (the 
population member with a minimum value at minimization problem) is 
selected as a teacher, and the other members are known as the learners. 
After performing the teaching and learning phases, if the termination 
criteria are satisfied, the algorithm will end; otherwise, the algorithm 

Fig. 1. TLBO algorithm framework.  

1 Variable Neighborhood Search.  
2 Support Vector Machine. 
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process should be repeated with the new population generated after 
these two phases. Fig. 1 shows the framework of this algorithm. Refer to 
Refs. (Rao, 2016; Rao & Patel, 2013; Rao et al., 2011; Zou et al., 2019) 
for more detailed information about this algorithm. The teaching and 
learning phases are briefly described below. 

Teaching phase 

The teaching phase is the first part of the TLBO algorithm in which 
the Teacher tries to bring the other member’s knowledge closer to his 
(her) knowledge level. In mathematics format, this issue is expressed by 
attracting other members’ mean fitness value closer to the best answer 
(Teacher). This phase is formulated as Eq. (1). 

Xnew
i = Xold

i + r(Xteacher − TF ∗ μ), (1)  

where μ is the mean value of the population. Xold
i and Xnew

i are the values 
of the i th member of the population before and after the teaching phase, 
respectively. Besides, r is a uniform random number in the interval [0, 
1], and TF is the teaching factor that decides the mean value to be 
changed. Rao et al. (2011) concluded with experience on several 
benchmarks that this value should be either 1 or 2. 

Learning phase 

The second part of this algorithm is the learning phase. In this phase, 
a learner interacts randomly with other learners to increase his (or her) 
knowledge. If his (or her) level is higher than the randomly selected 
learner, he (or she) gets away from the random learner, and else, he (or 
she) approaches the other learner. The formulation of this phase is given 
in the following equation. 

Xnew
i = Xold

i +

{
r
(
Xj − Xold

i

)
if Xj is better

r
(
Xold

i − Xj
)

if Xi is better
, (2)  

where Xj is the randomly selected learner to interact with Xi. 

Advanced teaching-learning based optimization (Ad-TLBO) 

In this section, an advanced version of the TLBO method is proposed. 
This advancement is made in two general parts to enhance the perfor
mance of the original TLBO in terms of accuracy, convergence rate, and 
reliability characteristics. In the first part, the structure of the teaching 
and learning phases is modified in four steps. In the second part, the 
generation of the initial population and the exploration approach of the 
original TLBO is improved with a kind of search space segmentation. 

Part I 

The structure modification of the teaching and learning phases is 
expressed in the following four steps. 

Step1: The first step is to modify the structure of the learning phase. 
As mentioned, in this phase, learners interact with each other. Each 
learner interacts with another learner randomly selected from the pop
ulation in this procedure. Due to the random selection of the second 
learner, it is always possible to obtain a better result by selecting and 
interacting with another learner. With that in mind, one idea for 
choosing the best learner is to interact with all the learners and then 
choose the best outcome. This approach is proposed in Ref. Rao (2016). 
This reference shows that although the number of function evaluations 
of this approach increases, the optimal global solution is obtained in 
fewer iterations. However, this approach has the disadvantage of 
increasing the number of function evaluations. 

A new approach is proposed in this step to overcome this problem. 
We used the approach of Ref. Rao (2016) for several benchmarks. In the 
set of interactions, it was observed that for almost all learners, interac
tion with the Teacher is better than interaction with other learners. 
Therefore, this step proposes that instead of random interactions or in
teractions with all learners, all learners interact only with the Teacher. 
Comparing the proposed approach results with Ref. Rao (2016) in many 
benchmarks shows that both approaches have similar results. However, 
in addition to keeping the advantage of low iteration numbers, the 
proposed approach also has the advantage of a significantly lower 
number of function evaluations (i.e., equal to the number of population 
members (n)). In the approach of Ref. Rao (2016), all members interact 
with each other; therefore, the number of function evaluations increases 
to the number of populations members to the power of two (i.e., n ∗ n). 
The formulation of the learning phase (Eq. (2)) is modified as follows. 

Xnew
i = Xold

i + r
(
XTeacher − Xold

i

)
, (3)  

where XTeacher is the Teacher’s position to interact with Xi. In the original 
method, the Teacher is selected before the teaching phase. According to 
the modification of this step, choosing a new teacher after the teaching 
phase can improve the performance of these changes in the learning 
phase because teacher value after the teaching phase is better than 
before. Therefore, modifying Eqs. (3) to (4) improves the results. 

Xnew
i = Xold

i + r
(
XNew

Teacher − Xold
i

)
, (4) 

Fig. 5 shows the performance of the first step compared to the 
original method on the sphere benchmark. Diagram step1′ is the result of 
the teacher selection before the teaching phase, and the diagram step1 is 
the result of the teacher selection after the teaching phase. 

Step2: As shown in Fig. 1, there are two selection operators in the 
teaching and learning phases of the original version of the TLBO 
method. In these operators, a binary comparison is made between the 
statuses of each member before and after the interaction (i.e., a com
parison between Xold

i and Xnew
i ). The better fitness value is entered into 

the new population. In this approach, one of the statuses of each variable 
must be eliminated. However, the eliminated status of this variable may 
have a better result than the two statuses of the pre-and post-interaction 
of another variable. This forced elimination may reduce the convergence 
rate of the algorithm. 

In this step, it is proposed that for the two phases, all members of the 
population in both statuses of pre-and post-interaction are gathered in a 
new population with 2n members (n is the population number). After the 
fitness value-based sort, the first n members enter the new final popu
lation. The optimization process continues with the new population 
obtained. As shown in Fig. 5, this step increases the accuracy and the 

Fig. 2. Alternative candidate strategy.  
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convergence rate of the original TLBO because valuable population 
members are not necessarily eliminated in the binary comparison. Note 
that although the algorithm’s performance is improved in this step, no 
function evaluation is added to the original version. 

Step3: This step proposes a more fundamental change than the 
previous steps. The Teacher has an essential and critical role in the TLBO 
method and its improved versions. Modifications of the present study 
have also increased the importance of the Teacher in the optimization 
process. The algorithm attracts learners to the teacher region during the 
optimization process. Therefore, improper teacher selection can reduce 
the performance of the optimization method and increase the proba
bility of being trapped in the local optimal solutions. For example, if the 
Teacher is in the optimal local region, the optimization approach can 
even fail to reach the optimal global answer in some cases. Hence the 
exploration of the method must be improved. Fig. 2 shows the perfor
mance of an alternative candidate to decrease the probability of being 
trapped in the local optimal solutions. 

On the other hand, as mentioned in step 1, by implementing the 
Ref. Rao (2016) approach, i.e., interaction with all members and 
selecting the best interaction, it was observed that interaction with the 
Teacher is the best interaction for almost all benchmarks. However, in 
some cases, it was observed that interaction with a member other than 
the Teacher and close to its value has the better interaction. In this step, 
an alternative candidate is proposed as a second person to avoid the 
disadvantages. 

This candidate must have two characteristics. First, this member 
must be an acceptable fitness value as a candidate to attract other 
learners to the optimal global region. Given that the Teacher is the best 
member of the population, the closeness of the second person’s fitness 
value to the value of the Teacher is desirable. 

On the other hand, this candidate’s position should be far from the 
Teacher’s position to improve the algorithm’s exploration feature and 
prevent it from being trapped in the optimal local area. Also, the pres
ence of this candidate in the neighborhood of the Teacher’s position is 
undesirable because the Teacher attracts other learners to the region 
around him/her after the teaching phase. Consequently, the presence of 
this member in this region does not have a significant effect. Therefore, 
to select the candidate, we should trade-off between the difference of the 
candidate and teacher fitness value and the difference of the candidate 
and teacher position. A general ranking is defined as the sum of the 
fitness rank and the position rank as follows. 

RankG = RankF + RankP, (5)  

where RankF is fitness value rank and RankP is position rank. The 
member with a lower rank value is the desirable candidate. 

The range of the fitness value and position are divided into six ranks. 
The value of the alternative candidate should be close to the teacher 
value, so the closer values to the teacher value have a lower rank 
(lower RankF). The length of each fitness value rank (σF ) is defined as 

follows. 

σF =
Fmax − Fmin

6
, (6)  

where Fmin is the teacher fitness value, and Fmax is the maximum fitness 
value of the population. These are the first and last values of the fitness 
value vector after sorting in step2. The six rank intervals for a fitness 
value are defined in Table 1. 

A similar process is done for the position ranking. In this ranking, 
farther learners from the Teacher’s position are ranked lower. The 
length of each position rank (σx) is defined as follows. 

σx =
max(norm(Xi − XTeacher))

6
, (7)  

where X is a position vector of each learner. For instance, in this ranking 
approach, the RankG of the Teacher and its neighbors equals 7 ( RankP =

6 and RankF = 1). Therefore, the members around the Teacher are not 
suitable second-member candidates. If several candidates are obtained 
for the second member, a candidate with the lower RankP will be 
selected. 

After selecting the second person, the population members are 
divided into two groups. One group interacts with the Teacher, and the 
other interacts with the second person as an alternative candidate. More 
members have to interact with the Teacher as the best person in the 
population. These numbers are defined as follows. 

n2ndperson =

⌊
FTeacher

F2ndperson

∗
n
2

⌋

nTeacher = n − n2ndperson

(8)  

where F2ndperson and FTeacher are fitness values of second person and 
Teacher, respectively. If the second person’s fitness value is very close to 
the Teacher’s, half of the population should interact with the second 
person. Fig. 2 shows the performance of the second person as an alter
native candidate. The step3 diagram in Fig. 5 shows that the modifica
tions of this step have improved the results of the previous steps. The 
effectiveness of these corrections in multimodal problems is even more 
than unimodal. 

Step4: According to Eq. (1), all members shift together in a positive 
or negative direction of the X-axis in the original method’s teaching 
phase. The difference between the Teacher’s position and the mean 

Table 1 
Six rank intervals for a fitness value.  

Rankf Bounds 

1 Fteacher + [0,σF ]

2 Fteacher + [σF ,2σF ]

3 Fteacher + [2σF,3σF ]

4 Fteacher + [3σF,4σF ]

5 Fteacher + [4σF,5σF ]

6 Fteacher + [5σF,6σF ]

Fig. 3. Teaching phase shift strategy.  
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value position determines the movement direction. The direction is 
reversed only in cases where Xteacher > μ, TF = 2, and TF ∗μ > Xteacher. 
In this phase, with this shift, the position of the mean value tends to be 
the teacher position (best answer position). As shown in Fig. 3, although 
the mean value of the members moves towards the best member of the 
population and thus towards the optimal answer with this shift (positive 
shift), it is observed that some members move away from the optimal 
answer. For instance, the C and D members move away from the optimal 
point (C′

,D′

). 
This step defines an Absorbing Factor (AF) to solve this problem. This 

factor shifts all learners to the Teacher’s position with a Δ-sized Δ =
Xteacher − TF. The right learners of the Teacher’s position are shifted to 
the left and the left members to the right. The teaching phase formula
tion is modified as follows. 

Xnew
i = Xold

i + AF|Xteacher − μ|
AF = sign

(
Xteacher − Xold

i

) (9) 

The teaching phase’s basis is shifting the mean value position to the 
teacher position. If the mean fitness value is less than the teacher value 
in multimodal optimization problems, shifting the mean value to the 
teacher area in the teaching phase causes the learners to move away 
from the global optimal answer. As shown in Fig. 4, shifting the mem
bers between the mean value and the Teacher to the Teacher’s position 
area is caused by deviating these members toward the local optimal. In 
this case, the probability of being trapped in the local optimal solutions 
can be reduced by guiding these learners toward the mean value’s po
sition instead of the Teacher’s position. Therefore, the following con
ditional statement is added to the teaching phase formulation. 

Xnew
i = Xold

i + AF|Xteacher − μ|

AF =

⎧
⎨

⎩

sign
(
Xteacher − Xold

i

)
if F(Xteacher)〈F(μ)

sign
(
μ − Xold

i

)
if F(Xteacher)〉F(μ)

(10)  

where F is the fitness function. As shown in Eq. (11), the absorbing factor 
of AF shifts population members to the mean value when F(Xteacher)

> F(μ). 
The Pseudo-code of the first modification part of the advanced 

version of TLBO is presented as follows. This pseudo-code includes four 
step modifications presented in the previous sections.  

(continued on next column)  

(continued ) 

Fig. 4. Advanced teaching phase strategy.  
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Fig. 5 shows that the proposed Ad-TLBO significantly improves the 
O-TLBO’s performance. This advancement is obtained from the modi
fications collection of the previous four steps; therefore, the synergy of 
these advantages leads to reaching a much better solution than the 
original method. 

Part II 

In the second part, the generation of the initial population and the 
exploration approach of the O- TLBO is improved. This part is not 
limited to the TLBO method and applies to other methods. As shown in 

Fig. 5 and other subsequent challenges, the Ad-TLBO method has a high 
convergence rate in low iteration, so the changes in this part are more 
effective in this method. The basis of these changes is the segmentation 
of the search space. The first change is how to use the algorithm to 
search the space and the second one is a kind of intelligent generation of 
the initial population. 

Classified search 

This approach mimics the strategy of a search team to find the 
deepest valley in a vast land in a limited time. In this strategy, team 

M. Fatehi et al.                                                                                                                                                                                                                                  
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members are divided into several smaller groups and search in different 
parts of the land for a fraction of the available time. All team members 
will search these few candidate areas in the second part of the available 
time. After comparing the results, the search area is reduced to a few 
smaller parts. All team members will search these few candidate areas in 
the second part of the available time. Finally, in the last section of the 
remaining available time, all members focus on one candidate part with 
the best result. 

In the proposed approach the Maximum Evaluation Function num
ber (MEFn) is similarly divided into three sections instead of available 
time. Each variable is divided into two equal parts in the first section, so 
the search space is divided into 2nvar smaller hypercubes. K1% of MEFnis 
allocated to this section of the search. In the second section, K2% of 
MEFnis allocated to searching in the "nc" number of candidate hyper
cubes with better results. Finally, the remaining MEFnis allocated to 
searching for the best hypercube in the last section. The allocated 
MEFnof each section is calculated as follows. 

MEFn1 = K1MEFn
MEFn2 = K2MEFn
MEFn3 = (1 − (K2 + K1))MEFn

(11) 

In this approach, searching the entire solution space through seg
mentation improves the exploration of the algorithm. The algorithm’s 
exploitation also improves as the search space is reduced to 1 /2nvar in 
the last part. For instance, the search space of the 3-variable problem is 
divided into eight smaller cubes (Fig. 6). The procedure of the other two 
sections is also shown in Fig. 6. 

The allocated MEFnof each hypercube of each section is calculated as 
follows. 

MEFnhc1 = [MEFn1/2nvar ]

MEFnhc2 = [MEFn2/nc]
MEFnhc3 = MEFn3

(12) 

The Pseudo-code of this Classified Search is presented as follows. 
The output of the permutation function in line 5 of the Pseudo-code is a 

2nvar-by-nvar matrix. Each matrix row represents a hypercube location 
coordinating in the search space. As mentioned, the range of each variable 

is divided into two parts. The number 1 indicates the selection from the 
first half of the range, and the number 2 indicates the selection from the 
second half. Lines 12 to 17 of the Pseudo-code add a filter to the process. 
This filter eliminates hypercubes that are very larger than the best answer 
from Section 2 candidates. Therefore, the additional MEFnis eliminated by 
decreasing the number of "nc". In line 19, for the first hypercube (best 
hypercube of section1), (npop2 − 1) members are generated. In this line, 
the best member of the first hypercube (the best hypercube) from section 1 
is added to the members of the initial population in section 2. The main 
application of this approach is in complicated problems such as highly 
multimodal, non-separable, and multivariable problems. This type of 

Fig. 5. Sphere benchmark best fitness value by O-TLBO and Ad-TLBO.  

Fig. 6. Classified Search strategy.  
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search can be inactivated for simple problems 

Generation with whole search space coverage 

Instead of randomly generating the initial population, this section 
proposes an intelligent generation approach to cover the entire search 
space. This approach divides the search space into H equal hypercubes 
and puts at least one member in each hypercube. This initialization 
technique reduces the probability of being trapped in local solutions by 
covering the search space. For the nvar-variable problem with the npop 
number initial population, the value of H is calculated as follows. 

h = ⌊nvar
̅̅̅̅̅̅̅̅̅̅
npop

√ ⌋ =
⌊
npop1/mvar⌋

H = hnvar (13)  

where h is the number of divisions in each dimension. For example, in 
the three-variable problem with a population number of 100, h equals 4. 
As shown in Fig. 7, cube search space is made up of 64 (43) smaller 
cubes. According to the proposed approach, one value must be placed in 
each cube. Therefore, 64 out of 100 members are placed into these small 
cubes in this example. The remaining 36 numbers can be placed using a 
uniform distribution in the search space. The range of each section Δ is 
defined as follows. 

M. Fatehi et al.                                                                                                                                                                                                                                  
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Δ =
Ub − Lb

h
, (14)  

where Ub and Lb are the vectors of upper and lower bounds of the var
iables, respectively. A uniform distribution randomly generates each 
member in each cube to maintain the random nature of the initial 
population generation. The boundaries of the hypercubes for each var
iable are calculated as follows. 

[ Lbc Ubc ] =

⎡

⎢
⎣

Lb + [0,Δ]

Lb + [Δ, 2Δ]

⋮

Lb + [(k − 1)Δ,Ub]

⎤

⎥
⎦, (15) 

For example, in a three-dimensional problem where h = 4, the 
presented wall in Fig. 8 is all the hypercubes in the constant interval of 
[Lb1, Lb1 +Δ1] for the variable of X1. As indicated in this figure, 16 small 
cubes make this wall, and in every 16 cubes, X1 is in the interval [Lb1,

Lb1 + Δ1]. Hence, 16 uniform random numbers must be generated in 
this interval. In general, for the nvar-dimensional problem, h(nvar− 1)

uniform random numbers must be generated in this interval. For this 
example, the intervals of all walls for the variable X1 are as follows. 

[Lb1, Lb1 +Δ1], [Lb1 +Δ1,Lb1 + 2Δ1], [Lb12 + 2Δ1, Lb1 + 3Δ1], [Lb1 + 3Δ1,Ub1]

(16) 

Similarly, the intervals of each wall of the variables X2, X3 must be 
determined. 

According to lines 7 to 10 of the Pseudo-code below, this approach 
can be implemented using a permutation function and assigning a co
ordinate to each hypercube. To generate member A in Fig. 8, according 
to the coordinates of the shaded hypercube, three random numbers must 
be generated in three intervals by the uniform distribution as follows. 

Fig. 7. Initial population generation with the better search space coverage.  

Fig. 8. A constant interval of search space.  

Table 2 
Differences between Ad-TLBO with O-TLBO.  

Concepts O-TLBO Ad-TLBO 

Initialization 
Technique 

Generation of a simple 
randomness initial 
population in the range of 
[Lb, Ub] 

Whole search space coverage 
approach 

Search 
Technique 

Iterative steps Classified Search 

Teaching Phase Eq. (1) Step2: Eliminate binary 
comparison and keep valuable 
members with a better 
approach 
Step3: Select a second member 
(alternative Teacher) by 
ranking approach 
Step4: Modifying the 
movement direction of the 
learners by the Absorbing 
Factor in Eq. (9) and adding 
the conditional statement in  
Eq. (10) 

Learning Phase Eq. (2) Step1: 1. Interact only with the 
Teacher instead of random 
interactions or interactions 
with all learners. 2. selecting a 
new teacher after the teaching 
phase (Eq. (4)) 
Step2: Eliminate binary 
comparison and keep valuable 
members with a better 
approach 
Step3: Select a second member 
(alternative Teacher) by 
ranking approach  

Table 3 
Best fitness value in each step.  

Method Best Value 

O-TLBO 27.328 
Step1 0.8706 
Step1′ 0.1315 
Step2 0.0405 
Step3 0.0310 
Ad-TLBO 0.0077  
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⎡

⎣
X1
X2
X3

⎤

⎦

A

= Rand

⎛

⎝

⎡

⎣
[Lb1, Lb1 + Δ1]

[Lb2 + 2Δ2,Lb2 + 3Δ2]

[Lb3 + Δ3, Lb3 + 2Δ3]

⎤

⎦

⎞

⎠ (17) 

Note that no additional evaluation function is added to the algorithm 
in the proposed approach. In the original version, pop random numbers 
with the bounds of a large cube (boundaries of variables) made the 
initial population. However, each random number is made inside a 
smaller cube with this change. The proposed approach pseudo-code is 
shown below.   

Table 2 shows the summarized difference between Ad-TLBO with the 
original version. 

Challenges 

In what follows, four challenges are used to investigate the 

performance of the proposed advanced algorithm (Ad-TLBO). In each of 
these challenges, some known benchmarks in the literature are utilized 
for different purposes. The proposed algorithm is compared with the 
original version and some of the most widely used intelligent optimi
zation algorithms with different parameters in these benchmarks. The 
proposed Classified Search approach is only used in the last two chal
lenges and is inactive in other challenges. 

Challenge1 

In the first challenge, a sphere benchmark shows the effect of 
modifying each step mentioned in the previous section compared to the 
original version or the steps before. The sphere benchmark defined in 
(18) is a minimization problem with the global optimum solution equal 
to zero at = [0,0…, 0]: 

f (xi) =
∑n

i=1
x2

i − 100 ≤ xi ≤ 100 (18) 

Table 4 
Benchmarks characteristics.   

Interval Global optimum Multimodal Separable Regular 

Sphere [¡100,100] F ¼ 0, 

X¼ ( 0→) 

No Yes Yes 

Rastrigin [¡5.12,5.12] F ¼ 0, 

X¼ ( 0→) 

Yes Yes Yes 

Griewank [¡600,600] F ¼ 0, 

X¼ ( 0→) 

Yes No Yes 

Rosenbrock [¡2.048,2.048] F ¼ 0, 

X¼ ( 1→) 

No No Yes 

Zakharov [¡10,10] F ¼ 0, 

X¼ ( 0→) 

No Yes Yes 

Ackley [¡32.76,32.76] F ¼ 0, 

X¼ ( 0→) 

Yes No Yes 

Weierstrass [¡0.5,0.5] F ¼ 0, 

X¼ ( 0→) 

Yes Yes No 

Quadric [¡100,100] F ¼ 0, 

X¼ ( 0→) 

Yes Yes Yes 

Sum Square [¡100,100] F ¼ 0, 

X¼ ( 0→) 

No Yes Yes  

Table 5 
Accuracy comparison of various algorithms for 10-dimensional functions. Except for Ad-TLBO and A-TLBO-DA, the rest of the results are taken from Ref. Chen et al. 
(2016a).   

Sphere Quadric Sum Square Zakharov Rosenbrock Ackley Rastrigin Weierstrass Griewank 

DE Mean 7.13e-073 4.18e-012 2.47e-074 1.08e-005 6.24Eþ000 3.48e-015 1.46eþ000 0.00eþ000 3.50e-002 
STD 7.18e-073 9.35e-012 4.86e-074 2.41e-005 9.02e-001 2.37e-016 5.02e-001 0.00eþ000 2.22e-002 

jDE Mean 1.31e-076 1.14e-021 6.97e-078 1.31e-031 5.14e-007 3.36e-015 0.00eþ000 0.00eþ000 0.00eþ000 
STD 1.58e-076 1.52e-021 1.39e-077 1.30e-031 9.47e-007 4.27e-016 0.00eþ000 0.00eþ000 0.00eþ000 

SaDE Mean 1.35e-071 1.89e-019 1.28e-074 6.65e-031 2.62eþ000 3.28e-015 0.00eþ000 0.00eþ000 1.48e-003 
STD 2.02e-071 3.54e-019 2.52e-074 1.48e-030 1.50eþ000 2.51e-016 0.00eþ000 0.00eþ000 3.31e-003 

PSOwFIPS Mean 3.98e-016 6.19e-006 2.18e-017 3.23e-009 4.51eþ000 8.04e-009 1.89eþ000 4.24e-004 7.59e-002 
STD 6.09e-016 2.15e-006 1.39e-017 2.23e-009 7.17e-002 4.33e-009 1.03eþ000 6.60e-004 5.19e-002 

CLPSO Mean 1.09e-018 5.37e-001 2.59e-020 2.66e-003 2.45eþ000 4.28e-010 2.76e-009 6.33e-012 4.15e-003 
STD 1.5e-018 1.38e-001 1.76e-020 2.37e-003 1.00eþ000 2.89e-010 3.94e-009 6.08e-012 5.68e-003 

ABC Mean 8.02e-017 4.04eþ001 7.18e-017 1.31eþ001 2.84e-001 8.53e-015 0.00eþ000 0.00eþ000 3.94e-003 
STD 3.22e-017 2.35eþ001 3.94e-017 8.38eþ000 3.23e-001 3.18e-015 0.00eþ000 0.00eþ000 5.67e-003 

TLBO Mean 3.29e-184 2.56e-082 9.94e-187 1.51e-089 4.96e-001 3.43e-015 3.06eþ000 0.00eþ000 6.48e-003 
STD 3.08e-185 5.58e-082 1.25e-187 1.62e-089 4.21e-001 217e-015 1.52eþ000 0.00eþ000 9.71e-003 

ATLBO-DA Mean 4.84e-013 0.00eþ000 1.82e-012 7.31e-013 2.11e-003 7.04e-007 2.34eþ000 5.70e-014 5.86e-003 
STD 4.50e-013 0.00eþ000 1.88e-012 7.12e-013 1.15e-002 3.05e-007 5.74eþ000 1.30e-014 1.81e-002 

ETLBO Mean 2.84e-166 3.22e-079 6.50e-169 2.94e-087 1.46e-001 3.37e-015 3.02eþ000 0.00eþ000 2.42e-002 
STD 4.27e-167 5.07e-079 5.49e-170 3.10e-087 1.38e-001 1.05e-015 1.86eþ000 0.00eþ000 3.69e-002 

sawTLBO Mean 3.01e-064 4.59e-050 4.86e-067 6.87e-053 1.90eþ000 2.84e-015 8.57eþ000 0.00eþ000 1.33e-002 
STD 4.86e-064 1.12e-049 1.54e-066 1.61e-052 5.28e-001 1.50e-015 3.23eþ000 0.00eþ000 2.22e-002 

VTLBO Mean 3.56e-296 3.50e-130 4.63e-298 1.02e-139 1.13eþ000 1.78e-015 1.09eþ000 0.00eþ000 3.82e-008 
STD 0.00eþ000 5.05e-130 0.00eþ000 3.21e-139 5.06e-001 1.87e-015 1.52eþ000 0.00eþ000 1.21e-007 

Ad-TLBO Mean 0.00eþ000 5.66e-221 0.00eþ000 0.00eþ000 3.53e-032 1.30e-016 0.00eþ000 0.00eþ000 0.00eþ000 
STD 0.00eþ000 0.00eþ000 0.00eþ000 0.00eþ000 1.82e-031 7.15e-016 0.00eþ000 0.00eþ000 0.00eþ000  
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This challenge is only to demonstrate the performance improvement 
of the proposed algorithm in each step. In the following challenges, the 
effectiveness of the proposed algorithm can be seen in different bench
marks compared to the original version and other optimization algo
rithms statistically. 

As seen in Fig. 5 and Table 3, at the same condition (iterations = 15, 
populations number = 50, and the number of variables = 20), the per
formance of the algorithm is improved step by step compared to the 
initial version. Note that the final response accuracy of the algorithm is 
about 3500 times better than the original version in the fourth step. Also, 
the slopes of the diagrams show that the convergence rate is improved 
step by step. It should be noted that changes are added to the previous 
steps modifications in each step. 

Challenge2 

In this challenge, the performance of the proposed algorithms in four 
characteristics of accuracy, convergence rate, reliability, and statistical 
analysis is compared to some other algorithms using nine benchmark 
functions. 

The selected benchmarks are different in multimodality, separa
bility, and differentiability characteristics. Variations in these charac
teristics can seriously challenge the ability of the algorithm to find the 
optimal global solution. Table 4 shows the benchmark’s characteristics. 

Algorithms of Differential Evolution (DE) and its variants (self- 
adaptive DE (SaDE) and jDE algorithm), PSO variants, and TLBO vari
ants are investigated to compare them with the proposed algorithm. 

Table 6 
Accuracy comparison of various algorithms for 30-dimensional functions. Except for Ad-TLBO and A-TLBO-DA, the rest of the results are taken from Ref. Chen et al. 
(2016a).   

Sphere Quadric Sum Square Zakharov Rosenbrock Ackley Rastrigin Weierstrass Griewank 

DE Mean 4.90e-014 4.14eþ000 7.99e-017 8.79e-001 2.54eþ001 7.49e-009 7.75eþ001 1.20e-002 3.94e-003 
STD 1.08e-013 3.22eþ000 8.83e-017 6.15e-001 5.86e-001 5.58e-009 3.01eþ001 2.67e-002 5.40e-003 

jDE Mean 1.95e-022 2.06eþ001 3.92e-023 1.35eþ000 2.18eþ001 2.82e-012 2.24e-009 3.16e-001 0.00eþ000 
STD 2.76e-022 6.71eþ000 3.86e-023 1.68eþ000 2.59e-001 1.77e-012 4.15e-009 5.07e-001 0.00eþ000 

SaDE Mean 3.84e-023 1.06eþ001 3.00e-024 1.50e-001 2.52eþ001 1.30e-012 5.53e-001 6.56e-011 0.00eþ000 
STD 2.15e-023 6.53eþ000 2.47e-024 1.31e-001 1.36eþ000 8.26e-013 7.55e-001 8.87e-011 0.00eþ000 

PSOwFIPS Mean 1.43eþ000 3.82eþ003 2.17e-001 1.11eþ002 2.73eþ001 5.12e-001 1.23eþ002 2.46eþ000 8.92e-001 
STD 2.78e-001 1.01eþ003 7.69e-002 1.89eþ001 2.99e-001 1.78e-001 1.57eþ001 7.11e-001 5.53e-002 

CLPSO Mean 1.94e-001 1.16eþ004 2.25e-002 2.30eþ002 6.84eþ001 7.13e-001 2.91eþ001 5.18e-001 2.68e-001 
STD 7.79e-002 2.72eþ003 6.43e-003 5.45eþ001 2.84eþ001 5.74e-001 4.77eþ000 6.83e-002 4.38e-002 

ABC Mean 2.45e-006 1.52eþ004 6.88e-007 5.48eþ002 2.16eþ001 9.08e-003 4.22eþ000 3.66e-002 3.32e-003 
STD 1.21e-006 2.77eþ003 3.24e-007 6.58eþ001 4.59eþ000 4.76e-003 5.91e-001 8.53e-003 6.99e-003 

TLBO Mean 4.04e-111 1.08e-022 5.38e-111 5.11e-011 2.38eþ001 3.55e-015 1.17eþ001 0.00eþ000 0.00eþ000 
STD 3.20e-111 1.43e-022 3.43e-111 8.59e-011 7.01e-001 0.00eþ000 3.71eþ000 0.00eþ000 0.00eþ000 

ATLBO-DA Mean 1.18e-012 0.00eþ000 1.17e-011 1.78e-012 4.16e-004 6.40e-007 2.78e-010 1.82e-013 4.07e-014 
STD 4.50e-013 0.00eþ000 1.11e-011 1.52e-012 2.28e-003 3.29e-007 1.97e-010 4.20e-014 3.14e-014 

ETLBO Mean 2.66e-095 3.42e-022 8.21e-096 1.92e-011 2.38eþ001 3.55e-015 1.22eþ001 0.00eþ000 0.00eþ000 
STD 1.84e-095 4.72e-022 1.11e-095 1.93e-011 8.57e-001 0.00eþ000 9.07eþ000 0.00eþ000 0.00eþ000 

sawTLBO Mean 2.61e-065 1.68e-026 6.13e-066 1.23e-008 2.36eþ001 3.55e-015 2.63eþ001 0.00eþ000 0.00eþ000 
STD 3.09e-065 1.78e-026 1.12e-065 2.54e-008 8.68e-001 0.00eþ000 6.04eþ000 0.00eþ000 0.00eþ000 

VTLBO Mean 4.85e-158 1.24e-032 2.50e-158 8.06e-018 2.28eþ001 3.55e-015 1.25eþ001 0.00eþ000 0.00eþ000 
STD 1.06e-157 1.79e-032 2.48e-158 1.11e-017 4.23e-001 0.00eþ000 7.27eþ000 0.00eþ000 0.00eþ000 

Ad-TLBO Mean 0.00eþ000 3.69e-033 0.00eþ000 1.15e-048 6.98e-033 3.02e-015 0.00eþ000 0.00eþ000 0.00eþ000 
STD 0.00eþ000 2.02e-032 0.00eþ000 4.28e-048 2.32e-032 1.08e-015 0.00eþ000 0.00eþ000 0.00eþ000  

Table 7 
Convergence rate and reliability comparison of various algorithms for 10-dimensional functions. Except for Ad-TLBO and A-TLBO-DA, the rest of the results are taken 
from Ref. Chen et al. (2016a).   

Sphere Quadric Sum Square Zakharov Rosenbrock Ackley Rastrigin Weierstrass Griewank  
Acceptance Value 1e-6 1e-6 1e-6 1e-6 0.1 1e-6 2.5 1e-6 0.1 

DE mFEs 6733 11,892 5947 9372 NaN 10,121 31,720 15,015 11,865 
success 100% 100% 100% 100% 0% 100% 100% 100% 100% 

jDE mFEs 6218 17,719 5628 13,083 30,868 9619 6297 16,636 5231 
success 100% 100% 100% 100% 100% 100% 100% 100% 100% 

SaDE mFEs 6395 19,236 5635 13,163 NaN 9586 9132 12,775 8896 
success 100% 100% 100% 100% 0% 100% 100% 100% 100% 

PSOwFIPS mFEs 24,291 NaN 20,803 37,939 NaN 38,944 39,383 NaN 32,582 
success 100% 0% 100% 100% 0% 100% 80.3% 0% 80.5% 

CLPSO mFEs 27,464 NaN 24,573 NaN NaN 37,753 28,860 41,247 23,562 
success 100% 0% 100% 0% 0% 100% 100% 100% 100% 

ABC mFEs 11,300 NaN 9627 NaN 46,110 21,143 8529 25,594 7392 
success 100% 0% 100% 0% 60.3% 100% 100% 100% 100% 

TLBO mFEs 2728 5659 2400 5814 NaN 4126 27,555 6093 5084 
success 100% 100% 100% 100% 0% 100% 40.7% 100% 100% 

ATLBO-DA mFEs 2482.7 634.7 2558.7 3424 1334.7 4940 4854.7 238.7 2740 
success 100% 100% 100% 100% 100% 86.7% 83.3% 100% 100% 

ETLBO mFEs 3038 5968 2584 6062 44,657 4563 41,698 6604 5604 
success 100% 100% 100% 100% 60.8% 100% 20.4% 100% 100% 

sawTLBO mFEs 2381 4775 2066 4863 NaN 3472 NaN 4876 9030 
success 100% 100% 100% 100% 0% 100% 0% 100% 100% 

VTLBO mFEs 1201 3343 975 3563 NaN 2089 15,596 3817 1940 
success 100% 100% 100% 100% 0% 100% 80.6% 100% 100% 

Ad-TLBO mFEs 539.33 2097 635.33 1268 309.3 2223.7 735 1531 981.6 
success 100% 100% 100% 100% 100% 100% 100% 100% 100%  
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Accuracy: The accuracy characteristics of the investigated algo
rithms in terms of mean and standard deviation (STD) are shown in 
Tables 5 and 6 for 10- and 30-dimension problems, respectively. The 
results are obtained from 30 independent runs assuming the maximum 
function evaluation number of 50,000 for all algorithms. 

As shown in Table 5, for 10-dimensional problems, the Ad-TLBO 
finds the best solutions in most benchmarks. Except for the Quadric, 
Rosenbrock, and Ackley functions, this algorithm can converge to the 
globally optimal solution for all benchmarks. The algorithm converged 
to the globally optimal solution for the Rosenbrock function in 26 of 30 
independent runs. Moreover, Table 6 shows that the proposed algorithm 
also outperforms the other algorithms in most benchmarks when the 
dimension is 30. Except for the Quadric, Zakharov, Ackley, and Rose
nbrock functions, also in this challenge, the proposed algorithm can 
converge to the globally optimal solution for all benchmarks. For the 
Weierstrass and Griewank benchmarks, the original version of TLBO and 
its variants) except for ATLBO-DA(can also obtain the globally optimal 
solution. 

Convergence rate: The mean number of function evaluations (mFEs) 
is used to compare the investigated algorithms in convergence rate. The 
mFEs value of the convergent algorithms to acceptable solutions in 30 

independent runs is given in Table 7. The expression "NaN" indicates the 
non-convergence of the algorithm. The results in Table 7 indicate that 
Ad-TLBO converges to the acceptable solutions in the 10-dimensional 
function with the smaller mean number of function evaluations in all 
benchmarks, except for the Ackley, Quadric functions. Therefore, in 
most benchmarks, the convergence speed of the proposed algorithm is 
higher. For the Rosenbrock function, just Ad-TLBO, jDE, ABC, ATLBO- 
DA, and ELTLBO algorithms can converge to acceptable solutions. Ac
cording to Table 8, the proposed algorithm also outperforms the other 
algorithms in all benchmarks in 30-dimensional functions (except 
Quadric). For Quadric and Zakharov benchmark, the original version of 
TLBO and its variants can also reach the acceptable solutions 1e-6. 
Except for Ad-TLBO and ATLBO-DA, all other algorithms cannot 
converge to the acceptable solutions for the 30-dimensional Rosenbrock 
function. 

Reliability: The reliability characteristic of the algorithms under 
investigation is shown in Tables 7 and 8, with their success rate in 
converging to the acceptable solutions in 30 independent runs. These 
tables show that Ad-TLBO successfully reaches acceptable solutions for 
all benchmarks. Just Ad-TLBO, jDE, and ATLBO-DA can get the 
acceptable solutions with 100% success for the 10-dimensional 

Table 8 
Convergence rate and reliability comparison of various algorithms for 30-dimensional functions. Except for Ad-TLBO and A-TLBO-DA, the rest of the results are taken 
from Ref. Chen et al. (2016a).   

Sphere Quadric Sum Square Zakharov Rosenbrock Ackley Rastrigin Weierstrass Griewank  
Acceptance Value 1e-6 1e-6 1e-6 1e-6 0.1 1e-6 2.5 1e-6 0.1 

DE mFEs 27,150 NaN 24,454 NaN NaN 39,175 NaN NaN 15,701 
success 100% 0% 100% 0% 0% 100% 0% 0% 100% 

jDE mFEs 20,132 NaN 18,788 NaN NaN 29,075 29,888 NaN 11,780 
success 100% 0% 100% 0% 0% 100% 100% 0% 100% 

SaDE mFEs 19,179 NaN 17,115 NaN NaN 27,726 45,886 39,975 11,037 
success 100% 0% 100% 0% 0% 100% 100% 100% 100% 

PSOwFIPS mFEs NaN NaN NaN NaN NaN NaN NaN NaN NaN 
success 0% 0% 0% 0% 0% 0% 0% 0% 0% 

CLPSO mFEs NaN NaN NaN NaN NaN NaN NaN NaN NaN 
success 0% 0% 0% 0% 0% 0% 0% 0% 0% 

ABC mFEs NaN NaN 48,083 NaN NaN NaN NaN NaN 29,454 
success 0% 0% 60% 0% 0% 0% 0% 0% 100% 

TLBO mFEs 4724 19,289 4397 36,703 NaN 6813 NaN 9809 2808 
success 100% 100% 100% 100% 0% 100% 0% 100% 100% 

ATLBO-DA mFEs 3066.7 881.3 3401.3 5465.3 1010.7 5173.3 2762.7 562.7 1301.3 
success 100% 100% 100% 100% 100% 90% 100% 100% 100% 

ETLBO mFEs 5521 19,131 51,119 36,607 NaN 8024 9069 11,236 3192 
success 100% 100% 100% 100% 0% 100% 20% 100% 100% 

sawTLBO mFEs 4065 16,458 3833 38,919 NaN 5730 NaN 7773 2495 
success 100% 100% 100% 100% 0% 100% 0% 100% 100% 

VTLBO mFEs 2896 13,656 2571 26,751 NaN 4580 3841 7395 1663 
success 100% 100% 100% 100% 0% 100% 20.5% 100% 100% 

Ad-TLBO mFEs 1116.7 2135 1222 8476 330.6 3843 2676.3 2977.3 1210 
success 100% 100% 100% 100% 100% 100% 100% 100% 100%  

Fig. 9. Average ranking in Quade and Friedman tests for D = 10.  Fig. 10. Average ranking in Quade and Friedman tests for D = 30.  
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Rosenbrock function. The PSOwFIPS and CLPSO algorithms failed to 
converge acceptable solutions in any 30-dimensional benchmarks 
functions. Except for Ad-TLBO, none of the algorithms are entirely 
successful to convergence for all benchmarks, and for at least one of the 
benchmarks fail, or they are not 100% successful. 

Statistical analysis: Nonparametric statistical procedures of the 
Quade test and Friedman test are used for statistical analysis of the re
sults of challenge 2 in two states of D = 10 and D = 30. Figs. 9 and 10 
show the average ranks of optimization algorithms in this challenge 
based on the standard errors of means. As it is clear from these figures, 
both tests introduce the proposed algorithm as the best algorithm in 
both 10- and 30-dimensional states. 

Challenge3 

In this section, algorithm performance is slightly more challenged 
using the last CEC competition in 2020 (Yue et al., 2019). CEC bench
marks competition is considered the most attractive competition suite 
among optimization problems (Mohamed et al., 2020). CEC 2020 con
sists of ten new hybrid and composite sets of functions presented in 
Table 9 (The F6 and F7 functions were eliminated from the competition 
for D = 5). maxFEs (The maximum number of function evaluations) is 
50,000, 1,000,000 and 3,000,000 for D = 5, 10 and 15, respectively. 
Reach to maxFEs value or error value of 1e-8 are the termination criteria 
of the algorithm. Each benchmark runs 30 times independently. More 
details about this competition are presented in Ref. Yue et al. (2019). 

The performance efficiency of the proposed Ad-TLBO algorithm is 
demonstrated by comparing its results with six state-of-the-art top- 
ranked optimization algorithms at the latest IEEE CEC competitions and 
other eight optimization algorithms that developed in recent years. The 
CEC’s top-ranked algorithms, rankings, and year of competition are 
listed in Table 10. 

AO (Abualigah et al., 2021), ATLBO-DA (Bureerat & Sleesongsom, 
2021), AHA (Zhao et al., 2022), EO (Faramarzi et al., 2020b), MPA 
(Faramarzi et al., 2020a), QANA (Zamani et al., 2021), SMA (Li et al., 
2020) and RUN (Ahmadianfar et al., 2021) are eight developed algo
rithms in recent years that have been used to compare with the proposed 
method. The results of Ad-TLBO and the other state-of-the-art algo
rithms are summarized in Tables 11–13. Due to the complication of 
CEC’s benchmarks, the proposed Classified Search approach is activated 
in this challenge. For D = 5, the coefficients of K1 and K2, and K3 are 
selected by 0.35, 0.4, and 0.25, respectively. The initial population 
number in three sections is 25, 50, and 125 members, and nc = 5 is 
assumed. For D = 10, the coefficients of K1, K2, and K3 are selected by 
0.55, 0.35, and 0.1, respectively. The initial population number in the 
three sections are 20, 200, and 400 members, and nc = 25 is assumed. 

As shown in Table 11, for D = 5, the proposed method ranks one to 
three in five of the eight functions. In F10, the Ad-TLBO method is 
ranked one and better than the IMODE (rank 1 in CEC 2020). In F1, this 
rank is similar to other methods. In functions F2, F4, and F5, the pro
posed method could not be among the top ranks, but it was able to get an 
acceptable rank among these 15 algorithms and better than methods 
such as the HSES method (rank 1 in CEC2018). In the F4, the difference 
between the mean value of the Ad-TLBO and the AGSK (rank 2 in 
CEC2020) is minimal (about 0.05), and by repeating the runs, a different 
result may be obtained, and the ranking of the proposed method will be 
5. In this function, the Ad-TLBO reached the global optimum solution 
(best value=0), while some better rank methods such as the AGSK and 
LSHADE-cpEpSin could not. As it is clear from the results of Table 12, by 
increasing the number of variables (D = 10), the efficiency of the pro
posed method is improved. In five functions (F1, F3, F6, F9, F10), the 
Ad-TLBO method ranks one and reaches even better results than the top- 
ranked algorithms such as IMODE and AGSK (rank 1 and 2 in CEC2020). 
In F1, this rank is similar to other methods. In F6, the proposed method, 
QANA and MPA reached the global optimum in all runs (mean and std 
values=0), while none of the other algorithms reached the global opti
mum even in one of the 30 independent runs. In this function, a 
maximum accuracy of 1e-6 is obtained by other algorithms, which is a 
considerable distance up to 1e-8. In F8, the rank of method Ad-TLBO is 
equal to 2. In this function, the proposed method performed better than 
all other methods except IMODE. In this function, the quality of the three 
Ad-TLBO, IMODE, and AGSK algorithms are much better than others. All 
algorithms get trapped in local optima in this function, except these 
three algorithms. In F4 and F5, the proposed algorithm did not perform 
well compared to the top-rank algorithms. However, its overall perfor
mance was acceptable among 15 algorithms, and it got a better answer 
than most of these algorithms, including HSES (rank1 in CEC2018). In 
general, the Ad-TLBO method in the D = 10 problem in six functions has 
a very good performance and in three maintain functions, the results are 
acceptable. As shown in Table 13 for D = 15, the Ad-TLBO method 
outperforms all the recently published methods (except MPA in F5 and 
AHA in F4) in almost all benchmarks. Compared with top-ranked CEC 
competition algorithms, the proposed method works well in F3, F6, F8, 
and F9 benchmarks, and in F1 and F10 benchmarks, it has obtained a 
joint first rank with other top-ranked algorithms. In F6, the Ad-TLBO 
reached the global optimum in all runs, while none of the other top- 
ranked algorithms reached the global optimum even in one of the 30 
independent runs (maximum reached accuracy is 1e-2). In F9, the 

Table 9 
Summary of the CEC’20 Test Suite (Yue et al., 2019).  

No Functions Characteristic Global 
Optimum 

1 Shifted and Rotated Bent Cigar Function 
(CEC 2017 (Awad et al., 2016) F1) 

Unimodal 
Function 

100 

2 Shifted and Rotated Schwefel’s Function 
(CEC 2014 (Liang et al., 2014) F11) 

Basic Functions 1100 

3 Shifted and Rotated Lunacek bi-Rastrigin 
Function (CEC 2017 (Awad et al., 2016) 
F7) 

700 

4 Expanded Rosenbrock’s plus 
Griewangk’s Function (CEC2017 (Awad 
et al., 2016) F19) 

1900 

5 Hybrid Function 1 (N = 3) (CEC 2014 ( 
Liang et al., 2014) F17) 

Hybrid Functions 1700 

6 Hybrid Function 2 (N = 4) (CEC 2017 ( 
Awad et al., 2016) F16) 

1600 

7 Hybrid Function 3 (N = 5) (CEC 2014 ( 
Liang et al., 2014) F21) 

2100 

8 Composition Function 1 (N = 3) (CEC 
2017 (Awad et al., 2016) F22) 

Composition 
Functions 

2200 

9 Composition Function 2 (N = 4) (CEC 
2017 (Awad et al., 2016) F24) 

2400 

10 Composition Function 3 (N = 5) (CEC 
2017 (Awad et al., 2016) F25) 

2500 

Search range = [− 100 100]D, D = 5, 10 and 15  

Table 10 
Top-ranked optimization algorithms at the latest IEEE CEC competitions.  

Method Rank Year 

IMODE (JSallam et al., 2020) 1 2020 
AGSK (Mohamed et al., 2020) 2 2020 
HSES (Zhang & Shi, 2018) 1 2018 
EBOwithCMAR (Kumar et al., 2017) 1 2017 
LSHADE-cpEpSin (Awad et al., 2017) 3 2017 
LSHADE-SPACMA (Mohamed et al., 2017) 4 2017  
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Table 11 
Comparison results of the Ad-TLBO with CEC’s top-ranked algorithms and recently developed algorithms for D = 5. (Results of top-ranked CEC competitions algorithms are taken from Mohamed et al. (2020) and JSallam 
et al. (2020).    

Dimensions=5 

F1 F2 F3 F4 F5 F8 F9 F10 

Top-ranked CEC Competitions Algorithms LSHADE-cpEpSin Mean 0.00Eþ00 2.98Eþ00 1.30Eþ00 6.88E-02 1.40E-01 3.14E-01 3.33Eþ00 3.02Eþ02 
STD 0.00Eþ00 2.27Eþ00 6.96E-01 3.90E-02 3.66E-01 1.72Eþ00 1.83Eþ01 8.65Eþ00 
Best 0.00Eþ00 1.25E-01 1.03E-01 3.53E-07 0.00Eþ00 0.00Eþ00 0.00Eþ00 3.00Eþ02 

EBOwithCMAR Mean 0.00Eþ00 1.54E-01 5.18Eþ00 6.07E-02 1.41E-01 1.21Eþ01 9.67Eþ01 3.37Eþ02 
STD 0.00Eþ00 1.02E-01 8.35E-02 2.54E-02 3.89E-01 3.08Eþ01 1.83Eþ01 4.57Eþ01 
Best 0.00Eþ00 0.00Eþ00 5.15Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.00Eþ02 

AGSK Mean 0.00Eþ00 1.64Eþ01 2.87Eþ00 1.11E-01 0.00Eþ00 0.00Eþ00 3.33Eþ01 2.25Eþ02 
STD 0.00Eþ00 2.58Eþ01 2.05Eþ00 6.05E-02 0.00Eþ00 0.00Eþ00 4.79Eþ01 1.32Eþ02 
Best 0.00Eþ00 6.14E-01 4.38E-07 1.67E-03 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 

IMODE Mean 0.00Eþ00 8.33E-02 5.15Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 2.43Eþ02 
STD 0.00Eþ00 8.88E-02 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.36Eþ02 
Best 0.00Eþ00 0.00Eþ00 5.15Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 

LSHADE-SPACMA Mean 0.00Eþ00 4.42E-01 5.25Eþ00 9.81E-06 2.08E-02 0.00Eþ00 9.67Eþ01 3.47Eþ02 
STD 0.00Eþ00 1.24Eþ00 1.43E-01 5.37E-05 1.14E-01 0.00Eþ00 1.83Eþ01 5.23E-04 
Best 0.00Eþ00 6.90E-03 5.15Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 9.67Eþ01 3.47Eþ02 

HSES Mean 0.00Eþ00 4.76Eþ01 5.41Eþ00 2.57E-01 3.32Eþ00 4.76Eþ01 1.00Eþ02 3.47Eþ02 
STD 0.00Eþ00 5.91Eþ01 1.97E-01 1.17E-01 2.12Eþ00 3.84Eþ01 2.52E-11 1.17E-02 
Best 0.00Eþ00 0.00Eþ00 5.15Eþ00 1.09E-01 9.95E-01 0.00Eþ00 1.00Eþ02 3.47Eþ02 

Recently developed Algorithms AO Mean 1.50Eþ07 4.16Eþ02 2.01Eþ01 2.52Eþ00 1.59Eþ03 5.55Eþ01 1.18Eþ02 3.52Eþ02 
STD 1.12Eþ07 1.31Eþ02 5.58Eþ00 7.01E-01 1.78Eþ03 3.68Eþ01 2.90Eþ01 5.16Eþ01 
Best 1.93Eþ06 1.91Eþ02 1.23Eþ01 1.17Eþ00 1.06Eþ02 1.85Eþ01 1.03Eþ02 3.48Eþ02 

ATLBO-DA Mean 1.89Eþ03 1.80Eþ02 8.20Eþ00 3.27E-01 5.92Eþ01 4.59Eþ01 9.48Eþ01 3.43Eþ02 
STD 3.21Eþ03 1.54Eþ02 2.59Eþ00 1.73E-01 6.93Eþ01 4.51Eþ01 2.17Eþ01 1.42Eþ01 
Best 0.00Eþ00 6.84Eþ00 5.79Eþ00 1.99E-02 3.11E-05 7.26E-07 3.64E-03 3.00Eþ02 

AHA Mean 0.00Eþ00 6.28Eþ01 8.66Eþ00 2.40E-01 1.83Eþ01 1.73Eþ01 8.67Eþ01 3.36Eþ02 
STD 0.00Eþ00 6.81Eþ01 2.06Eþ00 1.44E-01 1.71Eþ00 3.82Eþ01 3.46Eþ01 4.61Eþ01 
Best 0.00Eþ00 1.25E-01 5.74Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.00Eþ02 

EO Mean 7.15Eþ01 1.06Eþ02 6.69Eþ00 2.45E-01 4.62Eþ01 5.13Eþ01 1.93Eþ02 3.46Eþ02 
STD 1.14Eþ02 7.90Eþ01 1.38Eþ00 7.76E-02 5.91Eþ01 5.02Eþ01 1.06Eþ02 8.57Eþ00 
Best 3.30E-01 3.80E-01 5.15Eþ00 1.10E-01 0.00Eþ00 0.00Eþ00 0.00Eþ00 3.00Eþ02 

MPA Mean 0.00Eþ00 1.51Eþ02 6.52Eþ00 3.20E-01 1.30E-02 1.68Eþ01 5.67Eþ01 3.00Eþ02 
STD 0.00Eþ00 4.31Eþ01 1.16Eþ00 1.26E-01 3.85E-02 3.82Eþ01 5.04Eþ01 8.26Eþ01 
Best 0.00Eþ00 7.60E-01 1.89Eþ00 1.11E-04 2.76E-08 0.00Eþ00 3.66E-07 1.00Eþ02 

QANA Mean 0.00Eþ00 3.97Eþ01 6.41Eþ00 2.26E-01 9.83E-01 6.23Eþ00 1.00Eþ00 3.47Eþ02 
STD 0.00Eþ00 6.28Eþ01 1.00Eþ00 9.77E-02 9.42E-01 1.85Eþ01 0.00Eþ00 8.99E-03 
Best 0.00Eþ00 1.25E-01 5.31Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.00Eþ02 3.47Eþ02 

SMA Mean 2.49Eþ07 1.21Eþ02 3.78Eþ01 2.50Eþ00 1.24Eþ02 3.69Eþ01 1.97Eþ02 3.59Eþ02 
STD 1.77Eþ07 1.95Eþ01 1.04Eþ01 8.36E-01 6.27Eþ01 7.33Eþ00 4.72Eþ01 8.61Eþ00 
Best 1.57Eþ06 9.23Eþ01 1.81Eþ01 8.71E-01 4.57Eþ01 1.59Eþ01 1.06Eþ02 3.49Eþ02 

RUN Mean 4.70Eþ03 8.08Eþ01 1.41Eþ01 6.20E-01 4.19Eþ01 3.12Eþ01 9.70Eþ01 3.47Eþ02 
STD 2.47Eþ03 6.80Eþ01 3.60Eþ00 3.34E-01 3.30Eþ01 3.91Eþ01 1.77Eþ01 5.62E-02 
Best 2.39Eþ03 6.90Eþ00 6.53Eþ00 2.49E-01 1.11Eþ01 3.44E-02 2.96Eþ00 3.47Eþ02 

Proposed Algorithm Ad-TLBO Mean 0.00Eþ00 2.39Eþ01 3.30Eþ00 1.65E-01 2.33Eþ00 1.90Eþ00 2.33Eþ01 1.35Eþ02 
STD 0.00Eþ00 2.55Eþ01 2.74Eþ00 1.17E-01 2.47Eþ00 4.12Eþ00 4.30Eþ01 8.40Eþ01 
Best 0.00Eþ00 1.24E-01 7.12E-03 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 

Rank 1 6 2 6 8 3 3 1  
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Table 12 
Comparison results of the Ad-TLBO with CEC’s top-ranked algorithms and recently developed algorithms for D = 10. (Results of top-ranked CEC competitions algorithms are taken from Mohamed et al. (2020) and JSallam 
et al. (2020).    

Dimensions=10 

F1 F2 F3 F4 F5 F6 F8 F9 F10 

Top-ranked CEC Competitions Algorithms LSHADE-cpEpSin Mean 0.00Eþ00 3.51Eþ00 1.16Eþ01 1.46E-01 2.79Eþ01 3.32E-01 1.00Eþ02 3.5Eþ02 4.22Eþ02 
STD 0.00Eþ00 3.24Eþ00 4.63E-01 2.62E-02 4.47Eþ01 2.29E-01 1.15E-13 6.96Eþ01 2.32Eþ01 
Best 0.00Eþ00 1.25E-01 1.06Eþ01 9.86E-02 2.08E-01 1.15E-02 1.00E02 1.00Eþ02 3.98Eþ02 

EBOwithCMAR Mean 0.00Eþ00 4.63Eþ00 1.04Eþ01 1.33E-01 1.01Eþ01 1.29E-01 1.00Eþ02 1.60Eþ02 4.10Eþ02 
STD 0.00Eþ00 3.80Eþ00 5.21E-02 2.50E-02 1.10Eþ01 9.11E-02 0.00Eþ00 9.80Eþ01 2.04Eþ01 
Best 0.00Eþ00 2.50E-01 1.04Eþ01 9.86E-02 2.08E-01 4.66E-03 1.00Eþ02 1.00Eþ02 3.98Eþ02 

AGSK Mean 0.00Eþ00 2.84Eþ01 9.93Eþ00 5.83E-02 3.18E-01 1.55E-01 1.80Eþ01 7.63Eþ01 2.98Eþ02 
STD 0.00Eþ00 3.21Eþ01 4.26Eþ00 3.11E-02 3.06E-01 1.17E-01 2.38Eþ01 4.29Eþ01 1.43Eþ02 
Best 0.00Eþ00 4.09Eþ00 6.12E-01 1.94E-03 0.00Eþ00 2.20E-02 0.00Eþ00 0.00Eþ00 1.00Eþ02 

IMODE Mean 0.00Eþ00 4.19Eþ00 1.21Eþ01 0.00Eþ00 3.88E-01 9.14E-02 2.72Eþ00 4.10Eþ01 3.98Eþ02 
STD 0.00Eþ00 3.70Eþ00 7.82E-01 0.00Eþ00 3.83E-01 5.08E-02 7.46Eþ00 4.46Eþ01 2.89E-13 
Best 0.00Eþ00 1.25E-01 1.07Eþ01 0.00Eþ00 4.03E-06 2.67E-02 0.00Eþ00 0.00Eþ00 3.98Eþ02 

LSHADE-SPACMA Mean 0.00Eþ00 5.20Eþ00 1.29Eþ01 1.44E-01 2.25Eþ00 3.80E-01 1.00Eþ02 2.87Eþ02 4.10Eþ02 
STD 0.00Eþ00 9.39Eþ00 1.87Eþ00 1.70E-01 5.22Eþ00 1.94E-01 0.00Eþ00 9.53Eþ01 2.05Eþ01 
Best 0.00Eþ00 1.89E-01 1.06Eþ01 0.00Eþ00 0.00Eþ00 2.30E-02 1.00Eþ02 1.00Eþ02 3.98Eþ02 

HSES Mean 0.00Eþ00 8.50Eþ00 1.41Eþ01 9.65E-01 1.03Eþ02 8.63Eþ00 1.00Eþ02 3.29Eþ02 4.46Eþ02 
STD 0.00Eþ00 4.08Eþ00 6.57E-01 2.59E-01 1.99Eþ02 3.00Eþ01 0.00Eþ00 1.09Eþ00 1.23Eþ00 
Best 0.00Eþ00 3.54Eþ00 1.04Eþ01 5.04E-01 2.09E-01 2.83E-01 1.00Eþ02 3.27Eþ02 4.44Eþ02 

Recently developed Algorithms AO Mean 7.13Eþ08 1.20Eþ03 7.54Eþ01 3.63Eþ01 1.63Eþ04 9.54E-01 1.45Eþ02 3.50Eþ02 4.66Eþ02 
STD 3.58Eþ08 2.50Eþ02 1.16Eþ01 2.72Eþ01 1.03Eþ04 2.40E-01 1.32Eþ01 9.98Eþ01 2.94Eþ01 
Best 1.91Eþ08 5.48Eþ02 5.60Eþ01 1.09Eþ01 1.32Eþ03 5.46E-01 1.20Eþ02 1.50Eþ02 4.29Eþ02 

ATLBO-DA Mean 1.85Eþ08 7.12Eþ02 4.03Eþ01 5.34Eþ01 7.05Eþ02 6.30E-01 1.26Eþ02 2.12Eþ02 4.24Eþ02 
STD 5.20Eþ08 2.70Eþ02 1.27Eþ01 1.77Eþ02 1.39Eþ03 2.35E-01 2.10Eþ01 1.27Eþ02 6.68Eþ01 
Best 2.67Eþ03 1.22Eþ02 1.71Eþ01 1.11Eþ00 3.75Eþ01 2.68E-01 7.28Eþ01 1.00Eþ02 1.03Eþ02 

AHA Mean 0.00Eþ00 2.33Eþ02 2.41Eþ01 8.20E-01 5.76Eþ01 6.10E-01 9.86Eþ01 1.55Eþ02 4.25Eþ02 
STD 0.00Eþ00 1.38Eþ02 6.49Eþ00 3.30E-01 6.72Eþ01 1.62E-01 1.47Eþ01 9.87Eþ01 2.30Eþ01 
Best 0.00Eþ00 6.83Eþ00 1.35Eþ01 2.05E-01 1.41Eþ00 5.00E-01 2.06Eþ01 1.00Eþ02 3.98Eþ02 

EO Mean 9.07Eþ02 2.70Eþ02 1.81Eþ01 7.73E-01 3.97Eþ02 8.33E-02 1.00Eþ02 3.43Eþ02 4.33Eþ02 
STD 1.19Eþ03 2.11Eþ02 4.32Eþ00 3.33E-01 2.28Eþ02 1.40E-01 2.95E-01 8.24Eþ00 2.10Eþ01 
Best 2.07E-01 7.13Eþ00 1.22Eþ01 1.97E-02 5.56Eþ01 4.64E-06 1.00Eþ02 3.30Eþ02 3.98Eþ02 

MPA Mean 0.00Eþ00 6.46Eþ01 1.69Eþ01 5.14E-01 2.66Eþ00 0.00Eþ00 9.50Eþ01 1.18Eþ02 3.99Eþ02 
STD 0.00Eþ00 7.00Eþ01 2.22Eþ00 1.70E-01 4.27Eþ00 0.00Eþ00 2.12Eþ01 5.07Eþ01 8.33Eþ00 
Best 0.00Eþ00 1.87E-01 1.27Eþ01 2.07E-01 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.00Eþ02 3.98Eþ02 

QANA Mean 0.00Eþ00 1.62Eþ02 1.88Eþ01 7.92E-01 5.72Eþ01 0.00Eþ00 9.65Eþ01 2.37Eþ02 4.28Eþ02 
STD 0.00Eþ00 1.20Eþ02 3.55Eþ00 3.33E-01 5.42Eþ01 0.00Eþ00 2.00Eþ01 1.22Eþ02 2.26Eþ01 
Best 0.00Eþ00 6.95Eþ00 1.30Eþ01 3.45E-01 6.24E-01 0.00Eþ00 2.18Eþ01 1.00Eþ02 3.98Eþ02 

SMA Mean 7.00Eþ08 9.72Eþ02 1.35Eþ02 1.06Eþ01 1.49eþ04 4.60E-01 2.16Eþ02 3.70Eþ02 4.91Eþ02 
STD 2.88Eþ08 1.33Eþ02 1.73Eþ01 2.45Eþ00 5.27Eþ03 1.25E-01 1.99Eþ02 4.36Eþ00 1.79Eþ01 
Best 1.85Eþ08 5.73Eþ02 1.05Eþ02 6.88Eþ00 2.12Eþ03 7.27E-02 8.78Eþ01 3.63Eþ02 4.39Eþ02 

RUN Mean 4.22Eþ03 2.53Eþ02 4.49Eþ01 9.67E-01 1.10Eþ03 3.36E-01 1.02Eþ02 1.80Eþ02 4.19Eþ02 
STD 1.85Eþ03 1.93Eþ02 1.06Eþ01 3.68E-01 4.25Eþ02 1.63E-01 7.65E-01 1.15Eþ02 2.30Eþ01 
Best 2.21Eþ02 1.03Eþ01 2.63Eþ01 4.85E-01 3.79Eþ02 1.89E-04 1.00Eþ02 1.00Eþ02 3.98Eþ02 

Proposed Algorithm Ad-TLBO Mean 0.00Eþ00 4.74Eþ01 8.51Eþ00 6.79E-01 9.20Eþ01 0.00Eþ00 1.37Eþ01 2.70Eþ01 1.79Eþ02 
STD 0.00Eþ00 4.52Eþ01 3.03Eþ00 2.48E-01 5.95Eþ01 0.00Eþ00 9.34Eþ00 4.57Eþ01 1.03Eþ02 
Best 0.00Eþ00 3.78Eþ00 3.70Eþ00 9.90E-02 1.06Eþ01 0.00Eþ00 0.00Eþ00 0.00Eþ00 1.00Eþ02 

Rank 1 7 1 7 9 1 2 1 1  
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Table 13 
Comparison results of the Ad-TLBO with CEC’s top-ranked algorithms and recently developed algorithms for D = 15. (Results of top-ranked CEC competitions algorithms are taken from Mohamed et al. (2020) and JSallam 
et al. (2020).    

Dimensions=15 

F1 F2 F3 F4 F5 F6 F8 F9 F10 

Top-ranked CEC Competitions Algorithms LSHADE-cpEpSin Mean 0.00Eþ00 5.26Eþ01 1.00Eþ01 2.73E-01 2.41Eþ01 1.13Eþ00 9.11Eþ01 2.43Eþ02 4.00Eþ02 
STD 0.00Eþ00 5.02Eþ01 2.44Eþ00 4.69E-02 7.74Eþ00 5.40E-01 2.42Eþ01 1.11Eþ02 2.89E-13 
Best 0.00Eþ00 2.42Eþ00 1.83Eþ00 1.79E-01 1.15Eþ01 5.40E-01 2.15E-03 1.00Eþ02 4.00Eþ02 

EBOwithCMAR Mean 0.00Eþ00 7.97Eþ00 1.56Eþ01 2.00E-01 2.79Eþ01 2.07E-01 1.00Eþ02 3.00Eþ02 4.00Eþ02 
STD 0.00Eþ00 7.77Eþ00 1.45E-02 2.26E-02 4.77Eþ01 1.19E-01 0.00Eþ00 1.23Eþ02 0.00Eþ00 
Best 0.00Eþ00 2.50E-01 1.56Eþ01 1.48E-01 3.12E-01 4.05E-02 1.00Eþ02 1.00Eþ02 4.00Eþ02 

AGSK Mean 0.00Eþ00 1.85Eþ01 1.42Eþ01 1.42E-01 6.25Eþ00 4.02E-01 6.85Eþ01 9.67Eþ01 4.00Eþ02 
STD 0.00Eþ00 1.46Eþ01 4.27Eþ00 5.71E-02 4.32Eþ00 2.23E-01 3.85Eþ01 1.83Eþ01 2.60E-13 
Best 0.00Eþ00 3.12Eþ00 0.00Eþ00 4.74E-02 3.12E-01 1.72E-01 0.00Eþ0 0.00Eþ00 4.00Eþ02 

IMODE Mean 0.00Eþ00 3.14Eþ00 1.61Eþ01 0.00Eþ00 7.79Eþ00 6.92E-01 4.18Eþ00 9.33Eþ01 4.00Eþ02 
STD 0.00Eþ00 3.22Eþ00 3.12E-01 0.00Eþ00 3.66Eþ00 2.52E-01 9.61Eþ00 2.54Eþ01 0.00Eþ00 
Best 0.00Eþ00 1.25E-01 1.567Eþ01 0.00Eþ00 1.15Eþ00 2.81E-01 0.00Eþ00 0.00Eþ00 4.00Eþ02 

LSHADE-SPACMA Mean 0.00Eþ00 3.73Eþ00 1.61Eþ01 2.81E-01 7.01Eþ00 6.24E-01 1.00Eþ02 3.90Eþ02 4.00Eþ02 
STD 0.00Eþ00 3.38Eþ00 8.30E-01 2.23E-01 2.17Eþ01 2.76E-01 0.00Eþ00 1.39Eþ00 0.00Eþ00 
Best 0.00Eþ00 1.64E-01 1.56Eþ01 1.78E-01 1.56E-01 7.77E-02 1.00Eþ02 3.90Eþ02 4.00Eþ02 

HSES Mean 0.00Eþ00 1.95Eþ02 1.79Eþ01 1.45Eþ00 4.22Eþ01 2.67Eþ01 1.00Eþ02 3.88Eþ02 4.00Eþ02 
STD 0.00Eþ00 1.26Eþ02 1.83Eþ00 3.07E-01 4.49Eþ01 5.70Eþ01 1.57E-13 1.93Eþ00 1.66E-10 
Best 0.00Eþ00 1.19Eþ02 1.61Eþ01 1.06Eþ00 8.96Eþ00 4.54E-01 1.00Eþ02 3.85Eþ02 4.00Eþ02 

Recently developed Algorithms AO Mean 3.10Eþ09 2.29Eþ3 1.43Eþ02 4.96Eþ02 3.80Eþ05 0.00Eþ00 2.99Eþ02 5.16Eþ02 7.10Eþ02 
STD 8.54þ08 2.59Eþ02 1.60Eþ01 9.29Eþ02 3.73Eþ05 0.00Eþ00 4.22Eþ01 6.30Eþ01 4.49Eþ01 
Best 1.33Eþ09 1.81Eþ03 1.09Eþ02 2.05Eþ01 5.67E04 0.00Eþ00 2.23Eþ02 2.14Eþ02 6.46Eþ02 

AHA Mean 3.57Eþ03 3.92Eþ02 3.43Eþ01 1.11Eþ00 1.72Eþ02 4.82Eþ02 1.01Eþ02 3.88Eþ02 4.17Eþ02 
STD 5.38Eþ03 1.78Eþ02 8.14Eþ00 3.85E-01 9.36Eþ01 0.00Eþ00 6.61E-01 5.46Eþ01 6.36Eþ01 
Best 1.75Eþ02 1.26Eþ02 2.14Eþ01 3.76E-01 1.31Eþ01 4.82Eþ02 1.00Eþ02 1.00Eþ02 4.00Eþ02 

EO Mean 6.76Eþ03 5.68Eþ02 3.24Eþ01 1.34Eþ00 7.10Eþ02 0.00Eþ00 1.68Eþ02 4.01Eþ02 4.00Eþ02 
STD 6.87Eþ03 2.47Eþ02 7.94Eþ00 3.39E-01 3.28Eþ02 0.00Eþ00 2.89Eþ02 4.79Eþ00 0.00Eþ00 
Best 1.30Eþ00 1.39Eþ02 1.84Eþ01 7.70E-01 1.94Eþ02 0.00Eþ00 1.00Eþ02 3.94Eþ02 4.00Eþ02 

MPA Mean 9.98Eþ03 1.96Eþ02 2.60Eþ01 8.41E-01 3.99Eþ01 0.00Eþ00 9.50Eþ01 2.38Eþ02 4.00Eþ02 
STD 9.83Eþ03 1.17Eþ02 3.46Eþ00 2.36E-01 3.37Eþ01 0.00Eþ00 2.27Eþ01 1.43Eþ02 1.12E-01 
Best 4.85Eþ01 2.53Eþ00 2.05Eþ01 4.01E-01 8.21Eþ00 0.00Eþ00 2.15Eþ01 1.00Eþ02 4.00Eþ02 

QANA Mean 0.00Eþ00 3.33Eþ02 3.11Eþ01 1.19Eþ00 1.93Eþ02 2.00Eþ02 9.53Eþ01 3.88Eþ02 4.00Eþ02 
STD 0.00Eþ00 2.10Eþ02 6.81Eþ00 3.96E-01 1.31Eþ02 0.00Eþ00 2.13Eþ01 5.47Eþ01 0.00Eþ00 
Best 0.00Eþ00 1.03Eþ01 1.87Eþ01 4.15E-01 8.27Eþ00 2.00Eþ02 0.00Eþ00 1.00Eþ02 4.00Eþ02 

SMA Mean 7.48Eþ08 1.83Eþ03 1.72Eþ02 1.56Eþ01 4.20Eþ04 0.00Eþ00 1.63Eþ03 4.34Eþ02 6.81Eþ02 
STD 1.98Eþ08 1.73Eþ02 1.35Eþ01 2.85Eþ00 3.31Eþ04 0.00Eþ00 8.02Eþ02 6.51Eþ00 2.45Eþ01 
Best 3.59Eþ08 1.32Eþ03 1.47Eþ02 1.16Eþ01 4.73Eþ03 0.00Eþ00 2.16Eþ02 4.21Eþ02 6.16Eþ02 

RUN Mean 2.14Eþ06 5.50Eþ02 9.83Eþ01 7.12Eþ00 1.28Eþ05 0.00Eþ00 1.10Eþ02 4.11Eþ02 4.92Eþ02 
STD 1.08Eþ06 2.30Eþ02 1.75Eþ01 1.53Eþ00 4.36Eþ04 0.00Eþ00 7.45E-01 8.14Eþ00 1.03Eþ02 
Best 5.83Eþ05 1.33Eþ02 5.83Eþ01 3.41Eþ00 5.77Eþ03 0.00Eþ00 1.08Eþ02 4.00Eþ02 4.05Eþ02 

Proposed Algorithm Ad-TLBO Mean 0.00Eþ00 1.84Eþ02 9.56Eþ00 1.13Eþ00 1.45Eþ02 0.00Eþ00 1.85Eþ01 9.62Eþ01 4.00Eþ02 
STD 0.00Eþ00 1.19Eþ02 4.07Eþ00 1.64Eþ00 1.03Eþ02 0.00Eþ00 1.24Eþ01 2.69Eþ01 0.00Eþ00 
Best 0.00Eþ00 8.80Eþ00 2.98Eþ00 4.18E-01 2.49Eþ01 0.00Eþ00 0.00Eþ00 9.88E-02 4.00Eþ02 

Rank 1 6 1 8 8 1 2 2 1  
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proposed method is ranked two, with little difference from the IMODE 
algorithm. The results of this challenge show the competitive perfor
mance of the proposed method compared to 15 top-ranked and recently 
developed algorithms. The proposed method is among the top two in six 
of nine benchmarks. 

Figs. 11–13 compare some newly published algorithms with the 
proposed algorithm in the 10-dimensional state for three benchmark 
functions F3, F9, and F10, graphically. Table 9 shows that the global 
optimum solution for functions F3, F9, and F10 is 700, 2400, and 2500, 
respectively. As shown in Figs. 11–13, the proposed algorithm has per
formed better than other optimization algorithms by a relatively good 

Fig. 11. Graphical comparison of some newly published algorithms with Ad- 
TLBO for F3. 

Fig. 12. Graphical comparison of some newly published algorithms with Ad- 
TLBO for F9. 

Fig. 13. Graphical comparison of some newly published algorithms with Ad- 
TLBO for F10. 

Table 14 
Comparison results of pressure vessels problem (the results of the algorithms 
before RUN algorithm are taken from Zhao et al. (2022)).  

Algorithms Mean Best Std MFEs 

GA2 6293.8432 6288.7445 7.4133 900,000 
GA3 6177.2533 6059.9463 130.9297 80,000 
CPSO 6147.1332 6061.0777 86.4500 240,000 
HPSO 6099.9323 6059.7143 86.2000 81,000 
PSO-DE 6059.7143 6059.7143 1.0E− 10 42,100 
PSO2 8756.6803 6693.7212 1492.5670 8000 
QPSO 6440.3786 6059.7209 479.2671 8000 
CDE 6085.2303 6059.7340 43.0130 204,800 
CSA 6342.4990 6059.7140 250,000 250,000 
ABC 6245.3080 6059.714339 205.0000 30,000 
(μ + λ)ES 6379.9380 6059.7016 210.0000 30,000 
RUN 7389.5797 6335.1267 488.6675 30,000 
AO 18,480.4178 10,473.5492 5142.2684 30,000 
AHA 5885.7586 5885.3553 0.4142 30,000 
ATLBO-DA 6076.4885 5885.3328 495.6848 30,000 
SMA 8395.3778 6383.1629 1439.4226 30,000 
MPA 5899.3200 5885.3687 50.4918 30,000 
Ad-TLBO 5885.3911 5885.3334 0.1360 30,000 
QANA 5972.6559 5887.60970 83.5602 30,000 
EO 6412.6802 5919.1025 507.4803 30,000 
Rank 1  

Fig. 14. Pressure vessels problem.  
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margin. The search technique proposed in this manuscript is quite 
evident in these figures. In the first two parts of the search technique, by 
dividing the search space into smaller hypercubes, the coverage of the 
search domain in the space has been improved. The cause of the fluc
tuation of the graph in the first two sections is a segmented search. In the 
first section of the search, the search space is segmented into 2nVar 

smaller cubes, and the search continues in each cube. This search is done 
in 1024 small cubes for a ten variables problem, so the solutions fluc
tuate 1024 times with the increase in the number of function evalua
tions. In the second section of the search, the exploration continues only 
in the "nc" candidate hypercube, so the solutions have fluctuated for the 
"nc" time. Finally, in the last part of the search, since only the search was 
done in a hypercube, the solutions decrease with the increase of function 
evaluations number, like other algorithms. 

Challenge4: engineering problem 

Pressure vessels are widely used in various industries, including the 
aerospace industry. Launch vehicles or satellite orbital transfer systems 
use these structures as propellant storage tanks for the propulsion sys
tem. In this challenge, the minimum fabrication cost of these pressure 
vessels is considered the objective function, along with four inequality 
constraints. This problem has already been investigated in references 
such as Askarzadeh (2016), (Rao et al., 2011; Coello, 2000; Coello & 
Montes, 2002; dos Santos Coelho, 2010; He & Wang, 2007b, 2007a; 
Huang et al., 2007; Liu et al., 2010; Mezura-Montes & Coello, 2005), and 
Zhao et al. (2022) by many heuristic techniques. The results of them are 
summarized in Table 14. 

In this section, in addition to the mentioned references, this problem 
has been investigated with eight optimization methods that have been 
published recently. The number of 30,000 function evaluations has been 
chosen as the stopping criteria for these algorithms. The evaluation 
criteria are the mean, standard deviation, and best fitness values ob
tained from 30 independent runs. The design variables are shown in 
Fig. 14. This optimization problem is described below: 

min
x

F = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

x = [x1, x2, x3, x4] = [Ts,Th,R, L]

s.t, g1(x) = − x1 + 0.0193x3 ≤ 0

g2(x) = − x2 + 0.0095x3 ≤ 0

g3(x) = − πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0

g4(x) = − x4 − 240 ≤ 0

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200,

(19) 

As shown in Table 14, the proposed method was able to overcome 
other algorithms and achieve acceptable results in terms of the mean 
value, standard deviation, and the best fitness value. Also, compared to 
the first few methods in the table, these results have been obtained in 
fewer evaluations. 

Algorithm complexity 

In order to evaluate the computational complexity of the proposed 
algorithm, the method described in the CEC 2020 competition (Yue 
et al., 2019) has been used. According to this method, to calculate the 
computational complexity, it is necessary to calculate three times T0, 

T1, and T2. The following code calculates the execution time of T0: 

X = 0.55;
For i = 1 : 1000000
x = x + x; x = x/2; x = x ∗ x; x = sqrt(x);
x = log(x); x = exp(x); x = x/(x + 2);
end

(20) 

T1 represents the execution time of the F1 function for 200,000 
evaluations in 5, 10 and 15 dimensions. The T2 execution time is ob
tained from the mean of 5 runs of the proposed algorithm on the F1 
function for 200,000 evaluations. The results are summarized in 
Table 15. 

Conclusions 

The proposed advanced algorithm in the present study is based on 
the initial version of the TLBO algorithm. This advancement is done in 
two general parts. These modifications focused on improving the 
exploration and exploitation characteristics of O-TLBO. By modifying 
the algorithm’s structure and the initialization process, we found that 
these steps improve the performance and efficiency of the algorithm 
significantly. To demonstrate this, four different challenges were 
considered to assess the performance of the proposed algorithms in 
terms of accuracy, convergence rate, and reliability. For comparison, 
various optimization algorithms were employed in several benchmark 
functions with variations in multimodal, separable, and differentiable 
characteristics in these challenges. In Challenge 1, the sphere bench
mark was used to show the effect of modifying each step of part one 
compared to the O-TLBO or the steps before the modifications. We 
showed step-by-step improvement in the convergence rate and accuracy 
when the modifications were applied. In Challenge 2, this comparison 
was performed with eleven algorithms on nine benchmarks in terms of 
accuracy, convergence rate, and reliability in two modes of 10D and 30D 
functions. We illustrated that the proposed Ad-TLBO algorithm is the 
only algorithm that could achieve 100% success in all benchmarks. 

Besides, the other algorithms, especially in the 30-dimensional cases, 
could not converge 100% to the acceptable value. Based on the results of 
this challenge, the proposed algorithm had a higher convergence speed 
and, at the same time, had much more accuracy compared to other al
gorithms. The last CEC competition in 2020 benchmark functions was 
used in Challenge 3 to demonstrate the efficacy of the proposed algo
rithm compared to the other investigated optimization algorithms. This 
competition consists of ten new hybrid and composite sets of functions. 
The performance efficiency of the proposed Ad-TLBO algorithm was 
demonstrated by comparing its results with six state-of-the-art top- 
ranked optimization algorithms at the latest IEEE CEC competitions and 
eight developed algorithms in recent years. As Challenge 3 indicates, 
increasing the number of variables improves the efficiency of the Ad- 
TLBO. In general, in this challenge, the proposed method had accept
able performance, especially in 10 and 15-dimensional functions, and in 
six out of nine benchmark functions, it was among the top two ranks. 
Finally, an engineering problem was investigated in the final challenge. 
The results of the fourth challenge show the quality of the answer of the 
proposed method compared to eight recently developed optimization 
algorithms in terms of the mean value, standard deviation, and 
maximum function evaluation. 

The present study shows that the Ad-TLBO algorithm effectively 
finds the optimal global solution for various single-objective optimiza
tion problems. These results indicate that although the Ad-TLBO algo
rithm does not have entirely desirable performance, it can be improved 
by being studied further by researchers and extended to a broader range 
of application optimization problems. However, real-life optimization 
problems, especially engineering problems, often involve more than one 
objective. Therefore, the non-dominated sorting Ad-TLBO algorithm for 
multi-objective optimization and performance evaluation of this method 
is recommended for future studies. It should be noted that the 

Table 15 
Algorithm complexity.  

D T0 (s) T1(s) T2(s) (T2 − T1)/T0 

5 4E-02 4.93E-01 5.18E+00 1.17E+02 
10 5.69E-01 5.28E+00 1.18E+02 
15 1.05E+00 5.94E+00 1.22E+02  
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hybridization of Ad-TLBO with other optimization algorithms or search 
techniques can improve the performance of this algorithm. 
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